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Abstract

We construct analogues of Rankin–Selberg integrals for Speh representations of the
general linear group over a p-adic field. The integrals are in terms of the (extended)
Shalika model and are expected to be the local counterparts of (suitably regularized)
global integrals involving square-integrable automorphic forms and Eisenstein series on
the general linear group over a global field. We relate the local integrals to the clas-
sical ones studied by Jacquet–Piatetski-Shapiro–Shalika. We also introduce a unitary
structure for Speh representation on the Shalika model, as well as various other models
including Zelevinsky’s degenerate Whittaker model.
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1. Introduction

The theory of Rankin–Selberg integrals for GLn×GLn′ , studied by Jacquet–Piatetski-Shapiro–
Shalika in a series of papers starting from the late 1970s (notably [JPSS83]), is a basic tool in the
theory of automorphic forms with an abundance of applications. The theory is based on global
zeta integrals (which involve Eisenstein series in the case n′ = n) that unfold to adelic integrals
of Whittaker–Fourier coefficients of cuspidal representations. By local multiplicity one, these
integrals factorize into a product of local zeta integrals pertaining to generic representations and
their Whittaker models.

The purpose of this paper is to study a modification of the local Rankin-Selberg integrals
in the equal rank case for a class of representations Sp(π,m) where π is an irreducible generic
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representation of GLn over a p-adic field and m > 1 is an integer. If π is unitarizable (and generic),

Sp(π,m) is the Langlands quotient of the parabolic induction of π |det|
m−1

2 ⊗ π |det|
m−3

2 ⊗ · · · ⊗
π |det|

1−m
2 . In particular, if π is discrete series, Sp(π,m) is the usual “Speh representation”.

These representations (of GLmn) are not generic if m > 1 (i.e., they do not admit a Whittaker
model). Instead, the integrals involve a different model which for simplicity we will call a Shalika
model. (We caution, however, that it does not exactly coincide with the standard notion of
Shalika model in the literature.) It is known that any Sp(π,m) admits a unique Shalika model,
a fact which reflects the “smallness” of Sp(π,m). Structurally, the new integrals look very much
like the classical ones and in fact they can be explicitly related. In particular, the unramified
computation reduces to that of the classical Rankin–Selberg integrals [JS81] (which in turn, uses
Cauchy’s identity and Shintani’s formula for the unramified Whittaker function of GLn [Shi76]).

Just like the Whittaker model gives rise to the so-called Kirillov model [GK75] (by restric-
tion to the mirabolic subgroup, namely, the stabilizer of a vector in GLn in its standard n-
dimensional representation) the Shalika model gives rise to a closely related object which we
call the Kirillov–Shalika model. The role of the mirabolic subgroup is now played by the joint
stabilizer of m linearly independent vectors in GLmn. The argument of Gelfand–Kazhdan shows
that the Kirillov–Shalika model contains all functions that are compactly supported modulo the
equivariance subgroup.

There are however some differences between the classical theory and its suggested analogue.
First, in the unramified case, we are unaware of a simple closed formula for the spherical function
in the Shalika model, except if n 6 2 or if n = 3 and m = 2. A related, equally difficult, problem
is the asymptotic behavior of a function in the Shalika model. Apart from the above-mentioned
cases, both problems go beyond the “comfort zone” of spherical varieties, for which the works
of Sakellaridis [Sak13] and Sakellaridis–Venkatesh [SV17] provide a conceptual framework and
satisfactory answers to the questions above. Moreover, at this stage it is not clear whether there
is analogue of the Bernstein–Zelevinsky theory of derivatives [BZ76, BZ77] in the case at hand.
In particular, we do not know whether the restriction of Sp(π,m) to a parabolic subgroup of
type ((n− 1)m,m) is of finite length.

Another aspect of the paper is to provide an explicit, manifestly positive, unitary structure
for the Speh representation in its Shalika model. (By this we mean that the positive-definiteness
is “clear and obvious” from the definition.) Once again, this is modeled on the case of generic
unitarizable representations, in which Bernstein gives a unitary structure for their Whittaker
models by taking the L2-inner product of Whittaker functions restricted to the mirabolic sub-
group [Ber84]. For m > 1 we use instead the joint stabilizer of m vectors, as before.

Along with the abovementioned Shalika model, the representations Sp(π,m) admit various
other models, for instance the degenerate Whittaker model considered by Zelevinsky (for any
irreducible representation) in [Zel80]. We can think of this as a sequence of models starting
from the Zelevinsky model and ending with the Shalika model. They all involve a character
on a unipotent subgroup and are covered by the general construction of Mœglin–Waldspurger
[MgW87]. The unipotent subgroups in the sequence are decreasing. One can write down explicit
isomorphisms (transition maps) between these models. This idea was used by many authors,
most recently and systematically by Gomez–Gourevitch–Sahi [GGS, GGS17]. It also played a
role in the recent work of Cai–Friedberg–Kaplan on new doubling constructions of L-functions
[CFGK19, CFK18]. We write an inner product for each of these models and show that the
transition maps are unitary.
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As far as we know, this is the first time a purely local, manifestly positive hermitian form
for a general Speh representation is given explicitly. Of course, the intertwining operator on the
standard module whose image is the Speh representation induces its unitary structure – a fact
that is true in general for any unitarizable representation on a reductive group (cf. [KZ77, §4]).
(In the case at hand we will explicitly relate this unitary structure to the one on the Shalika
model.) However, the semidefiniteness of the intertwining operator is far from obvious – in fact it
is equivalent to unitarizability, which is known to be a difficult problem in general, as is evident
from the work of Vogan and many others. Another realization of the inner product is obtained
by using global theory to embed Speh representations as local constituents of automorphic forms
in the discrete spectrum of GLmn over the adeles [Spe83]. Finally, in the m = 2 case one can also
realize a Speh representation in the discrete spectrum of L2(H\GL2n) where H is the symplectic
group of rank n [Smi18, LO19]. However, there is no such analogue for m > 2.

In principle, the new local integrals are the local counterpart of certain global integrals, just
as in the classical case. However, in addition to Eisenstein series, these global integrals involve
automorphic forms in the discrete spectrum, rather than cusp forms, and they unfortunately
do not converge (for any value of s). It should be possible (for instance, using the recent work
of Zydor [Zyd19]) to carry out a regularization procedure to make sense of these integrals and
to justify the unfolding procedure. However, we will not discuss this aspect in the paper. Nor
we will discuss the archimedean case, for which we expect many of our results to hold without
change.

The main new results of this paper are in sections 4 and 5. The unitary structure for Speh
representations (and more generally, Sp(π,m) for unitarizable generic π), on their various models,
is given in Theorem 4.3. The new zeta integrals are defined in §5. The convergence, unramified
computation and local functional equations are stated in Theorem 5.1.

We now give some more details about the contents of the paper. In §2, we first introduce some
notation and recall Zelevinsky’s classification of irreducible representations of the general linear
group over a local non-archimedean field F . We then introduce the class of m-homogeneous
representations, which includes the usual Speh representations and which is the main focus
of the paper. In terms of Zelevinsky’s classification, they simply correspond to multisegments
consisting of segments of length m, where m > 1 is a fixed integer parameter. The case m = 1
exactly corresponds to generic representations – i.e., the classical theory. In §3 we introduce the
models pertaining to m-homogeneous representations, following Mœglin–Waldspurger. (In order
to use their results, we assume from §3 onward that F is of characteristic 0. As was pointed out to
us by Dmitry Gourevitch, this assumption can be lifted. Details will appear elsewhere.) We also
introduce the transition maps between the models. They are given by integrals which entail no
convergence issues. Finally, we introduce the Kirillov–Shalika model which is the analogue of the
classical Kirillov model for generic representations. In §4 we introduce a family of bilinear forms on
a pair of models of m-homogeneous representations. In the case where the two representations are
in duality, these bilinear forms specialize to an invariant pairing, at least under some restrictions.
In the unitarizable case it gives rise to a manifestly positive invariant unitary structure. The
invariance is proved by induction on m using Bernstein’s theorem on invariant distributions with
respect to the mirabolic subgroup. In §5 we define the local Rankin–Selberg integrals for m-
homogeneous representations using their Shalika models. Applying the transition maps we can
express these integrals in terms of the Zelevinsky model. Hence, we get their rationality in qs,
the unramified computation and functional equations. In §6 we obtain more information about
the poles of the zeta functions and relate them to the abovementioned bilinear forms, and in
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particular, to the invariant pairing. In §7 we go back to the Kirillov–Shalika model and analyze
in detail the case of Speh representations of GL4 pertaining to supercuspidal representations
of GL2. We study the asymptotic behavior of a function in the Kirillov–Shalika model. At this
stage, it is hard to tell whether the result is representative of the general case or it is merely a
low-rank fluke. In §8 we write an informal global expression, modeled after the classical Rankin–
Selberg integrals, whose regularization is expected to unfold to the local integrals studied in the
paper. The regularization is necessary as the integral does not converge. (It would also eliminate
extraneous terms in the unfolding procedure.) However, we do not discuss the regularization
procedure and only give a purely heuristic argument. Finally, in Appendix A we relate the
pairing of §4 to the one induced by the intertwining operator on the standard module.
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2. Preliminaries

2.1 Notation

Throughout the paper, fix a non-archimedean local field F with ring of integers O and absolute
value |·|. In principle it should be possible to deal with the archimedean case as well with proper
adjustments, but we do not consider this case here.

From section 3 onward, F is assumed to be of characteristic 0.

If H is an algebraic group over F , we often also use H to denote H(F ).

We will consider complex, smooth representations of finite length of the groups GLn(F ),
n > 0. We denote the set of irreducible representations of GLn(F ) (up to equivalence) by Irr GLn
and set Irr = ∪n>0 Irr GLn. We write Irr GL0 = {1}. (In contrast, the one-dimensional trivial
character of GL1 will be denoted by 1F ∗ .) The subset of supercuspidal (resp., square-integrable,
essentially square-integrable, tempered, generic) representations will be denoted by Irrcusp (resp.,
Irrsqr, Irresqr, Irrtmp, Irrgen). Thus,

Irrcusp ⊂ Irrsqr ⊂ Irresqr and Irresqr, Irrtmp ⊂ Irrgen .

By convention 1 ∈ Irrtmp but 1 /∈ Irresqr.

Let π be a representation of GLn(F ). We denote by π∨ the contragredient of π and by soc(π)
the socle of π (the maximal semisimple subrepresentation of π). If π is non-zero, then we write
deg π = n, the degree of π. For any character ω of F ∗ (i.e., ω ∈ Irr GL1) we denote by πω the
representation obtained from π by twisting by the character ω ◦ det. For instance, π |·| is the
twist of π by |det|. We also write JP (π) for the (normalized) Jacquet module of π with respect
to a parabolic subgroup P of GLn, defined over F . If τ ∈ Irr GLn, then we write τ 6 π if τ
occurs as a subquotient of π, i.e., if τ occurs in the Jordan–Hölder sequence of π. If τ occurs
with multiplicity one in the Jordan–Hölder sequence of π, then we write τ 6unq π.
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If π1, . . . , πk are representations of GLn1(F ), . . . ,GLnk(F ) respectively, then we denote the
representation parabolically induced from π1 ⊗ · · · ⊗ πk (normalized induction), with respect to
the standard parabolic subgroup of block upper triangular matrices, by π1 × · · · × πk and refer
to it as the product representation. We also use the notation IndGH and indGH to denote induction
and induction with compact support (both normalized) from a subgroup H of G.

For any τ ∈ Irresqr let e(τ) be the unique real number s such that the twisted representation
τ |·|−s is unitarizable (i.e., has a unitary central character). Note that e(τ∨) = −e(τ). Any
π ∈ Irrgen can be written uniquely (up to permutation) as π = τ1 × · · · × τk where τi are
essentially square-integrable. Let e(π) = min e(τi). (For consistency we write e(1) = 0.) Then,
e(π) + e(π∨) 6 0 with equality if and only if π is essentially tempered. Moreover, π is tempered
if and only if e(π) = e(π∨) = 0. More generally, we will say that π is “approximately tempered”
(AT) if e(π) + e(π∨) + 1 > 0. Equivalently, e(τi) − e(τj) < 1 for all i, j. It is known that every
unitarizable π ∈ Irrgen is (AT). (This follows from the classification of unitary dual of GLn(F )
by Tadić [Tad86].) We denote by Irr(AT ) the set of (AT) representations.

For any set A we denote byM(A) the free commutative monoid generated by A, considered
as an ordered monoid. Thus, an element of M(A) (a multiset of A) is a finite (possibly empty)
formal sum of element of A.

2.2 Zelevinsky classification

We recall the well-known results and terminology of [Zel80].

A segment ∆ (of length l > 0 and center ρ ∈ Irrcusp) is a non-empty finite subset of Irrcusp of
the form

∆(l)
ρ = {ρ |·|

1−l
2 , ρ |·|

3−l
2 , . . . , ρ |·|

l−1
2 }.

