
Hardware-Based Domain Virtualization for
Intra-Process Isolation of Persistent Memory

Objects

Yuanchao Xu∗, ChenCheng Ye†, Yan Solihin‡, Xipeng Shen∗
∗North Carolina State University

{yxu47, xshen5}@ncsu.edu
†Huazhong University of Science and Technology

yecc@hust.edu.cn
‡University of Central Florida

Yan.Solihin@ucf.edu

Abstract—Persistent memory has appealing properties in serv-
ing as main memory. While file access is protected by system calls,
an attached persistent memory object (PMO) is one load/store
away from accidental (or malicious) reads or writes, which may
arise from use of just one buggy library. The recent progress in
intra-process isolation could potentially protect PMO by enabling
a process to partition sensitive data and code into isolated
components. However, the existing intra-process isolations (e.g.,
Intel MPK) support isolation of only up to 16 domains, forming
a major barrier for PMO protections. Although there is some
recent effort trying to virtualize MPK to circumvent the limit, it
suffers large overhead. This paper presents two novel architecture
supports, which provide 11−52× higher efficiency while offering
the first known domain-based protection for PMOs.

Keywords—Persistent Memory Objects, Memory Protection
Keys, Intra-process Isolation

I. INTRODUCTION

Persistent memory (PM) is emerging as a promising sup-

plement or substitute of DRAM as main memory, offering

higher density, better scaling potential, lower idle power,

non-volatility, while retaining byte addressability and random

access [1], [27], [30], [31]. With the right abstraction and

support, PM enables data structures to be kept in memory

beyond process lifetime [49]. Such Persistent Memory Object

(PMO) abstraction can be attached (or mapped) to process

address space as it uses data, and detached (or unmapped)

from its address space afterward. Data in a PMO is long lived;

its existence and structure are preserved across process runs. A

PMO may be managed by the OS similar to a file (namespace

and permission) but accessed like data structures (load/store

instructions, pointers, etc.).

While file access is protected by system calls, an attached

PMO is one load/store away from accidental (or malicious)

reads or writes, which may arise from use of just one buggy

library. This creates a situation where the adversary may

perform memory attacks, such as memory corruption due to

unauthorized memory writes or memory disclosure due to

unauthorized memory reads. Countless of security attacks have

been enabled by memory attacks, including code-reuse [42],

[44], [47], code-injection [38] data-oriented [21] attacks, and

so on. In addition to heightened risk of data disclosure or

corruption, PMO also suffers from heightened cost of such

memory attacks, as it keeps valuable data that is long lived.

In this paper, we try to answer the question of how to
improve the security of a PMO that is attached to a process.

We point out that memory attacks on PMO data may arise

spatially (e.g., when a thread of a process that is not authorized

accesses the PMO attached in this process) or temporally (e.g.,

when a thread accesses the PMO beyond its authorization

window). The goal of this work is to provide a process spatio-

temporal protection of PMOs.

Intra-process isolation techniques enable a process to par-

tition sensitive data and code into isolated components. By

specifying access policy via applying the principle of least

privilege to each isolated component (e.g. a group of pages),

intra-process isolation limits the influence of bugs and vulner-

abilities to one component. One such intra-process isolation

support is Intel Memory Protection Key (MPK) [22], which

extends the x86 Instruction Set Architecture (ISA) with the

capability of defining domains. With MPK, a process address

space can be partitioned into up to 16 domains, with each

domain represented by a protection key. A new 32-bit register,

PKRU, is added to each logical core, providing a way to

express the access policy (read/write) of each domain for

each thread. The PKRU is integrated with the TLB checking

mechanism to allow the memory management unit (MMU) to

enforce the policy.

Intra-process protection may be used to provide spatio-

temporal protection for PMOs. The basic idea is that when a

process attaches a PMO, the PMO is placed into a protection

domain, and access control policy is set for the domain. When

a thread accesses PMO, the corresponding load or store is

checked against the access policy of the domain for the thread,

as well as the page access policy from the TLB or page table.

The more restrictive permission is derived to determine the

legality of the access.

However, using MPK to support intra-process isolation of

680

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00062

PMOs runs into security and scalability challenges. First, MPK

supports only 16 protection keys, which is too few. After 16

keys are allocated, further pkey alloc() call will return with

an error, which forces the programmer to either forgo the use

of domains, or reuse an old domain for multiple unrelated

PMOs. For example, consider a typical server application,

which spawns a thread to interact with a client in response

to a connection request by the client. The thread may store

user-private data (persistently in a PMO in our case). The

Heartbleed vulnerability targeting OpenSSL demonstrates that

a vulnerable library allows the attacker to steal sensitive data

such as private keys and passwords [41]. Allocating different

users’ data in separate domains improves security by isolating

each user data from other threads that are not meant to access

it. Having too few keys forces data from multiple clients

to share a single domain and key, allowing a compromised

thread to access data intended for other threads. Therefore,

the number of domains should ideally be high. As a starting

point, in Linux a process can open 1024 files simultaneously,

some server applications may allow thousands of connections;

so at least several thousands of simultaneously attached PMOs

should be supported. Extending MPK to support several thou-

sand domains is not feasible as it requires extending the PKRU

register to several kilobytes in size, which requires substantial

changes in the ISA and may affect critical path delays in the

pipeline.

A recent effort, libmpk [39], circumvents MPK’s limit of

16 domains via software-based virtualization. libmpk supports

a large number of domains but map only 16 of them to

protection keys. If the program accesses only mapped domains,

no performance overhead results. However, if it accesses an

unmapped domain, an exception is triggered, and the exception

handler selects a domain to unmap and reassigns the key to

the new domain. This step involves very substantial overheads

including rewriting the domain field in affected page table

entries of the victim and new domains, TLB shootdowns of all

cores, writing to PKRU, etc. As a result, libmpk suffers from a

large runtime overhead (17.4× slowdown for each permission

update on 35 domains [39]).

To support a large number of protection domains effi-

ciently, we propose two novel architecture mechanisms. The

first design, Hardware MPK Virtualization, builds on MPK

while giving an illusion of unlimited domains. Similar to

libmpk [39], at any given time, only 16 domains map to keys.

When an unmapped domain is accessed, a victim domain

is selected and unmapped, and its key is reassigned to the

new domain. Different from libmpk, we provide MMU-like

support for handling domains, including a radix-tree Domain

Translation Table that can be walked by a hardware handler,

and Domain Translation Lookaside Buffer (DTLB) that caches

the table for fast access. Much of the remaining architecture

is unmodified from MPK.

The second design, Hardware Domain Virtualization, is

more aggressive; it removes the need for limited keys alto-

gether. It manages a large number of domains without mapping

them to keys first. It manages per-thread access control directly

on domains, offering even greater flexibility in domain-based

protections. A key benefit to this design is removing the need

for TLB shootdown when an entry is evicted or changed.

Overall, this paper makes following major contributions:

1) We propose to improve the security of PMOs from

memory attacks by assigning each attached PMO to a

protection domain, providing intra-process isolation of

PMOs.

2) We propose an architecture support for efficient MPK

virtualization, which supports a large number of domains

sharing a limited number of protection keys. This is built

on top of MPK.

3) We propose an architecture support for domain virtu-

alization, which manages per-thread permission directly

on domains, completely removing the mapping of do-

mains to a limited number of keys.

4) We evaluate both schemes and show that they perform

11× and 52× speedups over libmpk, the state-of-the-art

software MPK virtualization.

II. BACKGROUND

This work focuses on intra-process isolation, that is, the iso-

lation of accesses among different threads that share the same

address space. Inter-process isolation is relatively easier as

different processes have different address spaces, and explicit

APIs with permission control flags can be used when sharing a

PMO among processes (similar to the APIs for shared memory

management).

