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Abstract: We present the analysis of defective pathways in multiple myeloma (MM) using two
recently developed sampling algorithms of the biological pathways: The Fisher’s ratio sampler,
and the holdout sampler. We performed the retrospective analyses of different gene expression
datasets concerning different aspects of the disease, such as the existing difference between bone
marrow stromal cells in MM and healthy controls (HC), the gene expression profiling of CD34+

cells in MM and HC, the difference between hyperdiploid and non-hyperdiploid myelomas, and the
prediction of the chromosome 13 deletion, to provide a deeper insight into the molecular mechanisms
involved in the disease. Our analysis has shown the importance of different altered pathways
related to glycosylation, infectious disease, immune system response, different aspects of metabolism,
DNA repair, protein recycling and regulation of the transcription of genes involved in the differentiation
of myeloid cells. The main difference in genetic pathways between hyperdiploid and non-hyperdiploid
myelomas are related to infectious disease, immune system response and protein recycling. Our work
provides new insights on the genetic pathways involved in this complex disease and proposes novel
targets for future therapies.

Keywords: multiple myeloma; analysis of defective pathways; Fisher’s ratio sampler;
holdout sampler; genetic signatures; chromosome 13 deletion prediction; genes; pathways

1. Introduction

Multiple myeloma (MM) is hematologic malignancy that results from clonal proliferation of
plasma cells that help fighting infections by making antibodies that recognize and attack germs.
Multiple myeloma causes cancer cells to accumulate in the bone marrow, where they crowd out
healthy white and red blood cells, leading to fatigue and an inability to fight infections. Instead of
producing necessary antibodies, the cancer cells produce abnormal proteins (monoclonal proteins) that
can cause different complications, such as: Frequent infections, bone problems (pain, thinning and
broken bones), reduced kidney function and anemia. Among the factors that may increase the risk of
developing multiple myeloma are: Old age, male gender, African-American ethnicity, family history of
MM, and history of a monoclonal gammopathy of undetermined significance (MGUS) in the blood.
Nevertheless, the causes of MM are still not very well known.
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Bergsagel and Kuehl, Corre et al. studied the genetic factors of MM. The current, widely accepted
model of oncogenesis describes two different pathways: Hyperdiploidy and immunoglobulins
heavy locus (IGH) translocations [1,2]. Hyperdiploidy is probably due to the missegregation of
chromosomes during mitosis. Hyperdiploid myelomas are characterized by trisomy of certain odd
numbered chromosomes (3, 5, 7, 9, 11, 15, 19). This is observed in up to 55% of the MM patients.
Immunoglobulins recognize foreign antigens and initiate immune responses and the complement
system. IGH translocations are observed in 40% to 50% of the MM patients. Non-hyperdiploid myeloma
is characterized by translocations of the immunoglobulin heavy chain alleles at chromosome 14q32.
Zhou et al. presented the molecular characterization of MM [3]. These genomic profiling analyses
revealed that dysregulated expression of cyclin D might be a universal event in myelomagenesis.
Cyclin D1 is a protein encoded by the CCND1 gene that is involved in regulating cell cycle progression.
Despite of all the advances, MM still remains an incurable disease.

In this paper we present a retrospective analysis of different gene expression microarrays
concerning different aspects of MM. In these types of problems concerning phenotype prediction,
the number of samples is much higher than the number of probes, therefore the classification problem
is highly underdetermined and thus, the uncertainty space generated by all the possible solutions
(gene signatures) is huge. Having different sets of genes with similar predicted accuracies at disposal,
the question of which set of genes gives the best explanation of the disease arises. This question needs
to be answered in terms of pathways. For this purpose, we need to sample the uncertainty space of the
phenotype prediction problem, exploring different datasets related to different aspects of the disease.

The defective pathways are sampled via two different algorithms: Fisher’s ratio [4] and holdout [5]
samplers. These algorithms have been used to unravel the altered pathways involved in the metastasis
in triple negative breast cancer outperforming Bayesian networks [6]—and recently in Parkinson
disease [7] —to provide new insights about the defective pathways which are involved. The problem
addressed in this paper does not consist in just solving the classification problem involved in phenotype
prediction, but in finding the genetic pathways that are involved in the genesis and development of
this disease, which is hampered by the high degree of under-determinacy of these kind of problems.