We define deg ∆ = l deg ρ and write e(∆) = ρ |·|
l−1
2 ∈ Irrcusp (the endpoint of ∆),

c(∆) = ρ |·|
1−l
2 + ρ |·|

3−l
2 + · · ·+ ρ |·|

l−1
2 ∈M(Irrcusp)

and ∆∨ = ∆
(l)
ρ∨ . For compatibility we also write ∆

(0)
ρ = ∅. Denote by SEG the set of all segments.

We extend deg additively to a functionM(SEG)→ Z>0. Similarly, we extend e and c additively
to functions M(SEG)→M(Irrcusp).

For any ∆ = ∆
(l)
ρ ∈ SEG let

Z(∆) = soc(ρ |·|
1−l
2 × ρ |·|

3−l
2 × · · · × ρ |·|

l−1
2 ) ∈ Irr GLdeg ∆ .

(For compatibility we also set Z(∅) = 1.) Then, Z(∆)∨ = Z(∆∨). Given ∆1,∆2 ∈ SEG we write

∆2 ≺ ∆1 if ∆i = ∆
(li)
ρi with ρ2 |·|

1−l2
2

+α = ρ1 |·|
1−l1

2 for some α ∈ Z>0 such that l2− l1 < α 6 l2. If
either ∆2 ≺ ∆1 or ∆1 ≺ ∆2, then we say that ∆1 and ∆2 are linked. The induced representation
Z(∆1)× Z(∆2) is reducible if and only if ∆1 and ∆2 are linked.

The well-known classification result of Zelevinsky [Zel80, Theorem 6.5] extends the map
∆ 7→ Z(∆) to a degree preserving bijection

m 7→ Z(m)

between M(SEG) and Irr. If m = ∆1 + · · · + ∆k and ∆i 6≺ ∆j for any i < j (which can
always be arranged), then Z(m) = soc(Z(∆1)× · · · × Z(∆k)). An element of M(SEG) is called
a multisegment. We have Z(m)∨ = Z(m∨) where we extend ∨ from SEG to M(SEG) additively.
For any m1,m2 ∈M(SEG) we have Z(m1 +m2) 6unq Z(m1)×Z(m2) ([LM16, Proposition 3.5]).
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In particular, if Z(m1)× Z(m2) is irreducible, then it is equal to Z(m1 + m2).

We note the following fact.

If every segment that occurs in m1 is unlinked with every segment that occurs in m2,

then Z(m1)× Z(m2) is irreducible.
(1)

By identifying an irreducible supercuspidal representation with a singleton segment we view
M(Irrcusp) as a submonoid of M(SEG). The map Z restricts to a bijection

M(Irrcusp)→ Irrgen . (2)

An element ofM(Irrcusp) is called a cuspidal data. We write c(Z(m)) = c(m). The resulting map

c : Irr→M(Irrcusp)

is the supercuspidal support (which of course can be defined without reference to the Zelevinsky
classification). The restriction of c to Irrgen is the inverse of (2).

For any segment ∆ = ∆
(l)
ρ let ∆− = ∆

(l−1)

ρ|·|−
1
2

denote either the segment obtained by removing

the endpoint e(∆) of ∆ if l > 1 or the empty set otherwise.

Let now σ = Z(m) where m = ∆1 + · · ·+ ∆k. Let

m− = ∆−1 + · · ·+ ∆−k (disregarding empty sets).

Define recursively, m(0) = m and m(k) = (m(k−1))−, k > 0 with m(l) = 0, l minimal. Let nk =
deg e(m(k−1)), k = 1, . . . , l so that n1 + · · ·+nl = deg σ and let ωk = Z(e(m(k−1))) ∈ Irrgen GLnk .
Let P = Pσ = Mσ n Uσ = M n U be the standard parabolic subgroup of type (nl, . . . , n1). By
[Zel80, §8.3] the Jordan–Hölder sequence of JP (σ) admits a unique generic irreducible represen-
tation ω of M and moreover ω 6unq JP (σ). Equivalently (by uniqueness of Whittaker model),
this means that

HomNM (JP (σ), ψP ) = HomN (σ, ψP ) = HomG(σ, IndGN ψP ) is one-dimensional (3)

where N is the maximal nilpotent group of upper unitriangular matrices and ψP is a character
of N which is trivial on U and non-degenerate on NM = N ∩M . (This property determines P
uniquely up to association.) Moreover, ω = ωl ⊗ · · · ⊗ ω1 (see e.g., [MS14, Lemma 9.17]). (For
an arbitrary P , HomN (σ, ψP ) is finite-dimensional.) We will call the image of σ in IndGN ψP the
Zelevinsky model of σ. In general, σ 66 ωl × · · · × ω1. For example if σ = Z({1F ∗ , |·|} + {1F ∗}),
then l = 2, ω2 = 1F ∗ , ω1 = Z({|·|}+ {1F ∗}) and ω2 × ω1 is irreducible (and generic).

2.3 Ladder representations

A multisegment m is called a (strict) ladder if it can be written as m = ∆1 + · · · + ∆k where
∆i+1 ≺ ∆i for all i = 1, . . . , k− 1. The corresponding irreducible representation Z(m) is called a
ladder representation.

Lemma 2.1 [LM16]. The following two statements hold.

(i) [LM16, Lemma 6.17] Let π1, . . . , πk be ladder representations. Then, π1 × · · · × πk is irre-
ducible if and only if πi × πj is irreducible for all i, j.1

(ii) [LM16, Lemma 6.21] Suppose that Z(m1) and Z(m2) are two ladder representations and
that each segment of m1 also occurs in m2. Then, Z(m1)× Z(m2) is irreducible.

1In fact, this holds for any π1, . . . , πk ∈ Irr by using a result of Hernandez [Her10] and the quantum Schur–Weyl
duality [CP96].
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The Jacquet module of ladder representations was described in [KL12]. The following is an
immediate consequence.

Lemma 2.2 [KL12]. Let π = Z(m) be a ladder representation and P a maximal parabolic
subgroup. Then,

(i) JP (π) is a direct sum of irreducible representations of the form τ ⊗ ω where both τ and ω
are products of ladder representations.

(ii) If τ⊗ω 6 JP (π) and ω /∈ Irrgen, then there exists ρ ∈ Irrcusp such that ρ 6 c(ω), ρ |·| 6 e(m)
but ρ 66 e(m).

(iii) If τ ⊗ ω 6 JP (π) with ω ∈ Irrgen, then c(ω) 6 e(m). Moreover, if ρ ∈ Irrcusp is such that
ρ 6 e(m) and ρ |·| 6 c(ω), then ρ 6 c(ω).

(iv) If τ ⊗ ω 6 JP (π) and ρ ∈ Irrcusp is such that ρ |·| 66 c(ω), then ρ occurs in c(ω) with
multiplicity at most one.

Strictly speaking, the results of [KL12] are stated in terms of the Langlands classification.
However, they are also valid in the form above (for the Zelevinsky classification) by either re-
peating the arguments, or using the Zelevinsky involution.

2.4 m-homogeneous representations2

From now on let m,n > 1 be integers and G = GLmn. We say that σ ∈ IrrG is m-homogeneous
if σ = Z(∆1 + · · · + ∆k) where each ∆i is of length m. (If m = 1 this simply means that σ is
generic.) We denote by Irrm−hmgnsG the set of irreducible m-homogeneous representations of G.
For any π = Z({ρ1}+ · · ·+ {ρk}) ∈ Irrgen define

Sp(π,m) = Z(∆(m)
ρ1

+ · · ·+ ∆(m)
ρk

) ∈ Irr .

The following is clear.

Lemma 2.3. The map π 7→ Sp(π,m) defines a bijection between Irrgen GLn and Irrm−hmgnsG.
We have Sp(π,m)∨ = Sp(π∨,m) for any π ∈ Irrgen.

Remark 2.4. The notion of m-homogeneous is very close to the concept of “representations of
type (n,m)” introduced in [CFGK19] and studied further in [CFK18]. The difference is that we
only consider irreducible representations and emphasize the roles of the Moeglin–Waldspurger
models.

Remark 2.5. If π ∈ Irrsqr GLn, then Sp(π,m) is known as a “Speh representation”. (Strictly
speaking, these representations were introduced by Speh in the archimedean case.)

Remark 2.6. In general, if π is unramified (and generic), then Sp(π,m) is not necessarily un-
ramified if m > 1. More precisely, if π = Z({ρ1} + · · · + {ρk}) is unramified (so that ρi are
unramified characters of F ∗ and ρi 6= ρj |·| for all i, j), then Sp(π,m) is unramified if and only if

∆
(m)
ρ1 , . . . ,∆

(m)
ρk are mutually unlinked. For instance, this is the case if π is (AT).

Suppose that σ = Sp(π,m) with π ∈ Irrgen GLn. Then, in the notation of §2.2 Pσ = Pm,n =

M nU is the standard parabolic subgroup of G of type (

m︷ ︸︸ ︷
n, . . . , n), consisting of the block upper

triangular matrices with blocks of size n× n. Thus, M '
m︷ ︸︸ ︷

GLn× · · · ×GLn.

2This notion should not be confused with Zelevinsky’s notion of homogenous representations [Zel80]
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Just as in the casem = 1, there are simple building blocks form-homogeneous representations.

Proposition 2.7. Let σ = Sp(π,m) ∈ IrrG be m-homogeneous. Then, there exist π1, . . . , πt ∈
Irrgen such that

(i) σi := Sp(πi,m) is a ladder representation for all i.

(ii) Sp(π, l) = Sp(π1, l)× · · · × Sp(πt, l) for all l = 1, . . . ,m. In particular, π = π1× · · · × πt and
σ = σ1 × · · · × σt.

Moreover, let Q be the maximal standard parabolic subgroup of type ((m− 1)n, n) and denote
by JQ(σ);d the direct summand of JQ(σ) pertaining to the supercuspidal data d ∈M(Irrcusp) in
the second (GLn) factor. Then,

JQ(σ)
;c(π)|·|

m−1
2

= Sp(π,m− 1) |·|−
1
2 ⊗ π |·|

m−1
2 .

Remark 2.8. For m = 1, πi is essentially discrete series. This is not the case for m > 1 in general.

Proof. Write π = Z(
∑

i∈I{ρi}) with ρi ∈ Irrcusp and let l > 1. We say that a subset J of I is an l-
chain if it can be written, necessarily uniquely, as J = {i1, . . . , ir} where for all j = 1, . . . , r−1 we
have ρij = ρij+1 |·|

αj with αj ∈ {1, . . . , l}. (For example, for a 1-chain, ρir , . . . , ρi1 is a segment.)

Clearly, J is an l-chain if and only if Z(
∑

j∈J ∆
(l)
ρj ) is a ladder representation.

We say that two partitions of I are equivalent if one can be obtained from the other by
applying a permutation τ of I such that ρτ(i) = ρi for all i. It is easy to see that for any l > 1

there exists a partition P(l)(I) of I consisting of l-chains, such that for any J, J ′ ∈ P(l)(I) at
least one of the following conditions holds.

(i) {ρj : j ∈ J} ⊂ {ρj : j ∈ J ′}.
(ii) {ρj : j ∈ J ′} ⊂ {ρj : j ∈ J}.
(iii) For every j ∈ J and j′ ∈ J ′ the segments ∆

(l)
ρj and ∆

(l)
ρj′ are unlinked.

Moreover, P(l)(I) is unique up to equivalence. Indeed, P(l)(I) can be defined inductively by taking
a maximal l-chain J of I (with respect to inclusion) together with the partition P(l)(I \ J). It
follows from this description that if l 6 m, then up to equivalence, P(l)(J) = {J ′ ∈ P(l)(I) : J ′ ⊂
J} for any J ∈ P(m)(I) and in particular, P(l)(I) is a refinement of P(m)(I).

For any J ⊂ I let πJ = Z(
∑

j∈J{ρj}) ∈ Irrgen and σJ = Sp(πJ ,m). Then, σJ is a (m-

homogeneous) ladder representation for any J ∈ P(m)(I). It follows from the defining property
of P(m)(I), (1) and Lemma 2.1 that×J∈P(m)(I) σJ is irreducible, hence equals σ.

Likewise, for any l 6 m we have Sp(π, l) =×J ′∈P(l)(I) Sp(πJ ′ , l). Since we may assume that

Sp(πJ , l) =×J ′∈P(l)(I):J ′⊂J Sp(πJ ′ , l) for all J ∈ P(m)(I), we infer that

Sp(π, l) = ×
J∈P(m)(I)

Sp(πJ , l).

In particular, π = ×J∈P(m)(I)πJ .