A. Intra-Process Isolation Support

Intra-process isolation has been long recognized as im-

portant for security, especially as program complexity is

increasing. One approach to such isolation is capability-based

addressing [56], [57], where pointers are replaced by pro-

tected objects (called capabilities), which specify the objects

that the pointers can legally refer to. A recent example is

CHERI [56], [57], where a fat pointer specifies legal bounds

and permissions, and a co-processor check for access validity.

CODOM [51] needs dramatic hardware changes to achieve

efficient intra-process isolation. A less comprehensive (but

simpler) solution is to add explicit code to check bounds

of pointer references [43], [43], [53]. Hardware support for

accelerating bounds check, such as Intel MPX, has been

proposed, and shown to incur a much lower slowdown (e.g.

about 30% [29]).

A complementary approach to intra-process isolation is to

focus on the objects being referenced, rather than the pointers

that de-reference them. It specifies, for a given memory object

(such as pages), when (temporal) which threads (spatial) can

access the pages. Example hardware page protections [7], [8],

[12], [32], [35] support memory isolation and provide near

zero overhead within a component. But switching between

components still involves a switch to kernel mode, which

incurs substantial overhead. Intel MPK [22] is an example of

hardware support implementing this approach, explained next.

681

B. Intel Memory Protection Key

The recently released Intel Memory Protection Key (MPK)

extension [22] allows the address space to be partitioned

into 16 disjoint domains, and each domain is represented

by a protection key. A new 32-bit register, PKRU, is added

to each logical core to specify and enforce thread-specific

permission (read and/or write) for each key. Each key uses

one bit for read permission and one bit for write permis-

sion. Two non-privilege user-level instructions are provided

to write and read the PKRU register: WRPKRU instruc-

tion writes a new value to PKRU register (˜11-260 cycle

latency), while RDPRKU instruction reads the current value

of PKRU. Three system calls are implemented in Linux kernel:

pkey_alloc() allocates an unused key from 16-bit bitmap

in kernel, pkey_free() frees a key and marks it available,

while pkey_mprotection associates a key with page table

entries (PTEs) by changing the key value in all PTEs.

MPK can be used to support executable-only memory by

changing the domain permission as inaccessible in the PKRU

register. Code can still jump to this domain and execute code

but all reads and writes are prohibited for this domain.

After associating a domain with a protection key, writing

it in PTEs, and setting the appropriate PKRU value for the

domain, a memory access to this domain will result in the

PTE (along with the protection key value) cached in a TLB

entry. The access will read the protection key value from the

entry, which then indexes the PKRU to obtain the permission

bits associated with the key. The access is legal if the both

domain permission (in PKRU) and page permission (in TLB)

allow the access.

C. Persistent Memory Programming Support

Non-volatile memories (NVMs), such as Intel Optane DC

Persistent Memory, provides high capacity at low cost, low

idle power, byte-addressability, persistence, and performance

similar to DRAM [1], [27], [30], [31]. There are at least two

paradigms for using NVM. One uses it as storage to host a file

system, the other uses it via a new abstraction where a data

structure is wrapped into a persistent memory object (PMO),

which allows the data structure to be hosted persistently in

physical memory without involving a file system. PMOs may

combine some features of a file system (naming, permission,

durability, and sharing) and some features of data structures

(pointer-rich, address space mapping, purely load/store ac-

cess). In this paper, we assume the latter.

Object ID: Pool identier

32 bits 32 bits

Pool offset

Fig. 1. Structure of pool pointer [11], [54], [55]

A PMO may be a container for a data structure that

lives beyond process termination and system reboots. A PMO

requires several features to be supported: crash consistency
allowing a PMO to remain in a consistent state even on process

crashes or system power loss, OS-managed namespace and

permission allowing the PMO to be found on recovery, attach
and detach primitives allowing the PMO to be attached to a

process address space when needed and detached afterward,

relocatability allowing the PMO to be attached at virtual

address different from the one from the previous session [60].

PMOs may be implemented as pools [11], [14], [23], [54],

[55], each given a unique identifier. A pool may be organized

as a collection, with a root object from which all other objects

in the pool can be reached. In this paper, we use the term PMO

as a general concept, and pool as a specific implementation

of a PMO, which may not have all features a PMO should

support.

To support relocatability, each pointer (64-bit) used in a data

structure is split into a 32-bit pool ID (ObjetID) concatenated

with a 32-bit offset within the pool (Figure 1). To address a

pointer, the base address for the ObjectID is added to the

offset. PMDK [23] and other prior works [14], [54] have

described interfaces for manipulating pools and objects. We

adopt the interface proposed by Wang et al. [54]. It supports

functions for creating pools or objects within pools, supports

mechanisms for persisting objects and failure-safety through

durable transactions. Table I shows a subset of their interface.

Our design is compatible with software [11], [14], [23] and

hardware [54], [55] support for PMO relocatability.

TABLE I
POOL APIS DESCRIBED IN PRIOR WORK [23], [54].

Function Description
pool*
pool create (name,
size, mode)

Create a pool with the specified size
and associate it with a name. The
running process is the owner.

pool*
pool open (name,
mode)

Reopen a pool using name that was
previously created. Permissions will
be checked.

pool close(pool* p) Close a pool p

OID pool root(pool*
p, size)

Return the root object of the pool p
with specific size. The root object
is intended for programmers to design
as a directory of the contents in the
pool.

OID pmalloc (pool*
p, size)

Allocate a chunk of persistent data
with the given size on pool p and
return the ObjectID of the first byte.

pfree(oid)
Free persistent data pointed to by
the ObjectID.

void*
oid direct(oid)

Translate an ObjectID to a virtual
address. Used when there is no
hardware translation.

III. THREAT MODEL

Just like any other data structures, data structures in PMO

may contain buffers and pointers. Code that accesses PMO

may contain regular known vulnerabilities. Our mechanism

seeks to make unauthorized reads or writes to data in PMOs

difficult by applying the principle of least privileges; unautho-

rized reads or writes are the fundamental schemes many types

of memory attacks rely on.

682

The attacker may compromise a thread of the same process

and try to exploit the memory vulnerabilities. While a PMO

is attached, the attacker may attempt to read or write data in

the PMO. We do not assume that the attacker has an ability

to arbitrarily inject or execute arbitrary code (if he/she could,

there are not many protection schemes that are effective against

it).

We assume trusted system software, such as the OS, which

manages address space isolation between processes, and com-

piler, which generates code correctly given user program.

Furthermore, we assume that trusted hardware, like processor

memory management unit (MMU), is implemented correctly,

User-level permission change instructions can only be in-

serted by the programmer or compiler. We can prevent the

attacker from injecting or reusing these instructions (e.g.

through ROP) by implementing call gates and performing

binary inspection and rewriting similar to ERIM [50].

Side-channel and rowhammer attacks, and microachitectural

leaks, although important, are beyond the scope of this work.

IV. DESIGN

A. Protection Goals

In order to protect PMO data from accidental or malicious

reads/writes, we apply the principle of least privilege by

granting PMO access permission only to the threads that need

to access it (spatial isolation), and only when they need to

access it (temporal isolation). In particular, we require that an

access to PMO from a thread is legal only if (1) the page

has the appropriate read/write permission, (2) the process has

attached the PMO, and (3) the thread has read/write permission

to the domain associated with the PMO.

To achieve the first requirement, we rely on traditional

virtual memory mechanisms for enforcing per-page process-

specific permission.

To achieve the second requirement, we assume that PMOs

are managed by the OS and laid out in physical memory, either

contiguously or non-contiguously (with embedded page table

support). To attach a PMO to its address space, a process

makes a system call specifying the PMO path/name and the

requested permission. If a PMO is successfully attached, the

system call returns a PMO ID which is also the domain ID.

