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ABSTRACT
These notes – intended to be self-contained and tutorial – present a direct,macroscopic approach to
quantizing light inside a linear-responsedielectricmaterialwhenboth spectral dispersion and spatial
non-uniformity are present, but the spectral region of interest is optically transparent so that explicit
treatment of the underlying physics of the medium is not needed. The approach is based on the
macroscopic Maxwell equations and a corresponding Hamiltonian, without the use of Lagrangians
or dynamical models for the medium, and uses a standard mode-based quantization method. The
treatment covers energy density and flux in a dispersive dielectric; the inverse permittivity formal-
ism; a newderivation of themodenormalization condition; a direct proof ofmodenonorthogonality;
examples of quantized field expressions for the general case and various special cases; the relation-
ship between group velocity and energy flux; the band approximation and the continuum limit; and
quantum optical treatment of waveguide modes.

ARTICLE HISTORY
Received 24 September 2019
Accepted 15 December 2019

KEYWORDS
Dielectric; quantization;
quantum theory; wave guide;
dispersion; quantum optics

1. Introduction

Strictly speaking, there can be no ‘photons’ inside a dense
dielectric material. Photons are excitations of the elec-
tromagnetic (EM) field in vacuum, and involve only EM
energy. Instead, inside a dielectric there are collective
excitations of the EM and matter fields together, called
polaritons. The energy they store and transport involves
both EM and material energy, which are inherently cou-
pled. If an atom embedded inside a dielectric emits a
polariton, which is subsequently absorbed by a detec-
tor embedded in the same medium, no ‘photon’ is ever
involved in the process.Wewill, of course, continue to use
loosely the term ‘light’ for what propagates freely inside a
dielectric.

The present treatment is meant to be tutorial in
style. It explores a straightforward means for quantizing
such a system when both spectral dispersion and spa-
tial nonuniformity are present, but the spectral region of
interest is optically transparent so explicit treatment of
the underlying dynamics of the medium is not needed.
The approach taken is based on themacroscopicMaxwell
equations and a corresponding Hamiltonian, without
Lagrangians, in an effort to have a mathematically sim-
ple derivation that parallels the standard mode-based
quantization method presented in most introductory
textbooks. The treatment is limited to linear-response

CONTACT Michael G. Raymer raymer@uoregon.edu Oregon Center for Optical, Molecular & Quantum Science, and Department of Physics, University
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materials. New results include a direct derivation of the
mode normalization condition, and a simple proof of the
nonorthogonality of the modes.

There have been many formulations of the quantum
theory of light inside a dielectric. Especially relevant sum-
maries of various approaches are given in (1, 2), and
the theory presented here derives from those and other
sources, with some original contributions. In dielectrics,
there are various scenarios, which bring different lev-
els of complexity to the theory, as reviewed in (1–4).
A transparent medium may be spatially inhomogeneous
but nondispersive (that is, the refractive index is not
frequency-dependent) over the spectral range of interest.
Or a medium may be spatially homogeneous but disper-
sive (that is, the refractive index is frequency-dependent)
over the spectral range of interest. Third, a medium may
be both spatially inhomogeneous and dispersive over the
spectral range of interest, the case treated here. Finally, a
medium may also support significant absorption of light
in the spectral range of interest, a regime not treated here.

A careful treatment of field quantization in a linear-
response, spatially inhomogeneous but nonabsorbing
and nondispersive medium was given by Glauber and
Lewenstein (5), who harked back to studies by Born
and Infeld (6). One of the earliest careful treatments of
quantization in a spatially inhomogeneous and dispersive
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medium was by Drummond (7), who generalized the
method developed by Hillery and Mlodinow (8) for
treatment of nonlinear optical media. The mentioned
approaches use Lagrangians to ensure correct identifi-
cation of the canonically conjugate dynamical variables.
They use a dynamical model in which the medium
response is represented by a collection of quantized har-
monic oscillators. Also considering the linear case, Sipe
et al. (9), and Bhat and Sipe (10) developed a dynami-
cal model that uses only Hamiltonians, not Lagrangians,
to model correctly a transparent, homogeneous linear-
response dielectric using a dynamical model for the
medium. Milonni (11) showed that in the transparent
case, the same results can be obtained using an approach
in which only the macroscopic Maxwell fields are
treated as dynamical, with no dynamical model for the
medium.

Here, Milonni’s Lagrangian-free, macroscopic
approach for a homogeneous dispersive medium is gen-
eralized to include spatial structure, in combination
with aspects of the Drummond/Hillery/Sipe approaches
regarding mode normalization. The approach here is
macroscopic, and only Hamiltonians, not Lagrangians,
are used. The correctness of the final results is ensured
by comparing to the aforementioned treatments.

Because this article focuses on media that are trans-
parent in the spectral range of interest, the complications
introduced by losses and absorption will be neglected.
It is well known that losses are always accompanied by
fluctuations, via a fluctuation-dissipation theorem. Such
cases with loss and fluctuations have been treated and
reviewed in detail in (3) and many references therein,
including the seminal study (12), but are beyond the
scope of the present treatment. The method of Bhat and
Sipe (10), mentioned above, as well as that of Juzeliūnas
(13), also models absorptive dielectric media in the non-
transparent frequency range. See also (14) for a recent
approach.

Two points are of special interest here: 1) The result-
ing expressions for the quantized fields, given as weighted
sums of bosonic operators, must be consistent with the
fundamental theorem for EM energy flow in themedium
(Poynting’s theorem); and 2) The resulting quantum for-
malism should be ready for the inclusion of nonlinear-
optical effects. With respect to the first point, it is worth
noting that some expressions commonly used in the non-
linear optics literature are not consistent with Poynting’s
theorem, although phenomenological quantization pro-
cedures have been used to derive quantum fields that
necessarily satisfy Poynting’s theorem. In this regard,
Blow et al. (15) is an excellent touchstone, and (16) offers
an approximate approach suitable for quantum optics in
waveguides.

Regarding the second point, Hillery andMlodinow (8)
and Drummond and Hillery (17) showed that the appro-
priate fields to treat as ‘fundamental’ (in the sense of effec-
tive field theories) in a quantum mechanical nonlinear-
optical theory are D and B, not E and B. The arguments
are reviewed clearly in Drummond and Hillery (2) and
in Quesada and Sipe (18), which has the provocative title,
‘Why you should not use the electric field to quantize in
nonlinear optics.’ For this reason, and others going back
to Born and Infeld (6), it is more appropriate to use the
displacement field D as the ‘fundamental’ field (that is, a
field written as a weighted linear sum of bosonic oper-
ators) even for the case of linear optics in a medium.
It’s worth noting that the more common approach is to
regard E and B as fundamental in the sense that they are
the fields that determine forces on charged particles in
a microscopic theory. But in the macroscopic theory, as
treated here, and commonly used in nonlinear optics, D
and B play special roles and, thus will be employed here
and considered as ‘fundamental.’

There are cultural barriers in the nonlinear-optics
community to adopting the Born and Infeld quantization
approach usingD and B. The vast majority of papers and
books published since Bloembergen’s and collaborators’
development of nonlinear optics theory (19) have used
E, not D, as a ‘fundamental’ field. Nearly all papers and
books use the forward relation between electric and dis-
placement fields, D = εE, not the inverse E = ηD, and
great efforts have gone into deriving and measuring the
electric permittivity ε(r,ω).While it is straightforward to
convert between the two forms (2), it does require extra
labour, and so practitioners ask, ‘Why should I?’ While
there are detectable quantitative differences in the predic-
tions of the two theories in the nonlinear case, they don’t
show up in strong ways in most experimental situations.
But there are cases in which wholly wrong qualitative
errors do obtain from naively quantizing E rather thanD,
for example, the sign of the third-order nonlinear-optical
frequency shift in a cavity is predicted incorrectly (20).