By [KL12] we have

Sp(πJ ,m− 1) |·|−
1
2 ⊗ πJ |·|

m−1
2 6unq J((m−1)nJ ,nJ )(σJ)

for all J ∈ P(m)(I) where nJ = deg πJ . Therefore, by the geometric lemma of Bernstein–
Zelevinsky [BZ77],

Sp(π,m− 1) |·|−
1
2 ⊗ π |·|

m−1
2 = ×J∈P(m)(I) Sp(πJ ,m− 1) |·|−

1
2 ⊗×J∈P(m)(I)πJ |·|

m−1
2 6 JQ(σ).

8



Local Rankin–Selberg integrals for Speh representations

On the other hand, suppose that τJ , ωJ ∈ Irr with τJ ⊗ ωJ 6 JP (σJ), J ∈ P(m)(I) and∑
J∈P(m)(I)

c(ωJ) = c(π) |·|
m−1

2 . (4)

We claim that this is possible only if τJ = Sp(πJ ,m− 1) |·|−
1
2 and ωJ = πJ |·|

m−1
2 for all J . We

prove it by induction on deg π using the geometric lemma. The base of the induction is trivial.

For the induction step, it is enough to prove that if J is a maximal m-chain, then ωJ = πJ |·|
m−1

2 .
We use Lemma 2.2. By part ii, if J is a maximal m-chain, then ωJ is generic. For otherwise, since

c(ωJ) 6 c(π) |·|
m−1

2 , there would exist i ∈ I such that ρi /∈ {ρj : j ∈ J} but ρi |·| ∈ {ρj : j ∈ J} in

contradiction to the maximality of J . On the other hand, by part iv, if ρ |·| 66 c(π) |·|
m−1

2 , then ρ

can occur in c(ωJ) at most once for any J ∈ P(m)(I). It follows from (4) that if ρ |·| 66 c(π) |·|
m−1

2 ,

then ρ 6 c(ωJ) if and only if ρ = ρj |·|
m−1

2 for some j ∈ J . By part iii, it now follows that if J is a

maximal m-chain, then c(ωJ) =
∑

j∈J{ρj |·|
m−1

2 } and hence ωJ = πJ |·|
m−1

2 (since ωJ is generic)
as required.

This concludes the proof of the proposition.

Remark 2.9. It can be shown that up to permutation, σ1, . . . , σt are the unique ladder represen-
tations such that σ = σ1 × · · · × σt. We will not need to use this fact.

By Frobenius reciprocity and [LM16, Corollary 4.10] we conclude

Corollary 2.10. For any π ∈ Irrgen GLn,

Sp(π,m) = soc(Sp(π,m− 1) |·|−
1
2 × π |·|

m−1
2 ) 6unq Sp(π,m− 1) |·|−

1
2 × π |·|

m−1
2 .

By induction on m we get

Corollary 2.11. For any π ∈ Irrgen GLn, Sp(π,m) is a subrepresentation of

Π := π |·|
1−m

2 × π |·|
3−m

2 × · · · × π |·|
m−1

2 .

Equivalently (by passing to the contragredient), Sp(π,m) is a quotient of

Π̃ := π |·|
m−1

2 × π |·|
m−3

2 × · · · × π |·|
1−m

2 .

Remark 2.12. If π is (AT), then Sp(π,m) is the Langlands quotient of Π̃, In particular, in this
case Sp(π,m) is the image of the standard intertwining operator from Π̃ to Π and Sp(π,m) =
soc(Π) 6unq Π. However, in general form > 2 and π ∈ Irrgen GLn it is not true that Sp(π,m) 6unq

Π. For instance, if π = |·| × |·|−1 ∈ Irrgen GL2, then Sp(π, 3) occurs with multiplicity two in the
Jordan–Hölder sequence of π |·|−1×π×π |·|. Note that in this case we still have Sp(π,m) = soc(Π)
but we do not know whether this holds in general, i.e., whether soc(Π) is always irreducible.

3. The models

3.1 Definition of models

Throughout this section, fix π ∈ Irrgen GLn and let σ = Sp(π,m) ∈ IrrG and P = Pσ = Pm,n =

M n U the standard parabolic subgroup of G of type

m︷ ︸︸ ︷
(n, . . . , n). Let Ū = tU be the opposite of

9
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U . Fix a non-trivial character ψ of F . Let Ψ be the function on G given by

Ψ(g) = ψ(
∑

16i<nm:n-i

gi,i+1).

We denote the restriction of Ψ to a subset A of G by ΨA. Let N = Nmn (resp., N̄ = tN)
be the group of upper (resp., lower) unitriangular matrices in G. Then, ΨN is a (degenerate)
character on N that is trivial on U and non-degenerate on NM := N ∩M . Recall that by (3),
HomG(σ, IndGN ΨN ) is one-dimensional.

Denote byWΨN (σ) the image of σ in IndGN ΨN , i.e. the Zelevinsky model of σ. By Corollaries
2.10 and 2.11, for any WZe ∈ WΨN (σ) we have

(|det|
1−n

2 ⊗ |det|(m−1)(n−1)/2)WZe|GL(m−1)n×GLn ∈ W
ΨN∩(GL(m−1)n ×GLn)(Sp(π,m− 1)⊗ π), (5a)

δ
− 1

2
P δ′WZe|M ∈ WΨNM (π⊗m), (5b)

where π⊗m =

m︷ ︸︸ ︷
π ⊗ · · · ⊗ π, δP is the modulus character of P and δ′ = δ

1
2n
P is the character of M

given by

δ′(diag(g1, . . . , gm)) = |det g1|
m−1

2 |det g2|
m−3

2 . . . |det gm|
1−m

2 .

The model WΨN (σ) is a particular case of more general models considered in [MgW87] (for
any reductive group). Let us recall the setup. Let g = Matnm,nm be the Lie algebra of G over F .
For any co-character ϕ of the diagonal torus T let g = ⊕j∈Zgϕj be the corresponding grading

gϕj = {X ∈ g : Ad(ϕ(s))X = sjX}

and let gϕ>j = ⊕k>jgϕk , j ∈ Z be the corresponding filtration. Let Pϕ be the semistandard parabolic
subgroup such that LiePϕ = gϕ>0. Then, Pϕ = MϕnUϕ where Mϕ is the centralizer of ϕ, LieMϕ =

gϕ0 and LieUϕ = gϕ>0. Concretely, if ϕ(s) = diag(sλ
ϕ
1 , . . . , sλ

ϕ
mn) where (λϕ1 , . . . , λ

ϕ
mn) ∈ Zmn, then

Pϕ = {g ∈ G : gi,j = 0 if λi < λj},
Mϕ = {g ∈ G : gi,j = 0 if λi 6= λj},
Uϕ = {g ∈ G : gi,j = δi,j if λi 6 λj}.

Consider the nilpotent nm× nm matrix Jm,n consisting of m lower triangular Jordan blocks of
size n × n each. We say that ϕ is of type (m,n) if Ad(ϕ(s))Jm,n = s−1Jm,n, or equivalently, if
λϕi − λ

ϕ
i+1 = 1 for all i not dividing n. If ϕ is of type (m,n), then ΨUϕ is a character of Uϕ. By

[MgW87] (in particular, §II.2) we conclude3

Theorem 3.1 [MgW87]. Suppose that ϕ is of type (m,n). Then, the space

HomUϕ(σ,ΨUϕ) = HomG(σ, IndGUϕ ΨUϕ)

is one-dimensional.

In the setting of [MgW87] the data pertaining to Theorem 3.1 is the pair (ϕ2, Jm,n). (The more
general context of [MgW87] applies to cocharacters which are not necessarily even. However, we
will not discuss them here.)

3This is the only place in the paper where we use that F is of characteristic 0, but as mentioned in the
introduction, this assumption can be removed. (Note that the assumption on the residual characteristic in [MgW87]
was removed in [Var14]).
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We denote by WΨUϕ (σ) the image of σ in IndGUϕ ΨUϕ . It consists of functions that are left
equivariant (with respect to some character) under the centralizer of ΨUϕ in Pϕ.

Clearly, any ϕ of type (m,n) is determined by the m-tuple (λϕn, λ
ϕ
2n, . . . , λ

ϕ
mn). We consider

(m − 1)n + 1 co-characters ϕ0, . . . , ϕ(m−1)n of T of type (m,n) such that λϕink − λϕin(k+1) =

max(0, nk − i), k = 1, . . . ,m − 1. (Up to a cocharacter of the center of G, the cocharacter
ϕ2

(m−1)n corresponds to the SL2-triple pertaining to Jm,n.) For simplicity we write Pi = Pϕi ,

Mi = Mϕi , Ui = Uϕi . If i = nd+r where d = b inc and 0 6 r < n, then Ui consists of the matrices
whose n× n blocks Aj,k satisfy

(i) Aj,j is upper unitriangular for all j = 1, . . . ,m.

(ii) Aj,k is strictly upper triangular if j 6= k and j, k 6 d+ 1.

(iii) For any k < d+ 2, (Ad+2,k)a,b = 0 if b− a 6 n− r and (Ak,d+2)a,b = 0 if a− b > n− r.
(iv) Aj,k = 0 if j > k and j > d+ 2.

(There is no constraint on Aj,k if j < k and d+ 2 < k.)

In particular, U0 = N while U(m−1)n consists of the matrices whose difference from the
identity matrix is strictly upper triangular in each n × n block. Also, Ui+1 ∩ N ⊂ Ui ∩ N and
Ui ∩ N̄ ⊂ Ui+1 ∩ N̄ for all i.

For brevity we write P ′ = P(m−1)n, M ′ = M(m−1)n '
n︷ ︸︸ ︷

GLm× · · · ×GLm, U ′ = U(m−1)n. In

analogy with the case m = 2 we will refer to WΨU′ (σ) as the Shalika model of σ. We caution
however that in the literature, this terminology usually refers to the image of τ ∈ Irr GL2n

(possibly generic) under a non-trivial intertwining operator to IndGL2n
S ψS , if exists (in which

case it is unique up to a scalar [JR96]), where S is the Shalika group

S = {( g g )
(
In X

In

)
: g ∈ GLn, X ∈ Matn,n}

and ψS is the character on S given by ψ(trX). In the case at hand, any WSh ∈ WΨU′ (σ)
automatically satisfies an equivariance property under the centralizer of ΨU ′ in P ′ (which is
conjugate to S in the case m = 2) which justifies our terminology. In general, even for m = 2,
HomU ′(τ,ΨU ′) is infinite-dimensional for τ ∈ IrrG.

Letting G act on right on the vector space Fmn of row vectors with standard basis e1, . . . , emn,
P ′ is the stabilizer of the flag

(span{enj−k : j = 1, . . . ,m, k = 0, . . . , i− 1})i=0,...,n.

We denote by κ :

n︷ ︸︸ ︷
GLm× · · · ×GLm → M ′ the isomorphism such that the i-th copy of GLm

acts on span{enj+i : j = 0, . . . ,m− 1}.
If X is a matrix over F , then we write ‖X‖ for the maximum of the absolute value of its

entries.

Lemma 3.2. Suppose that WSh ∈ WΨU′ (σ). Then, there exists C > 0 with the following property.
Suppose that g ∈ G with WSh(g) 6= 0. Write g = u′l′k where u′ ∈ U ′, l′ = κ(g1, . . . , gn) ∈ M ′
and k ∈ G(O). Then, ‖g−1

i+1gi‖ 6 C for all i < n.

Proof. It is enough to consider the case g = κ(g1, . . . , gn) ∈ M ′. Assume that WSh(g) 6= 0.
Fix 1 6 i < n. For any X ∈ Matm,m(F ) let Y ∈ U ′ be the matrix such that Ynj+i,nk+i+1 =
Xj+1,k+1 for all 0 6 j, k < m and all other non-diagonal entries of Y are zero. Then, WSh(gY ) =
ψ(tr giXg

−1
i+1)WSh(g). It follows that there exists C1 > 0 depending only on WSh such that if

11
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WSh(g) 6= 0, then ψ(tr giXg
−1
i+1) = ψ(tr g−1

i+1giX) = 1 for all X ∈ Matm,m(F ) with ‖X‖ 6 C1.
The lemma follows.

3.2 Model transition part I

We denote by MΨ
i (resp., PΨ

i = MΨ
i n Ui) the stabilizer of ΨUi in Mi (resp., Pi). (Note that

Mi determines i so this notation is unambiguous.) We also write M ′Ψ = MΨ
(m−1)n and P ′Ψ =

PΨ
(m−1)n = M ′Ψ nU ′. Note that P ′Ψ is unimodular. Explicitly, M ′Ψ is the image under κ of GLm

diagonally embedded in

n︷ ︸︸ ︷
GLm× · · · ×GLm. It consists of the matrices in G whose n × n blocks

are all scalar matrices. Let ι : GLm →M ′Ψ be the resulting identification.

