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Abstract—Edge computing is a new computing paradigm, which aims at enhancing user experience by bringing computing resources
closer to where data is produced by Internet of Things (IoT). Edge services are provided by small data centers located at the edge of
the network, called cloudlets. However, IoT users often face strict Quality of Service (QoS) constraints for a proper remote execution of
their applications on edge. Each user has specific resource requirements and budget limitations for her IoT application, while each
cloudlet offers a limited number and types of resources, each with a specific cost. Therefore, a key challenge is how to efficiently match
cloudlets to IoT applications and enable a convenient any-time access to edge computing services considering preferences and
incentives of users and cloudlets. In this paper, we address this problem by proposing a novel two-sided matching solution for edge
services considering QoS requirements in terms of service response time. In addition, we determine dynamic pricing of edge services
based on the preferences and incentives of cloudlets, IoT users, and the system. The proposed matching is incentive compatible,
individually rational, weakly budget balanced, asymptotically allocative efficient, and computationally efficient. We perform a
comprehensive assessment through extensive performance analysis experiments to evaluate our proposed matching and pricing
solutions.

Index Terms—edge computing; cloudlet; Internet of Things; Quality of Service; two-sided matching; combinatorial matching.
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1 INTRODUCTION

THE ubiquitous penetration of smart connected devices
(Internet of Things) into everyday life is projected to

reach 75 billion by 2025 [1]. The growth of IoT will con-
tinue as users enjoy the convenience of mobility and with
the emergence and progress of new technologies such as
wearable devices, autonomous vehicles/drones, and aug-
mented/virtual reality. These IoT devices are restricted
by weight, size, battery life, and heat dissipation impos-
ing limitations on their computing capabilities to execute
applications. To empower the resource shortage of IoT
devices, cloud computing offers many services, allowing
these devices to offload their tasks to a more powerful
computing infrastructure. However, these devices require
heterogeneous computing resources and quality of services
(QoS) depending on their applications [2], and offloading
to a conventional centralized cloud is infeasible for appli-
cations mandating low-latency communications and real-
time responses due to physical distance between the cloud
and IoT users. As a result, computing systems have under-
gone a fundamental transformation from homogeneous or
semi-homogeneous centralized high-performance systems
to a heterogeneous geo-distributed edge computing envi-
ronment in order to fulfill today’s IoT computational needs.

Edge computing is a new computing paradigm that
enables processing data closer to IoT users, where data
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has been produced locally [3], [4]. Instead of moving a
large amount of raw data from users to a distant cloud,
it decentralizes processing power to ensure real-time ultra-
low-latency processing. The distribution of computing re-
sources throughout edge computing is accomplished by
having many small-sized heterogeneous clusters of servers
referred to as “cloudlets” or “micro data centers” at the
edge of the network. Cloudlets help to mitigate the overload
of IoT devices by accepting offloaded computation and
offer edge services in the form of virtual machine (VM)
instances. However, to enable a convenient any-time access
to edge computing resources, a key challenge is how to
efficiently match each IoT application to a serving cloudlet
and determine the associated edge service pricing.

A cloudlet has limited available resources, and it can
provide specific QoS guarantees (such as service response
time) for the offered edge services. Moreover, cloudlets incur
cost in providing edge services. On the other hand, each IoT
user (application owner) has specific resource requirements
for her application with limited budget and may need a
strict guarantee for the edge service quality. Both sides (IoT
users and cloudlets) may not declare their true preferences,
but to misreport them in order to increase their utilities
(e.g., higher quality of experience and/or lower payment
for a user). We formulate this problem as a two-sided
matching game between IoT users and cloudlets. A two-
sided matching game is an assignment problem between
the sets of users and cloudlets (players), where the players
of each set have preferences over the players of the other
set. The preference relations allow every IoT user/cloudlet
to be best matched for the edge services while maximizing
its own benefit (utility). Finding the best matching of a two-
sided matching game is an NP-hard problem.
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We propose an efficient QoS-aware matching mechanism
maximizing social welfare, which is defined as the sum of
utilities of users, cloudlets, and the system. Our proposed
mechanism gives incentives to IoT users and cloudlets to
be truthful and to reveal their true preferences. This is an
important property of our mechanism, making it robust
against strategic users and cloudlets who try to change their
allocation and/or other users’/cloudlets’ allocations. More-
over, the pricing of the matched edge computing services
are dynamically determined by our mechanism based on
IoT demand and cloudlet supply. Our proposed matching
mechanism improves quality of experience (QoE) and user
satisfaction by considering QoS metrics in the matching. In
addition, it is computationally efficient.

1.1 Our Contribution

We model the matching between cloudlets and IoT users
considering QoS as an Integer Programming optimization
model, and propose a novel two-sided matching and pricing
mechanism, Combinatorial QoS-aware Matching of Edge
Computing Services (C-QMECS). C-QMECS is based on
padding that intentionally creates imbalances between VMs
availability and demand by introducing a phantom user
enabling it to achieve incentive compatibility, individually
rationality, weakly budget balanced, asymptotically alloca-
tive efficiency, and computational tractability. We devise a
grouping approach for the users to reduce the computation
required by C-QMECS. In addition, C-QMECS improves
users’ satisfaction and QoE by considering QoS metrics in
the matchings. As a result, our mechanism avoids user
service rejection after their assignment to a cloudlet due to
unacceptable QoE. C-QMECS is multi attributes that con-
siders QoS requirements of IoT users and QoS guarantees
of cloudlets in addition to their pricing preferences. More-
over, considering the heterogeneous nature of required and
offered services, C-QMECS allows users and cloudlets to
respectively request for and offer a variety of different VMs.
Therefore, C-QMECS is also assumed to be combinatorial.
We provide a comprehensive assessment through extensive
performance analysis experiments to evaluate C-QMECS.

1.2 Related Work

A large body of research has focused on VM provisioning,
allocation, and placement in clouds by designing centralized
or semi-centralized (i.e., in-site distributed) approaches [5],
[6]. However, they require global information and often cen-
tralized controllers, yielding significant overhead and com-
plexity especially when dealing with combinatorial integer
programming problems to be solved. Moreover, they do not
consider the possibility of interactions among clouds and/or
users. These studies employ optimization techniques with-
out considering users and clouds as decision makers. The
aforementioned limitations of optimization have led to an
interesting body of literature that deals with the use of
game theory and mechanism design in cloud resource
management [7], [8]. Users’ demands and preferences, and
cloudlets’ offerings and preferences can directly affect the
computing system. Therefore, providing edge computing
services for each user depends not only on properties of

the user, but also on properties of other users and cloudlets,
leading to a game among users and cloudlets.

Most of game-theoretical studies in cloud computing
focus solely on one side of the market, where users interact
with only one provider. Main stream cloud provider pow-
erhouses such as Amazon have been offering cloud services
in a one-sided auction market (Amazon Spot Market) for
several years [9]. In our previous studies [10]–[13], we
proposed truthful offline and online one-sided mechanisms
for allocation and pricing of heterogeneous VMs in clouds.
Several researchers have studied resource management in
cloud federations to facilitate big data processing [14], [15].
However, these studies only focus on interactions among
a group of cloud providers to provide a single big data
processing service, and they are not suitable to be adapted in
multi-user edge computing environment. Efficient resource
management mechanisms need to consider both supply and
demand sides together. Designing double-auction mecha-
nisms for cloud computing has been studied by considering
homogeneous or heterogeneous VMs [16], [17]. However,
existing cloud-based solutions do not address the challenges
of “being at the edge” [18], and are not appropriate for edge
computing as QoE of users are critical.