This note derives from a quantum optics course the
author taught for some years at the University of Ore-
gon. The treatment is meant to be tutorial and accessible,
using familiar mode expansions and a minimum level
of advanced mathematics, such as canonical field vari-
ables, field action or Lagrangians. It begins discussing
the energy density in a dispersive dielectric. It then
summarizes the inverse permittivity formulation of lin-
ear optics. Then a theory of mode expansions is given,
with emphasis on mode normalization and the lack of
mode orthogonality in a dispersive, structured dielec-
tric, giving a new,macroscopic derivation of these results.
Next, the quantization of the polariton field is treated in
the macroscopic formulation, using the derived modes.
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Some special limiting cases are then summarized, fol-
lowed by discussion of the continuum limit. Finally, the
results are applied to quantization of the field in dielec-
tric optical waveguides, important for emerging quantum
technologies.

2. TheMaxwell equations

The Maxwell equations in a general dielectric medium
are:

∂tB = −∇ × E ; ∂tD = ∇ × H

∇ · B = 0 ; ∇ · D = 0
(1)

ensuring transversality of B andD (whereas E generally is
not transverse). As in Equation (1), we usually omit the
space–time arguments (r, t) if they are clear by context.
We use the Fourier transform convention:

F(r, t) =
∫ ∞

−∞
–dω e−iωt F(r,ω),

F(r,ω) =
∫ ∞

−∞
dt eiωt F(r, t) (2)

where –dω stands for dω/2π , and where the symme-
try F(r,−ω) = F∗(r,ω) is needed to ensure F(r, t) is
real. Frequency-domain functions are usually denoted
using script fonts. The constitutive relations for a linear-
response dielectric are most simply stated in the fre-
quency domain:

D(r,ω) = ε(r,ω) · E(r,ω);

B(r,ω) = μ(r,ω) · H(r,ω) = μ0H(r,ω) (3)

where for an anisotropic material the electric permittiv-
ity ε(r,ω) is understood generally to be a tensor quantity,
while here the magnetic permeability is assumed a con-
stant scalar,μ0. Throughoutmost of this note bothwill be
considered as scalars for simplicity of exposition. It is sig-
nificant that, because of dispersion (the frequency depen-
dence of the electric permittivity), after transforming
Equation (3) back into the time domain, the functional
relation between E and D is not local in time.

3. Energy density and flux in a dispersive
dielectric

For quantizing the field in a dielectric using a macro-
scopic Hamiltonian approach, expressions for the mag-
netic and electric energy of the system are needed. A
not-so-widely-discussed fact is that the expression for
energy density in a dispersivemedium is different than in
a nondispersive one. The simple reason is that Poynting’s
theorem for energy flux in such a medium reflects the

fact that energy flows at the group velocity, not the phase
velocity. A volume of energy flowing with a given speed
creates a flux proportional to (energy density)× (speed).
Often the concept of group velocity is associated with
finite pulses or wave packets, but even in the limit of a
monochromatic field, energy flows at the group velocity,
as we will show (and is well known).

Poynting’s theorem for energy flux arises in the stan-
dard way, valid for an arbitrary linear-response dielec-
tric medium. Define the Poynting vector as S = E × H.
Using a standard vector identity, along with the Maxwell
equations, gives:

∇ · S = H · (∇ × E) − E · (∇ × H)

= −H · ∂tB − E · ∂tD
.= −∂tW (4)

which implies the energy density is:

W =
∫ t

−∞
dt′(μ0

−1B · ∂t′B + E · ∂t′D)
.= WB + WE

(5)

where the magnetic energy density is identified as

WB = μ0
−1

∫ t

−∞
dt′B · ∂B

∂t′

= μ0
−1

∫ B

0
B · ∂B = 1

2μ0
B2

= 1
2μ0

∫
–dω

∫
–dω′e−i(ω−ω′)tB∗(r,ω′) · B(r,ω)

(6)

Here, we used the concept of an exact differential to carry
out the integration. In contrast, because of dispersion, we
cannot carry out an analogous exact integration for the
electric energy density, which is local in space, but is not a
local-in-time function of either E orD alone. Instead, we
use Fourier transforms, and find for the electric energy
density (for frequencies at which absorption and loss are
negligible):

WE =
∫ t

−∞
dt′E · ∂t′D

= −i
2

∫ t

−∞
dt′

∫
–dω

∫
–dω′e−i(ω−ω′)t′

× [ωε(ω) − ω′ ε(ω′)]E∗(r,ω′) · E(r,ω)

= 1
2

∫
–dω

∫
–dω′e−i(ω−ω′)t

×
[
ωε(ω) − ω′ ε(ω′)

ω − ω′

]
E∗(r,ω′) · E(r,ω) (7)
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To obtain the second equality, we write the integral as
the sum of two identical, equal terms, and in both we use
E(r,−ω) = E∗(r,ω) and the fact that ε(−ω) = ε(ω) is
real in a nonabsorptive (transparent) region of the spec-
trum, to replace ω → −ω, or ω′ → −ω′, as in (21). To
obtain the third line we inserted a regularizing factor
exp(−δt′), integrated, then took the limit δ → 0. Rosa
et al. (21) reviewed the above derivation, attributed to
Barash and Ginzberg (22).

To illustrate how the group velocity enters the energy-
density expression, consider the common case of a plane
wave of incoherent, stationary (steady-state) light trav-
elling in the z-direction in a nonstructured medium.
Themedium’s refractive index is n(ω) = √

ε(ω)/ε0. The
wave’s propagation constant is:

k = ωn(ω)/c

= (ω/c)
√

ε(ω)/ε0 (8)

For a stationary random process, all frequency compo-
nents are statistically independent of all others (as easily
verified by Fourier transforms). Therefore, assuming the
light is x-polarized, we can write:

E(r,ω) = xA(ω) eikz〈A∗(ω)A(ω′)
〉 = IA(ω)2π δ(ω − ω′)〈E∗(r,ω) · E(r,ω′)

〉 = IA(ω)2π δ(ω − ω′) (9)

where x is a unit polarization vector, 〈. . .〉 is a statistical
ensemble average and IA(ω) is the spectral density (inten-
sity) of the light. Likewise, from the Maxwell equation
in the frequency domain [iωB(r,ω) = ∇ × E(r,ω)], the
magnetic field is:

B(r,ω) = y
1
c

√
ε(ω)

ε0
A(ω) eikz (10)

Thus,

〈B∗(r,ω) · B(r,ω′)
〉 = ε(ω)

c2ε0
IA(ω)2π δ(ω − ω′) (11)

The ensemble averages of the electric and magnetic
energy densities are then:

〈WE〉 = 1
2

∫
–dω

∫
–dω′e−i(ω−ω′)t

×
[
ωε(ω) − ω′ ε(ω′)

ω − ω′

] 〈E∗(r,ω′) · E(r,ω)
〉

= 1
2

∫
–dω IA(ω)

{
lim

ω′ → ω

ωε(ω) − ω′ ε(ω′)
ω − ω′

}

= 1
2

∫
–dω IA(ω)

{
∂(ωε)

∂ω

}

〈WB〉 = 1
2

∫
–dω

1
μ0

〈B∗(r,ω) · B(r,ω′)
〉

= 1
2

∫
–dω IA(ω)

ε(ω)

c2μ0ε0
(12)

Combining the electric and magnetic parts, and using
c2μ0ε0 = 1, the ensemble average of the total energy
density is:

〈W〉 = 1
2

∫
–dω IA(ω)

(
ε(ω) + ∂(ωε)

∂ω

)

=
∫

–dω IA(ω)

(
ε(ω) + ω

2
∂ ε

∂ω

)
(13)

Rosa et al. pointed out that in this case of uncorre-
lated frequencies (or for monochromatic light) this result
is exact, (21) whereas conventional derivations often use
a Taylor-series expansion to obtain it, leaving ambiguous
the question of exactness (19, 23, 24). To relate this for-
mula to the group velocity vg and phase velocity vp, note
that

1
vg

= ∂k
∂ω

= 1
c

(
n(ω) + ω

∂n
∂ω

)

= 1
c
√

ε0ε(ω)

(
ε(ω) + ω

2
∂ ε

∂ω

)

vp = c
n(ω)

= c
√

ε0

ε(ω)
(14)

The ratio of these two velocities is:

vp
vg

= 1
ε(ω)