2. Results and Discussion

2.1. GSE85837

Bone marrow stromal cells (BMSCs) from patients with MM are functionally distinct from those
with normal marrow. Bone marrow stromal cells (BMSCs) from MM patients enhance constitutive
NF-κB activity in MM cells in conjunction with IL-8 [8]. The analysis of these differences could lead to
improved understanding of MM and to improved treatment of MM patients.

Table S1 shows the list of most discriminatory genes of the MM vs. HC phenotype.
The minimum-scale genetic signature contains only 6 genes (EFNA3 and 5 LOCX genes) and provides
a perfect classification (100% LOOCV predictive accuracy). Within this list, MTHFD2 and S100A3 were
the two most under-expressed genes and EGR1 and HSPA1A the most overexpressed. Apart from the
LOCX genes, the most frequently sampled genes found by the Fisher’s ratio sampler were:

• EFNA3 which encodes a member of the ephrin (EPH) family, which is the largest subfamily of
receptor protein-tyrosine kinases implicated in mediating developmental events (especially in the
nervous system and in erythropoiesis).

• PCDH9 which encodes a member of the proto-cadherin family which is important in mediating
cell adhesion in neural tissues.

• RESP2 is a protein coding gene involved in vesicle-mediated transport and clathrin-mediated endocytosis.

The holdout sampler found that the most important gene, according to posterior frequency,
was DPRX (divergent-paired related homeobox) and TTY19 (testis-specific transcript, Y-linked 19).
In both cases, most of these genes belong to an extended list of most discriminatory genes shown in
Table 1.
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1. The pathway analysis performed with the most frequent sample found by the Fisher’s ratio (FR)
and holdout samplers provide the results in Table 1.

2. The pathways related to overexpression are mainly associated with O-glycosylation of proteins;
with synaptic cell-adhesion molecules (neurexins and neuroligins), and with interferon-alpha
and beta signaling.

3. The pathways related to under-expression are mainly associated with different aspects of
metabolism (bile acid, steroids, RNA and vitamin D), DNA repair, gene expression (transcription)
of regulatory T lymphocytes (Tregs).

4. The FR sampler gives more importance to the interferon alpha and beta signaling, insulin secretion
and vitamin D metabolism. Vitamin D deficiency is extremely common in multiple myeloma
with 40% of patients having vitamin D levels in very deficient ranges [9,10].

5. The holdout sampler highlights the role of signaling by receptor tyrosine kinases and glycosylation,
among others pathways. The importance of glycosylation in MM has been emphasized by
Connolly et al. [11].

Table 1. GSE85837. Pathway analysis via Fisher’s ratio and holdout samplers.

Overexpressed Genes Under-Expressed Genes Fisher Sampler Holdout Sampler

Defective B3GALTL Bile acid and bile salt
metabolism

Interferon alpha/beta
signaling

Signaling by receptor
tyrosine kinases

o-glycosylation of TSR
domain-containing proteins

Formation of incision
complex in GG-NER

Acetylcholine regulates
insulin secretion

RAB GEFs exchange GTP for
GDP on RABs

Neurexins and neuroligins Metabolism of steroids G alpha (q) signaling
events Opsins

Diseases associated with
o-glycosylation of proteins

Global genome
nucleotide excision
repair (GG-NER)

Heme biosynthesis Defective B3GALTL

Interferon alpha/beta
signaling

SLBP independent
processing of histone

pre-mRNAs

Vitamin D (calciferol)
metabolism

ABC transporters in lipid
homeostasis

Protein-protein interactions
at synapses

RUNX1 and FOXP3
control the development

of regulatory T
lymphocytes (Tregs)