Studies on various facets of edge computing have come
from both academia and industry. Amazon IoT Greengrass,
Azure IoT Edge, Google Cloud IoT Core, and Google Edge
TPU (Tensor Processing Unit) are some of the commer-
cial implementations of edge computing to extend cloud
capabilities to the proximity of users. Most studies in
academia focus on decisions on efficient caching [19] and
fully/partially computation offloading to cloudlets consid-
ering one user application [20], [21] or multiple applica-
tions [14], [22].

Several studies in edge computing investigate the use
of game theory and mechanism design. Kiani et al. [23]
proposed a hierarchical mobile edge computing (HI-MEC)
architecture, where the computing resources are offered us-
ing an auction-based profit maximization model. Bahreini et
al. [24] investigated the problem of resource allocation
and pricing in a two-level edge computing system, where
servers are located in the cloud or at the edge. They de-
signed an envy-free auction-based mechanism to allocate
available resources at these two levels. Gao et al. [25] mod-
eled the VM allocation problem as an n-to-one weighted
bipartite graph matching problem, and designed a greedy
approximation algorithm to determine the winners of the
auction. However, they did not consider QoS guarantees.
Moreover, they considered only one VM type. Li et al. [26]
designed a computing resource trading market for edge-
cloud-assisted IoT in a blockchain network, employing an it-
erative double-sided auction scheme. Zavodovski et al. [27]
developed a double auction mechanism by employing a dis-
tributed ledger trust model to match heterogeneous cloud
and edge resources to users using a heuristic approach
and a group-based pricing. However, none of the above
mentioned studies consider the characteristics of IoT appli-
cations and the objectives of edge computing in providing
QoS guarantees for users.

To the best of our knowledge, this is the first work that
models QoS in the matchings of edge services between
users and cloudlets in a heterogeneous edge computing
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Fig. 1: Two-Sided Matching

environment to guarantee service time requirements. We
model their preferences and interactions as decision makers
using game theory and matching theory, and design a novel
QoS-aware matching in edge computing.

1.3 Organization
The rest of the paper is organized as follows. In Section 2,
we discuss the necessity of using QoS-aware matching
in edge computing. In Section 3, we describe the system
model. In Section 4, we propose our mechanism to solve the
cloudlet-IoT matching problem. In Section 5, we evaluate
our proposed mechanism by extensive experiments. Finally,
in Section 6, we summarize our results and present possible
directions for future research.

2 NECESSITY OF QOS-AWARE MATCHING

In order to describe the advantages of a QoS-aware match-
ing mechanism in a possible real-world situation, we con-
sider the following example. We assume there are three IoT
users called Alice, Mary, and Bob, who have high, moderate,
and low QoS requirements, respectively. Moreover, there are
three cloudlets A, B, and C in the environment, providing
very high, high, and moderate QoS, respectively. Therefore,
in order for the users to have high QoE, they should be
matched to a cloudlet that meets their QoS requirements.
Fig. 1a illustrates the best possible matching in this case,
where Alice can be matched to cloudlet A, Bob can be
matched to either cloudlets A or B, and finally, Mary can
be matched to either cloudlets A, B, or C .

Considering the existing constraints on required and
offered QoS, the next step is to find the best matching ac-
cording to the resource requirements and budget limitations
of users, and available resources and prices of cloudlets. To
satisfy truthfulness, a typical mechanism-design goal is to
maximize social welfare, which is defined as the sum of
utilities of users, cloudlets, and the broker. We will describe
social welfare in detail in Section 3, and show that the sum

of utilities is equal to the difference between users’ bids and
the cloudlets’ asks.

Fig. 1b shows the final best matching, where the obtained
social welfare is maximized considering QoS. In this exam-
ple, Alice and Bob pay a total of $18, while cloudlets A
and B receive a payment of $15. Therefore, the obtained
social welfare is equal to $3. However, existing approaches
find the matching that improves the social welfare of all
participants without considering the QoS requirements and
guarantees of users and cloudlets in matching, respectively.
For instance, matching Bob to cloudlet C provides a lower
priced VM3. However, this matching cannot satisfy the QoS
requirements of Bob’s application. Therefore, he will have a
poor QoE and thus dissatisfaction.

3 SYSTEM MODEL

In this section, we introduce the system model, where J
is the set of cloudlets and I is the set of IoT users. Each
user requests an indivisible bundle of VMs (one or sev-
eral VM instances of the same type or different types) for
her IoT application (i.e., edge service), while it requires
some QoS metrics to be satisfied. Each cloudlet offers a
set of VMs that can be allocated to different users, and
it guarantees several QoS metrics for the offered services.
We define VM = {vm1, vm2, ..., vmK} as the set of K
different types of VM instances offered by the cloudlets.
The vector L defines the QoS metrics including Average
Response Time (ART), Maximum Response Time (MRT),
and Response Time Failure (RTF). ART is defined as the
average time that each user has to wait for her requested
bundle of VMs to be allocated. MRT shows the maximum
promised response time by the cloudlet. RTF shows the
percentage of the times when the cloudlet has violated
its promised MRT. All these QoS metrics are defined as
quantified metrics to quantify service response time, which
can be measured using software and hardware monitoring
tools and simply declared in numeric values [28]. Vector L
can be extended to include other quantified QoS metrics.
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Each cloudlet j ∈ J declares the quantity of available
VMs for each type, VMc

j = {qcj1, qcj2, ..., qcjK}, where qcjk
is the number of available VMs of type vmk at cloudlet j.
The asking prices or costs for providing one VM instance
of different types are specified by P c

j = {pcj1, pcj2, ..., pcjK}.
Finally, the QoS guaranteed by cloudlet j is denoted
by ~QoSc

j =< QoSc
j1, . . . , QoS

c
j|L| >. Hence, the spec-

ification of each cloudlet is denoted by ask Bc
j =

(VM c
j , P

c
j ,

~QoSc
j). The superscript c refers to cloudlets in

all the notations. For example, assuming four types of
VMs offered by the cloudlets, for cloudlet j with 4, 3, 0,
and 2 available VMs of types vm1 to vm4, respectively,
the reserve prices of $1, $2, $3, $4 for each instance,
and guarantees of ART = 1.5 ms, MRT = 2 ms, and
RTF = 0.01%, its specification is denoted by ask Bc

j =
([4, 3, 0, 2], [$1, $2, $3, $4], [1.5ms, 2ms, 0.01%]).

Each IoT user requests several VM instances of different
types, sets a preferred price for the requested bundle, and
specifies QoS requirements for the requested edge service.
Hence, the specification of an IoT request of user i consists
of three parts. First, VMd

i = (qdi1, q
d
i2, ..., q

d
iK) represents

the number of requested VMs of each type, where qdik
denotes the number of VMs of type vmk requested by user i.
Second, pdi represents bidding price for the whole requested
bundle, that is the maximum price user i is willing to pay

for the requested bundle of VMs. Finally, ~QoS
d

i denotes the
QoS requirements of user i’s IoT application. These QoS
values suggest the least acceptable qualities for the edge
service requested by user i. As a result, each user request is

denoted by bid Bd
i = (VMd

i , p
d
i ,

~QoS
d

i ). The superscript d
refers to users in all the notations. For instance, the bid
of user i, who is willing to pay upto $7 for two VMs of
type vm1 and one VM of type vm2 with ART = 2 ms,
MRT = 2.5 ms, and RTF = 0.05% is denoted by
Bd

i = ([2, , 1, 0, 0], $7, [2ms, 2.5ms, 0.05%]). Fig. 2 shows the
supply and demand sides in the edge computing system.