In general, write i = nd+ r, 0 6 r < n. Then, the reductive part of MΨ
i is the image under ι

of the subgroup

{diag(l, td+2, . . . , tm) : l ∈ GLd+1, td+2, . . . , tm ∈ F ∗}.
The unipotent radical of MΨ

i consists of the matrices whose n× n blocks Aj,k satisfy

(i) Aj,j = In for all j.

(ii) If j 6= k, then Aj,k = 0 unless k = d + 2 and j < k in which case (Aj,k)a,b = 0 unless
a− b = n− r. Moreover, all the entries of Aj,k on the diagonal a− b = n− r coincide.

This group is trivial if i is divisible by n, and is of dimension d+ 1 otherwise.

Lemma 3.3. Let 0 6 i < (m− 1)n. Then,

(i) The commutator [Ui, Ui+1] is contained in Ui∩Ui+1. Thus, Ui ·Ui+1 is a subgroup of G which
contains Ui and Ui+1 as normal subgroups and the quotients UiUi+1/Ui ' Ui+1/Ui ∩ Ui+1

and UiUi+1/Ui+1 ' Ui/Ui ∩ Ui+1 are abelian. Moreover,

Ui+1 = (Mi ∩ Ui+1) n (Ui ∩ Ui+1) and Ui = (Mi+1 ∩ Ui) n (Ui ∩ Ui+1). (6)

(ii) We have a short exact sequence

0 −−−−→ MΨ
i+1 ∩ Ui −−−−→ Ui/Ui ∩ Ui+1

ci−−−−→ PD(Ui+1/Ui ∩ Ui+1) −−−−→ 0∥∥∥ ∥∥∥
Mi+1 ∩ Ui

ci−−−−→ PD(Mi ∩ Ui+1)

where ci denotes the map u 7→ Ψ([·, u]) and PD denotes the Pontryagin dual. Dually,

0 −−−−→ Ui+1/Ui ∩ Ui+1
c′i−−−−→ PD(Ui/Ui ∩ Ui+1) −−−−→ PD(MΨ

i+1 ∩ Ui) −−−−→ 0∥∥∥ ∥∥∥
Mi ∩ Ui+1

c′i−−−−→ PD(Mi+1 ∩ Ui)
where c′i is defined by the same formula as ci.

Proof. For any j, k we have λϕij − λ
ϕi
k − (λ

ϕi+1

j − λϕi+1

k ) ∈ {−1, 0, 1}. It follows that

g
ϕi+1

>j+1 ⊂ gϕi>j ⊂ g
ϕi+1

>j−1 for all j. (7)

Therefore, Ui ⊂ Pi+1 and Ui+1 ⊂ Pi. Hence, Ui and Ui+1 normalize each other, so that Ui · Ui+1

is a subgroup of G that contains Ui and Ui+1 as normal subgroups. The equalities (6) are now
clear since T ⊂ Mi,Mi+1. By (7) we have LieMi+1 ∩ Ui = gϕi>0 ∩ g

ϕi+1

0 ⊂ gϕi1 . It follows that

12
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Mi+1 ∩Ui is abelian since [gϕi1 , g
ϕi
1 ] ⊂ gϕi2 . Similarly Mi ∩Ui+1 is abelian. The rest of the lemma

follows easily from the fact that Ui+1 ∩MΨ
i = 1.

Remark 3.4. If i = nd+r, 0 6 r < n, then Ui∩MΨ
i+1 consists of the upper unitriangular matrices

whose n× n blocks Aj,k satisfy

(i) Aj,j = In for all j.

(ii) If j < k, then Aj,k = 0 unless k = d+ 2 in which case (Aj,k)a,b = 0 unless a− b = n− r− 1
and all entries of Aj,k along the diagonal a− b = n− r − 1 are identical.

This group is of dimension d+ 1. (It coincides with the unipotent radical of MΨ
i+1 unless i+ 1 is

divisible by n.)

In the rest of the section we endow various unipotent subgroups of G with Haar measures.
Thanks to the choice of basis e1, . . . , emn, the Lie algebra of any of these unipotent groups has a
natural basis as a vector space over F . Our convention will be to take the measure corresponding
to the product measure where the Haar measure on F is the one which is self-dual with respect
to ψ.

The following is a special case of [GGS] (see also [GGS17]). For future reference and in order
to be self-contained we provide the (elementary) proof. We refer the reader to [ibid.] for a more
thorough discussion about interplay between models.

Proposition 3.5. For any i = 0, . . . , (m− 1)n− 1 the map

Wi 7→
∫
Ui∩Ui+1\Ui+1

Wi(u
′·)ΨUi+1(u′)−1 du′ =

∫
Ui∩U ′\Ui+1∩U ′

Wi(u
′·)ΨUi+1(u′)−1 du′

=

∫
Ui∩N̄\Ui+1∩N̄

Wi(u
′·) du′

(8)

defines an isomorphism Ti = T ψi :WΨUi (σ)→WΨUi+1 (σ). Its inverse is given by

Wi+1 7→
∫
Ui∩PΨ

i+1\Ui
Wi+1(u·)ΨUi(u)−1 du. (9)

In both cases the integrands are compactly supported.

Proof. For any Wi ∈ IndGUi ΨUi , u ∈ Ui and u′ ∈ Ui+1 we have Wi(u
′u) = ci(u)(u′)ΨUi(u)Wi(u

′).
It follows from Lemma 3.3 and the smoothness of Wi that Wi|Ui+1 is compactly supported modulo
Ui ∩ Ui+1 and that for any u ∈ Ui,

ΨUi(u)−1TiWi(u) is the Fourier transform of the function WiΨ
−1
Ui+1
|Ui+1/Ui∩Ui+1

at ci(u). (10)

Recall that any Wi+1 ∈ WΨUi+1 (σ) is left-MΨ
i+1-equivariant under a character, and in partic-

ular, is left-invariant under any unipotent subgroup of MΨ
i+1. Also, Ui ∩ PΨ

i+1 = (Ui ∩MΨ
i+1) n

(Ui ∩Ui+1). By a similar reasoning as before, Wi+1|Ui is compactly supported modulo Ui ∩PΨ
i+1.

By Lemma 3.3 and Fourier inversion, the map (9) defines a G-equivariant left inverse to Ti. Since
the spaces are irreducible, it is also a right inverse.

Remark 3.6. Suppose that σ is unramified, ψ has conductor O and Wi ∈ WΨUi (σ) is the unram-
ified vector such that Wi(e) = 1. Then, TiWi(e) = 1. This follows immediately from the proof of
Proposition 3.5.
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We write

T = T ψ = T(m−1)n−1 ◦ · · · ◦ T0 :WΨN (σ)→WΨU′ (σ).

This operator was considered in [CFK18, §2.4].

3.3 Model transition part II

We now introduce a subgroup of G which would play an important role in what follows. Let
D = Dm,n be the joint stabilizer of the vectors ejn, j = 1, . . . ,m in G and let ND = N∩D ⊃ NM .
Note that U ′ ⊂ D. (In the case m = 1, D is the standard mirabolic subgroup.)

The following is straightforward.

Lemma 3.7. We have Mi+1 ∩ Ui = (Mi+1 ∩ Ui ∩D) × (Ui ∩MΨ
i+1). Hence, the restriction of ci

to D ∩ Ui/D ∩ Ui ∩ Ui+1 ' D ∩Mi+1 ∩ Ui is an isomorphism. Dually, c′i defines an isomorphism
between Ui+1/Ui ∩ Ui+1 ' Mi ∩ Ui+1 and the Pontryagin dual of D ∩ Ui/D ∩ Ui ∩ Ui+1 '
D ∩Mi+1 ∩ Ui ' Ui ∩Mi+1/Ui ∩MΨ

i+1.

Hence, we can rewrite (9) as

Wi+1 7→
∫
D∩Ui∩Ui+1\D∩Ui

Wi+1(u·)ΨUi(u)−1 du =

∫
ND∩Ui+1\ND∩Ui

Wi+1(u·)ΨUi(u)−1 du.

Lemma 3.8. Any WZe ∈ IndGN ΨN is compactly supported on D ∩ N̄ . Hence,

TWZe =

∫
U ′∩N\U ′

WZe(u
′·)ΨU ′(u

′)−1 du′ =

∫
U ′∩N̄

WZe(u
′·) du′ =

∫
U ′∩Ū

WZe(u
′·) du′

where the integrand is compactly supported.

Proof. Let g = ank ∈ G with a = diag(a1, . . . , anm), n ∈ N and k ∈ G(O). It is well-known and

easy to prove that if g ∈ N̄ , then ‖g‖ 6 maxi=1,...,mn

∣∣∣∏nm
j=i aj

∣∣∣. On the other hand, it is also easy

to see that if g ∈ D, then |ajn| 6 1 for j = 1, . . . ,m. Thus, if g ∈ D and WZe(g) 6= 0, then by
the support condition for Whittaker functions we get |ai| 6 C1 for all i where C1 depends only
on WZe. By the above, if moreover g ∈ N̄ , then ‖g‖ is bounded in terms of WZe as required.

Recall that any Wi ∈ WΨUi (σ) is MΨ
i -equivariant with respect to some character χi of MΨ

i

(depending only on σ). As in [CFGK19, CFK18] we can easily explicate this character.

Lemma 3.9. (cf. [CFGK19, Proposition 24], [CFK18, §2.6]) For any i = nd + r, 0 6 r < n,
l ∈ GLd+1 and td+2, . . . , tm ∈ F ∗ we have

χi(ι(diag(l, td+2, . . . , tm)))

= ωπ(td+2 . . . tm det l) |det l|−(r2)+(n2)(m−d−1) |td+2|(
r
2)(d+1)

m∏
j=d+2

|tj |n(n−1)(m+1
2
−j)

where ωπ is the central character of π. In particular, for any WSh ∈ WΨU′ (σ)

WSh(ι(l)g) = ωπ(det l)WSh(g) ∀l ∈ GLm, g ∈ G.

Proof. It is enough to evaluate χi on an element ι(t) where t = diag(t1, . . . , tm) is in the diagonal
torus of GLm. Note that ι(t) lies in the center ZM of M . Writing Wi =

∫
N̄∩UiWZe(u·) du with

WZe ∈ WΨN (σ) (the integrand is compactly supported by Lemma 3.8), the required relation

14
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follows from the equality

δ
1
2
P δ
′−1(ι(t)) =

m∏
j=1

|tj |n(n−1)(m+1
2
−j)

=
( d+1∏
j=1

|tj |−(r2)+(n2)(m−d−1) )( m∏
j=d+2

|tj |n(n−1)(m+1
2
−j) ) |td+2|(

r
2)(d+1) δZMn(Ui∩N̄)(ι(t))

−1.

Remark 3.10. Let w̃m =

(
(−1)m−1

. .
.

1

)
∈ SLm (alternating signs on the non-principal diagonal)

and w̃m,n = ι(w̃m). By Lemma 3.9 we have

WSh(w̃m,ng) = WSh(g)

for any WSh ∈ WΨU′ (σ).

Lemma 3.11. The inverse of T is given by

WSh 7→
∫
N∩U ′\ND

WSh(u·)ΨN (u)−1 du (11)

where the integrand is compactly supported.

Proof. From Proposition 3.5 we only need to check that the integrand is compactly supported.
Assume that WSh = TWZe. By Remark 3.10, the integral equals∫
N∩U ′\ND

WSh(w̃m,nu·)ΨN (u)−1 du =

∫
U∩U ′\UD

(

∫
U ′∩Ū

WZe(vw̃m,nu·)ΨU ′(v)−1ΨN (u)−1 dv) du

where UD = U ∩D. The latter double integral is∫
Ū∩U ′\ŪD

(

∫
U ′∩Ū

WZe(vūw̃m,n·)ΨU ′(v)−1ΨN (w̃m,nūw̃m,n)−1 dv) dū.

By Lemma 3.8 the integrand is compactly supported in v, ū. Thus, the integrand on the right-
hand side of (11) is compactly supported.

3.4 Kirillov–Shalika model

The following is an analogue of [GK75, Proposition 2]

Lemma 3.12. Any non-zero D-invariant subspace of IndDU ′ ΨU ′ contains indDU ′ ΨU ′ . In particular,
indDU ′ ΨU ′ is irreducible.

The proof of [GK75, p. 110–111] (for the case m = 1) applies word by word. One only needs
to observe that the unipotent radical V of D is abelian, the stabilizer of the character ΨV under
the action of D modulo V is isomorphic to Dm,n−1 and the map p 7→ ΨV (p−1 ·p) defines an open
map from D to the Pontryagin dual of V .

Let Q be the stabilizer of span{eni : i = 1, . . . ,m} in G – a maximal parabolic subgroup of
G of type ((n− 1)m,m). Thus, Q = D oM ′Ψ and δQ|M ′Ψ ≡ 1.