COPII-mediated vesicle
transport

Acetylcholine regulates
insulin secretion Heme biosynthesis O-glycosylation of TSR

domain-containing proteins

Pyrimidine catabolism Vitamin D (calciferol)
metabolism

ER to Golgi Anterograde
Transport

Antimicrobial peptides

SLBP dependent
processing of

replication-dependent
histone pre-mRNAs

Intrinsic pathway for
apoptosis

2.2. GSE24870

This dataset involves the analysis of the differences in the gene expression profiling of CD34+ cells
in MM vs. HC. CD34 is a transmembrane phosphor-glycoprotein. The CD34+ population is responsible
for most of the hematopoietic activity in bone marrow [12]. Szczepek et al. [13] analyzed CD34+ cells
in the blood of patients with multiple myeloma, showing a relationship between CD34+ MM B-cells
and malignant plasma cells. These authors concluded that CD34 may play an important role in the
biology of myeloma by facilitating extravasation from blood, and thus the spread of myeloma through
the skeletal system.

Bruns et al. [14] studied the multiple myeloma–related deregulation of bone marrow-derived
CD34+ hematopoietic stem- and progenitor cells with respect to healthy individuals,
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showing deregulations of signaling cascades, most notably TGFβ signaling, and pathways involved in
cytoskeletal organization, migration, adhesion, and cell-cycle regulation in MM patients.

Our analysis found that SIAH1 is the most discriminatory gene, providing 100% LOOCV
predictive accuracy. This gene has a Fisher ratio of 9.6, and encodes a protein (E3 ligase) involved
in the proteasome-mediated degradation of specific proteins, the regulation of the cellular response
to hypoxia and in the induction of apoptosis. Then, DUSP10 and ZNF675 have Fisher’s ratios
of 9.1 and 7.3, respectively. DUSP10 (dual specificity phosphatase 10) is a protein coding gene
involved in cytokine signaling in the immune system and RET signaling (tyrosine kinase receptors).
ZNF675 (zinc finger protein 675) is a protein coding gene involved in ubiquitin protein ligase binding
(Table S2).

1. The pathway analysis performed with the most frequently sampled found by the FR and holdout
samplers provided in Table 2, below.

2. The pathways related to overexpressed genes are mainly associated to cellular responses to stress,
protein arginine methylation, regulation of transcription of genes involved in the differentiation
of myeloid cells by RUNX1, WNT signaling (signal transduction pathway) and metabolism
of proteins.

3. The pathways related to under-expressed genes are mainly associated to transcriptional activity
of SMAD2/SMAD3: SMAD4, and different mechanisms involved in the immune system response.

4. The Fisher sampler highlights the role of SUMOylation of proteins in gene expression regulation
and transcriptional regulation by RUNX1 and small RNAs.

5. The holdout sampler highlights the role of infectious disease (influenza and HIV infections),
metabolism of RNA and cellular responses to stress.

Table 2. GSE24870. Pathway analysis via the Fisher’s ratio and Holdout samplers.

Overexpressed Genes Under-Expressed Genes Fisher Sampler Holdout Sampler

Cellular responses to stress
Transcriptional activity

of SMAD2/SMAD3:
SMAD4

SUMOylation of
chromatin organization

proteins
Infectious disease

RMTs methylate histone
arginines

Interleukin-4 and 13
signaling

RMTs methylate histone
arginines

Processing of capped
intron-containing pre-mRNA

RUNX1 regulates
transcription of genes

involved in the
differentiation of HSCs

Downregulation of
SMAD2/3:SMAD4

transcriptional activity

Transcriptional
regulation by RUNX1 mRNA splicing - major pathway

Transcriptional regulation by
RUNX1

Transcriptional
regulation by E2F6

Transcriptional
regulation by small

RNAs
mRNA splicing

DNA damage/telomere
stress induced senescence

Late phase of HIV
lifecycle

RNA polymerase I
promoter clearance Influenza infection

Signaling by WNT Toll-like receptor 3
(TLR3) cascade

HDMs demethylate
histones Cellular responses to stress

RUNX1 regulates genes
involved in megakaryocyte
differentiation and platelet

function

MyD88-independent
TLR4 cascade

Nonhomologous
end-joining (NHEJ) HIV infection

Nonhomologous end-joining
(NHEJ)

TRIF(TICAM1)-mediated
TLR4 signaling

SUMOylation of
chromatin organization

proteins
Influenza lifecycle

SUMOylation of chromatin
organization proteins Circadian clock RMTs methylate histone

arginines Translation

The results shown here (GSE85837 and GSE24870) are different from those presented by
Liu et al. [15] via Monte Carlo sampling and random forest, who identified IL-8 and EIF2 signaling as
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the main mechanisms involved in the inhibition of matrix metalloproteases. Although these results are
partially different, since they refer to different aspects of the MM disease, they are important as they
provide an insight on the molecular mechanisms involved at different levels and on possible causes.