A two-sided market also requires a broker as a mediator
and trusted third party to facilitate the matching. A broker
is responsible for receiving IoT user requests and cloudlet
offers, determining matchings and prices, billing the users,
receiving payments from users, and paying the participat-
ing cloudlets. In edge computing, we can consider several
brokers, each managing a specific small region. To avoid a
single point of failure, we can also consider a backup broker
for each one, similar to Standby ResourceManager of YARN.

The utility of user i is defined as Ud
i = pdi − πd

i , the
difference between her valuation and her payment if her
request is matched; and zero otherwise. Similarly, the utility
of cloudlet j is defined as U c

j = πc
j −

∑
vmk∈VM qmjkp

c
jk,

the difference between the cloudlet’s payment and its cost
for the matched VMs; and zero otherwise. We use qmjk to
represent the number of matched VMs of type vmk of
cloudlet j. The broker’s monetary payoff πb is calculated
as πb =

∑
i∈I π

d
i −

∑
j∈J π

c
j , which is the total payments

received from the users minus the revenues of the cloudlets.
The objective of participants is to maximize their own

utilities. This is defined by social welfare as the summation
of utility of each IoT user, cloudlet, and the broker as
follows:

V (I, J) =
∑
i∈I

Ud
i +

∑
j∈J

U c
j + πb

=
∑
i∈Im

(pdi − πd
i ) +

∑
j∈Jm

(πc
j −

∑
vmk∈VM

qmjkp
c
jk)

+
∑
i∈Im

πd
i −

∑
j∈Jm

πc
j

=
∑
i∈Im

pdi −
∑

j∈Jm

∑
vmk∈VM

qmjkp
c
jk, (1)

where Im and Jm are the sets of matched IoT users and
cloudlets, respectively. Therefore, social welfare is equal to
the difference between users’ bids and the cloudlets’ asks.

To find the best matching of the services between IoT
users and cloudlets maximizing social welfare, we formulate
the problem optimally as an Integer Program (IP). First,
we define the decision variables as follows: αijk is the
number of allocated VMs of type vmk by cloudlet j to
IoT user i; xi ∈ {0, 1} shows whether IoT user i has
received her requested bundle or not; and yjk denotes the
number of VMs of type vmk allocated by cloudlet j. In

addition, we define Z(i, j) = ~QoS
d

i � ~QoS
c

j as an indicator
function for the matching between cloudlet j and user i
based on the offered and requested QoS, which returns 1 if
QoSd

il ≥ QoSc
jl, ∀l ∈ L, that is the offered QoS by cloudlet j

meets the requirements of user i, and 0 otherwise. The value
of Z(i, j) indicates the feasibility of matching the VMs pro-
vided by cloudlet j to IoT user i. In our example, cloudlet j
with Bc

j = ([4, 3, 0, 2], [$1, $2, $3, $4], [1.5ms, 2ms, 0.01%])
is qualified to provide the requested service of user i
with Bd

i = ([2, , 1, 0, 0], $7, [2ms, 2.5ms, 0.05%]), since it
guarantees a better service response time; in this case

Z( ~QoS
d

i � ~QoS
c

j) = 1. We now formulate the problem as
an IP as follows:

Matching(I, J) : Max V (I, J) =
∑
i∈I

pdi xi

−
∑
j∈J

∑
vmk∈VM

pcjk yjk (2)

Subject to:∑
j∈J

αijk = qdik xi, ∀i ∈ I, vmk ∈ VM, (3)
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αijk = yjk, ∀j ∈ J, vmk ∈ VM, (4)

αijk ≤ qcjk Z(i, j), ∀i ∈ I, j ∈ J, vmk ∈ VM, (5)

yjk ≤ qcjk, ∀j ∈ J, vmk ∈ VM, (6)

αijk ∈ Z∗, ∀i ∈ I, j ∈ J, vmk ∈ VM, (7)

yjk ∈ Z∗, ∀j ∈ J, vmk ∈ VM. (8)

xi ∈ {0, 1}, ∀i ∈ I. (9)

The objective function (Eq. (2)) is to maximize the social
welfare function V (I, J). Constraint (3) ensures that each
IoT user receives her whole requested bundle or nothing.
Constraint (4) guarantees that each cloudlet supplies VMs
based on their availability. Constraint (5) ensures that each
cloudlet can serve an IoT user if only it can provide the
requested VMs and meet the QoS requirements of that user.
Constraint (6) ensures that the allocated VMs do not exceed
the available VMs of the cloudlets. Constraints (7) and (8)
guarantee the integrality of decision variables αijk and yjk.
We use Z∗ to represent the set of nonnegative integers.
Constraint (9) ensures decision variable xi is binary.

Desirable properties. Cloudlets and IoT users are self-
interested and rational, meaning that their objectives are
to maximize their own utilities. To promote transactions
and attract both users and cloudlets, we design a QoS-
aware matching and pricing mechanism for edge computing
considering the desirable properties that such a mechanism
needs to satisfy in order to be applicable in real world.

• Incentive Compatibility (IC). If each participant can
achieve the best outcome by acting truthfully. This
property preserves the system from strategic ma-
nipulations by participants. Therefore, there is no
need for participants to analyze the behavior of other
participants in order to choose their best strategy and
they can simply declare their true preferences.

• Individual Rationality (IR). If each participant does
not incur a negative utility by participating. This
property guarantees participation of IoT users and
cloudlets in the mechanism.

• Weakly Budget Balanced (BB). If the total payments
of users always exceeds or equals the revenues of
cloudlets. This property avoids the broker to suffer a
loss by running the mechanism.

• Allocative Efficiency (AE). If the matching maximizes
the social welfare.

• Computational Efficiency (CE). If the matching is per-
formed in polynomial time.

Although it is desired to adhere all properties, according
to the Myerson-Sattherwithe impossibility theorem [29], no
mechanism can achieve IC, IR, BB, AE properties simulta-
neously. Therefore, since IC, IR, and BB are essential for a
mechanism to be applicable in real world, we can relax AE
property, while still achieving an acceptable level of social
welfare.

4 A COMBINATORIAL TWO-SIDED MATCHING
MECHANISM

In this section, we describe our proposed mechanism, C-
QMECS, that satisfies IC, IR, BB, asymptotic AE, and CE. C-
QMECS introduces a phantom IoT user to the system with
a fixed request (equal to the maximum quantity of offered
resources from all cloudlets), unlimited budget, and specific
QoS. This is because the cloudlet with the largest supply
has the greatest power in manipulating prices, and adding
this phantom user avoids such a manipulation. Adding
a phantom user also creates an imbalance between VMs
availability and demand, which provides an efficient way
to improve market price equilibrium leading to a budget
surplus, that motivates the broker to run the mechanism.

In order to have a computationally efficient mechanism,
the matching and pricing decisions of C-QMECS are deter-
mined based on our proposed linear programming-based
(LP) approach described in the following subsection. These
LPs can be solved in polynomial time in the worst case.

4.1 Combinatorial QoS-aware Matching of Edge Com-
puting Services (C-QMECS)

In this section, we define our proposed C-QMECS mecha-
nism in five steps as follows:

Step 1: Preference submission. Collect one sealed bid/ask
preference from each IoT user/cloudlet.