A PMO can map only to an aligned and contiguous range

of virtual address that corresponds to the granularity of the

hierarchy level of the page table. For example, the smallest

PMO occupies 4KB VA region, the next larger PMO occupies

2MB VA region, and then 1GB, etc., corresponding to the level

in the page table. Note that the PMO does not have to use the

entire VA range allocated to it.

A process can express intent to read (R) or both read and

write (RW) to the PMO. The system call ensures that the OS

can grant attachment requests only if the user who owns the

process is allowed to attach the PMO. The system call will also

enforce inter-process isolation, locking, and sharing policy. For

example, a PMO may be attached exclusively to only one

process for writing, but may be attached to multiple processes

for reading. The system may also keep a finer grain permission

scheme based on attach key, where a process must produce

the correct key for the attach request to be granted. This

allows an additional restriction to specify which user processes

should be allowed to attach a PMO. The system may also

detach a PMO from a process upon request or automatically

when appropriate, for example when a process terminates prior

to detaching a PMO, or when it is suspected to have been

compromised by security attacks.

To achieve the third requirement, we start by an observation

that protection domains, such as Intel MPK, is a good fit

for PMOs for its spatio-temporal protection capability. The

spatial protection allows permission for a domain/PMO to be

defined differently for different threads, providing inter-thread

protection where only a thread with sufficient permission can

access the domain. The temporal protection allows permission

to be added or removed for the same thread over time, pro-

viding intra-thread protection. To add or remove permission,

we introduce a user-level instruction SETPERM. SETPERM
takes a domain ID as a source operand, and a read/write flag

as the second source operand. The instruction allows granting

access to a PMO by setting (or unsetting) read or read/write

permission for the thread that executes it. SETPERM is similar

to WRPKRU MPK, but with a difference that it only sets

permission for one domain, whereas WRPKRU simultaneously

sets the permission for 16 protection keys using all 32 bits.

Therefore, SETPERM works with a large number of domains,

unlike WRPKRU which is limited to 16 keys.

The SETPERM instruction must be compatible with the

processor memory consistency model. With sequential consis-

tency, processor consistency, and total store ordering (TSO), it

is treated as a store instruction. For more relaxed consistency

models, such as weak ordering or release consistency [48],

it is treated as a full memory fence/barrier. As such, we are

guaranteed that any loads/stores older than it are performed

prior to allowing any younger loads/stores to perform. The

appropriate PMO domain permission for this thread is changed

at the fence point.

PMO1 = Attach(<name>,RW)

PMO1.setperm(+R)

Ld A

St B

PMO1.setperm(+W)

St C

PMO1.setperm(-R. -W)

Ld D

Detach(PMO1)

Thread 1

PMO1 = Attach(<name>, RW)

PMO1.setperm(+R, +W)

St A

…

PMO1.setperm(-W)

(a) (b)

Thread 1

Thread 2

Ld A

PMO1.setperm(+R)

St B

Fig. 2. Example of: (a) Intra-thread (temporal) protection (b) Inter-thread
(spatial) protection.

The domain-based PMO isolation is illustrated with an

example in Figure 2. Assume that addresses A, B, C, and D

683

reside in PMO1. Part (a) illustrates temporal isolation. First,

Thread1 attaches PMO1 with intended read/write permission

to the process address space. This does not yet grant any

threads to read/write to the PMO/domain, until it sets the

per-thread read permission (+R). The subsequent ld A is

permitted but st B is denied. After adding write permission

(+W), st C is permitted. When read and write permissions

are removed (-R, -W), ld D is denied. The permission setting

is thread specific, as illustrated in part (b) of the figure.

For Thread1, st A is permitted. For Thread2, ld A is denied

because Thread2 has not obtained permission, and st B is also

denied because the permission is insufficient. The instructions

to add/remove domain permission for a PMO must be inserted

by the programmer (e.g., through API or #pragma), or by the

compiler based on program analysis.

B. Number of Protection Domains

We draw a distinction between domains and protection keys.

Each attached PMO is assigned a domain. But current architec-

tures manage permission based on protection keys; hence there

is a gap between our goal and the current architecture support.

More importantly, Intel MPK supports only 16 protection keys,

which may result in compromised security if the programmer

forgoes the use of domains or reuses a domain for multiple

unrelated PMOs.

Consider an example of a typical server application, which

spawns a thread for each connection request by the client.

The thread may store user-private data (persistently in a PMO

in our case). The Heartbleed vulnerability targeting OpenSSL

demonstrates that a vulnerable library allows the attacker to

steal sensitive data such as private keys and passwords [41], so

allocating different users’ data in separate domains improves

security by isolating each user data from other threads that are

not meant to access it. Having too few keys forces data from

multiple clients to share a single domain and key, which may

reduce security. For example, suppose that thread 1 should

have read permission for PMO A but read/write for PMO

B, denoted as R1(A) and RW1(B), respectively. If A and

B share one protection key X , then the permission of X
must be the least restrictive of A and B, which is RW .

However, setting RW1(X) means that the thread can write

to A even though it should not. Hence, the security pro-

tection has weakened. Furthermore, incompatibility between

threads complicates this grouping. Suppose that RW1(B) and

RW1(C) but RW2(B) and None2(C), forcing B and C to

share a key does not weaken permission for thread 1 but

weakens for thread 2. Despite the best clustering analysis to

group domains with similar permissions across all threads, we

will still have cases where security is weakened due to the

limited number of protection keys. How large the appropriate

number of supported domains should be is an open question.

A large number of domains can provide protection flexibility,

especially for server applications which may spawn many

threads with each serving a different user. As a starting point,

in Linux a process can open 1024 files simultaneously, some

server applications may allow thousands of connections; so

at least several thousands of simultaneously attached PMOs

should be supported.

Extending MPK to support several thousand domains is not

feasible as it requires extending the PKRU register to several

kilobytes in size, which is not feasible for several reasons.

First, PKRU is read into or written from a general purpose

register, so its width must match the width of such a register

(e.g. 32 bits for EAX/EBX/ECX/EDX). Second, its checking

time must fit within the number of clock cycles allocated for

TLB check, hence if too large, the critical path delay of TLB

checking will be affected.

C. High-Level Design

Retrieve DomainID
VA

Memory Access

NULL DomainID

Domain Access

TLB / Page Table
VA

Domainless Access

DomainID DomainID
Check Domain Permission

Domain
Permission

Page Permission
Strictest

Permission

Not Found
Error

Fig. 3. Illustrating how domain protection is integrated into the MMU.

At a high level, domain-based protection is integrated into

the MMU as steps performed in parallel with traditional page-

based permission checking, as illustrated in Figure 3. When

a load/store virtual address is available, it is used to retrieve

domain ID and the domain ID is used to check the domain

permission for the thread. In parallel, the TLB or page table

is checked for traditional page permission. The two permis-

sions are compared to derive the strictest permission, which

determines the legality of the access. The parallel checking

avoids adding to the critical path of access. Furthermore, not

all applications may need domain protection, hence a NULL

domain ID is reserved to indicate that domain checking is

unnecessary. Next we will discuss the proposed techniques:

MPK virtualization and domain virtualization.