(
ε(ω) + ω

2
∂ ε

∂ω

)

=
(
1 + ω

n(ω)

∂ n(ω)

∂ω

)
= 1

n(ω)

∂ ωn(ω)

∂ω
(15)

Therefore, in this case, the total energy density can be
written:

〈W〉 =
∫

–dω IA(ω) ε(ω)
vp(ω)

vg(ω)
(16)

Recognizing that the spectrum IA(ω) is proportional to
electric-field-squared, and that for a plane wave in a dis-
persionless medium the magnetic energy is equal to the
electric energy (as can be seen from results above), we
see that Equation (16) is analogous to the more common
expression for energy density,

W = 1
2
ε E2 + 1

2μ0
B2 (17)

but with the insertion of the extra factor vp/vg .
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Why does group velocity enter into the energy-density
expression? The Poynting vector is:

S = μ−1
0 E × B

= μ−1
0

∫
–dω e−iω tE(r,ω)

×
∫

–dω′eiω
′ tB∗(r,ω′) (18)

where the ω′ integral was written after changing ω′ →
−ω′. For the stationary plane wave, this becomes:

〈S〉 = ẑ
∫

–dω IA(ω) ε(ω)vp(ω) (19)

So, as expected, comparing Equation (16), we observe
that at each (independent) frequency:

(energy density) × (group velocity) = (energy flux)

as it must be. This argument parallels those in (1, 7, 21).
In the following, we will not use the specialized

Equation (13) other than for qualitative discussions. We
will use the general energy expression Equation (7)where
needed.

4. Inverse permittivity formulation

As discussed above, it was pointed out in (4, 8) and
elsewhere, and summarized in (2) and (18), that in the
context of nonlinear optics there is a more appropriate
way to view the relation between E and D is. Instead of
the usual Equation (3), write:

E(r,ω) = η(r,ω) · D(r,ω) (20)

where the inverse permittivity tensor is thematrix inverse
η(r,ω) = [ε(r,ω)]−1. Then the constitutive relation in
the time domain is:

E(r, t) =
∫ ∞

−∞
–dω e−iωtη(r,ω) · D(r,ω) (21)

While in classical linear optics it makes no real dif-
ference which way the constitutive relation is written,
in quantum nonlinear optics, where higher-order terms
appear in Equation (20), the difference is crucial, and the
inverse permittivitymethod avoids serious errors. There-
fore, we should adopt it when setting up a theory of linear
optics that will be used as a foundation of a nonlinear
quantum theory.

The results obtained above can be reformulated using
the inverse permittivity, as:

WE = 1
2

∫ ∞

−∞
–dω

∫ ∞

−∞
–dω′ e−i(ω−ω′)tD(r,ω)

·
[
ω′η(r,ω) − ωη(r,ω′)

ω′ − ω

]
· D∗(r,ω′) (22)

For a stationary, incoherent plane wave in an isotropic
medium:

D(r,ω) = η−1(r,ω)x̂A(ω) eikz (23)

In this case, the ensemble-averaged energy density is
analogously to the previous section:

〈WE〉 = 1
2

∫ ∞

−∞
–dω η−2(r,ω)IA(ω)

×
{

lim
ω → ω′

ω′η(r,ω) − ωη(r,ω′)
ω′ − ω

}

= 1
2

∫ ∞

−∞
–dω η−2(r,ω)IA(ω)

×
{

∂

∂ω′ [ω
′η(r,ω) − ωη(r,ω′)]

}
ω′=ω

= 1
2

∫ ∞

−∞
–dω η−2(r,ω)IA(ω)

×
{
η(r,ω) − ω

∂

∂ω
η(r,ω)

}
(24)

And, for a nonstructured medium, it is easily shown
that the ratio of phase velocity to group velocity can be
expressed as:

vp(ω)

vg(ω)
= 1

2η(ω)

{
2η(ω) − ω

∂

∂ω
η(ω)

}
(25)

The ‘missing’ factor of 2 multiplying η inside the curly
brackets in the last line of Equation (24), which is needed
to complete the expression for group velocity, comes from
themagnetic energy, which is still given by Equation (12).
So the total energy density for a stationary plane wave is:

〈W〉 = 1
2

∫
–dω IA(ω)

×
[

1
η(ω)

+ 1
η2(ω)

{
η(ω) − ω

∂

∂ω
η(ω)

}]

=
∫

–dω IA(ω)

[
1

2η2(ω)

{
2η(ω) − ω

∂

∂ω
η(ω)

}]

=
∫

–dω IA(ω)
1

η(ω)

vp(ω)

vg(ω)
(26)

This is the same as Equation (16), as it must be.
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5. Mode expansions, nonorthogonality and
normalization

First consider a brief aside on themathematics of orthog-
onality and weight functions (Sturm-Liouville theory):

Given a differential equation in Sturm-Liouville form:

∂2xu(k, x) + ρ(x)k2u(k, x) = 0

Multiply by u∗(k′, x) and integrate:∫
dx u∗(k′, x)∂2x u(k, x)+k2

∫
dx u∗(k′, x)ρ(x)u(k, x) = 0

Integrate the first term by parts twice, assuming bound-
ary terms are zero:∫
dx u(k, x)∂2x u

∗(k′, x)+k2
∫
dx u∗(k′, x)ρ(x)u(k, x) = 0

Conjugate this whole equation and swap k and k’, assum-
ing ρ(x) is real, to give:∫
dx u∗(k′, x)∂2x u(k, x)+k2

∫
dx u(k, x)ρ(x)u∗(k′, x) = 0

Subtract the first and third of these equations:

(k2 − k′2)
∫

dx u∗(k′, x)ρ(x)u(k, x) = 0

So we see that if k2 
= k′2 we must have the orthogonality
relation: ∫

dx ρ(x) u∗(k′, x)u(k, x) = 0

where ρ(x) is called a weight function. We will follow an
analogous procedure below for EMmodes.

Returning to our E&M problem, to quantize the field,
rather than working with fields as dynamical variables
directly, it is common to carry out an expansion into
monochromatic spatial modes in the context of classi-
cal E&M, then quantize the amplitudes of these discrete
modes. In a structured dispersive transparent medium,
such as an optical fibre, a planar or ridge waveguide,
or even a photonic crystal, the standard procedure is as
follows (See 5, 9), following notation in (1).

Expand both D and B into monochromatic mode
functionsDj(r) and Bj(r), which are uniquely labelled by
index j:

D(r, t) =
∞∑

j=−∞
αje−iωjtDj(r);

B(r, t) =
∞∑

j=−∞
αje−iωjtBj(r) (27)

The assumption that both fields can be expanded in terms
of the same amplitude coefficients αj is an ansatz that will

be found to lead to a solution. To enforce thatD and B are
real, we must have ω−j = −ωj andD−j(r) = Dj

∗(r), and
B−j(r) = Bj

∗(r). Themodes are as yet not normalized. In
the frequency domain the expansions are:

D(r,ω) =
∑
j

αj2πδ(ω − ωj)Dj(r);

B(r,ω) =
∑
j

αj2πδ(ω − ωj)Bj(r) (28)

In the case of a structured, dispersive (but not bire-
fringent) medium, the Maxwell equations lead to the
following for the modes:

iωjBj(r) = ∇ × [η(r,ωj)Dj(r)] (29)

−iωjμ0Dj(r) = ∇ × Bj(r) (30)

Combining these two equations gives the eigenvalue
problems:

∇ × ∇ × [η(r,ωj)Dj(r)] = μ0ωj
2Dj(r)

∇ × [η(r,ωj)∇ × Bj(r)] = μ0ωj
2Bj(r) (31)

The complication here is that η(r,ωj) in the left-
hand side of these equations depends nontrivially on the
eigenvalue ωj

2, requiring an iterative numerical solution
method. A further complication is that, because each dis-
tinct solution is an eigenfunction of a different operator
(via the factor η(r,ωj)), they are in general not orthog-
onal to one another under any scalar product integral,
such as ∫

d3r ρ(r)Dl
∗(r) · Dj(r) (32)

with ρ(r) being a weight function.
To find the form of an integral that defines the mode

normalization (and approximate orthogonality), we can
develop a method inspired by those in (1, 2, 7), but using
B and D fields only (rather than vector potentials, dual
potentials, or dynamical medium models).