Step 2: User set reduction. Solve the following
LP SELECT(I, J), with IoT set I and cloudlet set J :

SELECT(I, J) : Max Ṽ (I, J) =
∑
i∈I

pdi xi−∑
j∈J

∑
vmk∈VM

pcjk yjk

Subject to:∑
j∈J

αijk = qdik xi, ∀i ∈ I, vmk ∈ VM,

∑
i∈I

αijk = yjk, ∀j ∈ J, vmk ∈ VM,

0 ≤ αijk ≤ qcjk Z(i, j), ∀i ∈ I, j ∈ J, vmk ∈ VM,

0 ≤ yjk ≤ qcjk, ∀j ∈ J, vmk ∈ VM

0 ≤ xi ≤ 1, ∀i ∈ I.

For any IoT user i ∈ I , if xi = 1, then i remains for the
matching. All other users who could not acquire their whole
requested bundles are eliminated. Let Ĩ denote the set of
remaining IoT users for matching at this step.

Step 3: Grouping users and setting padding. We group the
users in Ĩ , such that the QoS requirements of all users in
each group are satisfied by the same set of cloudlets. The
set of grouped users is denoted by G = {g1, g2, ..., gM},
where M is the number of groups. In order to set a padding
for each group, we need to define a phantom user with a
specific bid (bundle, bidding price, QoS requirements). The
size of the padding is determined by the size of the bundle
of the phantom user.

We randomly select a user u from each group gu as its
delegate since all users in the same group are satisfied by the
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same set of cloudlets in terms of QoS requirements. We then
define a |Ĩ| × K padding matrix Qu, such that for user i,
we have Qu

i = {qui1, qui2, ..., quiK}. If i = u then Qu
i = Qp;

otherwise Qu
i = 0. We define Qp as a general padding

vector equals to {qp1 , q
p
2 , ..., q

p
K}, where qpk = maxj∈J{qcjk}

for each vmk ∈ VM representing the number of required
VMs of each type by the phantom user. Meaning that, the
size of the padding for each VM type is equal to the highest
amount of supply for that VM type. After determining the
bundle of the phantom user for IoT group gu, we allocate
unlimited budget and set the same QoS constraints as
user u’s. In other words, the request of the phantom user

for group gu is defined as (Qp, $∞, ~QoS
d

u).
Note that only one phantom user is added to the system.

Depending on a group that we perform the matching, the
QoS requirements of the phantom user is adjusted. Adding
the phantom user to the system is needed to guarantee
incentive compatibility, while it may avoid serving a limited
number of users. However, in edge computing with high
number of cloudlets with limited resources, the padding size
would be very small. Therefore, the number of unserved
users is significantly low. This is also in alignment with
asymptotic AE of C-QMECS (Theorem 7).

Step 4: Matching. For each gu ∈ G, where user u is
the delegate of this group, we solve the following LP
PADDING(Ĩ , J,Qu) to determine the final set of IoT users
to be matched for the edge services:

PADDING(Ĩ , J,Qu) : Max V̂ (Ĩ , J,Qu) =
∑
i∈Ĩ

pdi xi

−
∑
j∈J

∑
vmk∈VM

pcjk yjk

Subject to: ∑
j∈J

αijk = qdik xi + quik, ∀i ∈ Ĩ , vmk ∈ VM,

∑
i∈Ĩ

αijk = yjk, ∀j ∈ J, vmk ∈ VM,

0 ≤ αijk ≤ qcjk Z(i, j), ∀i ∈ Ĩ , j ∈ J, vmk ∈ VM,

0 ≤ yjk ≤ qcjk, ∀j ∈ J, vmk ∈ VM,

0 ≤ xi ≤ 1, ∀i ∈ Ĩ .

For any IoT user i ∈ gu, if xi = 1, then i is considered as one
of final matched users. Let Î denote the set of users selected
in this step. Grouping the users can significantly reduce
the number of LPs needed to be solved in this step. Then,
we solve SELECT(Î , J) to determine the set of matching
cloudlets and their allocation of edge services considering
the trading set of IoT users Î .

Step 5: Determining payment. The payment of each user i
is calculated using the following equation:

πd
i =

{
p̂di if i ∈ Î ,
0 otherwise.

(10)

If user i wins, she pays p̂di . This is the critical payment of the
user, that is the minimum bid price to remain in the winning
user set in the optimal solution to PADDING(Ĩ , J,Qu). This
price can be viewed as a shadow price and can be calculated

Algorithm 1 C-QMECS Mechanism

/*Step 1: Preference submission*/
Input: Bd

i = (VMd
i , p

d
i ,

~QoS
d

i ); ∀i ∈ I
Input: Bc

j = (VM c
j , P

c
j ,

~QoSc
j); ∀j ∈ J

/*Step 2: User set reduction*/
Ĩ = {i|i ∈ I, xi = 1 in the optimal solution to
SELECT(I, J)}
/*Step 3: Grouping users and setting padding*/
for all vmk ∈ VM do

qpk = maxj∈J{qcjk}
end for
Qp = {qp1 , q

p
2 , ..., q

p
K}

Find G based on QoS
for all gu ∈ G do

for all i ∈ gu do
. u is the delegate user belonging to group gu

if i = u then
Qu

i = Qp

else if i 6= u then
quik = 0, ∀vmk ∈ VM

end if
end for
A phantom user with request (Qp, $∞, ~QoS

d

u) is
added to gu
end for
/*Step 4: Matching*/
for all gu ∈ G do

Î = {i|i ∈ gu, xi = 1 in the optimal solution to
PADDING(Ĩ , J,Qu)} . Î is the set of matched IoT users
end for
Solve SELECT(Î , J) to determine α, y
/*Step 5: Determining payment*/
Πd = {πd

i : min price in PADDING(Ĩ , J,Qu)|∀i ∈ Î}
Πc = {πc

j =
∑

vmk∈VM

∑yjk

r=1 c
k
−j [Yk − r + 1]|∀j ∈ J}

Output: x; y;α; Πd; Πc

through sensitivity analysis. If user i does not win, she pays
nothing and obtains a utility of zero.

The revenue for each cloudlet is defined based on the
marginal contribution of the cloudlet, that is the amount it
adds to the social welfare by participating. The payment to
each cloudlet j is calculated using the following equation:

πc
j =

∑
vmk∈VM

pcjkyjk + Ṽ (Î , J)− Ṽ (Î , J/{j}) (11)

In other words, if winning cloudlet j had not been partic-
ipating, other qualified cloudlets would have won. There-
fore, cloudlet j receives a payment equal to the offered price
of new winning cloudlets.

All users in Î are also selected by the optimal solu-
tion of SELECT(Î , J/{j}) for any j ∈ J (Lemma 1). Sup-
pose Îj(Îj ⊂ Î) denotes all the users that cloudlet j is
qualified to be matched, and Ĵj denotes the set of new
winning cloudlets which get to allocate their VMs to users
in Î in the absence of cloudlet j. Then, the total number
of VMs of type vmk allocated by all the cloudlets in Ĵj

is Yk =
∑

i∈Îj qdik. All these VMs are ranked according
to their offered prices from low to high. Hence, we de-
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fine ck−j [r] as the price of rth cheapest instance of VM
type vmk. We can rewrite the Equation (11) as follows:

πc
j =

∑
vmk∈VM

πc
jk =

∑
vmk∈VM

yjk∑
r=1

ck−j [Yk − r + 1], (12)

which calculates the cost when cloudlet j is not partici-
pating. We will prove in Lemma 2 that Equation (11) is
equivalent to Equation (12).

C-QMECS mechanism. The C-QMECS mechanism is given
in Algorithm 1. It has two inputs: the preferences of IoT
users and cloudlets, and it returns the matching solution and
payments as outputs. The matching solution α shows the
number of allocated VMs of each type by each cloudlet to
each IoT user. The set Πd = {πd

i |i ∈ Î} determines the buy-
ing prices of requested bundles for the matched IoT users.
Finally, the last output is the selling prices of the matched
cloudlets for each type of VM, i.e., Πc = {πc

j |∀j ∈ J}, where
πc
j = {πc

jk|∀vmk ∈ VM}.