2.3. GSE6477

For this dataset we have analyzed the genes/pathways that differentiate hyperdiploid vs.
non-hyperdiploid myelomas, which are two different models of oncogenesis in MM. We have also
analyzed the effect of chromosome 13 deletion. We achieved 91% LOOCV accuracy using the most
30 discriminatory genes shown in Table S3. The two most discriminatory genes found were NCAM1
and MIR5193 with fairly low Fisher’s ratios (around 0.65). This fact implies that this differentiation
using gene expression is subtle. NCAM1 encodes a cell adhesion protein which is a member of the
immunoglobulin superfamily which is involved in the development of the nervous system, and in
the expansion of T-cells and dendritic cells which play an important role in immune surveillance.
MIR5193 is involved in post-transcriptional regulation of gene expression affecting the stability and
translation of mRNAs. Table 3 shows the main pathways involved, sampled via FR and holdout
samplers. Some of these pathways have already appeared in Tables 1 and 2. The main pathways
involve infectious disease, immune system response and protein recycling.

Table 3. GSE6477. Hyperdiploid differentiation. Pathway analysis via the Fisher’s ratio and
holdout samplers.

Overexpressed Genes Under-Expressed Genes Fisher Sampler Holdout Sampler

Intra-Golgi and retrograde
Golgi-to-ER traffic Infectious disease Asparagine N-linked

glycosylation Infectious disease

Asparagine N-linked
glycosylation

L13a-mediated
translational silencing of

ceruloplasmin
expression

ER to Golgi anterograde
transport

Nonsense-mediated decay
(NMD)

ER to Golgi anterograde
transport

GTP hydrolysis and
joining of the 60S
ribosomal subunit

Interleukin-3, 5 and
GM-CSF signaling

Nonsense mediated decay
(NMD) enhanced by the exon

junction complex (EJC)

XBP1(S) activates chaperone
genes

Nonsense mediated
decay (NMD)

independent of the exon
junction complex (EJC)

Transport to the Golgi
and subsequent

modification

SRP-dependent cotranslational
protein targeting to membrane

mRNA 3’-end processing Eukaryotic translation
initiation

Interleukin receptor SHC
signaling

Nonsense mediated decay
(NMD) independent of the exon

junction complex (EJC)

IRE1alpha activates
chaperones

Cap-dependent
translation initiation

COPII-mediated vesicle
transport

Regulation of expression of
SLITs and ROBOs

Golgi-to-ER retrograde
transport

Formation of a pool of
free 40S subunits

CLEC7A (Dectin-1)
induces NFAT activation Eukaryotic translation initiation

Unfolded protein response
(UPR)

SRP-dependent
cotranslational protein
targeting to membrane

AKT phosphorylates
targets in the cytosol

Cap-dependent translation
initiation

COPI-mediated anterograde
transport Peptide chain elongation

TP53 regulates
transcription of genes

involved in G1 cell cycle
arrest

L13a-mediated translational
silencing of geruloplasmin

expression

Finally, the chromosome 13 deletion was also predicted with 91% LOOCV accuracy, with RBM26,
ARGLU1 and ZC3H13 being the most discriminatory genes, and with Fisher’s ratios higher than 1.1
(Table S4). These genes are related to RNA binding, estrogen-dependent expressions of ESR1 and
MRNA splicing and RNA processing through methylation.

The pathways analysis provided the following results (Table 4):
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1. The pathways associated to the overexpressed genes and the Fisher’s ratio sampler are mainly
related to cell cycle, and protein degradation.

2. The pathways associated to the under-expressed genes and the holdout sampler are related to
viral infections and immune system response.