Analogous to Sturm-Liouville theory, multiply
Equation (29) by Bl

∗(r) and integrate over the volume V,
to give:

∫
d3r{iωjBj(r) · Bl

∗(r)−∇×[η(r,ωj)Dj(r)]·Bl
∗(r)} = 0

(33)

The second term can be rewritten by integrating by
parts, assuming vanishing boundary values, which yields
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in general (2):∫
d3r [∇ × f(r)] · g(r) =

∫
d3r [∇ × g(r)] · f(r) (34)

a formula that is also a corollary of the divergence
theorem of vector calculus. Thus,∫
d3r{iωjBj(r)·Bl

∗(r)−[∇ × Bl
∗(r)]·η(r,ωj)Dj(r)} = 0

(35)

or, using the Maxwell equation (Equation 30),∫
d3r{iωjBj(r)·Bl

∗(r)−[iωlμ0Dl
∗(r)]·η(r,ωj)Dj(r)}= 0

(36)

As in Sturm-Liouville theory, duplicate this equation,
exchanging indices, (j ↔ l) and conjugate, giving:∫
d3r{iωlBl

∗(r)·Bj(r)−[iωjμ0Dj(r)]·η(r,ωl)Dl
∗(r)}= 0

(37)

Subtract the two previous equations, to give:∫
d3r{(ωj − ωl)Bj(r) · Bl

∗(r)

− [ωlη(r,ωj) − ωjη(r,ωl)]μ0Dl
∗(r) · Dj(r)} = 0

(38)

Rewrite this as:

(ωj − ωl)

∫
d3r

{
μ0

−1Bl
∗(r) · Bj(r)

+
(

ωjη(r,ωl) − ωlη(r,ωj)

ωj − ωl

)
Dl

∗(r) · Dj(r)
}

= 0

(39)

For cases where ωj 
= ωl, the integral must equal zero:∫
d3r

{
μ0

−1Bl
∗(r)·Bj(r)+

(
ωjη(r,ωl) − ωlη(r,ωj)

ωj − ωl

)

×Dl
∗(r) · Dj(r)

}
= 0(l 
= j) (40)

Now, use Equation (36) to replace the Bl
∗ · Bj term in

Equation (40), giving:∫
d3rDl

∗(r) · Dj(r)

×
{

ωl

ωj
η(r,ωj)+

ωjη(r,ωl) − ωlη(r,ωj)

ωj − ωl

}
= 0(l 
= j)

(41)

This result resembles an orthogonality integral for the
displacement field, but the term in brackets is not a

general-purpose weight function because it depends on
ωj and ωl. Equation (41) seems not to have appeared in
previous publications. Note that if η(r,ωj) is indepen-
dent of frequency, becoming η(r), the left-hand side of
Equation (41) reduces to a form identical to the famil-
iar, expected Equation (32):

∫
d3r η(r)Dl

∗(r) · Dj(r) =
0(l 
= j)

The fact that the modes are not orthogonal under
a general weight function is a result of dispersion
(1). This means Equation (41) cannot be used to
project an arbitrary mode from a given field distri-
bution D(r, t). The above derivation generalizes the
Sturm-Liouville-inspired derivation presented in the
case of one-dimensional propagation by Santos and
Loudon (25).

To determine a normalization condition for the
modes, note that forωj = ωl the integral in Equation (39)
has a nonzero value, which we denote as Mj (its value is
arbitrary and we specify it later):

∫
d3r

{
μ0

−1Bj
∗(r) · Bj(r) + lim

ω → ωj

×
(

ωjη(r,ω) − ωη(r,ωj)

ωj − ω

)
Dj

∗(r) · Dj(r)
}

.= Mj

(42)

Again, we can use Equation (36) to replace the Bl
∗ · Bj

term, giving:

∫
d3rDj

∗(r) · Dj(r)
lim

ω → ωj

×
{

ω

ωj
η(r,ωj) + ωjη(r,ω) − ω η(r,ωj)

ωj − ω

}
= Mj

(43)

Similar to the calculations in Equation (24), the
limit of the term in brackets becomes, generalizing
Equation (25):

lim
ω → ωj

{
ω

ωj
η(r,ωj) + ωjη(r,ω) − ω η(r,ωj)

ωj − ω

}

= 2
{
η(r,ω) − ω

2
∂

∂ω
η(r,ω)

}
ωj

= 2η(r,ω)
vp(r,ω)

vg(r,ω)

(44)

This gives the normalization integral:
∫

d3r η(r,ωj)R(r,ωj)Dj
∗(r) · Dj(r) =1

2
Mj (45)

where the ratio of ‘local’ phase velocity vp(r,ω) to group
velocity vg(r,ω) is denoted R(r,ω), and takes on various
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forms:

R(r,ω)
.= vp(r,ω)

vg(r,ω)

= 1
2η(r,ω)

{
2η(r,ω) − ω

∂

∂ω
η(r,ω)

}

= 1 − ω

2η(r,ω)

∂

∂ω
η(r,ω)

= 1 − ω

2
n2(r,ω)

∂

∂ω

1
n2(r,ω)

= 1 + ω

n(r,ω)

∂

∂ω
n(r,ω)

= 1
n(r,ω)

∂

∂ω
(ω n(r,ω)) (46)

where we introduced the local refractive index n2(r,ω),
such that ε(r,ω) = ε0n2(r,ω), or η(r,ω) = 1/(ε0n2(r,
ω)). Note that ‘local velocities’ are not really physical
velocities, but are a convenient definition for describing
local material properties. The recognition that the extra
factor appearing in the normalization integral (which has
been long known) equals the ratio of velocities is due to
Sipe and reported in (1), and Drummond (7) noted a
similar relation.

6. Hamiltonian and quantization

To quantize the field, we need to have, at minimum, a
suitable Hamiltonian and appropriate pairs of conjugate
variables. The latter can be determined using Lagrangian
methods, but here we will simply postulate them and ver-
ify that using Hamilton’s equations generates the correct
Maxwell equations. This less formal approach is simpler
for the task at hand, although not as powerful as the
Lagrangian method. It is in the spirit of the treatment in
(11), but developed here for the case of structuredmedia,
using the mode quasi-orthogonality formulas derived
above.

While Equation (7) gives a spatially local expression
for the electric energy density (at location r), recall that
it is ‘nonlocal’ in frequency, requiring a double inte-
gral over that variable. The double integral reduces to
a single integral only if the field is monochromatic or
the field components are statistically uncorrelated, as in
Equation(12). Yet, to quantize a system we need only the
total energy, not a local energy density. To this purpose,
Loudon pointed out that even in the presence of disper-
sion it is possible to express the total energy integrated
over the entire volume as a single frequency integral
(26). Loudon’s method was generalized to include spatial
structure of the dielectric in (16).