4.2 An Illustrative Example
We provide an example to better demonstrate how our
proposed mechanism, C-QMECS, works. Consider four IoT
users and three cloudlets with the preferences shown in
Tables 1 and 2, respectively. Now, we go through the steps
of the mechanism.

In step 1, as it is shown in Fig.3a, the preferences of all
participants are collected.

In step 2, SELECT(I, J) is solved to eliminate users who
do not have any chance to win their required bundles and
thus reducing the user set. All cloudlets are qualified based
on their offered QoS to provide services for users u1 and u2.
Moreover, cloudlets c1 and c2 are only qualified to provide
services for user u3 based on her required QoS. Finally, none
of the cloudlets can satisfy the QoS requirements of services
requested by user u4. Thus, as Fig.3b illustrates, u4 is simply
eliminated in this step.

In step 3, C-QMECS groups the users. Fig.3c shows that
two groups g1 and g2 are formed. Then, C-QMECS deter-
mines the padding vector, such that each of its elements
is equal to the highest supply in the market. In Fig.3c, the
highest supply of each VM type is highlighted by a red
rectangle. Then, a phantom user is added with a bundle
equivalent to the highest supply.

In step 4, first PADDING(Ĩ , J,Qu) is solved for each
of the two groups to determine the set of winning users,

i.e., Î . With the added phantom user and its unlimited
budget in the optimal solution to PADDING(Ĩ , J,Qu1), u1
acquires 1/3 of her requested bundle, while u2 acquires his
whole requested bundle. Solving PADDING(Ĩ , J,Qu3), u3
can also win her requested VM. Thus, Î = {u2, u3}. Then,
the mechanism solves SELECT(Î , J) to determine the set
of matching cloudlets. Fig.3d shows the final matching
between the IoT users and cloudlets.

In step 5, the last step, the payments and revenues of
users and cloudlets are determined, respectively. As for
winning user u2, his critical payment to require vm1 is $2.5,
while his critical payment for vm2 is $4. Thus, he pays $6.5
in total, which is less than his own bid ($7). Similarly,
the critical payment for user u2 to win her required VM
is $2. As for the winning cloudlets, cloudlet c1 receives $1.1,
as the lowest-priced vm1 in its absence is $1.1. Similarly,
cloudlet c2 receives $2 for its vm2 and $4 for its vm3.
Thus, cloudlet c2 receives $6 in total. Cloudlet c3 does not
receive any revenue as it does not allocate any of its VMs.
Note that, the received revenues of all winning cloudlets
are higher than their own asking prices. Finally, the broker
receives $8.5 from users and pays $7.1 to the cloudlets,
achieving a non-negative utility of $1.4. Fig.3e shows the
payment transactions.

4.3 Theoretical Analysis
In this section, we evaluate our proposed C-QMECS mecha-
nism theoretically. We prove that our proposed mechanism
demonstrates the properties of incentive compatibility (IC)
(Theorems 1 and 4), individual rationality (IR) (Theorems 2
and 5), budget balanced (BB) (Theorem 6), and asymptot-
ically allocative efficiency (Theorem 7), which are critical
for the addressed problem. Moreover, C-QMECS has a
polynomial time complexity, which makes it applicable in
real world. Meanwhile, it induces an integral and feasible
matching (Theorem 3), as each user acquires her whole re-
quested bundle, while each cloudlet allocates discrete units
of VMs.
Theorem 1. C-QMECS mechanism is truthful for all users,

i.e., bidding truthfully is the dominant strategy for all
users for any nonnegative padding.

Proof: A truthful mechanism needs to satisfy the
critical payment property and monotonicity.

To satisfy critical payment, we need to show that there
exists a unique value p̂di for each matched user i, where

TABLE 1: Bid Preferences of IoT Users

No. of Asked VMs Bundle Asked QoS
IoT users VM1 VM2 VM3 VM4 price ($) ART MRT RTF

u1 2 0 1 0 9 2.4 2.7 0.02
u2 1 0 1 0 7 2.5 2.8 0.03
u3 0 1 0 0 5 1.9 2.2 0.02
u4 1 2 0 1 16 1.0 1.8 0.01

TABLE 2: Ask Preferences of Cloudlets

Cloudlets No. of available VMs Price per instance ($) Guaranteed QoS
VM1 VM2 VM3 VM4 VM1 VM2 VM3 VM4 ART MRT RTF

c1 2 2 3 1 1 2 4 8 1.8 2.0 0.01
c2 1 1 2 1 1.1 1.9 3.8 8 1.7 1.9 0.02
c3 0 2 1 0 1 2.5 4.1 8 2.2 2.5 0.01
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(b) Step 2: user set reduction
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(c) Step 3: grouping and Setting padding

CloudletsIoT users

c1
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1 $1.1c 
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(e) Step 5: determining payment

Fig. 3: Matching steps in C-QMECS mechanism through an example

bidding higher than (or equal to) this critical payment
(pdi ≥ p̂di ) is a wining declaration and bidding lower than
that (pdi < p̂di ) is a losing declaration. In our proposed C-
QMECS mechanism, the payment of each matched user is
calculated using Equation (10), where each winning user
pays p̂di calculated using sensitivity analysis of the optimal
solution to PADDING(Ĩ , J,Qu). We need to show that p̂di
is the minimum price that matched user i should pay
in order to acquire her requested bundle in the optimal
solution of PADDING(Ĩ , J,Qu). Note that the cost of vmk

for user i is determined by the lowest d
∑

i∈Ĩ q
d
ikxi + quiketh

asking price of vmk among qualified cloudlets. Similarly, in
the optimal solution of SELECT(Î , J), the cost of vmk for
user i is equal to d

∑
i∈Î q

d
ikxieth asking price of vmk among

qualified cloudlets. Since d
∑

i∈Ĩ q
d
ikxi+q

u
ike ≥ d

∑
i∈Î q

d
ikxie,

therefore, the costs under SELECT(Î , J) are lower than those
under PADDING(Ĩ , J,Qu). Thus, we can conclude that when
user i bids higher than p̂di and acquires her requested bundle
in PADDING(Ĩ , J,Qu), she can also acquire her requested
bundle in SELECT(Î , J). Therefore, when user i bids higher
than (or equal to) p̂di , she is selected for trading. Conversely,
for any bid price pdi lower than p̂di (i.e., pdi < p̂di ), user i does
not win in the optimal solution to PADDING(Ĩ , J,Qu), and
subsequently cannot participate in the trading. Therefore,
payment p̂di by each winning user i can be simply consid-
ered as her critical payment.

To satisfy monotonicity, we need to show that any
matched user i by declaring a bidding price higher than its
submitted bidding price (pdi ) will still be matched. This can

be shown easily since user iwins in the matching by bidding
any price higher than her critical price. If any user i has
already won in the matching, we can conclude that pdi ≥ p̂di .
Any price higher than pdi will still satisfy this constraint, and
therefore user i remains a winning user in the matching.

Therefore, bidding truthfully is always the dominant
strategy for all users in C-QMECS.

Theorem 2. C-QMECS mechanism is individual rational (IR)
for all users.

Proof: If user i wins, she pays her critical payment p̂di ,
which is always less than or equal to her own valuation.
Conversely, if user i loses, she pays nothing. Therefore, in
both cases, the utility of a participating user is non-negative.
We thus can conclude that C-QMECS is IR for all users.