Corollary 3.13. For any m-homogeneous σ ∈ IrrG, the image of the restriction map

WSh 7→WSh|D, WΨU′ (σ)→ IndDU ′ ΨU ′ (12)
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contains indDU ′ ΨU ′ . Equivalently, by Lemma 2.3 and Lemma 3.9, if σ = Sp(π,m), then the image
Kψ(σ) of the restriction map

WSh 7→WSh|Q, WΨU′ (σ)→ IndQ
P ′Ψ

ωΨ
π

contains indQ
P ′Ψ

ωΨ
π where ωΨ

π is the character of P ′Ψ such that ωΨ
π |U ′ = ΨU ′ and ωΨ

π ◦ι = ωπ ◦det.

We will call Kψ(σ) the Kirillov–Shalika model of σ.

Lemma 3.14. For any i = 0, . . . , (m− 1)n− 1, the map

T̃i : Wi 7→
∫
Ui∩U ′\Ui+1∩U ′

Wi(u
′·)ΨUi+1(u′)−1 du′ =

∫
Ui∩N̄\Ui+1∩N̄

Wi(u
′·) du′

is an isomorphism between IndDD∩Ui ΨUi and IndDD∩Ui+1
ΨUi+1 , whose inverse is given by

Wi+1 7→
∫
D∩Ui∩Ui+1\D∩Ui

Wi+1(u·)ΨUi(u)−1 du =

∫
ND∩Ui+1\ND∩Ui

Wi+1(u·)ΨUi(u)−1 du.

Moreover,

T̃i(indDD∩Ui ΨUi) = indDD∩Ui+1
ΨUi+1 .

Finally, the D-module indDD∩Ui ΨUi is irreducible.

Proof. Let Wi ∈ IndDD∩Ui ΨUi . As in the proof of Proposition 3.5, by Lemma 3.7 the function

u ∈ D ∩ Ui ∩ Ui+1\D ∩ Ui 7→ ΨUi(u)−1TiWi(u)

is the Fourier transform of the function WiΨ
−1
Ui+1
|Ui∩U ′\Ui+1∩U ′ at ci(u). The first claim follows

by Fourier inversion.

Suppose that Wi ∈ indDD∩Ui ΨUi . From the definition (and since U ′ ⊂ D) T̃iWi is supported
on (D ∩Ui ·Ui+1)Ω where Ω is a compact subset of D. Fix g ∈ Ω. It follows from the above that
the function T̃iWi(g) is compactly supported modulo D ∩ Ui ∩ Ui+1. Hence, T̃iWi is compactly
supported modulo D ∩ Ui+1.

The last part now follows from the fact that indDU ′ ΨU ′ is irreducible.

From Lemma 3.14, Proposition 3.5 and Corollary 3.13 we obtain

Corollary 3.15. For any m-homogeneous σ ∈ IrrG and for any i = 0, . . . , (m− 1)n, the image
of the restriction map

Wi 7→Wi|D, WΨUi (σ)→ IndDUi∩D ΨUi (13)

contains indDUi∩D ΨUi .

Once again, in analogy with the case m = 1 (conjectured in [GK75], proved in [BZ76, BZ77])
it is natural to make the following

Conjecture 3.16. For any m-homogeneous σ ∈ IrrG the restriction map (12) (or equivalently,
(13)) is injective.

We will prove a special case in Corollary 4.4 below.

We do not know whether in general, the restriction of σ to Q is of finite length. (See Propo-
sition 7.1 for a very special case.) Recall that in the case m = 1 this is known (for any π ∈ Irr,
not necessarily generic) using the theory of derivatives of Bernstein–Zelevinsky [BZ76, BZ77]. It
would be very interesting to have an analogous theory for m > 1.
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4. Unitary structure

We take the unnormalized Tamagawa measure on GLr with respect to ψ, i.e. the Haar measure

associated to the standard gauge form
∧
i,j=1,...,r dgi,j

det gr on GLr and the self-dual Haar measure on
F with respect to ψ. Following our convention on Haar measures for unipotent groups (see §3.2)
we obtain a (right) Haar measure on the F -points of any algebraic group whose reductive part
is a product of GLr’s. This will cover all algebraic groups considered here.

Throughout this section let π, π′ ∈ Irrgen GLn and let σ = Sp(π,m) and σ′ = Sp(π′,m). We
will work with the models considered in the previous section.

For any 0 6 i 6 (m− 1)n and s ∈ C we define a bilinear form on WΨUi (σ)×WΨ−1
Ui (σ′) by

Bi(Wi,W
′
i , s) =

∫
D∩Ui\D

Wi(g)W ′i (g) |det g|s dg

(assuming convergent). In particular, for WZe ∈ WΨN (σ), W ′Ze ∈ WΨ−1
N (σ′),

B0(WZe,W
′
Ze, s) =

∫
ND\D

WZe(g)W ′Ze(g) |det g|s dg, (14)

and for WSh ∈ WΨU′ (σ), W ′Sh ∈ W
Ψ−1
U′ (σ′),

BSh(WSh,W
′
Sh, s) := B(m−1)n(WSh,W

′
Sh, s) =

∫
U ′\D

WSh(g)W ′Sh(g) |det g|s dg.

It follows from Lemma 3.2 that |det| is bounded above on the support of WSh|D. Hence,

if BSh(WSh,W
′
Sh, s) converges absolutely at s0 ∈ R,

then it converges absolutely for any s with Re s > s0.
(15)

A similar statement holds for any Bi although we will not use it.

We also write Bi(Wi,W
′
i ) = B(Wi,W

′
i , 0) assuming the latter is well-defined (either as a

convergent integral, or by analytic continuation), in which case it is D-invariant.

In general, we do not know whether Bi(·, ·) is always defined. (See §6 and in particular
Example 6.5 for further discussion.)

Proposition 4.1. The integral defining Bi(Wi,W
′
i , s) converges for Re s+ e(π) + e(π′) + 1 > 0.

Moreover, for all 0 6 i < (m− 1)n, Wi ∈ WΨUi (σ), W ′i ∈ W
Ψ−1
Ui (σ′) we have

Bi+1(T ψi Wi, T ψ
−1

i W ′i , s) = Bi(Wi,W
′
i , s). (16)

Finally, there exist Wi ∈ WΨUi (σ) and W ′i ∈ W
Ψ−1
Ui (σ′) such that Bi(Wi,W

′
i , s) ≡ 1 for all s ∈ C.

Remark 4.2. In Proposition 6.2 below we prove that Bi(Wi,W
′
i , s) admits meromorphic contin-

uation in s to a rational function in qs.

Proof. First note that the last statement follows from Corollary 3.15.

Next, we show the convergence of the integral defining B0. Upon twisting π and π′ by
|·|(s+e(π′)−e(π))/2 and |·|(s+e(π)−e(π′))/2 respectively and using the inequality |xy| 6 (|x|2 +

∣∣y2
∣∣)/2

we may assume without loss of generality that π′ = π, W ′Ze = WZe and s = 0. Thus, we need to
show the convergence of ∫

ND\D
|WZe(g)|2 dg

17
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provided that e(π) > −1
2 . In fact, we show a slightly stronger assertion, namely the convergence

of ∫
D\G

∫
ND\D

|WZe(lg)|2 dl Φ(ηg) |det g|m dg (17)

for any 0 6 Φ ∈ S(Matm,nm(F )) where η ∈ Matm,nm(F ) is the matrix whose i-th row is eni,
i = 1, . . . ,m. Note that the stabilizer of η under the right G-action on Matm,nm(F ) is D. Since
the modulus character of D is |det|m, (17) is formally well-defined and can be rewritten as∫

ND\G
|WZe(g)|2 Φ(ηg) |det g|m dg

=

∫
P\G

∫
N\P
|WZe(lg)|2

∫
ND\N

Φ(ηulg) du |det l|m δP (l)−1 dl |det g|m dg

=

∫
P\G

∫
NM\M

|WZe(lg)|2
∫
UD\U

Φ(ηulg) du |det l|m δP (l)−1 dl |det g|m dg.

(18)

We may identify the vector space Matm,nm(F ) with Matm,m(Fn). Observe that for any l =
diag(g1, . . . , gm) ∈M , g ∈ G we have

|det l|
m−1

2

∫
UD\U

Φ(ηulg) du = Φ̃g(eng1, . . . , engm)δ′(l) (19)

where Φ̃g ∈ S((Fn)m) is the function

Φ̃g(v1, . . . , vm) =

∫
Φ(Xg) dX, v1, . . . , vm ∈ Fn, (20)

where the integral is taken over the n
(
m
2

)
-dimensional affine space of upper triangular Fn-valued

m×m-matrices whose diagonal entries are v1, . . . , vm. Thus, (18) is equal to∫
P\G

∫
(Nn\GLn)m

∣∣∣∣δ− 1
2

P δ′(l)WZe(lg)

∣∣∣∣2 Φ̃g(eng1, . . . , engm)

m∏
i=1

|det gi|i dg1 . . . dgm |det g|m dg

where l = diag(g1, . . . , gm) ∈M . Thus, by (5b) the inner integral is a finite linear combination of
products of Rankin–Selberg integrals for π×π̄ at i, i = 1, . . . ,m. The assumption that e(π) > −1

2
guarantees that these Rankin–Selberg integrals converge. Since the outer integral is a finite sum,
we obtain the convergence of (17).

Now let 0 6 i < (m − 1)n, Wi ∈ WΨUi (σ), W ′i ∈ W
Ψ−1
Ui (σ′). Recall that Wi|Ui+1 (resp.,

T ψi Wi|Ui∩D) is compactly supported modulo Ui ∩ Ui+1 (resp., Ui ∩ Ui+1 ∩D).

Moreover, by the unitarity of Fourier transform and the argument of Proposition 3.5 (cf. (10))
we have∫

D∩Ui+1\D∩UiUi+1

T ψi Wi(u)T ψ
−1

i W ′i (u) du =

∫
ND∩Ui+1\ND∩Ui

T ψi Wi(u)T ψ
−1

i W ′i (u) du

=

∫
Ui\UiUi+1

Wi(u)W ′i (u) du =

∫
D∩Ui\D∩UiUi+1

Wi(u)W ′i (u) du

(21)

where the integrals are absolutely convergent. (We can also write the integrals as∫
Ui∩U ′\Ui+1∩U ′

Wi(u)W ′i (u) du =

∫
Ui∩N̄\Ui+1∩N̄

Wi(u)W ′i (u) du.)
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It follows that if at least one of integrals∫
D∩Ui\D

|Wi(g)|2 +
∣∣W ′i (g)

∣∣2 dg or

∫
D∩Ui+1\D

|TiWi(g)|2 +
∣∣TiW ′i (g)

∣∣2 dg

converges, then so does the other and

Bi+1(T ψi Wi, T ψ
−1

i W ′i ) =

∫
D∩UiUi+1\D

∫
D∩Ui+1\D∩UiUi+1

T ψi Wi(ug)T ψ
−1

i W ′i (ug) du dg

=

∫
D∩UiUi+1\D

∫
D∩Ui\D∩UiUi+1

Wi(ug)W ′i (ug) du dg = Bi(Wi,W
′
i ).

We can now conclude the convergence for all i and the identity (16) since they clearly reduce
to the case i = 0.

Theorem 4.3. Suppose that π′ = π∨ (or equivalently, σ′ = σ∨) and π is (AT) (see §2.1). Then,

Bi(Wi,W
′
i ) is a well-defined G-invariant pairing on WΨUi (σ)×WΨ−1

Ui (σ∨).

In particular, if π ∈ Irrgen GLn is unitarizable, then Bi gives a unitary structure on WΨUi (σ).

Proof. By Proposition 4.1 Bi(·, ·) is well-defined and not identically zero. To show invariance
it suffices to consider i = 0. We use induction on m. The case m = 1 (in which D is the
standard mirabolic subgroup) is well known and follows from Bernstein’s theorem [Ber84]. For
the induction step, let m > 1 and let Q′ be the subgroup of the standard maximal parabolic
subgroup of G of type ((m− 1)n, n) consisting of the matrices whose lower right n× n corner is
upper unitriangular. Write

B0(WZe,W
′
Ze) =

∫
D∩Q′\D

∫
ND\D∩Q′

WZe(qg)W ′Ze(qg) |det q|1−n dq dg

=

∫
D∩Q′\D

∫
Dm−1,n∩N\Dm−1,n

WZe(qg)W ′Ze(qg) |det q|1−n dq dg.

Here we consider GL(m−1)n (and hence, Dm−1,n) as a subgroup of G. (Note that δD = |det|m

while δD∩Q′ = |det|n+m−1.) By (5a) and the induction hypothesis, the inner integral is left
(Q′, |det|n−1)-equivariant in g. Hence, we can replace the domain of outer integration byQ′\D1,mn

where D1,mn is the standard mirabolic subgroup of G (the stabilizer of emn). (Note that δD1,mn =
|det| and δQ′ = |det|n.) It follows that B0(·, ·) is D1,mn-invariant. By Bernstein’s theorem, it is
G-invariant as required.