Therefore, for the purpose of quantization we define a
Hamiltonian for the macroscopic system as the integral
of the energy density in the relevant volume V :

H = HB + HE =
∫
V
d3r{WB + WE} (47)

Using the frequency-domain version, Equation (28),
of the mode expansion in Equation (22) gives:

HE = 1
2

∫
V
d3r

∫ ∞

−∞
–dω

∫ ∞

−∞
–dω′ e−i(ω−ω′)t

×
∑
j

αj2πδ(ω − ωj)Dj(r)

·
[
ω′η(r,ω) − ωη(r,ω′)

ω′ − ω

]

·
∑
l

αl
∗2πδ(ω′ − ωl)Dl

∗(r)

= 1
2

∑
j

αj
∑
l

αl
∗e−i(ωj−ωl)t

∫
V
d3rDj(r)

·
[
ωlη(r,ωj) − ωjη(r,ωl)

ωl − ωj

]
· Dl

∗(r) (48)

and, likewise, for the magnetic energy:

HB = 1
2μ0

∑
j

αj
∑
l

αl
∗e−i(ωj−ωl)t

×
∫
V
d3r Bj(r) · Bl

∗(r) (49)

Combining these gives:

H =
∑
j

αj
∑
l

αl
∗e−i(ωj−ωl)t

× 1
2

∫
V
d3r ×

{
1
μ0

Bj(r) · Bl
∗(r)

+ Dj(r) ·
(

ωjη(r,ωl − ωlη(r,ωj)

ωj − ωl

)
· Dl

∗(r)
}
(50)

We can recognize the integral in this equation as none
other than the quasi-orthogonality integral in Equation
(39) (or Equation (41)). Therefore, the double sum
reduces to a single sum, which we write as:

H =
∞∑

j=−∞

1
2
Mjαj

∗αj

=
∞∑
j=0

1
2
Mj(αj

∗αj + αjαj
∗) (51)
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Now, choose Mj = �ωj, and define real variables
(quadrature amplitudes) by:

αj = 1√
2�

(Qj + iPj)

so that

H = 1
2

∞∑
j=0

ωj(Qj
2 + Pj2) (52)

The total energy of the system has thus been expressed
as a single sum over frequency, which in a continuum
limit can be replaced by an integral over frequency, con-
sistent with other familiar treatments. The total energy is
thus ‘local’ in frequency, but not expressible as the inte-
gral of an energy density that is local in both space and
frequency, as discussed at the beginning of this section.
This form of the energy is made possible by expand-
ing using the appropriate spatial modes and summing
over the mode index j, which is the true meaning of
Equation (52).

This Hamiltonian, alongwith theHamilton equations,
Q̇j = ∂H/∂Pj, Ṗj = −∂H/∂Qj generate the equations
of motion α̇j = −iωjαj, which agrees with the classical
forms in Equation (27). Therefore, to quantize this the-
ory, we can simply elevate the variables to operators and
invoke the commutation relations [Q̂j, P̂k] = i�δjk. This
leads to the bosonic creation and annihilation operators
defined as âj = (Q̂j + i P̂j)/

√
2�, with

[âj(t), â
†
l (t)] = δj l (53)

Then

H =
∞∑
j=0

1
2
�ωj (â

†
j âj + âjâ

†
j ) =

∞∑
j=0

�ωj

(
â†j âj +

1
2

)

(54)

This choice of mode normalization,Mj = �ωj, results
in the final form for the mode normalization in the
quantum theory:∫

d3r ηj(r)Rj(r)Dj
∗(r) · Dj(r) =�ωj

2
(55)

where we introduced the abbreviations ηj(r) ≡ η(r,ωj),
Rj(r) ≡ R(r,ωj). This normalization integral is in agree-
ment with Equation (32) of (1), which resulted from
using a dynamical model for the medium.

Note that if the medium is not dispersive, so the ‘local’
group and phase velocities are equal (vgj(r) = vpj(r)), so
Rj(r) = 1, this integral is proportional to that conjectured
in Equation (32).

We now introduce new normalized modes in a form
more familiar in quantum optics theory. Define new
modes uj(r) by multiplying with position-independent
factors, so the new modes still obey the Maxwell equa-
tions:

Dj(r) ≡ i

√
ε0�ωj

2
uj(r) (56)

where i is inserted for consistency with a standard
phase convention in quantum optics theory. Then the
normalization integral for the displacement-field modes
becomes: ∫

d3r ε0ηj(r)Rj(r)uj∗(r) · uj(r) =1 (57)

where now only medium properties enter the normaliza-
tion.With thesemodes, the positive-frequency part of the
displacement-field operator is:

D̂
(+)

(r, t) = i
∞∑
j=0

√
ε0�ωj

2
âje−iωjt uj(r) (58)

whereas the negative-frequency part is D̂
(−) = D̂

(+)†
.

The form of the magnetic-field modes is found using the
Maxwell equation for the modes and Equation (56):

Bj(r) = (iωj )
−1∇ × [ηj(r)Dj(r)]

= (iωj )
−1i

√
�ωj

2ε0
∇ × [ε0ηj(r)uj(r)] (59)

So, Equation (27) gives:

B̂
(+)

(r, t) = i
c

∞∑
j=−∞

√
�ωj

2ε0
âje−iωjt

c
iωj

∇ × [ε0ηj(r)uj(r)]

.= i
c

∞∑
j=−∞

√
�ωj

2ε0
âje−iωjtũj(r) (60)

where the new magnetic modes are:

ũj(r) = c
iωj

∇ × [ε0ηj(r)uj(r)]

= 1
icμ0ωj

∇ × [ηj(r)uj(r)] (61)

Comparing above formulas, the unscaled and scaled
magnetic modes are related by:

Bj(r)
.= i
c

√
�ωj

2ε0
ũj(r) (62)
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and B̂
(−) = B̂

(+)†
. And, using Equation (30), the inverse

relation between electric and magnetic modes is

uj(r) = ic
ωj

∇ × ũj(r)

The electric field, using E(r,ω) = η(r,ω) · D(r,ω), is

Ê
(+)

(r, t) = i
∞∑
j=0

√
�ωj

2ε0
âje−iωjt ε0ηj(r)uj(r) (63)

7. Fields in a dispersive, nonstructuredmedium

In a nonstructured (and non-birefringent) medium, the
normalization integral Equation (57) becomes:∫

d3r uj∗(r) · uj(r) = 1
ε0ηjRj

(64)

The fields and modes simplify to:

D̂
(+)

(r, t) = i
∞∑
j=0

√
ε0�ωj

2
âje−iωjt uj(r)

B̂
(+)

(r, t) = i
c

∞∑
j=−∞

√
�ωj

2ε0
âje−iωjtũj(r)

ũj(r) = c ε0ηj

iωj
∇ × uj(r)

Ê
(+)

(r, t) = i
∞∑
j=0

√
�ωjε0ηj2

2
âje−iωjt uj(r) (65)

8. Plane waves in a dispersive, nonstructured
medium

For linearly polarized plane waves in a dispersive, non-
structured medium, the mode normalization Equation
(64) implies:

uj(r) =
√

1
ε0ηjRj

ej
eikj·r√
V

(66)

with kj = kj k̂j, where k̂ is a unit vector in the propagation
direction, and

|kj| = kj = ω jn(ωj)/c = (ωj /c)
√

ε(ωj)/ε0 (67)

So, the fields become, from Equation (58):

D̂
(+)

(r, t) = i
∞∑
j=0

√
ε0�ωj

2
âje−iωjt

√
1

ε0ηjRj
ej
eikj·r√
V

Ê
(+)

(r, t) = i
∞∑
j=0

√
�ωj

2ε0
âje−iωjt

√
ε0ηj

Rj
ej
eikj·r√
V

(68)

or, using vp = c/nj and ε0ηj = 1/nj2:

D̂
(+)

(r, t) = i
∞∑
j=0

√
ε0�ωj

2
vgjnj3

c
âje−iωjt ej

eikj·r√
V

Ê
(+)

(r, t) = i
∞∑
j=0

√
�ωj

2ε0

vgj
njc

âje−iωjtej
eikj·r√
V

(69)

This form agrees with references (1) and with (11),
accounting for different unit systems.