Theorem 3. C-QMECS mechanism induces an integral and
feasible allocation.

Proof: To prove that the outcome of C-QMECS is an
integral and feasible allocation, we need to show that each
user either acquires her whole requested bundle or nothing.
In addition, each cloudlet allocates discrete units of VMs.
According to Theorem 1, if user i ∈ Î , then she wins and
acquires her requested bundle. However, if i /∈ Î , she does
not acquire anything. Therefore, a discrete number of VMs
are allocated to users. To determine the VMs provided by
cloudlets, the payment procedure of C-QMECS is based on
perturbation technique, where there is always a unique way
to sort cloudlets from low to high according to their offered
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prices. Thus, a discrete number of VMs are allocated by
each cloudlet. This concludes the feasibility of the obtained
solutions by C-QMECS.

To prove that C-QMECS is truthful for all cloudlets, we
first need to prove the following lemmas.

Lemma 1. For any user i ∈ Î , xi = 1 in the optimal solution
to SELECT(Î , J/{j}) for any j ∈ J , considering the
defined padding Qp.

Proof: We have the following two possible cases:
Case 1: Cloudlet j does not allocate any VMs in the

optimal solution to SELECT(Î , J). In this case, it is clear
that removing cloudlet j will not affect the final matching
result.

Case 2: Cloudlet j allocates some or all of its VMs
in the optimal solution to SELECT(Î , J). Again, removing
cloudlet j cannot affect the users whose QoS requirements
are not satisfied by cloudlet j. However, we show that for
other winning users, we still have xi = 1 in the optimal
solution to SELECT(Î , J/{j}). To prove this, we can con-
sider removing cloudlet j as introducing a padding equal
to the number of VMs offered by cloudlet j. We denote
the imposed padding by Qj . According to our proposed
C-QMECS mechanism, we have Qj ≤ Qp. Therefore,
each user i ∈ Î will also win in the optimal solution to
SELECT(Î , J/{j}). This is due to the fact that all users in Î
have been matched under a more competitive environment,
where Qp was employed. Therefore, they can definitely
be matched in a less competitive environment, where a
padding of size Qj is imposed.

Lemma 2. Equation (11) is equivalent to Equation (12).

Proof: According to Lemma 1, any user i ∈ Î will
always win in the matching, no matter if any cloudlet
(j′) participates or not. Thus, for any vmk ∈ VM ,
we always have Yk =

∑
j∈J y

′
jk =

∑
j∈J/{j′} y

′′
jk =∑

i∈Î q
d
ik, where y′jk and y′′jk belong to the optimal solutions

of SELECT(Î , J) and SELECT(Î , J/{j′}), respectively. Now,
suppose cloudlet j′ enters the matching again. As a results,
the offered VMs by cloudlet j′ will replace VMs of other
cloudlets with higher prices in the matching. To further
explain this, we consider the following two possible cases
for each vmk ∈ VM :

Case 1: If pcj′k > ck−j′ [Yk], then we have yj′k = 0. In
this case no VMs will be replaced by cloudlet j′ because its
prices are higher compared to previously matched VMs.

Case 2: If pcj′k < ck−j′ [Yk − r+ 1], then we have yj′k = r,
where r ∈ {1, 2, ..., qcj′k}. In this case, r VM instances of
type vmk offered by cloudlet j′ are cheaper than r instances
of previously matched VMs. Therefore, r VM instances of
type vmk will be replaced by cloudlet j′.

Remember that Yk is the number of allocated VMs by
other qualified cloudlets in the absence of j′. Therefore, the
change of social welfare can be calculated as follows:

Ṽ (Î , J)− Ṽ (Î , J/{j′}) =
∑

vmk∈VM

yj′k∑
r=1

ck−j′ [Yk − r + 1]−

∑
vmk∈VM

pcj′kyj′k.

Based on Equation (11), we simply conclude the following
equation, which is Equation (12):

πc
j′ =

∑
vmk∈VM

πc
j′k =

∑
vmk∈VM

yj′k∑
r=1

ck−j′ [Yk − r + 1]

Theorem 4. C-QMECS mechanism is truthful (IC) for all
cloudlets.

Proof: A truthful mechanism needs to satisfy the
critical payment property and monotonicity. We consider
one single type of VM (e.g., vmk), and the proof can be
simply generalized to all types of VMs.

To satisfy critical payment, we need to show that there
exists a unique value πc

jk for each matched cloudlet j
and vmk, where submitting an asking price lower than
(or equal to) this critical price (pcjk ≤ πc

jk) is a winning
declaration, and higher than that (pcjk > πc

jk) is a losing
deceleration. In our proposed C-QMECS mechanism, the
revenue of each winning cloudlet is calculated using equa-
tion (12). We consider the following two cases:

Case 1: If pcjk < ck−j [Yk− r+ 1], where r ∈ {1, 2, ..., qcjk},
the asking price of cloudlet j for VM type vmk is less than r
VM instances of type vmk that are allocated in its absence.
Therefore, as SELECT(Î , J) aims to maximize the obtained
social welfare by matching low priced VMs to higher bids,
cloudlet j succeeds to allocate r VM instances of type vmk.

Case 2: If pcjk > ck−j′ [Yk], the price of all allocated VMs of
type vmk in the absence of cloudlet j, is less than the asking
price of cloudlet j. Thus, in this extreme case, r is equal to
zero, and cloudlet j cannot allocate any of its VMs.

Therefore, πc
jk is considered as the critical price for

cloudlet j.
To satisfy monotonicity, as long as pcjk < ck−j [Yk− r+ 1],

cloudlet j can allocate r instances of its VMs of type vmk.
Thus, if cloudlet j can allocate r VM instances by its current
asking price of pcjk, it will also win at least r instances of
VMs by asking any price less than that.

Therefore, truthfulness is always the dominant strategy
for all cloudlets.

Theorem 5. C-QMECS mechanism is individual rational (IR)
for all cloudlets.

Proof: According to Equation (12), the utility of any
cloudlet j can be calculated as follows:

U c
j =

∑
vmk∈VM

yjk∑
r=1

(ck−j [Yk − r + 1]− pcjk) (13)

Since the revenue of any matched cloudlet is always higher
than its asking price, it can always achieve a non-negative
utility. In other words, any winning cloudlet will receive a
payment equal to the asking price of winning cloudlets in its
absence, which are higher than its own asking price. Obvi-
ously, a losing cloudlet receives nothing, and thus its utility
is equal to zero. Therefore, it is guaranteed that all cloudlets
achieve non-negative utility. Thus, we can conclude that C-
QMECS is IR for all cloudlets.
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TABLE 3: Statistics of datasets with different workloads.