We immediately deduce a special case of Conjecture 3.16.

Corollary 4.4. Conjecture 3.16 holds for any π ∈ Irr(AT ) GLn. In particular, it holds for any
unitarizable π ∈ Irrgen GLn.

Remark 4.5. By analytic continuation it is easy to prove Conjecture 3.16 for π of the form
π = τ1 |·|λ1 × · · · × τk |·|λk where τi ∈ Irrsqr are fixed and (qλ1 , . . . , qλk) is in general position.

In view of Theorem 4.3 and Bernstein’s theorem it is natural to make following related
conjecture.

Conjecture 4.6. For any m-homogeneous σ ∈ IrrG, every D-invariant bilinear form on σ×σ∨
is G-invariant.

Perhaps even more is true.
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Conjecture 4.7. For any m-homogeneous σ, σ′ ∈ IrrG, there is a unique up to scalar D-
invariant bilinear form on σ × σ′.

(We do not know whether this is known even in the case m = 1.)

5. Local zeta integrals

Throughout this section let π, π′ ∈ Irrgen GLn and σ = Sp(π,m), σ′ = Sp(π′,m) ∈ IrrG. Let
L(s, π×π′) and γ(s, π×π′, ψ) be the local factors defined by Jacquet–Piatetski-Shapiro–Shalika
[JPSS83]. (See §5.2 below.)

5.1

We write an analog of the Rankin-Selberg integral for σ × σ′ on the Shalika model as follows.
Recall that η ∈ Matm,nm(F ) is the matrix whose i-th row is eni, i = 1, . . . ,m, so that D is the

stabilizer of η in G. For any WSh ∈ WΨU′ (σ), W ′Sh ∈ W
Ψ−1
U′ (σ′), Φ ∈ S(Matm,nm(F )) consider

Z(WSh,W
′
Sh,Φ, s) =

∫
U ′\G

WSh(g)W ′Sh(g)Φ(ηg) |det g|s dg.

This expression was already considered in some form in the proof of Proposition 4.1.

Note that in the case n = 1 (where U ′ = 1) Z reduces to the generalized Tate integral for (a
character of) GLm considered by Godement–Jacquet [GJ72].

For any k let

wk =

(
1

1

. .
.

1

)
∈ GLk .

Theorem 5.1. The integral Z(WSh,W
′
Sh,Φ, s) has the following properties.

(i) The integral defining Z(WSh,W
′
Sh,Φ, s) is absolutely convergent for Re s+e(π)+e(π′)+1 >

m.

(ii) The function (m−1∏
i=0

L(s− i, π × π′)
)−1

Z(WSh,W
′
Sh,Φ, s)

is a Laurent polynomial in qs, hence entire.

(iii) If σ, σ′ are unramified, WSh ∈ WΨU′ (σ), W ′Sh ∈ W
Ψ−1
U′ (σ) are the unramified vectors such

that WSh(e) = WSh(e) = 1, Φ is the characteristic function of Matm,nm(O) and ψ has
conductor O, then

Z(WSh,W
′
Sh,Φ, s) = c

m−1∏
i=0

L(s− i, π × π′)

where c is a measure-theoretic constant (depending only on F , m and n).

(iv) We have a local functional equation

Z(ŴSh, Ŵ
′
Sh, Φ̂,m− s) = ωπ′(−1)(n−1)m

(
m−1∏
i=0

γ(s− i, π × π′, ψ)

)
Z(WSh,W

′
Sh,Φ, s) (22)
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where ŴSh ∈ WΨ−1
U′ (σ∨) is given by ŴSh(g) = WSh(wnm

tg−1) and Φ̂ is the Fourier transform

Φ̂(X) =

∫
Matm,nm(F )

Φ(Y )ψ(tr tY wmX) dY.

We will prove the theorem below by relating Z(WSh,W
′
Sh,Φ, s) to the usual Rankin-Selberg

integrals.

5.2

Recall the GLn×GLn local Rankin-Selberg integrals studied by Jacquet–Piatetski-Shapiro–
Shalika [JPSS83]. They are given by

ZGLn(W,W ′,Φ, s) =

∫
Nn\GLn

W (g)W ′(g)Φ(eng) |det g|s dg

where W ∈ WΨNn (π), W ′ ∈ WΨ−1
Nn (π′), Φ ∈ S(Fn) and s ∈ C. The integral converges for

Re s+ e(π) + e(π′) > 0 and admits a meromorphic continuation in s to a rational function in qs.
The quotient

ZGLn(W,W ′,Φ, s)

L(s, π × π′)
is a Laurent polynomial in qs which can be made non-zero at any given s ∈ C by an appropriate
choice of W , W ′, Φ. Moreover, we have a functional equation

ZGLn(Ŵ , Ŵ ′, Φ̂, 1− s) = ωπ′(−1)n−1γ(s, π × π′, ψ)ZGLn(W,W ′,Φ, s)

where Ŵ ∈ WΨNn (π∨), Ŵ ′ ∈ WΨ−1
Nn (π′∨) are given by

Ŵ (g) = W (wn
tg−1), Ŵ ′(g) = W ′(wn

tg−1)

and Φ̂ is the Fourier transform of Φ given by

Φ̂(y) =

∫
Fn

Φ(x)ψ(〈x, y〉) dx

where 〈(x1, . . . , xn), (y1, . . . , yn)〉 =
∑

i xiyi denotes the standard pairing on Fn.

Slightly more generally, for W ∈ WΨNM (π⊗m), W ′ ∈ WΨ−1
NM (π′⊗m), Φ̃ ∈ S((Fn)m) and

(s1, . . . , sm) ∈ Cm we write

ZM (W,W ′, Φ̃, (s1, . . . , sm)) =

∫
NM\M

W (l)W ′(l)Φ̃(eng1, . . . , engn)
m∏
i=1

|det gi|si dl

where l = diag(g1, . . . , gm) ∈M . This is a linear combination of products

m∏
i=1

ZGLn(Wi,W
′
i ,Φi, si)

where Wi ∈ WΨNn (π), W ′i ∈ W
Ψ−1
Nn (π′) and Φi ∈ S(Fn). Thus,

the integral defining ZM (W,W ′, Φ̃, (s1, . . . , sm)) is absolutely convergent

provided that Re si + e(π) + e(π′) > 0 for all i.
(23)
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Moreover, we have a functional equation

ZM (ŴM , Ŵ ′M , ̂̃ΦM

, (1− s1, . . . , 1− sm))

= ωπ′(−1)m(n−1)
m∏
i=1

γ(si, π × π′, ψ)ZM (W,W ′, Φ̃, (s1, . . . , sm))
(24)

where ŴM (l) = W (diag(

m︷ ︸︸ ︷
wn, . . . , wn) tl−1) and̂̃ΦM

(X1, . . . , Xm) =

∫
(Fn)m

Φ(Y1, . . . , Ym)ψ(
∑
i

〈Xi, Yi〉) dY1 . . . dYm.

5.3

The fulcrum for Theorem 5.1 is the following proposition.

Proposition 5.2. For any WZe ∈ WΨN (σ), W ′Ze ∈ WΨ−1
N (σ′) and Φ ∈ S(Matm,nm(F )) we have

Z(T ψWZe, T ψ
−1
W ′Ze,Φ, s) =

∫
P\G

ZM ((WZe)g, (W
′
Ze)g, Φ̃g, (s−m+ 1, . . . , s)) |det g|s dg (25)

where (WZe)g = δ
− 1

2
P δ′WZe(·g) ∈ WΨNM (π⊗m), (W ′Ze)g = δ

− 1
2

P δ′W ′Ze(·g) ∈ WΨ−1
NM (π′⊗m) and Φ̃g

is given by (20). The integral on the right-hand side is absolutely convergent for Re s + e(π) +
e(π′) + 1 > m.

Proof. Write Z(T ψWZe, T ψ
−1
W ′Ze,Φ, s) as∫

D\G

∫
U ′\D

T ψWZe(lg)T ψ−1
W ′Ze(lg) |det l|s−m dl Φ(ηg) |det g|s dg.

By Proposition 4.1 we get∫
D\G

∫
ND\D

WZe(lg)W ′Ze(lg) |det l|s−m dl Φ(ηg) |det g|s dg

=

∫
ND\G

WZe(g)W ′Ze(g)Φ(ηg) dg |det g|s dg.

We write it as∫
P\G

∫
NM\M

WZe(lg)W ′Ze(lg)

∫
UD\U

Φ(ηulg) du |det l|s δP (l)−1 dl |det g|s dg.

The required identity now follows from (19). For convergence, as in the proof of Proposition 4.1,
we may assume that Φ > 0, s ∈ R, π′ = π̄ and W2 = W1, so that all the integrands considered
above are non-negative. Therefore, the manipulations are justified for s + 2e(π) + 1 > m by
(23).

Proposition 5.2 immediately implies the first part of Theorem 5.1 (absolute convergence).
In view of Remark 3.6, Proposition 5.2 also reduces the second and third parts of Theorem 5.1
(analyticity and unramified computation) to the analogous statements for the usual Rankin–
Selberg integrals.

Remark 5.3. If σ and σ′ are unramified, then

m−1∏
i=0

L(s− i, π × π′) = L(s− m− 1

2
, π × σ′) = L(s− m− 1

2
, σ × π′).
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However, in general for π, π′ ∈ Irrgen GLn the equality

L(s− m− 1

2
, π × σ′) = L(s− m− 1

2
, σ × π′)

does not always hold.

Finally, we prove the functional equation (last part of Theorem 5.1).

For anyWZe ∈ WΨN (σ) define ŴZe ∈ WΨ−1
N (σ∨) by ŴZe(g) = WZe(wnm

tg−1). Then, T̂WZe =

T (ŴZe). Note that wmn = diag(

m︷ ︸︸ ︷
wn, . . . , wn)wm,n where wm,n = ι(wm); write g′ = wm,n

tg−1,
g ∈ G. Then, for any g ∈ G we have

(ŴZe)g(l) = ̂(WZe)g′
M

(wm,nlw
−1
m,n), l ∈M

and by Fourier inversion

(̃Φ̂)g(v1, . . . , vm) = |det g|−m ̂̃Φg′
M

(vm, . . . , v1), v1, . . . , vm ∈ Fn.

The last part of Theorem 5.1 therefore follows from Proposition 5.2 and the functional equa-
tion (24) using the change of variable g 7→ g′ in the integral on the right-hand side of (25).

This finishes the proof of Theorem 5.1.

6. More analytic results

In this section we prove some more analytic properties of the zeta integrals defined in the last
section, as well as the bilinear forms of §4. Some of these properties are well known in the case
m = 1. However, there are also some new phenomena.

6.1 Relation between zeta integrals and BSh

Recall that Q = D o M ′Ψ, δQ|D = δD = |det|m and δQ|M ′Ψ = 1. Hence, we can write
Z(WSh,W

′
Sh,Φ, s) as∫
Q\G

∫
U ′\D

∫
M ′Ψ

WSh(lpg)W ′Sh(lpg)Φ(ηlg) |det l|s dl |det p|s−m dp |det g|s dg.

Using Lemma 3.9 and the identification ι : GLm →M ′Ψ we get

Z(WSh,W
′
Sh,Φ, s) =

∫
Q\G
BSh(WSh(·g),W ′Sh(·g), s−m)fΦ,ωπωπ′ ,s(g) dg (26)

where for any character ω of F ∗

fΦ,ω,s(g) =

∫
GLm

Φ′g(l)ω(det l) |det l|ns dl |det g|s

and Φ′g ∈ S(Matm,m(F )) is given by Φ′g(X) = Φ(µ(X)g) where µ(X) ∈ Matm×nm is the
matrix whose i-th row is

∑m
j=1Xi,jenj . Note that Φ 7→ fΦ,ω,s is an intertwining map from

S(Matm,nm(F )) ⊗ |det|s to IndGQ νs where νs is the character on Q such that νs|D = |det|s−m/2
and νs ◦ ι = ω−1 ◦ det.

Lemma 6.1. There exist WSh ∈ WΨU′ (σ), W ′Sh ∈ W
Ψ−1
U′ (σ′) and Φ ∈ S(Matm,nm(F )) such that

Z(WSh,W
′
Sh,Φ, s) ≡ 1.
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Proof. This follows from Corollary 3.13 and (26) by taking WSh such that WSh|D is supported
in U ′Ω for a small neighborhood Ω of e and Φ supported in a small neighborhood of η.

Let ordB(s) = ordB;σ,σ′(s) be the maximal order of pole of Bi(Wi,W
′
i , ·) at s for i = 0, . . . , (m−

1)n as we vary Wi ∈ WΨUi (σ), W ′i ∈ W
Ψ−1
Ui (σ′). (Recall that this does not depend on i by (16).)

By Corollary 3.13 we have ordB(s) > 0 for all s.