The magnetic-field modes become:

ũj(r) = cε0ηj
iωj

∇ × uj(r) = cε0ηj
iωj

∇ × ej

√
1

ε0ηjRj
eikj·r√
V

=
√

ε0ηj

Rj
c
iωj

ikj (k̂j × ej)
eikj·r√
V

(70)

So the magnetic field becomes:

B̂
(+)

(r, t)

= i
c

∞∑
j=0

√
�ωj

2ε0
âje−iωjt

√
ε0ηj

Rj
c
iωj

ikj (k̂j × ej)
eikj·r√
V

= i
c

∞∑
j=0

√
�ωj

2ε0
âje−iωjt

√
ε0ηj

Rj
nj (k̂j × ej)

eikj·r√
V

(71)

9. Group velocity and energy flux

We see the group velocity appearing in the quantum-
field-operator coefficients in Equation (69). To under-
stand this fact, note that the quantum counterpart of
Equation (18), is the Hermetian-operator version of the
Poynting vector,

S = 1
2
μ−1
0 Ê × B̂ − 1

2
μ−1
0 B̂ × Ê (72)

with the minus sign arising from the nature of the cross
product. Using Ê = Ê

(−) + Ê
(+)

and likewise for B̂, we
obtain eight terms. Time averaging over a few optical
cycles leaves four terms:

S̄ = 1
2
μ−1
0 Ê

(−) × B̂
(+) − 1

2
μ−1
0 B̂

(−) × Ê
(+)

+ 1
2
μ−1
0 Ê

(+) × B̂
(−) − 1

2
μ−1
0 B̂

(+) × Ê
(−)

(73)

Then for a single monochromatic plane-wave mode
j in a dispersive nonstructured medium, using vpj =



206 M. G. RAYMER

c/nj, ε0ηj = 1/nj2, εj = ε0nj2, ε0μ0c2 = 1, 1/Rj = vgj/
vpj, we find the first term is

1
2
μ−1
0 Ê

(−) × B̂
(+)

= 1
2μ0

√
�ωj

2ε0
â†j e

iωjt
√

ε0ηj

Rj
ej
e−ikj·r
√
V

× 1
c

√
�ωj

2ε0
âje−iωjt

√
ε0ηj

Rj
nj (k̂j × ej)

eikj·r√
V

= 1
2μ0

k̂jâ
†
j âj

�ωj

2cε0

ε0ηjvgj
vpj

nj
V

= 1
2
k̂jâ

†
j âj

�ωj

2V
vgj (74)

The third term in Equation (73) contributes a similar
piece, with â†j âj replaced by âjâ

†
j = â†j âj + 1. The second

and fourth terms contribute the same results as the first
and third. Then, dropping the terms corresponding to the
(infinite) vacuum energy leaves, finally,

S̄ = k̂jâ
†
j âj

�ωj

V
vgj (75)

This dependence on energy density and group velocity
is as expected for a monochromatic field, consistent with
ideas discussed earlier in Section 3. If the field is broad-
band with correlations between mode amplitudes, cross
terms betweenmode operators representing different fre-
quencies will appear.

10. Plane-wave fields in vacuum

The electric field in vacuum is:

Ê
(+)

(r, t) = i
∞∑
j=0

√
�ωj

2ε0
âje−iωjt ej

eikj·r√
V

(76)

in agreement with the standard form (27). For the mag-
netic field:

ũj(r) = ∇ × uj(r)
ikj

= ∇ × ejeikj·r

ikj
√
V

= (k̂j × ej)
eikj·r√
V

B̂
(+)

(r, t) = i
c

∞∑
j=0

√
�ωj

2ε0
âje−iωjt(k̂j × ej)

eikj·r√
V

(77)

11. Band approximation and continuum limit

Here, we assume that the fields propagating in the
medium are in distinct frequency bands, denoted as BJ ,

centred at well-separated centre frequencies ω̄J , with J =
1, 2, 3 . . .. Consider plane waves travelling in the z direc-
tion in a homogeneous, time-stationary, but dispersive,
medium. Denote the mode indices falling within the
band by j ∈ J. FromEquation (69), the field in theBJ band
is then:

D̂
(+)

(r, t)Band J = i
∑
j∈J

√
ε0�ωj

2
vgjnj3

c
âje−iωjt ej

eiβjz√
AL

Ê
(+)

(r, t)Band J = i
∑
j∈J

√
�ωj

2ε0

vgj
njc

âje−iωjtej
eiβjz√
AL

(78)

where A and L are the transverse area and length of the
quantization volume, and βj is the propagation constant.
Periodic boundary conditions require:

exp[iβj(z + L)] = exp[iβjz] (79)

so βj = j2π/L. Note this condition is valid even in the
presence of dispersion because βj is simply 2π times
the inverse wavelength of a spatially periodic wave.
(Although the corresponding mode frequencies are not
uniformly spaced.)

In the continuum limit, L → ∞, we replace βj → β ,
ωj → ω(β), and �j → L/2π ∫ dβ . Then

[âj , â
†
j ′] = δjj′ ⇒ L

2π

∫ ∞

−∞
dβ[â(β), â†(β ′)] = 1 (80)

Choose âj
.=

√
L−1 b̂(β), so [b̂(β), b̂†(β ′)] = 2π δ(β −

β ′). Then the displacement field operator becomes (using
BJ to label the band):

D̂
(+)

(r, t)Band J = i
L
2π

∫
BJ
dβ

√
ε0�ω(β)

2
vgJnJ3

c

×
√
L−1 b̂(β)e−iω(β)t eJ

exp[iβz]√
AL

= i
∫
BJ

dβ
2π

√
ε0�ω(β)

2
vgJnJ3

c

× b̂(β)e−iω(β)t eJ
exp[iβz]√

A
(81)

And the electric field becomes:

Ê
(+)

(r, t)Band J

= i
∫
BJ

dβ
2π

√
�ω(β)

2ε0

vgJ
nJc

b̂(β)e−iω(β)t eJ
exp[iβz]√

A
(82)

Note that L no longer appears.
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12. Frequency labelling ofmodes and operators

When propagation is one dimensional, as in a waveguide,
it is often useful to adopt angular frequency ω as the
continuous variable labelling modes, since we typically
measure frequency. Recall for each transversemode there
is a dispersion relation ω(β), determined by solutions
of the mode eigenvalue equation. Changing variables to
frequency and rescaling the operators:

dβ = dβ
dω

dω = 1
vg
dω

ĉ(ω)
.=

√
dβ
dω

b̂(β) =
√

1
vg
b̂(β)

b̂(β) = √vg ĉ(ω)[b̂(β), b̂†(β ′)]

= 2π δ(β − β ′)

⇒ [ĉ(ω), ĉ†(ω′)] = dβ
dω

2π δ(β − β ′)

= 2π δ(ω − ω′) (83)

Then:

D̂(+)
(r, t)Band J

= i
∫
BJ

(
dω
2π

1
vgJ

)√
ε0�ω

2
vgJnJ3

c

× √vg ĉ(ω)e−iωt eJ
exp[iβ(ω)z]√

A

= i
∫
BJ

dω
2π

√
ε0�ω

2
nJ3

c
ĉ(ω)e−iωt eJ

exp[iβ(ω)z]√
A

Ê(+)
(r, t)Band J

= i
∫
BJ

dω
2π

√
�ω

2ε0nJc
ĉ(ω)e−iωt eJ

exp[iβ(ω)z]√
A

(84)

We see that the group velocity does not appear here,
although refractive index appears in a nonobvious way.

If nontrivial dynamics occur, the annihilation oper-
ators become time-dependent, ĉ(ω, t). It seems slightly
strange to have both time and frequency as arguments of
the annihilation operators, but recall that here frequency
ω really labels β , which is 2π times the spatial period
(inverse wave length); it is not the Fourier transform
variable conjugate to time.

13. Approximatemode projector

Returning to the case of spatially structured media, we
show that in a weakly dispersive medium, as is common
in transparent media, we can find an approximate pro-
cedure to project a Dj(r) mode from the total field. In

this case, the term in brackets in Equation (41) can be
approximated as

≈
{
η(r,ωj) + ωjη(r,ωl) − ωlη(r,ωj)

ωj − ωl

}

≈
{
2η(r,ωj) − ωj

η(r,ωj) − η(r,ωl)

ωj − ωl

}

≈
{
2η(r,ωj) − ωj

∂

∂ωj
η(r,ωj)

}
= 2η(r,ωj)R(r,ωj)

≈ 2η(r,ωl)R(r,ωl) (85)

Thus, in this approximation,
∫

d3rDl
∗(r) · Dj(r)η(r,ωl)R(r,ωj) ≈ 0(l 
= j) (86)

Combining this with Equation (45), and usingMj = �ωj,
gives:

∫
d3r η(r,ωl)R(r,ωl)Dl

∗(r) · Dj(r) ≈1
2
�ωjδlj (87)

This approximate relation can be used to project a
mode amplitude from the total field given by Equation
(27), as: ∫

d3r η(r,ωl)R(r,ωl)Dl
∗(r) · D(r)

=
∫

d3r η(r,ωl)R(r,ωl)Dl
∗(r)

·
∞∑

j=−∞
αje−iωjtDj(r)

≈ 1
2
�ωjαle−iωlt (88)

(Note: We cannot define useful bi-orthogonal ‘dual
modes’ by absorbing η(r,ωl)R(r,ωl) into the mode
definition, because such a new mode would not obey the
Maxwell equations.)