Dataset # of # of
# of requested VMs

by each user
# of offered VMs
by each cloudlet

Description

users cloudlets vm1 vm2 vm3 vm4 vm1 vm2 vm3 vm4

Dataset-0 [180,200] [70,80] [1,10] [1,10] [1,10] [1,10] [1,50] [1,50] [1,50] [1,50] Very high supply
Dataset-1 [180,200] [60,70] [1,10] [1,10] [1,10] [1,10] [1,50] [1,50] [1,50] [1,50] High supply
Dataset-2 [180,200] [30,40] [1,10] [1,10] [1,10] [1,10] [1,50] [1,50] [1,50] [1,50] High demand
Dataset-3 [180,200] [20,30] [1,10] [1,10] [1,10] [1,10] [1,50] [1,50] [1,50] [1,50] Very high demand
Dataset-4 [180,200] [80,100] [4,5] [4,5] [4,5] [4,5] [9,10] [9,10] [9,10] [9,10] Moderate supply-demand

(small padding size)
Dataset-5 [180,200] [16,20] [4,5] [4,5] [4,5] [4,5] [45,50] [45,50] [45,50] [45,50] Moderate supply-demand

(medium padding size)
Dataset-6 [180,200] [8,10] [4,5] [4,5] [4,5] [4,5] [90,100] [90,100] [90,100] [90,100] Moderate supply-demand

(large padding size)
Dataset-7 [180,200] [4,5] [4,5] [4,5] [4,5] [4,5] [180,200] [180,200] [180,200] [180,200] Moderate supply-demand

(very large padding size)

TABLE 4: Statistics of datasets with different QoS requirements and guarantees.

requested by each user guaranteed by each cloudlet
Dataset ART MRT RTF ART MRT RTF Description
Dataset-8 [0.6,1] [1.1,1.5] [0.11%,0.15%] [0.25,0.65] [0.75,1.15] [0.075%,0.115%] Good QoS guarantees
Dataset-9 [0.6,1] [1.1,1.5] [0.11%,0.15%] [0.33,0.73] [0.83,1.23] [0.083%,0.123%] Fair QoS guarantees
Dataset-10 [0.6,1] [1.1,1.5] [0.11%,0.15%] [0.4,0.8] [0.9,1.3] [0.09%,0.13%] Bad QoS guarantees

TABLE 5: Bid and ask prices distribution.

m5.2xlarge m5.4xlarge m5.12xlarge m5.24xlarge
IoT users [0.416,0.48] [0.832,0.96] [2.496,2.88] [4.992,5.76]
Cloudlets [0.384,0.448] [0.768,0.896] [2.304,2.688] [4.608,5.376]

Theorem 6. C-QMECS is weakly budget balanced (BB).

Proof: In order to prove that C-QMECS is weakly BB,
we need to show that the payments of users are always
greater than or equal to the payments received by cloudlets.
We first determine the lower bound on the payments of the
users, and then show that it never goes beyond the upper
bound on the payments received by the cloudlets.

For the user side, based on the definition of p̂di , as long
as pdi ≥ p̂di holds for any user i ∈ I , she remains in the
winning user set and subsequently Î remains unchanged.
Therefore, according to the mechanism, for each winning
user iwe have pdi ≥

∑
vmk∈VM qdik×ck[

∑
i∈I(qdikxi+q

u
ik)] ≥∑

vmk∈VM qdik × ck[
∑

i∈Î(qdik + quik)]. Clearly, as long as pdi
approaches p̂di , term

∑
vmk∈VM qdik × ck[

∑
i∈Î(qdik + quik)]

remains unchanged, as Î remains the same. Consequently,
we have p̂di ≥

∑
vmk∈VM qdik × ck[

∑
i∈Î(qdik + quik)]. Fi-

nally, in the optimal solution to the matching problem, the
payment of all users is not less than the total payments,
when

∑
i∈Î q

d
ik instances of VM type vmk ∈ VM are traded

at unit price ck[
∑

i∈Î(qdik + quik)] for any vmk ∈ VM .
For the cloudlet side, according to Lemma 1, the max-

imum payment per VM instance of type vmk is equal
to ck−j [

∑
i∈Î q

d
ik]. Since ck−j and ck are both monotonically

increasing functions and quik = maxj∈J{qcjk} for the del-
egate user, therefore ck−j [

∑
i∈Î q

d
ik] ≤ ck[

∑
i∈Î(qdik + quik)].

Therefore, the payments received by all cloudlets are not
more than the total payment when

∑
i∈Î q

d
ik instances of VM

type vmk ∈ VM are allocated at unit price of ck[
∑

i∈Î(qdik +
quik)]. As a result, the payments received by the cloudlets
never exceed the payments paid by the users, which con-
sequently results into a nonnegative payoff for the broker.

Therefore, the proposed C-QMECS mechanism is weakly
budget-balance.
Theorem 7. C-QMECS is asymptotically allocative efficient

as the number of available VMs of each type grows
to infinity, given bounded cost distributions for all VM
types.

Proof: We investigate the efficiency of the allocation
as the capacity of cloudlets increases (higher number of
VMs becomes available). Without loss of generality, we
assume that the demand remains fixed to show when the
ratio of supply to demand grows to infinity, C-QMECS is
asymptotically allocative efficient.

We assume that the distribution of the reported ask-
ing prices of cloudlets for each vmk ∈ VM is [p

k
, pk].

Then, for any user i, while pdi <
∑

vmk∈VM qdikpk, user i
can never win in neither C-QMECS nor the optimal solu-
tion, no matter how much the supply (number of VMs)
increases. However, if pdi >

∑
vmk∈VM ck[

∑
i∈I(qdik +

quik)]qdik >
∑

vmk∈VM qdikpk, user i wins in both C-
QMECS and the optimal solution. This is due to the fact
that pdi >

∑
vmk∈VM ck[

∑
i∈I(qdik + quik)]qdik and pdi >∑

vmk∈VM ck[
∑

i∈I q
d
ik]qdik hold, respectively. As the supply

for all VM types increases, the number of VMs with cheaper
costs increases as well. Therefore, ck[

∑
i∈I(qdik + quik)] will

approach p
k

for all vmk ∈ VM . Therefore, the obtained
social welfare will converge to the optimal social welfare
as the number of VMs increases, and thus C-QMECS can
asymptotically achieve allocative efficiency.

Finally, C-QMECS is computationally efficient (CE) and
highly scalable. The implementation of C-QMECS involves
polynomial-time computations that depend on |I|, |J |, K ,
and L.
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Fig. 4: C-QMECS versus the VCG-based mechanism in terms of economic efficiency

5 EXPERIMENTAL RESULTS

Our proposed C-QMECS mechanism is IC, IR, BB, CE,
and asymptotically AE. In addition, we perform extensive
experiments to evaluate the performance of our proposed
mechanism.

5.1 Experimental Setup

We created several datasets, each with specific features,
to evaluate the performance of our proposed C-QMECS
mechanism under different workloads (Table 3) and QoS
requirements and guarantees (Table 4). We considered four
types of VMs and generated the bidding and asking prices
based on the prices of m5.2xlarge, m5.4xlarge, m5.12xlarge,
and m5.24xlarge VM instances of Amazon EC2 at different
regions in the U.S. Table 5 shows the uniform distribution
of the prices for each VM type.

We investigate the performance of our proposed mech-
anism versus the socially-optimal strategy-proof VCG-
based mechanism in terms of social welfare, percentage
of matched users, percentage of utilized resources, users’
payments, cloudlets’ revenues, broker’s profit, and run
time efficiency. In the VCG-based mechanism, the winner
determination is obtained by solving Matching(I, J) MIP
optimally, and the trading prices are computed based on
participant’s marginal contribution to social welfare.

In addition, we evaluate the performance of our pro-
posed C-QMECS mechanism under different QoS require-
ments and guarantees (Dataset-8 to Dataset-10) versus Com-
binatorial MECS (C-MECS) mechanism in terms of matched
users. The C-MECS mechanism is based on C-QMECS
mechanism, where C-MECS applies the matchings without
considering QoS requirements and guarantees. Therefore,
there may be users whose QoS requirements are not satisfied
by the matched cloudlets. In this particular experiment,
supply and demand are fixed (assuming 250 users and 10
cloudlets) to better evaluate the performance of C-QMECS
under variant QoS requirements and guarantees. Each user
requests for 4 VMs of each type, while each cloudlet of-
fers 100 VMs of each type.