D. Hardware-Based MPK Virtualization

Figure 4 illustrates the design and mechanism of our

hardware MPK Virtualization. Recall that in this design, we

build on top of MPK, preserving most of its features and

structure. Thus, we must add a mechanism to allow mapping

a large number of domains to 16 protection keys. This is

accomplished by keeping the mapping of domains to keys

using a Domain Translation Table (DTT). DTT is an OS-

managed data structure created for each process that uses

domain protection. It is indexed by virtual address (VA) and

each entry contains the domain ID, current protection key the

domain ID maps to, and permission for the domain. Since

the address space of a process may be sparse, the DTT is

organized hierarchically, similar to a page table. In the figure,

DTT is shown to have a two hierarchy level, because the

example PMO occupies a 2MB region. Analogous to the

TLB as a cache for the page table, Domain Translation Table

Lookaside Buffer (DTTLB) is the cache for the DTT to allow

fast mapping of VA to protection key. However, whereas DTT

684

VA Range
Tags (36 bits)

Protection
Key (4 bits)

010…xxx 1001
110…xxx
110…xxx

1011
0000 (null)

VA
010…01

Domain Translation Table
Lookaside Buffer (DTTLB)

ld/st

TLB

VPN

Protection
Key (4 bits)

1111
1001
0000

PFN

…101
…111
…011

Page
Perm.

01
11
10

Protection Key

2

4

1

Page
Permission

Domain
Permission

Strictest Permission

9

PKRU Register

PMO ID
(32 bits)

101…011
110…101
110…111

3 Domainless access

R W R W
0 1 30 31

Perm
(2 bits)

00
10
01

TLB miss
VA

Protection Key

Miss or WB

Domain Translation Table (DTT)

L4 Directory L3 Directory

PMO
Reg.

PMO Root Entry

6 7

5

Valid/Dirty
(2 bits)

1/0
0/1
1/1

Eviction (PMO)

Free
Keys

8

Update
permission

10

11

12

Fill

Fig. 4. Diagram of the MPK virtualization scheme.

keeps permission for all threads in a process, DTTLB only

caches the permission for the thread that currently runs in the

core.

A DTTLB/DTT entry contains a 36-bit VA range tag, a

32-bit PMO/domain ID, a Valid bit, a Dirty bit, and a 4-bit

protection key. The VA Range allows each entry to represent

an entire domain expressed as its base VA and domain size.

Alternatively, since a PMO occupies contiguous and aligned

VA range that corresponds to page sizes (4KB, 2MB, or 1GB),

the VA range can simply be the base address with a two-bit

field to indicate which size it uses. The 4-bit protection key

represents which key a PMO/domain ID currently maps to. A

NULL key value (0000) is reserved to indicate that this PMO

is domainless. The ”Free Keys” structure keeps all keys that

are not mapped. There are two kinds of entries in the DTT,

directory entry and PMO root entry. One valid bit and one next
level bit are introduced in both kinds of entries. Next level bit
indicates the next level is either a directory (1) or a PMO (0).

A dictionary entry points to the physical frame number (PFN)

of the next level directory. The root entry of a PMO stores its

ID. DTT is pointed by a register for looking up.

This design introduces no changes to the TLB, page table

structure, or MPK mechanism. DTTLB can be quite small,

even 16 entries are sufficient to hold all 16 domains that map to

protection keys, making it feasible to use content-addressable

memory (CAM) for associative lookup. However, DTTLB can

have more than 16 entries to hold information of all domains

in the thread working set.

a) Handling a TLB Hit: A TLB hit is handled identically

to the MPK mechanism. When a ld/st accesses a VA (1 in

Figure 4), the TLB is checked for a match 2 . On a match,

a protection key is read out. If the key is NULL (0000), this

access is domainless 3 . If the key is not NULL, the key is used

to index the PKRU register to obtain its domain permission

4 . If the load/store is legal according to both the domain

permission and page permission 5 , the load/store is allowed

to access the cache. Otherwise, an exception is raised.

b) Handling a TLB Miss: A TLB miss is handled differ-

ently from MPK. On a TLB miss, the VA is checked against

VA range tags in the DTTLB 6 . If a match with a valid entry

is found, the protection key is read and supplied to the TLB

to be combined with other information obtained from page

table walk 7 . A match with an invalid entry indicates that

the domain is not currently mapped to a key. If a free key is

available, the key is then assigned to the domain 8 , PKRU is

updated to reflect it 9 , and the valid bit is set. If a free key is

not found, a victim domain is selected, based on a replacement

policy (Pseudo LRU in our implementation). Then, the key is

reassigned from the victim domain to the new domain and the

DTTLB entry of the victim domain is marked invalid and dirty

10. The DTTLB entry of the new domain is marked valid and

dirty. Then, the PKRU is updated to reflect the permission

of the new domain associated with the protection key 11.

TLB shootdown is then initiated (Range Flush of the victim

PMO VA range) for all cores in order to invalidate the victim

pages’ mapping to the protection key. The accessed page in

the new PMO fills the TLB with the protection key mapping.

If a DTTLB miss occurs, the DTT is walked to find both its

domain information (ID and permission). DTTLB updates the

DTT lazily; when a dirty DTTLB is evicted, its protection key

mapping updates the DTT 12.

The entries in DTT are added/removed by the attach and

detach system calls. The instruction SETPERM updates the

permission information in a DTT entry, and will result in

invalidating the corresponding entry (if cached) at the DTTLB.

c) Security Assessment: Let us now discuss the impact of

MPK virtualization on PMO security protection. First, we note

that spatio-temporal domain protection requires that (1) Every

memory access must be checked to identify its domain, and

(2) For an access to a certain domain, its legality is checked

against the domain access permission for the thread.

The proposed method meets both requirements. When a

PMO is attached, the PMO/domain ID and its VA range are

added as a new entry in the DTT. All memory accesses to this

VA Range that suffers a TLB miss will check the DTTLB (if

hit) or trigger a DTT walk (if miss). Domain accesses to PMOs

find its PMO ID in TLB, DTTLB, or DTT, and they are treated

as domain accesses. An access that does not find a domain

685

in the DTT is a domainless access and recorded with NULL

domain in the TLB. When domain-to-key mapping changes

in the DTTLB, TLB shootdown ensures that TLB entries are

invalidated if their mapping is affected, while the PKRU is

updated to reflect the permission of the new domain. Hence,

both requirements are met.

Care must be taken on context switch to continue meeting

the requirements. Because PKRU and DTTLB entries are

thread specific, it must be flushed upon a context switch.

Any dirty entries in the DTTLB must be written back to the

DTT prior to the switch. In MPK, the PKRU is part of the

process state that is saved and restored. In our design, because

DTT contains information of all domains and permission of

that domain for all threads, hence the content of DTTLB and

PKRU can be reconstructed when the thread resumes in the

future, hence they can be flushed.

d) Comparison with libmpk: Our design efficiently and

transparently supports a large number of domains with minor

hardware modifications by virtualizing the assignments from

PMO IDs to protection keys. When an access to an unmapped

domain occurs, libmpk incurs an exception that triggers an

exception handler to unmap and map the domain by writing

to as many PTEs as the affected domain has. In contrast,

DTTLB allows the unmap and map to occur in hardware

and changes are reflected in the PKRU. Both libmpk and

our MPK virtualization involve TLB shootdowns, however,

the cost of shootdowns is proportional to the size of TLB,

while libmpk’s PTE changes is proportional to the domain

size. Hence, our MPK virtualization is both faster and more

scalable. Furthermore, with our solution, programmers do not

need to memorize the assignment from PMO IDs to protection

keys, or explicitly handle the assignment and reassignment

from PMO IDs to protection keys in the PKRU register. They

can simply change the permission of a PMO ID.

E. Hardware-Based Domain Virtualization

The first design, hardware MPK virtualization, supports

a large number of PMOs/domains while leveraging existing

MPK hardware as much as possible. However, a critical

drawback is that everytime a domain-key mapping changes,

TLB shootdown must be initiated to invalidate stale VA-to-

key information in TLB entries. As the number of domains

sharing 16 protection keys increases, domain-key remapping

becomes more frequent, triggering frequent TLB shootdowns.