Similarly, let ordZ(s) = ordZ;σ,σ′(s) > 0 be the maximal order of pole of Z(WSh,W
′
Sh,Φ, ·) at

s as we vary W ∈ WΨU′ (σ), W ′ ∈ WΨ−1
U′ (σ′) and Φ ∈ S(Matm,nm(F )). By Lemma 6.1 we have

ordZ(s) > 0 for all s. We can sharpen this as follows.

Proposition 6.2. The bilinear form Bi(·, ·, s) on WΨUi (σ) × WΨ−1
Ui (σ′) admits meromorphic

continuation in s to a rational function in qs. Moreover, for every s ∈ C we have ordB(s−m) 6
ordZ(s) with an equality unless ωπωπ′ = |·|j−ns for some j ∈ {0, . . . ,m − 1} in which case
ordZ(s) 6 ordB(s − m) + 1. In particular, if π′ = π∨, then B0(·, ·) is defined if and only if
Z(·, ·, ·, s) is holomorphic at s = m for all data.

Proof. It is enough to prove the meromorphic continuation for i = (m− 1)n, i.e., for BSh. This
case follows from the equality (26). Indeed, taking ω = ωπωπ′ and Φ to be the characteristic
function of a small neighborhood of η, fΦ,ω,s is supported in QΩ for a small neighborhood Ω of
e and hence Z(WSh,W

′
Sh,Φ, s) is a nonzero constant multiple of BSh(WSh,W

′
Sh, s−m). We also

get that ordB(s−m) 6 ordZ(s) for all s.

On the other hand, fΦ,ω,s(g) is a generalized Tate integral with respect to GLm, and hence

L(ns− m− 1

2
, ω ◦ det GLm)fΦ,ω,s =

(m−1∏
i=0

L(ns− i, ω)
)
fΦ,ω,s

is entire. We get from (26) that ordZ(s) 6 ordB(s−m) unless ω = |·|j−ns for some j ∈ {0, . . . ,m−
1} in which case ordZ(s) 6 ordB(s−m) + 1. The corollary follows.

Remark 6.3. Note that if π and π′ are tempered, then it follows from Theorem 5.1 part ii that
ordZ(s) = 0 unless Re s ∈ 1

2Z and Re s 6 m. Thus, in general, many poles of fΦ,ωπωπ′ ,s do not
contribute a pole for Z(·, ·, ·, s).

Remark 6.4. In general, we do not know what precisely is the fractional ideal of Z[q±s] generated
by

Z(WSh,W
′
Sh,Φ, s) where WSh ∈ WΨU′ (σ), W ′Sh ∈ WΨU′ (σ′), Φ ∈ S(Matm,nm(F )).

If both π and π′ are unitarizable, then we expect that this ideal is generated by
∏m−1
i=0 L(s −

i, π × π′), i.e., part ii of Theorem 5.1 is tight in this case.

Example 6.5. Consider n = m = 2 and π = |·| × |·|−1 ∈ Irrgen GL2. Then, π = π∨ and L(s, π ×
π∨) = L(s,1F ∗)

2L(s + 2,1F ∗)L(s − 2,1F ∗). Therefore, L(s, π × π′)L(s − 1, π × π′) has a pole
at s = 2. However, we do not know whether Z(·, ·, ·, s) is holomorphic at s = 2, or equivalently
(by Proposition 6.2) whether B0(·, ·) is well-defined. Recall that Sp(π, 2) is not unramified in this
case (cf. Remark 2.6).
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6.2 More results in the (AT) case

Proposition 6.6. Suppose that π is (AT) and let π′ = π∨. Then, for any WSh ∈ WΨU′ (σ),

W ′Sh ∈ W
Ψ−1
U′ (σ′) we have

Z(WSh,W
′
Sh,Φ,m) = BSh(WSh,W

′
Sh)Φ̂(0)

where both sides are well-defined.

Proof. By the first part of Theorem 5.1, the integral defining Z(WSh,W
′
Sh,Φ,m) is absolutely

convergent. Moreover, since the modulus function of D is |det|m, we can write

Z(WSh,W
′
Sh,Φ,m) =

∫
U ′\G

WSh(g)W ′Sh(g)Φ(ηg) |det g|m dg

=

∫
D\G

∫
U ′\D

WSh(pg)W ′Sh(pg) dp Φ(ηg) |det g|m dg.

For π′ = π∨, by Theorem 4.3 we get

BSh(WSh,W
′
Sh)

∫
D\G

Φ(ηg) |det g|m dg = Φ̂(0)BSh(WSh,W
′
Sh)

as required.

From the functional equations (22) we deduce

Corollary 6.7. Suppose that π is (AT) and let π′ = π∨. Then, ordZ(0) is equal to the order
of the zero of the product of γ-factors on the right-hand side of (22) at s = 0.

Example 6.8. If π ∈ Irrsqr GLn corresponds to a segment of length k and π′ = π∨, then ordZ(0) =

min(m, k). Indeed, In this case
(∏k

j=1
1−qf(s−j)

1−q−f(s+j−1)

)
γ(s, π× π∨, ψ) is entire for a suitable integer

f > 0 depending on π.

Under mild assumptions, we can give a lower bound for the real part of the first location of
a pole.

Lemma 6.9. Suppose that ωπ is unitary and let π′ = π. Then, for suitable WSh ∈ WΨU′ (σ),

W ′Sh ∈ W
Ψ−1
U′ (σ∨) and Φ ∈ S(Matm,nm(F )), Z(WSh,W

′
Sh,Φ, s) has at least one pole for Re s >

m− 1.

Proof. Indeed, taking W ′Sh = WSh and Φ > 0, the right-hand side of (25) is a power series
in q−s with non-negative coefficients ak which vanish for k � 0. Assume on the contrary that
Z(WSh,W

′
Sh,Φ, s) is holomorphic throughout Re s > m−1. Then, the power series would converge

at s = m− 1. However, the integral on the right-hand side of (25) diverges at s = m− 1 since it
contains

∫
F ∗ Φ̃g(λen, en, . . . , en) |λ|s−m+1 dλ as an inner integral. We obtain a contradiction.

Corollary 6.10. Suppose n,m > 1, π′ = π and ωπ is unitary. Then, any Bi admits a pole in the
right half plane Re s > −1. Hence, there exists WSh ∈ WΨU′ (π) such that the integral defining
BSh(WSh,WSh, s) diverges for all s 6 −1. In particular,

∫
U ′M ′Ψ\G |WSh(g)|2 dg diverges.

Proof. Indeed, by Lemma 6.9 we have ordZ(s) > 0 for some s with Re s > m − 1. Hence, by
Proposition 6.2 ordB(s − m) > 0 for that s (since n,m > 1). Therefore, the integral defining
BSh(WSh,WSh, s) diverges for all s 6 −1 (cf. (15)). In particular,∫

U ′M ′Ψ\G
|WSh(g)|2 dg =

∫
Q\G

∫
U ′\D

|WSh(g)|2 |det g|−m dg

25



Erez M. Lapid and Zhengyu Mao

diverges.

Our final result in this section is the following.

Lemma 6.11. Suppose that π is (AT) and let π′ = π∨. Then, ordZ(0) = ordB(−m) + 1. In
particular, if π is supercuspidal, then B is holomorphic at s = −m (cf. Example 6.8). Moreover,
let

Z∗(WSh,W
′
Sh,Φ) = lim

s→0
(qs − 1)ordZ(0)Z(WSh,W

′
Sh,Φ, s)

and

B∗Sh(WSh,W
′
Sh) = lim

s→−m
(qs+m − 1)ordB(−m)BSh(WSh,W

′
Sh, s).

Then, there exists a constant c (depending only on F , m and n) such that

Z∗(WSh,W
′
Sh,Φ) = cΦ(0)

∫
Q\G
B∗Sh(WSh(·g),W ′Sh(·g),−m) dg

for all WSh ∈ WΨU′ (σ), W ′Sh ∈ W
Ψ−1
U′ (σ∨) and Φ ∈ S(Matm,nm(F )).

Proof. By the local functional equation and Proposition 6.6, Z∗(WSh,W
′
Sh,Φ) = 0 if Φ(0) = 0.

Therefore, the argument in the proof of Corollary 6.10 (taking Φ supported near η, which localizes
fΦ,1F∗ ,s near Q) shows that ordZ(0) = ordB(−m) + 1. Since Ress=0 fΦ,1F∗ ,s is proportional to
Φ(0), we get the required relation from (26).

We may view ∫
Q\G
B∗Sh(WSh(·g),W ′Sh(·g),−m) dg

as a regularization of ∫
M ′ΨU ′\G

WSh(g)W ′Sh(g) dg.

(Recall that the latter diverges for W ′Sh = WSh if m > 1.)

7. The case n = m = 2

Given σ = Sp(π,m), it is natural to ask what is the asymptotic behavior of a function inWΨU′ (σ)
or (what is essentially the same thing) in Kψ(σ). In the case n = 2 or if n = 3 and m = 2, P ′Ψ is a
spherical subgroup of G and the problem can in principle be analyzed by the methods of [SV17].
We will only treat here the case where m = n = 2 and π is supercuspidal, in a self-contained
way, without appealing to the general results of [ibid.]. For n > 2 and m > 1 (excluding the case
n = 3 and m = 2) P ′Ψ is no longer a spherical subgroup and the problem seems to be more
difficult than the analogous problem for WΨN (σ). We have little to say about it.

We note that in the case where n = 2 and σ is unramified, an explicit formula for the
unramified WSh was given by F. Sato [Sat05]. This is a special case of a formula of Sakellaridis
[Sak06]. In general, it would be an interesting problem to obtain such an explicit formula in the
unramified case for any m,n. Once again, this goes beyond the scope of [Sak13].

For the rest of this section we consider the very special case where n = m = 2. Fix an
infinite-dimensional π ∈ Irr GL2 and σ = Sp(π, 2). The transition map T :WΨN (σ)→WΨU′ (σ)
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is

WZe 7→WSh =

∫
F
WZe(ū(x)·) dx where ū(x) =

(
1

1
x 1

1

)
.

Recall that π∨ ' πω−1
π . Let πs = π |·|s. Fix a pairing ∆ : π 1

2
⊗π− 1

2
→ C such that ∆(π 1

2
(g)v1⊗

π− 1
2
(g)v2) = ωπ(det g)∆(v1⊗v2) for all g ∈ GL2. For any v ∈ π 1

2
⊗π− 1

2
let MCv : GL2×GL2 → C

be the twisted matrix coefficient MCv(g1, g2) = ∆((π 1
2
(g1)⊗π− 1

2
(g2))(v)). Thus, v 7→ MCv defines

an equivariant map from π 1
2
⊗ π− 1

2
to IndGL2×GL2

(Z×Z) GLdiag
2

χ where Z is the center of GL2, GLdiag
2 is

GL2 diagonally embedded in GL2×GL2 and χ((λ1I2, λ2I2)(g, g)) =
∣∣∣λ1
λ2

∣∣∣ωπ(λ1λ2 det g). If π is

supercuspidal, then the image is contained in indGL2×GL2

(Z×Z) GLdiag
2

χ. If π is (AT), then upon identifying

π 1
2
⊗ π− 1

2
with WΨNM (π 1

2
⊗ π− 1

2
) we may realize ∆ as the convergent integral

∆(W ) =

∫
F ∗
W (diag(1,−t, 1, t))ωπ(t)−1 d∗t, W ∈ WΨNM (π 1

2
⊗ π− 1

2
). (27)

It follows from the Schur orthogonality relations that if π, π′ ∈ Irrcusp GL2 with ωπωπ′ = 1,
then π′ is equivalent to π∨ if and only if∫

Z\GL2

MCv(g, 1) MCv′(g, 1)
dg

|det g|
6= 0 (28)

for some v ∈ π 1
2
⊗ π− 1

2
, v′ ∈ π′1

2

⊗ π′− 1
2

.

Recall that in the case at hand, Q = P ′ = Pw where w =

(
1

1
1

1

)
and that ωΨ

π is the

character of P ′Ψ whose restriction to U ′ is ΨU ′ and whose composition with ι is ωπ ◦ det. Also,
‖
(
a b
c d

)
‖ = max(|a| , |b| , |c| , |d|).

Proposition 7.1. Suppose that π ∈ Irrcusp GL2. Then, we have a short exact sequence of Q-
modules

0→ indQ
P ′Ψ

ωΨ
π → σ|Q

A−→ π 1
2
⊗ π− 1

2
→ 0

where Q acts on π 1
2
⊗ π− 1

2
through M ′ (identified with GL2×GL2 via κ). Upon identifying σ|Q

with Kψ(σ), the map A is characterized by the property that for any L ∈ Kψ(σ) there exists
c > 0 such that

L(κ(g1, g2)) = MCϕ(g1, g2) for all g1, g2 ∈ GL2(F ) such that ‖g−1
2 g1‖ 6 c (29)

where ϕ = A(L). Moreover,

L(κ(·, 1)) is compactly supported in {g ∈ GL2(F ) : ‖g‖ > c}. (30)

Proof. First note that the property (29) determines ϕ uniquely (if it exists). It then also follows
that if (29) is satisfied, then A necessarily intertwines the Q-action. Moreover, if (30) is satisfied,
then ϕ = 0 if and only if L is compactly supported modulo P ′Ψ. Also note that in the relation
(29) it is enough to consider g2 = 1 since both sides are (GLdiag

2 , ωπ ◦ det)-equivariant. (For
simplicity write g = g1.)