We used Java and ILOG Concert Technology for the
simulations. The experiments are conducted on an Intel
2.3GHz Core i3 system with 4 GB RAM.

5.2 Analysis of Results

Fig. 4a shows the realized social welfare by C-QMECS
and the optimal social welfare obtained by the VCG-based
mechanism. The results show when supply is higher than
demand (e.g., Dataset-0), the obtained social welfare is al-
most equal to the optimal value. However, when the ratio
of supply to demand is low (e.g., Dataset-3), the difference
between the obtained social welfare by C-QMECS and the
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Fig. 5: C-QMECS versus the VCG-based mechanism in terms of matching efficiency

VCG-mechanism increases. This is due to the fact that when
supply is high, there will be still enough resources for
the users after adding the phantom user. However, when
supply is low, the addition of the phantom user may not
leave enough resources for the IoT users. Therefore, more
users are eliminated due to adding the phantom user with
a proportional padding size. As for the datasets with mod-
erate supply-demand ratios, in the case of small, medium,
and even large padding sizes (Dataset-4 to Dataset-6), the
obtained social welfare is very close to the optimal social
welfare. However, as the padding size approaches to the
extreme case (Dataset-7) where only few cloudlets with very
large amount of available resources exist, more users are
eliminated in the matching step. This in turn results in a
decrease in the obtained social welfare. Under variant QoS
requirements and guarantees, the obtained social welfare is
higher when the percentage of qualified cloudlets for the
users is higher (e.g., Dataset-8). One important point that
can be seen from Fig. 4a is the asymptotic AE of C-QMECS.
As the number of available VMs grows (e.g., Dataset-3 to
Dataset-0), the obtained social welfare of C-QMECS reaches
to the optimal social welfare (Theorem 7).

According to Fig. 4b, the total payments and bids
strongly depend on the number of successful IoT-cloudlet
matchings, and thus these values are higher when supply
to demand ratio is high (e.g., Dataset-0). The difference be-
tween payments in C-QMECS and VCG-based mechanism
in the case of low supply-demand ratio is because of the
smaller number of matchings in C-QMECS (e.g., Dataset-
3). Similarly, when the padding size grows in the moderate
supply-demand cases, the total payments of users decreases
(e.g., Dataset-7) due to decreasing number of successful
matchings in C-QMECS. Moreover, a reduction in QoS
guarantees of cloudlets decreases the number of matchings
as well. Therefore, the total payments of users decreases as
the number of qualified cloudlets decreases in the system
(e.g., Dataset-10). The obtained results are consistent with
our theoretical analysis in Theorem 2, which shows that C-
QMECS is individually rational for users as the payments
are always less than bids.

Similarly, as it can be seen in Fig. 4c, the higher involve-
ment rate of cloudlets in the matching step (e.g., Dataset-0)

leads to more revenue for the cloudlets. This figure also
validates our theoretical results of Theorem 5.

Fig. 4d illustrates the broker’s utility under various
workloads and QoS requirements and guarantees. The re-
sults show that compared to the VCG-based mechanism,
the broker’s utility in C-QMECS is always greater than zero,
which practically shows that C-QMECS is budget balanced
(Theorem 6). Note that the VCG-based mechanism is not
budget balance and thereby cannot ensure the profitability
for the broker.

According to Fig. 5a, for cases with higher supply to
demand ratio (e.g., Dataset-0), users have higher chances to
acquire their requested services, and thus the percentage of
served users is higher as well. However, when the supply
is low, several users are eliminated due to the addition of
the phantom user, and they miss their chances for winning
their requested bundles. Therefore, a lower percentage of
users are served in C-QMECS compared to the VCG-based
mechanism (e.g, Dataset-3). As for datasets with moderate
supply to demand ratio, the percentage of matched users
highly depends on the padding size. That is, the higher the
padding size, the lower the matching rates of users (e.g.,
Dataset-7). This is also because more users are eliminated
in the matching step due to the larger padding size. For
datasets with variant QoS requirements and guarantees,
as we expect the percentage of matched users decreases
with the reduction of QoS guarantees by the cloudlets (e.g.,
Dataset-10).

Fig. 5b demonstrates the percentage of utilized resources
of cloudlets. When demand is low, only a part of available
resources is sufficient for serving the existing demand (e.g.
Dataset-0). However, as demand increases, more resources
are used to fulfill the demand (Dataset-0 to Dataset-3). More-
over, when ratio of supply to demand is low (e.g, Dataset-3),
the difference between the amount of resource utilization
in C-QMECS and VCG-based mechanism increases. It is
because some of the resources are assumed to be allocated to
the phantom user, and the remaining users have less avail-
able resources. This also holds for the case of a large padding
size in the moderate supply-demand case (e.g., Dataset-7),
where more resources are allocated to the phantom user.
This consequently results in the elimination of a part of
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Fig. 6: C-QMECS other properties

users in the matching step, leading to reduced resource
utilization. Finally, when the number of existing qualified
cloudlets for users decreases (Dataset-8 to Dataset-10), a
lower number of cloudlets can satisfy the QoS requirements
of users. Therefore, a lower number of cloudlets can allocate
their resources leading to decreased resource utilization.

Fig. 6a shows the running time of the mechanisms in
logarithmic scale. The results show that our proposed C-
QMECS mechanism has a lower execution time compared
to the VCG-based mechanism, especially when the number
of cloudlets is higher (e.g., Dataset-0).

Finally, Fig. 6b shows the efficiency of our proposed
mechanism versus C-MECS in edge computing due to con-
sidering QoS metrics in the matchings. The results show
that the consideration of QoS metrics in the matchings of
C-QMECS improves user satisfaction and quality of expe-
rience significantly. The results also show that considering
QoS in the matching is more critical when the QoS guaran-
tees are low (Dataset-9 and Dataset-10).

To sum up, our proposed C-QMECS mechanism shows a
better performance as the number of cloudlets increases, the
padding size decreases, and the QoS guarantees improve.
It also satisfies all the critical properties, including IC, IR,
BB, and CE. It demonstrates an acceptable level of allocative
efficiency as it ensures asymptotic AE. We thereby conclude
that C-QMECS is a suitable QoS-aware two-sided matching
mechanism for edge computing considering the incentives
and preferences of IoT users, cloudlets, and the broker.

6 CONCLUSION

With rapid changes in the QoS requirements of IoT devices
and emerging new paradigms such as edge computing, effi-
cient QoS-aware matching algorithms are needed to match
cloudlets to IoT applications when providing edge comput-
ing services. In this paper, we addressed this challenge by
proposing a well-designed two-sided matching solution, C-
QMECS, for edge services considering QoS requirements in
terms of service response time. C-QMECS enhances QoE of
users by matching IoT users to those cloudlets which can
guarantee their required QoS. In addition, we proposed pay-
ment determination solutions considering preferences and

incentives of cloudlets, IoT users, and the system. C-QMECS
is also combinatorial as it allows users and cloudlets to
request for and offer a variety of VMs. The proposed
matching mechanism is incentive compatible, individually
rational, weakly budget balanced, asymptotically allocative
efficient and computationally efficient. The experimental re-
sults showed that C-QMECS is suitable for edge computing
services by providing close to optimal matching, efficient
pricing, and guaranteed QoS. For future work, we plan to
extend our model and mechanism to handle mobility of
IoT users and cloudlets and to support dynamic changes
such as online changes in QoS requirements and pricings.
Finally, we will investigate distributed solutions to design
a federated incentive-compatible matching mechanism with
incomplete information.
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