Table 4. GSE6477. Chromosome 13 deletion prediction. Pathway analysis via the Fisher’s ratio and
holdout samplers.

Overexpressed Genes Under-Expressed Genes Fisher Sampler Holdout Sampler

The role of GTSE1 in G2/M
progression after G2

checkpoint

Nuclear pore complex
(NPC) disassembly

Cdc20:Phospho-APC/C
mediated degradation of

cyclin A
HIV infection

Assembly of the
pre-replicative complex

ISG15 antiviral
mechanism

APC:Cdc20 mediated
degradation of cell cycle

proteins prior to
satisfaction of the cell

cycle checkpoint

Glucuronidation

Orc1 removal from
chromatin

Antiviral mechanism by
IFN-stimulated genes

APC/C:Cdc20 mediated
degradation of mitotic

proteins
G2/M transition

Cdc20:Phospho-APC/C
mediated degradation of

cyclin A

NS1 mediated effects on
host pathways

Activation of APC/C and
APC/C:Cdc20 mediated
degradation of mitotic

proteins

Mitotic G2-G2/M phases

APC:Cdc20 mediated
degradation of cell cycle

proteins prior to satisfaction
of the cell cycle checkpoint

Host interactions with
influenza factors

Regulation of APC/C
activators between G1/S

and early anaphase
HIV lifecycle

APC/C:Cdc20 mediated
degradation of mitotic

proteins
Interferon signaling

APC/C-mediated
degradation of cell cycle

proteins
Infectious disease

Activation of APC/C and
APC/C:Cdc20 mediated
degradation of mitotic

proteins

TNF signaling Regulation of mitotic cell
cycle

Cdc20:Phospho-APC/C
mediated degradation of cyclin

A

Mitotic G1-G1/S phases Death receptor signaling
Regulation of mRNA

stability by proteins that
bind AU-rich elements

Host interactions of HIV factors

The role of GTSE1 in G2/M
progression after G2

checkpoint

mRNA decay by 3’ to 5’
exoribonuclease

Separation of sister
chromatids

APC:Cdc20 mediated
degradation of cell cycle

proteins prior to satisfaction of
the cell cycle checkpoint

3. Material and Methods

In this paper we performed the retrospective analysis of different datasets concerning different
aspects of MM:

1. GSE85837 dataset collected at the Seoul National University College of Medicine to study the
gene expression of bone marrow stromal cells from myeloma patients (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE85837). This dataset contains 28 samples, 15 patients with
plasma cell neoplasm and 13 controls, 9 of them are B-cell lymphoma patients with no evidence
of bone marrow involvement and 4 patients with mild-to-moderate cytopenia without evidence
of hematologic malignancies. RNA was extracted from cultured bone marrow stromal cells.
The experiment used the Illumina HumanHT-12 V4.0 Gene Expression BeadChip and the aim
was to investigate expression profiles of bone marrow stromal cells.

2. GSE24870 dataset [14] to study gene expression profiling of CD34+ subsets in multiple myeloma
and healthy individuals. This dataset contains 43 samples genotyped on the Affymetrix Human
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Genome U133A 2.0 microarray: 20 healthy donors and 23 multiple myeloma patients. The cell
types were: Hematopoietic stem cells, common myeloid progenitors, granulocyte/monocyte
progenitors and megakaryocyte/erythroid progenitors. In this dataset 22,277 genetic probes
were monitored.

3. GSE6477 dataset [15,16]. In this dataset the gene expression profile of hyperdiploid MM is
compared to that of non-hyperdiploid myeloma to identify differentially expressed genes.
Also, information concerning the deletion of chromosome 13 are given. This dataset contains
162 samples and 22,283 probes genotyped on the Affymetrix Human Genome U133A Array.