Thus, we need a more scalable alternative design. We propose

hardware domain virtualization that obviates the need for TLB

shootdowns.

a) Architectural Design: This design foregoes MPK and

introduces a new mechanism to enable direct permission

lookup, as illustrated in Figure 5. It makes a minor change

to the TLB by adding a 10-bit domain ID in each TLB entry

in place of the protection key ID. If there is a TLB miss,

the domain ID for a page is retrieved from the Domain Range

Table (DRT), an OS-managed data structure. DRT is organized

similarly to DTT with a hierarchical table, but without keeping

domain permission information. DRT may have directory entry

or PMO root entry. Each entry of either type has a valid bit and

a next level bit. The next level bit indicates whether the next

level is a directory (1) or a PMO (0). The directory entry has a

36-bit page frame number (PFN) of the next level dictionary.

The permission information for domains and threads is

kept using a separate table called the Permission Table (PT),

another OS-managed data structure. It is indexed by domain

ID and thread ID, and contains the domain permission for

the thread. To provide fast permission check, this information

is cached in a hardware structure called Permission Table

Lookaside Buffer (PTLB). A PTLB entry contains a 10-bit

domain ID used as tag, a 2-bit permission, and a dirty bit. The

permission can be 1x (inaccessible, execute only), 01 (read-

only), or 00 (readable and writable).

b) Operations: DRT and PT entries are added or re-

moved in reaction to the attach or detach system calls. As

before, each PMO is assigned a unique domain ID. PTLB

miss results in retrieving the domain permission information

for the thread from the PT. Permission change requests to a

domain (SETPERM) can be completed entirely in the PTLB

by directly changing the domain permission. The dirty bit for

such an entry is set when its domain permission changes.

When a dirty PTLB entry is evicted, the permission is written

back to the PT.

To check permission for a load/store instruction 1 , first the

VA is used to access the TLB 2 . If we have a TLB hit, the

domain ID and page permission are retrieved 3 . If the domain

ID is NULL, the access is a domainless access and no further

action is taken. Otherwise, the retrieved domain ID is used to

look up the PTLB to retrieve the domain permission 4 . If the

load/store is legal according to both the domain permission and

the page permission 5 , the load/store proceeds. Otherwise, an

exception is raised.

If we have a TLB miss 6 , page table walk and DRT walk

are performed in parallel. The physical address obtained from

page table walk and domain ID obtained from DRT walk are

combined into the new TLB entry 7 . If the VA is not found in

the DRT after the walk, it does not belong to any domain, so

a NULL domain is used. After the TLB, PTLB is checked. If

we have PTLB hit, domain permission is retrieved and used.

If we have a PTLB miss 8 , a victim PTLB entry is selected

to make room for a new entry, and the PT is looked up to

retrieve the domain permission for the new entry 9 .

c) Security Assessment: As with MPK virtualization,

domain ID for an access is always retrieved (via TLB and

DRT), and domain permission for the thread is always checked

(via PTLB and PT). Both security requirements are hence met.

Handling context switches requires flushing thread-specific

information in the PTLB, but not the TLB. Any dirty entries in

the PTLB are first written back to the PT, then all entries can

be flushed. The information of domain ID in the TLB remains

valid. As the PT has only a few entries (16 in our base case),

the impact of flushing it on context switch on performance is

small.

686

Bits
1x
00
01

Inaccessible
read write
read only

Permission

VA
010…01

Page
Permission

Domain
Permission

Strictest
Permission

ld/st

1
6

TLB

VPN

Domain ID
(10 bits)

101…101
111…101
101…111

PFN

…101
…111
…011

Page
Perm.

01
11
10

Domain
ID

Domain ID

Permission

Permission Table
Lookaside Buffer (PTLB)

Domain ID
Tag (10 bits)

Permission
(2 bits)

1010…101 01
1010…111
1010…111

00
01

PTLB miss

Thread 1
Perm.

Thread k
Perm.

10 10
00
00

00
00

Domain ID
(10 bits)

5
2
1

Permission
Table (PT)

4
2

TLB miss

L4 Directory
Domain Range Table

L3 Directory L2 Directory

PMO ID PMO ID

Next Level

PMO (0)

Directory (1)

Next level bit (1 bit),
Valid (1 bit),
PMO ID (32 bits),
Domain ID (10 bits)
Next level bit (1 bit), Valid (1 bit)
PFN of next Directory (36 bits)

Content
Domain Range Table Entry

7

Reg.

3

8

5

9

…

…
…
…

Perm

Fig. 5. The Domain Virtualization Design and Mechanism.

V. EVALUATION METHODOLOGY

We base our simulator on Sniper simulator [10], a cycle-

accurate X86 simulator. PMOs are implemented as memory

mapped regions. We evaluate the following schemes. The first

scheme is non-protected execution serving as the baseline.

Intel Pin [36] was used on a real machine to obtain a trace

that is then fed to the simulator to obtain baseline perfor-

mance. The second scheme is an ideal MPK virtualization

(lowerbound), which represents a case where no overhead is

added to MPK except for programming of PKRU through

WRPKRU instructions. We insert WRPKRU instructions to

enable each PMO access and disable it afterward. We execute

the program with Pin to obtain its trace, which is fed into

the simulator to obtain its performance. One can think of this

scheme as having MPK virtualization without any penalties for

accessing the DTTLB or DTT. The third scheme we evaluate

is the realistic version of the proposed scheme, obtained by

feeding into Sniper the trace with WRPKRU instruction and

the architecture overheads introduced in our schemes. The

parameters used in our schemes are shown in Table II. Sniper

does not support the WRPKRU instruction and regards it as

unknown, hence we add appropriate delays (27 cycles) to

executing the WRPKRU instruction when we re-execute the

trace in the simulator.
Our experiments of architectural overhead are based on the

design logic in Section IV and overhead values in Table II.

In the setting, the DTTLB/DTT table walk can be executed

in parallel with traditional page table walk. DTT table walk

latency is the same as or smaller than page table walk latency.

On a DTTLB hit, the latency of DTTLB add/modify/search is

always smaller than page table walk latency of TLB misses.

So there is no extra overhead on TLB miss. TLB invalidation

overhead is the sum of the overhead for a key remapping

for number of thread threads. The subsequent TLB misses

resulting from TLB invalidations is also taken into account.

For the domain virtualization design, there is no extra overhead

on a TLB miss since the DRT and page table can be walked

in parallel and the DRT is shallower than the page table.

TABLE II
SIMULATION PARAMETERS.

Processor
2.2 GHz, 4-way issue Out-of-order, 128-entry ROB,
Intel x86-64 architecture, Pentium M branch predictor

Cache
L1D cache 8-ways 32KB, 1 cycle access time;
L2 cache: 16-ways 1MB, 8 cycles access time

Memory
DRAM latency: 120 cycles; NVM latency: 360 cycles;
64 GB/s Bandwidth; Directory-based MESI protocol

TLB

L1 data TLB: 4KB pages, 4-way, 64 entries;
L2 4KB/2MB pages, 6-way, 1536 entries;
1 cycle L1 TLB access, 4 cycles L2 TLB access;
30 cycles TLB miss penalty

MPK WRPKRU: 27 cycles

MPK
Virtualization

DTTLB: 16 entries;
Free keys check/update: 1 cycle;
DTTLB hit: 1 cycle;
Add/Remove/Modify DTTLB entry: 1 cycle;
DTTLB miss: 30 cycles, PKRU update 1 cycle;
TLB invalidation: 286 cycles

Domain
Virtulization

PTLB: 16 entries;
PTLB access: 1 cycle;
PTLB miss (incl. permission table lookup): 30 cycles;
Add/Remove/Modify PTLB entry: 1 cycle

We assume main memory consists of DRAM and NVM.