14. The band approximation

Returning to structured media, here we show that in a
weakly dispersive, weakly structured medium, as is com-
mon in wave-guiding media, we can simplify the general
theory to a form that is sufficiently accurate and easy
to work with. Again, assume the fields propagating in
the medium are in distinct spectral bands, denoted as
BJ , centred at separated centre frequencies ω̄J , with J =
1, 2, 3 . . .. The first step is to make the band approxima-
tion in a more general form than done in Equation (78),
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so Equations (58) and (60) become:

D̂
J(+)

(r, t) = i
∞∑
j∈J

√
ε0�ωj

2
âje−iωjt uj(r)

B̂
J(+)

(r, t) = i
c

∞∑
j∈J

√
�ωj

2ε0
âje−iωjtũj(r) (89)

with superscript J denoting the band. The second step
is to approximate the factors inside Equation (87) as
constant within a given band, so:

1
ε0

∫
d3r ρJ(r)Dl

∗(r) · Dj(r) ≈1
2
�ωjδlj (90)

where we now do have a well-defined weight function for
the orthogonality integral in a band:

ρJ(r)
.= ε0η(r, ω̄J)R(r, ω̄J) (91)

In terms of the normalized modes defined in Equation
(56), we have:∫

d3r ρJ(r)ul∗(r) · uj(r) ≈δlj (92)

Then the projection integral Equation (88) becomes:

1
ε0

∫
d3r ρJ(r)Dl

∗(r) · D̂J(+)
(r, t)

=
∫

d3r ρJ(r)

√
�ωl

2
ul∗(r)

·
∞∑
j∈J

√
�ωj

2
âje−iωjt uj(r) = 1

2
�ωjâje−iωjt (93)

And similarly for B̂
J(+)

(r, t).
We nowhave a reasonably accurate theory for aweakly

dispersive, weakly structured medium, where the modes
within a band are orthogonal under a weight function
that is well defined in a specific band, making it analo-
gous to the Sturm-Liouville theory discussed earlier. The
modes are not precisely orthogonal between frequency-
distant bands, because the weight function is different in
each band. (We could put a superscript J on the mode
functions, but we omit it for simplicity, and try to remem-
ber which band we are dealing with.)

15. Quantum fields in waveguides

Consider an ideal, nonbirefringent dielectric waveguide
of length L, which tends to infinity, in which the spa-
tial dependence of the weakly dispersive susceptibility
depends only on transverse coordinates x = (x, y), and

not on the longitudinal coordinate z. We can write the
mode functions as ujm(r) = wjm(x,βj)L−1/2 exp(iβjz),
where wjm(x,βj) are transverse modes depending only
on (x, y). Periodic boundary conditions require the lon-
gitudinal propagation constant to have equally spaced
values βj = j2π/L. For each value of the longitudinal
propagation constantβj there exists a discrete set of trans-
versemodes, indexed by integersm, which generally have
different frequencies denoted ωjm = ωm(βj).

These modes are normalized according to Equation
(92), with the weight function ρJ(r) replaced by ρJ(x) =
ε0ηJ(x)RJ(x). That is,∫ L/2

−L/2

dz
L

exp[−i(βl − βj)z)]

×
∫

d2x ρJ(x)wln
∗(x,βl) · wjm(x,βj) = δ(l,n),(j,m)

(94)

which equals zero unless (l, n) = (j,m). Given that βj =
j2π/L, the z integral equals zero for j 
= l. Therefore,
two transverse mode functions associated with different
values of βj are not necessarily orthogonal in x.

We continue to assume the fields are separated into
distinct frequency bands, labelledBJ , centred at separated
centre frequencies ω̄J , with J = 1, 2, 3 . . .. From Equation
(89), the D field in the BJ band is:

D̂
J(+)

(r, t) = i
∞∑
j∈J

∑
m

√
ε0�ωj

2
âjme−iωjmt

× wjm(x,βj)L−1/2 exp(iβjz) (95)

As earlier, in the continuum limit we replace:∑
j

→ L
2π

∫ ∞

−∞
dβ ,βj → β ,ωjm → ωm(β)

[âjm , â†j ′m′] = δjj′δmm′

⇒ L
2π

∫ ∞

−∞
dβ[â(β), â†(β ′)]δmm′ = δmm′

âjm
.=

√
L−1 b̂m(β)

[b̂m(β), b̂†m′(β
′)] = 2π δ(β − β ′)δmm′ (96)

Then the displacement field operator in Band J is:

D̂
J(+)

(r, t)Band J

= i
∑
m

∫
BJ

dβ
2π

√
ε0�ω(β)

2
b̂m(β)e−iωm(β)t

× wm(x,β) exp(iβz) (97)

Note that, as in the plane-wave case earlier, L no longer
appears.
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Then the orthogonality relation for two modes
with possibly different values of β becomes, from
Equation (92):

∫ L/2

−L/2

dz
L

exp[−i(βl − βj)z)]∫
d2x ρJ(x)wln

∗(x,βl) · wjm(x,βj) = δ(l,n),(j,m)

⇒
∫ L/2

−L/2

dz
L

exp(−i(β ′ − β)z)

×
∫

d2x ρJ(x)w∗
n(x,β ′) · wm(x,β)

= 2πδ(β ′ − β)δnm (98)

Therefore, the transverse modes with equal β are
orthonormal in two-dimensions:∫

d2x ρJ(x)w∗
n(x,β) · wm(x,β) = δnm (99)

Note the weight function ρJ(x) contains information
about the material dispersion. From Equation (46):

ρJ(x) = ε0ηJ(x)RJ(x)

= ε0ηJ(x)
vp(r, ω̄J)

vg(r, ω̄J)

= ε0

{
η(r,ω) − ω

2
∂η(r,ω)

∂ω

}
ω=ω̄J

(100)

Equation (46) also includes the form:

R(r,ω) = vp(r,ω)

vg(r,ω)
= 1

n(r,ω)

∂

∂ω
(ω n(r,ω)) (101)

which shows that in many typical media, wherein refrac-
tive index is proportional to material density, the spatial
dependence of this density cancels, andR(r,ω) is approx-
imately independent of position r, so R(r,ω) ≈ R(ω) ≈
RJ . In such cases, we can approximate:∫

d2x ε0ηJ(x)w∗
n(x,β) · wm(x,β)

= 1
RJ

δnm = vg(ω̄J)

vp(ω̄J)
δnm (102)

The ratio of velocities could be absorbed into the
modes definition and consequently the factors appearing
inside the integral in Equation (97). But remember that
the phase and group velocities here refer only to those
properties that would exist in the bulk material, and they
do not include effects of waveguiding, which we discuss
next.

16. Waveguidemodes

To solve for the modes of an arbitrary waveguide formed
by a structured dielectric, it is convenient to return to the
Maxwell equations, Equations (29) and (30). See (1, 28)

iωjBj(r) = ∇ × [η(r,ωj)Dj(r)] (103)

−iωjμ0Dj(r) = ∇ × Bj(r) (104)

Then use vector identities:

∇ × ηA = η∇ × A + ∇η × A,

∇ × ∇ × A = ∇(∇ · A) − ∇2A (105)

And the Maxwell equation, ∇ · Bj = 0, to find:

∇ × [η(r,ωj)∇ × Bj(r)] = μ0ωj
2Bj(r)

η∇ × ∇ × Bj + ∇η × (∇ × Bj) = μ0ωj
2Bj(r)

− η∇2Bj + ∇η × (∇ × Bj) = μ0ωj
2Bj(r)

∇2Bj +
μ0ωj

2

η
Bj(r) = ∇η

η
× (∇ × Bj)

∇2Bj + ε(r,ωj)μ0ωj
2Bj = −∇ ln[ε(r,ωj)] × (∇ × Bj)

(106)

Here, we have restored the frequency dependence of
the permittivity, in order to account for material disper-
sionwithin a band. Thus, we are going slightly beyond the
approximation used in the earlier treatment of orthog-
onality. To be consistent, we have to replace ε(r,ωj) →
ε(r, ω̄J).