To understand the altered pathways in a disease we solved a phenotype prediction, which consisted
of identifying the sets of gene signatures g that optimally separate the classes {HC(Healthy
controls),MM(Multiple Myeloma)} in which the phenotype was divided, through the design of an
operator in the form:

L∗(g) : g ∈ Rs
→ C = {HC, MM} (1)

In this case, we used the gene expressions in the transcriptome measured in a given set of genetic
probes that depended on the platform that was used. The training data set was composed of an
expression matrix E of different samples (MM patients and healthy controls). The rows in this matrix
were the different samples that were monitored in the transcriptome and the columns are the set of
genetic probes that were measured for each sample. Accordingly, we also had the observed class array
(cobs) at disposal that contains the classes of the set of samples annotated by medical experts.

Finding the discriminatory genetic signatures involved solving the optimization of the cost
function that represents the prediction error, that is, the number of uncorrected samples predicted by
the classifier L∗. The accuracy of the classifier is Acc(g) = 100 −minO(g). In this paper we use the
leave-one-out cross-validation (LOOCV) and the 75/25 holdout accuracies.

O(g) = ‖L∗(g) − cobs
‖1 (2)

These kind of prediction problems are highly underdetermined since the number of monitored
genetic probes is always much larger than the number of disease samples, and consequently,
the associated uncertainty space of these problems is huge. They are composed by the sets of
high predictive genetic networks with similar predictive accuracy:

Mtol =
{
g : O(g)

〈
Etol → Acc(g)

〉
100− Etol

}
(3)

The high degree of under-determinacy of the learning problem (2) made the characterization of
the involved biological pathways very ambiguous [17]. Mtol contains the sets of genetic signatures that
predict the phenotype with a predictive accuracy higher than Accmin = 100− Etol and accounts for the
uncertainty in the phenotype prediction. Besides, the existing noise in data (expression matrix E) and
in the class assignment (cobs)) provokes that the genetic signature with the highest predictive accuracy
cannot explain the origin of the disease [18]. Therefore, the analysis of the set of high discriminatory
genetic networks in Mtol by means of sampling techniques should serve to unravel the mechanistic
pathways that explain the disease development. This knowledge, if correct, should help to find new
therapeutic targets and to repositioning of certain existing drugs.

The Fisher’s ratio sampler [4] enabled the sampling of the defective pathways, considering the
discriminatory power of individual genes as measured by the Fisher’s ratio. For that purpose, the set
of differentially expressed genes were first selected, and different networks were sampled with a prior
probability of each gene proportional to its Fisher’s ratio. The predictive accuracy estimation of the
networks was based on leave-one-out-cross-validation (LOOCV) using a nearest neighbor classifier [19].
In this sampler the complexity of the genetic network was established randomly taking into account
the length (number of genes) of the small-scale genetic signature with the highest LOOCV accuracy.
Finally, the posterior sampling frequencies of the main prognostic genes involved in these networks and
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the biological pathways were established using the set of genes with the highest sampling frequencies
via Reactome.

The holdout sampler [20] generated different random 75/25 data bags (or holdouts), where 75% of
the data in each bag was used for learning and 25% for blind validation. For each of these bags the
small-scale genetic signatures were determined [17,19]. The posterior analysis was performed taking
into account all the small-scale genetic signatures with high predictive validation accuracy, and served
to establish the defective genetic pathways. The holdout sampler has also been successfully applied to
perform the uncertainty analysis in different fields of science and technology [21,22].

Both samplers outperformed the Bayesian networks [6] in the analysis of the pathways involved in
the metastasis of triple negative breast cancer. Besides, the probabilistic factorization of the uncertainty
space of a phenotype prediction problem via Bayesian networks is not unique and establishing
mechanistic conclusions based on the optimum Bayesian Network (BN) is similar compared to the use
of the small-scale genetic signature. This approach might lead to partial and/or wrong conclusions.