The NVM latency is 3× higher than DRAM latency, in line

with Intel Optane DC Persistent Memory characterization [24].

PMO accesses use NVM latency while other accesses use

DRAM latency.

TABLE III
WHISPER BENCHMARKS [37] AND THEIR CONFIGURATIONS.

Benchmark Description

Echo echo test, 100k transactions in total
YCSB YCSB like test, 80% writes,

100k transactions in total
TPCC TPC-C like test, 80% writes,

100k transactions in total
C-tree 100K insert operations
Hashmap 100K insert operations
Redis redis server/ lru-test, 1 million gets/puts

Single PMO on WHISPER Benchmarks: WHIPSER

687

benchmarks are based on real world persistent memory (PM)

applications, including PM key-value stores Echo and Redis, a

PM database N-store, and PM transactional libraries. Although

each of its benchmarks uses only a single PMO, evaluations on

them can help measure the inherent overhead from applying

domain protection on real world persistent memory applica-

tions and how our schemes affect the overhead [37].

As listed in Table III, we execute WHISPER benchmarks

using 100k transactions or operations in a 2GB PMO of

single thread. We assign the entire PMO with a protection

key through pkey_alloc() and pkey_mprotect(). The

default permission for this key is inaccessible. We insert

pkey_set/WRPKRU before and after every PMO access to

enable or disable the access to this protection key associated

with the PMO.

TABLE IV
MICROBENCHMARK DESCRIPTION.

Benchmark Description

AVL Tree (AVL) Insert or delete nodes in the tree.
RB tree (RBT) Insert or delete nodes in the tree.
B+ tree (BT) Insert or delete nodes in the tree.
Linked List (LL) Insert or delete nodes in the linked list.
String Swap (SS) Randomly swap strings in the string array.

Multi-PMO on Micro Benchmarks: To study the impact

of multiple PMOs, we leverage the benchmarks used in prior

NVM studies [11], [14], [26], [34], [46], as shown in Table IV.

Each benchmark has 1024 consecutive PMOs, and each of

them is 8MB in size. Each PMO is a pool of nodes for

the data structures in Table IV. The main data structures

contain nodes in different PMOs with each node containing

a 64-byte value except B+Tree, in which a node is 4096-

byte long, containing 126 values and two pointers. Every

operation randomly selects a node in a PMO to operate on. To

experiment with different numbers of active PMOs, we vary

the set of PMOs such that the largest number of PMOs ranges

from 16 to 1024 with a 16 stride. Compared to the WHISPER

experiment, we enable the write permissions of a PMO before

and after every data structure operation rather than on every

PMO access instruction. The application has read permission

for all PMOs. Every data structure starts with 1K initial nodes.

Each benchmark executes 1 million operations on the data

structure, in which, 90% instructions are insert operations.

VI. EVALUATION

This section first reports the overhead of the two proposed

solutions with a single PMO on WHIPER, compared to the

execution of the default MPK. It then reports the perfor-

mance on multi-PMO benchmarks, compared to the previously

proposed software-based MPK virtualization, libmpk [39]. It

finally provides the area space overhead and security analysis

of the solutions.

A. Single-PMO Results on WHISPER

Table V reports the overhead on WHISPER; the baseline is

the performance of the default runs without protection. The

second column in the table reports the rate of permission

switches, calculated as number of switches per second. (The

permission to the PMO is granted before each PMO access and

disabled after that access). The overheads from MPK on these

benchmarks range from 0.77% to 2.65%. Our first design,

hardware MPK virtualization, enjoys the same performance as

the default MPK because the benchmarks have only one PMO

hence do not need to evict any protection keys. Our hardware

domain virtualization shows slightly higher overheads, 0.85–

2.91%, because PTLB permission lookup increases the latency

of each PMO access even though the data may be in the

cache. The overhead on TPCC is the largest due to a higher

percentage of PMO accesses in the program.

TABLE V
OVERHEAD OF MPK VS. HARDWARE MPK VIRTUALIZATION AND

DOMAIN VIRTUALIZATION FOR WHISPER WITH A SINGLE PMO.

Benchmarks Switches/sec
Overhead (%)

Default
MPK

Virtulization
MPK Domain

Echo 712,631 0.77 0.77 0.85
YCSB 1,152,379 1.48 1.48 1.63
TPCC 951,529 2.65 2.65 2.91
C-tree 839,138 1.21 1.21 1.30
Hashmap 863,251 1.05 1.05 1.14
Redis 1,038,506 1.28 1.28 1.41

Average 926,239 1.41 1.41 1.54

B. Multi-PMO Results

This section presents the performance measurements on the

multi-PMO benchmarks (16 to 1024 PMOs per program).

The access permission to a PMO is granted before a data

structure operation modifies it and disabled right after the

completion of the operation to minimize the security vul-

nerability. Table VI reports the frequency of the permission

switches. The “lowerbound overheads” column in the table

reports the overheads from just executing write permission-

granting and disabling instructions, providing the lowerbound

of the security protection overheads. The lowerbound overhead

is related to the number of switches per second.

TABLE VI
LOWERBOUND OVERHEAD AND PERMISSION SWITCH FREQUENCIES FOR

THE MULTI-PMO BENCHMARKS

Benchmark Switches/sec Lowerbound overheads

AVL Tree (AVL) 2,326,578 3.28%
RB tree (RBT) 1,594,634 2.25%
B+ tree (BT) 2,085,772 2.94%
Linked List (LL) 305,388 0.43%
String Swap (SS) 3,636,006 5.12%

Figure 6 shows how overheads of various schemes compare,

when the number of PMOs varies over the x-axes. The y-axes

shows the execution time overhead percentage over lower-

bound, e.g. 22 means 4% slower, 24 means 16% slower, etc.

The figures show that the overheads of our schemes are much

lower than the software-based MPK virtualization libmpk [39].

The software-based MPK virtualization has almost the same

688

Fig. 6. Execution time overheads for the multi-PMO benchmarks as the number of PMOs varies, expressed as percentage slowdown over lowerbound, e.g.
22 means 4% slower, 24 means 16% slower, etc.

number of evictions as the hardware-based MPK virtualization

design. Both of them need TLB invalidations after evictions.

However, the software-based method needs to invoke system

calls, pkey_mprotect(), to clean and set PTE bits in the

page table. Our proposed MPK virtualization does not, and is

hence several times faster.

Our domain virtualization design, in addition to the benefit

of avoiding system calls, further removes the TLB invalida-

tion requirement after every eviction. When the number of

PMOs is small, hardware MPK virtualization provides a better

performance than the Domain Virtualization method does,

because the small eviction rate leads to few TLB invalidations,

while the Domain Virtualization needs to look up PTLB for

every domain access. When the number of PMOs is large, the

advantage of the Domain Virtualization method becomes more

obvious; its overhead is much less sensitive to the number of

PMOs.

The location of the crossing point between the performance

curves of the two hardware-based virtualizations depends on

the data locality of the base application. On programs with

a better locality, the crossing point tends to happen later (as

PMOs increase). It is because on those programs, the TLB

miss rate of accesses to PMOs is lower, while hardware-based

MPK virtualization does not affect the performance of a TLB

hit. For example, B+tree is a flatter tree (126 consecutive

values in a PMO) than AVL tree and RedBlack tree, and hence

it has a better data locality. It has a relatively smaller eviction

rate, and a later crossing point in Figure 6.

On benchmarks with better data locality, all three methods

show flatter curves in Figure 6 and lower overhead percent-

ages. These programs have smaller buffer (DTTLB or PTLB)

miss rates, hence lower eviction rates. The main overheads of

the three methods are caused by evictions. An example is the

comparisons between String swap and Linked list. The former

has a better locality as for each swap operation, two 64-byte

strings get swapped. There are 128 loads/stores incurring only

up to two TLB misses. For the Linked list benchmark, each

node access could cause a TLB miss, hence less flat curves.