Once theBmodes are determined by solving Equation
(106), the Dmodes are given by:

Dj(r) = i
ωjμ0

∇ × Bj(r) (107)

In many cases, the right-hand side of Equation (106)
is negligible to good approximation. In a piece-wise
medium, made of discrete regions with uniform ε(r,ωj)

connected at sharp interfaces, the right-hand side can
be set to zero, and its effects are manifested in terms
of boundary conditions at the interfaces. In continuous-
index media, where the right-hand side is not strictly
zero, it creates only small perturbations to mode prop-
agation, such as ‘spin–orbit coupling’ (29, 30). So for
simplicity, here we approximate it as zero.

Now, consider an ideal dielectric waveguide of length
L, in which the spatial dependence of the weakly dis-
persive susceptibility ε(x,ωj) is transverse only, as in
the previous section. Also make the band approxima-
tion, in which the medium has frequency-independent
εJ(x) throughout the chosen band. Because the medium
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depends only on transverse coordinates, we can write the
scaled magnetic-field modes in separable form:

ũjm(r) = w̃jm(x)L−1/2 exp(iβjz) (108)

where the m index labels the transverse function. Then,
since the scaled modes ũjm(r) are proportional to the
Bj(r) modes, they also obey:

∇2ũjm + ε(x,ωjm)μ0ω
2
jmũjm = RHS (109)

where RHS .= −∇ ln[ε(x,ωjm)] × (∇ × ũjm) ≈ 0. Thus,
noting that the square of the material refractive index is
n2(x,ωjm) = ε(x,ωjm)/ε0, gives:

∇x
2wjm(x,βj)

+ (ω 2
jm c−2n2(x,ωjm) − βj

2)wjm(x,βj) ≈ 0 (110)

Again, periodic boundary conditions in z require the
propagation constant to have equally spaced values βj =
j2π/L. For each value, βj there exists a set of transverse
modes, indexed by integer m, with frequencies ωjm =
ωm(βj), determined by solving Equation (110). Then in
the continuum limit, βj → β ,ωjm → ωm(β), we have:

∇x
2wm(x,β)

+ (ω 2
m(β)c−2n2(x,ωm) − β2)wm(x,β) = 0 (111)

Thus, for every (continuous) value of β , there exists a set
of transverse modes wm(x,β).

Now, being in the continuum limit, we may invert
the relation between frequency and propagation con-
stant, and consider frequency as the independent variable
(ωm → ω) such that βm = βm(ω). And rewrite the wave
equation as an eigenvalue problem:

∇x
2wm(x) + ω2c−2n2(x,ω)wm(x)

= β2
mwm(x) (ω fixed) (112)

This equation has the form of the 2D Schroedinger
equation.DefiningV(x) .= −ω2c−2n2(x,ω),Em

.= −β2
m,

we have:

−∇x
2wm(x) + V(x)wm(x) = Emwm(x) (113)

This Schroedinger equation analogy can give us
insights into the nature of the bound states of light in a
waveguide.

17. Example of waveguidemodes

Consider an idealized case for illustration: an infinite-
barrier, 2D slab waveguide. The susceptibility varies only
in the x direction, and we write the wave equation

Equation (112) for only one transverse vector compo-
nent, denoted as um(x):

∂x
2um(x) + ω2c−2n2(x,ω) um(x) = β2

mum(x) (114)

The boundary conditions are um(x = ±D/2) = 0, where
D is the slab thickness. Solutions are:

um(x) = A cos(kxx) or A sin(kxx) (115)

with kx = mπ/D, and −kx2 + ω2n2(ω)/c2 = βm
2, thus:

βm =
√

ω2n2(ω)/c2 − (mπ/D)2 (116)

Figure 1 shows an example plot of βm vs ω, for
m = 0,1,2,3, . . .

According to the solutions given, higher-order modes
have slower group velocity than lower-order ones, con-
sistent with the light travelling in steeper zigzag paths.
This result can be seen by the following calculations, in
which we denote k .= k(ω)

.= ω n(ω)/c so that k(ω)2 =
ω2n2(ω)/c2 = β2 + kx2. Define κ and cos(θ) by:

β =
√
k(ω)2 − (mπ/D)2

.= κ cos(θ) (117)

where

cos(θ) =
√
k(ω)2 − (mπ/D)2

k(ω)

=
√
1 − k(ω)−2(mπ/D)2 ≤ 1 (118)

So, θ plays the role of the angle defining a zigzag
path. Then β2 = k(ω)2 − (mπ/D)2 implies that, if n is

Figure 1. Propagation constants βm versus frequency ω for dif-
ferent transverse modes, indexed bym (from left to right,m = 0,
1, 2, 3, 4) The dashed line corresponds to that of the bulk material
(j = 0). Parameters used: n(ω) = 1.5, D = 5µm.
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frequency-independent within a band, we have:

dβ2

dω
= 2

ωn2

c2
= 2β

dβ
dω

(119)

And so the group velocity is given by

1
vg

= dβ
dω

= 1
β

ωn2

c2
= n

c
k√

k2 − (mπ/D)2

vg = c
nk

√
k2 − (mπ/D)2 = c

n
cos(θ) < c (120)

and the phase velocity by

vp = ω

β
= ω√

k2 − (mπ/D)2

= c
n

1√
1 − (2π)−2(mπ λ/D)2

>
c
n

vp = c
n

1
cos(θ)

>
c
n

(121)

If material dispersion is included, then the result-
ing modifications to the phase and group velocities can
be calculated from the frequency-dependent solutions
βm(ω) of Equation (112). It is found typically that for
waveguides with width greater than several wavelengths
the material dispersion dominates, with velocities given
by Equation (14):

1
vg

= ∂k
∂ω

= 1
c

(
n(ω) + ω

∂n
∂ω

)

vp = c
n(ω)

(122)

while for smaller widths the waveguide influence begins
to dominate, as in Equations (120) and (121).

Waveguides may also have structure in the longitudi-
nal, z, direction, forming Bragg gratings for dispersion
engineering, or resonant cavities for cavity modification
of quantum optics processes such as spontaneous para-
metric down conversion (16). The methods given here
can easily be adopted to such structured waveguides.

18. Concluding remarks

These self-contained and tutorial notes explored a direct,
macroscopic approach to quantizing a linear-response
dielectric material with both spectral dispersion and
spatial nonuniformity, and the spectral region of inter-
est is optically transparent so that explicit treatment of
the underlying dynamical physics of the medium is not
needed. The approach taken is based on the macroscopic
Maxwell equations and a corresponding Hamiltonian,
without Lagrangians, and uses a standard mode-based

quantizationmethod.New results include a direct deriva-
tion of the mode normalization condition, and a direct
proof of the nonorthogonality of the modes.

The main results derived are:

(a) The energy density and flux in a dispersive dielectric.
(Sec. 3)

(b) An illustration of energy density and flux for a plane
wave of incoherent, stationary light travelling in the
z-direction in a nonstructuredmedium. (Sec. 3)

(c) A summary of the inverse permittivity formalism.
(Sec. 4)

(d) A new derivation of the mode normalization and
nonorthogonality conditions. (Sec. 5)

(e) A straightforward quantization scheme using only
the above-mentioned results and the Hamiltonian
for the system. (Sec. 6)

(f) Examples of the quantized field expressions for var-
ious special cases. (Secs. 7, 8, and 10)

(g) Verification of the relationship between group veloc-
ity and energy flux. (Sec. 9)

(h) The band approximation and the continuum limit.
(Secs. 11 and 14)

(i) Approximate orthogonality relations. (Sec.13)
(j) Treatment of waveguidemodes. (Secs. 15, 16 and 17)

The author knows of no other published derivations
of all of these results from a purely macroscopic Hamil-
tonian formalism without the use of dynamical models
for the medium.
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