4. Conclusions

Multiple myeloma is a very complex disease, and the underlying causes of MM are currently
unknown. We presented a retrospective analysis of three different datasets concerning different
aspects of this disease. The genetic pathways involved in the development of MM are very diverse
and seem to be dependent on the aspect of the disease that is addressed, and on the bioinformatics
methodology that it is used to perform the analysis. Nevertheless, our analysis has shown a consensus
on some of the genetic pathways involved. The analysis in BMSCs cells highlighted pathways related
to interferon alpha/beta signaling, signaling by receptor tyrosine kinases, vitamin D metabolism
and glycosylation. The analysis in CD34+ cells highlighted mechanisms related to SUMOylation
of chromatin organization proteins, infectious disease, transcriptional activity of SMAD2/SMAD3
and cellular responses to stress. Our analysis has also shown the importance of uncharacterized
LOCXX genes which are very important to properly understand the MM progression. Finally, the
differentiation of hyperdiploid MM and the prediction of the chromosome 13 deletion were achieved
with very high accuracy, enabling an understanding of the disease progression. The analysis has shown
a significant pathway diversity. While the under-expressed genes are related to immune response and
viral infections; the overexpressed genes are mostly related to DNA repair, cell cycle, cellular response
to stress, differentiation of myeloid cells, epigenetic modifications and metabolism of proteins and
protein recycling. Among all these pathways, the genes involved in the differentiation of myeloid
cells by RUNX1 transcription regulation seem to be an important target for the establishment of new
therapies. We hope that the results of this research will provide deeper insights into the mechanisms
involved in this complex disease.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/19/
4681/s1.

Author Contributions: J.L.F.-M., E.J.d.A.-G., F.J.F.O. and A.C. algorithm development and software. J.L.F.-M. and
A.K. conceptualization, Writing—Original Draft preparation. A.K. project administration. All writing-review
and editing.

Funding: This research was funded by NSF grant DBI 1661391, and NIH grants R01 GM127701 and
R01 GM127701-01S1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bergsagel, P.L. Molecular Pathogenesis and a Consequent Classification of Multiple Myeloma. J. Clin. Oncol.
2005, 23, 6333–6338. [CrossRef] [PubMed]

2. Corre, J.; Munshi, N.; Avet-Loiseau, H. Genetics of multiple myeloma: Another heterogeneity level?
Blood 2015, 125, 1870–1876. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2019, 20, 4681 9 of 9

3. Zhou, Y.; Barlogie, B.; Shaughnessy, J.D. The molecular characterization and clinical management of multiple
myeloma in the post-genome era. Leuk. 2009, 23, 1941–1956. [CrossRef] [PubMed]

4. Cernea, A.; Fernández-Martínez, J.L.; Deandrés-Galiana, E.J.; Fernández-Ovies, F.J.; Fernández-Muñiz, Z.;
Alvarez-Machancoses, O.; Saligan, L.; Sonis, S.T. Sampling Defective Pathways in Phenotype Prediction
Problems via the Fisher’s Ratio Sampler. Int. Conf. Bioinform. Biomed. Eng. 2018, 15–23.

5. Fernández-Martínez, J.L.; Cernea, A.; Deandrés-Galiana, E.J.; Fernández-Ovies, F.J.; Fernández-Muñiz, Z.;
Alvarez-Machancoses, O.; Saligan, L.; Sonis, S.T. Sampling Defective Pathways in Phenotype Prediction
Problems via the Holdout Sampler. Int. Conf. Bioinform. Biomed. Eng. 2018, 24–32.

6. Cernea, A.; Fernández-Martínez, J.L.; Deandrés-Galiana, E.J.; Fernández-Ovies, F.J.; Fernández-Muñiz, Z.;
Alvarez-Machancoses, O.; Saligan, L.; Sonis, S.T. Comparison of Different Sampling Algorithms for Phenotype
Prediction. Int. Conf. Bioinform. Biomed. Eng. 2018, 33–45.

7. Fernández-Martínez, J.L.; de Andrés-Galiana, E.J.; Cernea, A.; Fernández-Ovies, F.J.; Menéndez, M.
Robust Sampling of Defective Pathways in Parkinson Disease. J. Med. Inform. Decis. Mak. 2019,
1, 37–52.

8. Markovina, S.; Callander, N.S.; O’Connor, S.L.; Xu, G.; Shi, Y.; Leith, C.P.; Kim, K.; Trivedi, P.; Kim, J.;
Hematti, P.; et al. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib
resistant NF-κB activity in myeloma cells. Mol. Cancer 2010, 9, 176. [CrossRef]

9. Drake, M.T.; NG, A.C. Vitamin D deficiency in multiple myeloma. Eur. J. Clin. Med. Oncol. 2010, 2, 2010.
10. Clement, Z.; Ashford, M.; Sivakumaran, S. Vitamin D deficiency in a man with multiple myeloma. N. Am. J.