Figure 7 shows the average of overheads of the five bench-

marks in one figure. With 64 PMOs, the hardware-based

MPK virtualization is 10.1× faster than libmpk, while Domain

Fig. 7. Overhead comparison to libmpk [39] and lowerbound.

Virtualization is 25.8× faster. With 1024 PMOs, the hardware-

based MPK virtualization is 10.6× faster than libmpk, while

the Domain Virtualization is 52.5× faster than libmpk.

TABLE VII
OVERHEAD BREAKDOWN FOR THE PROPOSED SOLUTIONS WITH 1024

PMOS PER BENCHMARK.

Overhead sources AVL RBT BT LL SS Avg

Overhead of Hardware-based MPK Virtualization

Permission change (%) 3.28 2.25 2.94 0.43 5.12 2.80

Entry changes (%) 0.05 0.08 0.11 0.01 0.18 0.09

DTT misses (%) 21.12 23.31 3.12 9.72 7.13 12.88

TLB invalidations (%) 84.56 180.6 37.44 143.4 48.05 98.81

Total (%) 109 206.3 43.61 153.6 60.48 114.58

Overhead of Hardware-based Domain Virtualization

Permission change (%) 3.28 2.25 2.94 0.43 5.12 2.80

Entry changes (%) 0.04 0.07 0.09 0.01 0.16 0.07

PTLB misses (%) 15.83 18.68 2.02 7.52 5.04 9.82

Access latency (%) 3.09 5.23 28.27 4.34 15.49 11.28

Total (%) 22.24 26.23 33.32 12.30 25.81 23.97

Table VII reports the execution time overheads assuming

1024 PMOs used by each benchmark, broken down into

sources of the overheads, for both our proposed schemes.

689

Hardware-based MPK virtualization suffers from larger over-

heads than Domain Virtualization, in particular primarily due

to TLB invalidation overheads (contributing 98.81% of the

total 114.58%). The average overheads of Domain Virtualiza-

tion average 11.28% (ranging from 12.3–33.32%). Compared

to Hardware-based MPK virtualization, Domain Virtualization

removes TLB invalidation overheads but introduces PTLB ac-

cess latency into the critical path. Since the former dominates

execution time overheads, the trade off works very well. It is

worth noting that the experimental setting is an extreme case

where every access to PMO needs to switch the permission.

If multiple accesses that are clustered together are protected

by one pair of permission switches, the overheads would be

lower.

C. Area Overheads

Table VIII reports the area overhead summary of the two

designs. In hardware-based MPK virtualization, the DTTLB

has 16 entries × 76 bits = 152 bytes. Assuming 1024 domains

and up to 1024 threads per process, DTT is 256KB in

size. There is one 64-bit register per process for the domain

translation table to perform page table walk. TLB and PKRU

are unchanged from MPK. In domain virtualization, PTLB

is 16 entries × 2 bits = 24 bytes. DRT and PT are larger

(16KB and 256KB) but are software data structures. Two 64-

bits registers are added for DRT and PT.

TABLE VIII
AREA OVERHEAD SUMMARY OF TWO DESIGNS

Hardware-based MPK
Virtualization

Domain
Virtualization

New
Parts

1 64-bit register per
core

2 64-bit registers
per cores

16 entries×76 bits=152 Bytes
buffer per core.

16 entries×12 bits=24 Bytes
buffer per core.

Other Changes No
Extend 6 bits to each
TLB entry (10% more)

Memory
Usages

256KB memory per
process per DTT

256KB + 16KB memory per
process for DRT and PT

DTT, DRT and PT are software data structures, cacheable,

and are placed in the paging system so they can be swapped

in/out. Only DTTLB and PTLB require dedicated hardware

tables and their sizes are negligible (both less than 0.2KB).

D. Security Analysis

For isolation between threads, both designs provide different

memory views for each thread. The co-located attacker thread

must insert special instruction, SETPERM, to change the

permission to the target PMO for this thread. Then the attacker

thread can read/write data to the target PMO. The insertion re-

quirement simplifies the check on whether the injected code is

malicious to PMOs. Code without SETPERM instruction can-

not read/write data to PMOs. Attacks in code with SETPERM
instructions and code trying to reuse SETPERM instruction

in victim programs can be prevented by implementing call

gates and performing binary inspection and rewriting similar

to ERIM [50]. The isolation between threads is enforced.

For isolation within a thread, we insert SETPERM before

and after every PMO accesses or every PMO data structure

insert/delete operation, which gives a small window for mem-

ory access to a PMO within enabling and disabling pairs.

SETPERM is implemented such that it is always followed by

a memory fence. All memory accesses are finished before

SETPERM, the instruction that enables permission to a PMO.

So earlier memory accesses cannot read/write this PMO.

Another SETPERM instruction disables permission to a PMO.

Temporal memory safety is enforced within a thread. Attackers

may exploit vulnerabilities in the code in the middle of a

pair of the enabling and disabling instructions. However, the

vulnerabilities and attacks are limited to this PMO and other

enabled PMOs rather than all PMOs. For each thread, pro-

grammers can specify pair-wise interactions between PMOs.

Any time, at most two PMOs are enabled. So the vulnerabil-

ities and attacks are limited to at most two PMOs.

VII. RELATED WORK

MERR [60] proposed attach and detach primitives for PMOs

to improve security between processes, which we build on in

this paper. Another branch of papers enable more efficient

memory encryption for persistent memory [5], [6], [13], [61].

There is a rich set of papers in literature covering other aspects

of persistent memory, including but not limited to, memory-

mapped files [14], [52], file system [15], [17], [58], [59],

physical organization [3], [4], persistency models [2], [15],

[28], [40], [46], [49], [52], logging [45], checkpointing [18]

and GPU [33].

Software-fault isolation techniques (SFI) [43], [53] create a

separate protected memory region by instrumentation at every

memory access instruction. This ensures that the instrumented

instruction can only access the designated memory segment;

SFI incurs large overhead. ISboxing [16] separates address

space to allow untrusted code to access only a 32-bit address

space. The available address space reduction could limit prac-

tical usage of NVM. Jang et al. [25] propose to provide a

heterogeneous isolated execution.

In the hardware aspect, the hardware approaches based on

hardware page protection [7], [8], [12], [32], [35] support

memory isolation and provide near zero overhead within a

component. But switching between components still needs

to switch to kernel mode, which incur substantial overhead.

Frassetto et al. [19] try to provide in-process memory isolation

which incurs high overhead to support many isolated domains.

CHERI’s [56] security hinges upon recompiling all external li-

braries rather than the application itself. However, our scheme

works even for vulnerable libraries by limiting accesses (vul-

nerabilities) of libraries to the application. CODOM [51] needs

dramatic changes to the hardware.

Hodor [20] provides isolated user-space libraries using MPK

to improve the throughput and latency. Burow et. al [9] survey

several shadow stacks implementations and propose a shadow

stack implementation with MPK to reduce the shadow stack

overhead.

690

ERIM implements call gates and binary rewriting and

inspection to mitigate WRPKRU reusing by the attacker.

libmpk [39] presents a software virtualization of MPK to

support more domains. It incurs large overhead as the previous

section has shown.

VIII. CONCLUSION

This paper proposes two architecture solutions to enable

efficient intra-process isolation to enable domain-based PMO

protection. The first solution, hardware-based MPK virtual-

ization, augments MPK to remove the limit on the number of

domains. The second solution, hardware-based domain virtu-

alization, foregoes MPK and leverages some newly introduced

mechanisms to avoid the large TLB invalidation overhead of

the first method. The experiments show that the two solutions

provide much reduced runtime overhead compared to the

previous solutions. Even in the extreme case (permission

switches for every PMO access), the Domain Virtualization

method is subject to less than 24%, over 50× reduction of the

overhead of a previous state-of-the-art software solution.

ACKNOWLEDGEMENT

We thank all the anonymous reviewers whose feedback is

helpful for improving the final version of the paper. This

material is based upon work supported by the National Science

Foundation (NSF) under Grant No. 1900724, CCF-1525609,

CNS-1717425, CCF-1703487, and Office of Naval Research

(ONR) under grant No. N00014-20-1-2750. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of NSF or ONR.

REFERENCES

[1] H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp.
2237–2251, 2010.

[2] M. Alshboul, J. Tuck, and Y. Solihin, “Lazy Persistency: a High-
Performing and Write-Efficient Software Persistency Technique,” in
Proc. of the International Symposium on Computer Architecture, 2018.

[3] A. Awad, S. Blagodurov, and Y. Solihin, “Non-Volatile Memory Host
Controller Interface Performance Analysis in High-Performance I/O
Systems,” in Proc. of the International Symposium on Performance
Analysis of Systems and Software, 2015.

[4] A. Awad, S. Blagodurov, and Y. Solihin, “Write-Aware Management
of NVM-based Memory Extensions,” in Proc. of the International
Conference on Supercomputing, 2016.

[5] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
Shredder: Zero-Cost Shredding for Secure Non-Volatile Main Memory
Controllers,” in Proc. of the International Symposium on Architecture
Support for Programming Language and Operating Systems, 2016.

[6] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem: a Low-
Overhead Access Obfuscation for Trusted Memories,” in Proc. of the
International Symposium on Computer Architecture, 2017.

[7] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: Safe user-level access to privileged {CPU}
features,” in Presented as part of the 10th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 12), 2012, pp.
335–348.

[8] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
applications into reduced-privilege compartments.” USENIX Associa-
tion, 2008.

[9] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 985–999.

[10] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simu-
lations,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2011, pp. 52:1–52:12.

[11] G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu, “Efficient support
of position independence on non-volatile memory,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 191–203.

[12] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-grained
execution units with private memory,” in 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 2016, pp. 56–71.

[13] S. Chhabra and Y. Solihin, “i-NVMM: A Secure Non-Volatile Main
Memory System with Incremental Encryption,” in Proc. of the Interna-
tional Symposium on Computer Architecture, 2011.

[14] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories,” ACM Sigplan Notices, vol. 47,
no. 4, pp. 105–118, 2012.

[15] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 133–146.

[16] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security.
ACM, 2015, pp. 555–566.

[17] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems,
2014.

[18] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient Check-
pointing of Loop-Based Codes for Non-volatile Main Memory,” in
Proc. of the International Conference on Parallel Architectures and
Compilation Techniques, 2017.

[19] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi, “{IMIX}:
In-process memory isolation extension,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 83–97.

[20] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty, “Hodor: Intra-process isolation for high-throughput
data plane libraries,” in 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), 2019.

[21] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 969–986.

[22] Intel, “Intel 64 and ia-32 architectures software developer’s manual.”
https://software.intel.com/en-us/articles/intel-sdm, online; accessed 11
November, 2019.

[23] A. R. Intel, “Persistent memory programming,” http://pmem.io/.
[24] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,

Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane dc persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[25] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heteroge-
neous isolated execution for commodity gpus,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2019, pp.
455–468.

[26] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist barri-
ers for multicores,” in Proceedings of the 48th International Symposium
on Microarchitecture. ACM, 2015, pp. 660–671.

[27] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. Lee,
R. Sasaki, Y. Goto, K. Ito, T. Meguro et al., “2mb spin-transfer torque
ram (spram) with bit-by-bit bidirectional current write and parallelizing-
direction current read,” in 2007 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers. IEEE, 2007, pp. 480–617.

[28] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” ACM SIGPLAN
Notices, vol. 51, no. 4, pp. 399–411, 2016.

[29] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,” in
Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 2017, pp. 437–452.

691

[30] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating stt-ram as an energy-efficient main memory alternative,” in 2013
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2013, pp. 256–267.

[31] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEE micro, vol. 30, no. 1, pp. 143–143, 2010.

[32] H. Lee, C. Song, and B. B. Kang, “Lord of the x86 rings: A portable
user mode privilege separation architecture on x86,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1441–1454.

[33] Z. Lin, M. Alshboul, Y. Solihin, and H. Zhou, “Exploring memory
persistency models for gpus,” in Proc of International Conference on
Parallel Architectures and Compilation Techniques, 2019.

[34] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “Pmtest: A fast and flex-
ible testing framework for persistent memory programs,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2019, pp.
411–425.

[35] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1607–1619.

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Acm sigplan
notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[37] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in ACM SIGARCH
Computer Architecture News, vol. 45, no. 1. ACM, 2017, pp. 135–148.

[38] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[39] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel {MPK}),” in 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019,
pp. 241–254.

[40] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in ACM
SIGARCH Computer Architecture News, vol. 42, no. 3. IEEE Press,
2014, pp. 265–276.

[41] Riku, Antti, Matti, and N. Mehta, “The heartbleed bug,”
http://heartbleed.com, 2014.

[42] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 745–762.

[43] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko, B. Yee,
K. Schimpf, and B. Chen, “Adapting software fault isolation to con-
temporary cpu architectures,” 2010.

[44] H. Shacham et al., “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86).” in ACM conference on
Computer and communications security. New York,, 2007, pp. 552–
561.

[45] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for nvm,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2017, pp. 178–190.

[46] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 175–186.

[47] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in 2013 IEEE Symposium
on Security and Privacy. IEEE, 2013, pp. 574–588.

[48] Y. Solihin, Fundamentals of Parallel Multicore Architecture. Chapman
& Hall/CRC, 2015.

[49] Y. Solihin, “Persistent memory: Abstractions, abstractions, and abstrac-
tions,” IEEE Micro, vol. 39, no. 1, pp. 65–66, 2019.

[50] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Dr-
uschel, and D. Garg, “{ERIM}: Secure, efficient in-process isolation
with protection keys ({MPK}),” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1221–1238.

[51] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero,
“Codoms: Protecting software with code-centric memory domains,” in
2014 ACM/IEEE 41st International Symposium on Computer Architec-
ture (ISCA). IEEE, 2014, pp. 469–480.

[52] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture News,
vol. 39, no. 1. ACM, 2011, pp. 91–104.

[53] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Operating Systems
Review, vol. 27, no. 5. ACM, 1994, pp. 203–216.

[54] T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware supported
persistent object address translation,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2017, pp. 800–812.

[55] T. Wang, S. Sambasivam, and J. Tuck, “Hardware supported permission
checks on persistent objects for performance and programmability,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 466–478.

[56] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A
hybrid capability-system architecture for scalable software compartmen-
talization,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 20–37.

[57] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The cheri
capability model: Revisiting risc in an age of risk,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA). IEEE,
2014, pp. 457–468.

[58] J. Xu and S. Swanson, “NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories,” in 14th USENIX
Conference on File and Storage Technologies (FAST 16). Santa
Clara, CA: USENIX Association, 2016. [Online]. Available: https:
//www.usenix.org/conference/fast16/technical-sessions/presentation/xu

[59] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B. D.
Silva, S. Swanson, and A. Rudoff, “Nova-fortis: A fault-tolerant non-
volatile main memory file system,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles, 2017.

[60] Y. Xu, Y. Solihin, and X. Shen, “Merr: Improving security of persistent
memory objects via efficient memory exposure reduction and random-
ization,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 987–1000.

[61] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 479–492.

692