Med. Sci. 2011, 3, 469–471. [CrossRef] [PubMed]
11. Connolly, C.; Jha, A.; Natoni, A.; O’Dwyer, M.E. A 13-Glycosylation Gene Signature in Multiple Myeloma

Can Predicts Survival and Identifies Candidates for Targeted Therapy (GiMM13). Blood 2016, 4423.
12. Goodell, M.A. CD34+ or CD34−: Does it Really Matter? Blood Oct. 1999, 94, 2545–2547.
13. Szczepek, A.J.; Bergsagel, P.L.; Axelsson, L.; Brown, C.B.; Belch, A.R.; Pilarski, L.M. CD34+ Cells in the Blood

of Patients With Multiple Myeloma Express CD19 and IgH mRNA and Have Patient-Specific IgH VDJ Gene
Rearrangements. Blood 1997, 89, 1824–1833. [PubMed]

14. Bruns, I.; Cadeddu, R.P.; Brueckmann, I.; Fröbel, J.; Geyh, S.; Büst, S.; Fischer, J.C.; Roels, F.; Wilk, C.M.;
Schildberg, F.A.; et al. Multiple myeloma-related deregulation of bone marrow-derived CD34(+)
hematopoietic stem and progenitor cells. Blood 2012, 120, 2620–2630. [CrossRef] [PubMed]

15. Liu, C.; Gu, X.; Jiang, Z. Identification of novel targets for multiple myeloma through integrative approach
with Monte Carlo cross-validation analysis. J. Bone Oncol. 2017, 8, 8–12. [CrossRef] [PubMed]

16. Chng, W.J.; Kumar, S.; VanWier, S.; Ahmann, G.; Price-Troska, T.; Henderson, K.; Chung, T.-H.; Kim, S.;
Mulligan, G.; Bryant, B.; et al. Molecular Dissection of Hyperdiploid Multiple Myeloma by Gene Expression
Profiling. Cancer Res. 2007, 67, 2982–2989. [CrossRef] [PubMed]

17. Tiedemann, R.E.; Zhu, Y.X.; Schmidt, J.; Yin, H.; Shi, C.X.; Que, X.; Basu, G.; Azorsa, D.; Perkins, L.M.;
Braggio, E.; et al. Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets,
including a lymphoid-restricted kinase, GRK6. Blood 2010, 115, 1594–1604. [CrossRef] [PubMed]

18. Deandrés-Galiana, E.J.; Fernandez-Martinez, J.L.; Sonis, S.T. Sensitivity analysis of gene ranking methods in
phenotype prediction. J. Biomed. Informatics 2016, 64, 255–264. [CrossRef]

19. Deandrés-Galiana, E.J.; Fernández-Martínez, J.L.; Sonis, S.T. Design of Biomedical Robots for Phenotype
Prediction Problems. J. Comput. Boil. 2016, 23, 678–692. [CrossRef]

20. Saligan, L.N.; Fernández-Martínez, J.L.; Deandrés-Galiana, E.J.; Sonis, S. Supervised Classification by Filter
Methods and Recursive Feature Elimination Predicts Risk of Radiotherapy-Related Fatigue in Patients with
Prostate Cancer. Cancer Informatics 2014, 13, 141–152. [CrossRef]

21. Luis, F.-M.J.; Zulima, F.-M.; Denys, B. The uncertainty analysis in linear and nonlinear regression revisited:
Application to concrete strength estimation. Inverse Probl. Sci. Eng. 2018, 1–25.

22. Fernández-Muñiz, Z.; Hassan, K.; Fernández-Martínez, J.L. Data kit inversion and uncertainty analysis.
J. Appl. Geophys. 2019, 161, 228–238. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


	Introduction 
	Results and Discussion 
	GSE85837 
	GSE24870 
	GSE6477 

	Material and Methods 
	Conclusions 
	References