Recall that by Lemma 3.2 there exists a constant C1 > 1 such that L(κ(g, 1)) = 0 unless
‖g‖ 6 C1.
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Suppose that L = T (WZe)|Q. Write g = u′(y) diag(t1, t2)k where u′(y) =
(

1 y
1

)
with k ∈

GL2(O). We claim that there exists C3 such that

WZe(ū(x)κ(g, 1)) = |x|−1 ωπ(x)WZe(diag(1,−x−1, 1, x−1) diag(g, I2)w) (31)

for all x ∈ F such that |x| > C3 |t2|.
Indeed, write

ū(x) = u(x−1) diag(1, 1, x, x) diag(1,−x−1, 1, x−1)wu(x−1) where u(y) =

(
1

1 y
1

1

)
.

Then,

ū(x)κ(g, 1) = u(x−1) diag(1, 1, x, x) diag(1,−x−1, 1, x−1)wκ(g, 1)u(t2x
−1)κ(k,1)

where the superscript denotes conjugation. Our claim follows since wκ(g, 1)w−1 = diag(g, I2).

Next, we show that there exists a compact set C of GL2(F ) such that if ‖g‖ 6 C1 and g /∈ C,
then both sides of (31) vanish if |x| 6 C3 |t2|.

First note that the condition ‖g‖ 6 C1 means that |t1| , |t2| , |t2y| 6 C1. Now,

diag(1,−x−1, 1, x−1) diag(g, I2) ∈ N diag(t1,−x−1t2, 1, x
−1) GL4(O).

Therefore, if the right-hand side of (31) is non-zero, then by the supercuspidality of π, x and
t1t
−1
2 are confined to a compact subset of F ∗. Since |x| 6 C3 |t2|, we infer that t2 belongs to a

compact set of F ∗, and hence also t1. Finally, |y| is bounded since |t2y| 6 C1. Hence, g belongs
to a compact set.

On the other hand,

ū(x)κ(g, 1) ∈ N diag(t1, 1, t2, 1)ū(t−1
2 x)K

and since
∣∣t−1

2 x
∣∣ 6 C3 we infer from the supercuspidality of π that if the left-hand side of (31)

is non-zero, then t1, t2 belong to a compact subset of F ∗. As before, g belongs to a compact set.
Our claim follows.

In conclusion, (31) holds for all x ∈ F provided that ‖g‖ 6 C1 and g /∈ C. Integrating (31)
over x ∈ F we conclude that if ‖g‖ 6 C1 and g /∈ C, then

L(κ(g, 1)) =

∫
F ∗
ωπ(t−1)WZe(diag(1,−t, 1, t) diag(g, I2)w) d∗t.

By (27) this is equal to MCϕ(g, 1) where ϕ ∈ WΨNM (π 1
2
⊗ π− 1

2
) is the restriction of WZe(·w) to

M . Thus, (29) and (30) hold. In view of Corollary 3.13 this proves the proposition. (Note that
WZe 7→ ϕ is Q-equivariant since w conjugates P to Q.)

Remark 7.2. It follows from (the proof of) Proposition 7.1 that there exists a non-zero WZe ∈
WΨN (σ) that vanishes on M (in which case TWZe(·w)|Q ∈ Kψ(σ) is compactly supported modulo
P ′Ψ). This can be also shown directly by realizing σ as the image of the intertwining operator

π 1
2
× π− 1

2
→ π− 1

2
× π 1

2

and taking the image of a suitable vector in π 1
2
× π− 1

2
that is supported in the big cell.

Corollary 7.3. Suppose that π ∈ Irrcusp GL2 and let π′ = π∨. Then, the poles of the bilinear

form Bi(WSh,W
′
Sh, s), as we vary WSh ∈ WΨU′ (σ) and W ′Sh ∈ W

Ψ−1
U′ (σ′), coincide with those of

L(s+ 1, π × π∨).
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Proof. We may assume without loss of generality that π is unitary. Then,

B(WSh,WSh, s− 1) =

∫
GL2

|det g|s−1 |WSh(κ(g, 1))|2 dg.

By Proposition 7.1, the analytic properties are governed by those of∫
GL2:‖g‖61

|det g|s−1 |MCϕ(g, 1)|2 dg

which can be written as∫
Z\GL2

(

∫
F ∗:|λ|6‖g‖−1

|λ|2s d∗λ) |MCϕ(g, 1)|2 |det g|s−1 dg

=
1− q−1

1− q−2s

∫
Z\GL2

‖g‖−2s |MCϕ(g, 1)|2 |det g|s−1 dg.

Thus, the poles are simple and are confined to q2s = 1. If qs = 1, then the residue is clearly
non-zero. If qs = −1, then the residue is a constant multiple of∫

Z\GL2

|MCϕ(g, 1)|2 ω(det g) |det g|−1 dg

where ω is the non-trivial quadratic unramified character of F ∗. Thus, by (28) the residue is
non-zero if and only if π ' πω. This matches exactly with the poles of L(s, π × π∨) ([JPSS83,
Proposition 8.1]).

8. Global heuristics

Let F be a number field with ring of adeles A. We consider G = GLnm as a group over F and
write G(A)1 = {g ∈ G(A) : |det g| = 1}. As before, let Q be the stabilizer of span{eni : i =
1, . . . ,m} in G – a maximal non-standard parabolic subgroup of G of type ((n − 1)m,m). For
any Φ ∈ S(Matm,nm(A)) and a Hecke character ω of F ∗\A∗ consider the degenerate normalized
Eisenstein series that is given by

EΦ,ω(g, s) =

∫
GLm(F )\GLm(A)

∑
γ∈Mm,mn(F ):rk γ=m

Φ(z−1γg) |det z|−ns ω(det z)−1 |det g|s dz

=
∑

γ∈Q(F )\G(F )

fΦ,ω,s(γg)

for Re s� 0 (more precisely, Re s > m if ω is unitary) where as in §6.1

fΦ,ω,s(g) =

∫
GLm(A)

Φ′g(l)ω(det l) |det l|ns dl |det g|s

and Φ′g ∈ S(Matm,m(A)) is given by Φ′g(X) = Φ(µ(X)g) where µ(X) ∈ Matm,nm(A) is the matrix
whose i-th row is

∑m
j=1Xi,jenj . By the method of Tate’s thesis (which goes back to Riemann)

EΦ,ω admits a meromorphic continuation with finitely many (simple) poles and a functional
equation

EΦ,ω(g, s) = EΦ̂,ω−1( tg−1,m− s).

As before, let P = MnU be the standard maximal parabolic subgroup of G of type (

m︷ ︸︸ ︷
n, . . . , n)

29



Erez M. Lapid and Zhengyu Mao

and let |·|M : M(A)→ Rm>0 be the homomorphism

|diag(l1, . . . , lm)| = (|det l1| , . . . , |det lm|).

We extend |·|M to a left U(A) and rightK-invariant function |·|P onG(A) whereK is the standard
maximal compact subgroup of G(A). For any x = (x1, . . . , xm) ∈ Rm>0 and λ = (λ1, . . . , λm) ∈ Cm

we write xλ =
∏
i x

λi
i .

Let π = ⊗πv be an irreducible cuspidal representations of GLn(A). Let φ : G(A) → C be a

smooth function such that for all g ∈ G(A) the function l ∈ M(A) 7→ δP (l)−
1
2φ(lg) belongs to

the space of

m︷ ︸︸ ︷
π ⊗ · · · ⊗ π. The Eisenstein series

E(φ, λ, g) =
∑

γ∈P (F )\G(F )

φ(γg) |γg|λP

converges if Re(λi − λi+1) > n for all i = 1, . . . ,m − 1 and admits a meromorphic continuation
to Cm. The limit

ϕ(g) = lim
λ→(m−1

2
,..., 1−m

2
)
(λ1 − λ2 − 1) . . . (λm−1 − λm − 1)E(φ, λ, g) (32)

exists and is a square-integrable automorphic form on G(F )\G(A)1 which is non-zero for a
suitable φ. As we vary φ, we obtain an irreducible automorphic representation of G(A) whose
local components are Sp(πv,m). (It is well-known that as we vary over π and m > 1, these
representations furnish the entire automorphic discrete spectrum of the general linear group
[MgW89].) Similarly, let π′ be another irreducible cuspidal representation of GLn(A) and let φ′

and ϕ′ be analogous functions with respect to π′.

Formally, we would have liked to consider the integral∫
G(F )\G(A)1

ϕ(g)ϕ′(g)EΦ,ω(g, s) dg (33)

where ω = ωπωπ′ . For m = 1, this is of course the classical Rankin–Selberg integral. Unfor-
tunately, for m > 1 this integral does not converge as none of the functions that appear in
the integrand is rapidly decreasing. A suitable regularization (in the spirit of [Zag81] or later
accounts) is therefore needed in order to make sense of (33). We will not pursue this matter
here. Instead, we will be content with a purely heuristic argument, anticipating what a possible
regularization of (33) would yield.

As in the case m = 1, we unfold (formally) the expression (33). For any i = 1, . . . ,m let
Qi = Li n Vi be the stabilizer of the flag

(span{enj−k : j = 1, . . . ,m, k = 0, . . . , r − 1})r=1,...,i

in G. Thus, Q1 = Q ⊃ Q2 ⊃ · · · ⊃ Qn−1 = Qn = P ′ and Li ' GLm(n−i)×L′i with L′i '
i︷ ︸︸ ︷

GLm× · · · ×GLm. Let pi : Qi → L′i be the resulting projection and let Q′i be the inverse image
of GLm diagonally embedded in L′i. In particular, Q′1 = Q1 = Q and Q′n = M ′Ψ nU ′. Note that
for all i = 1, . . . , n − 1, Q′i+1 is the stabilizer in Qi of the character ΨVi and Vi/Vi−1 is abelian
(and can be identified with Matm,(n−i)m) where for consistency we let V0 = 0.

In the first step we unfold (33) to write it as∫
Q(F )\G(A)1

ϕ(g)ϕ′(g)fΦ,ω,s(g) dg =

∫
Q1(F )\G(A)1

∫
V1(F )\V1(A)

ϕ(vg)ϕ′(vg) dv fΦ,ω,s(g) dg
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and expand ∫
V1(F )\V1(A)

ϕ(vg)ϕ′(vg) dv =
∑

χ∈PD(V1(F )\V1(A))

ϕV1,χ(g)ϕ′V1,χ−1
(g)

where

ϕV1,χ(g) =

∫
V1(F )\V1(A)

ϕ(vg)χ(v)−1 dv.

The Pontryagin dual of the compact abelian group V1(F )\V1(A) is isomorphic to Matm,(n−1)m(F ).
We consider only the contribution from the non-degenerate χ’s, i.e. those corresponding to matri-
ces of rank m (anticipating that the degenerate ones will not contribute, either by the cuspidality
of π or by the regularization procedure itself). The non-degenerate characters form a single orbit
under Q = Q1, namely the orbit of ΨV1 , and the stabilizer of ΨV1 is Q′2. We thus get∫

Q′2(F )\G(A)1

ϕV1,ΨV1 (g)ϕ
′V1,Ψ

−1
V1 (g)fΦ,ω,s(g) dg

which we write as∫
Q′2(F )\G(A)1

∫
V2(F )\V2(A)

ϕV1,ΨV1 (ug)ϕ
′V1,Ψ

−1
V1 (ug) du fΦ,ω,s(g) dg.

Once again, we expand the inner integral according to characters of the compact abelian group
V2(A)/V1(A)V2(F ) and consider only the non-degenerate characters. Continuing this way we get
for k = 1, . . . , n ∫

Q′k(F )\G(A)1

ϕVk−1,ΨVk−1 (g)ϕ′
Vk−1,Ψ

−1
Vk−1 (g)fΦ,ω,s(g) dg.

For k = n we obtain ∫
M ′Ψ(F )U ′(A)\G(A)1

ϕU
′,ΨU′ (g)ϕ′U

′,Ψ−1
U′ (g)fΦ,ω,s(g) dg.

Now, ϕU
′,ΨU′ is (M ′Ψ(A), ωπ ◦det)-equivariant (taking into account the identification ι : GLm →

M ′Ψ). Therefore, up to a volume factor we get∫
M ′Ψ(A)U ′(A)\G(A)

ϕU
′,ΨU′ (g)ϕ′

U ′,Ψ−1
U′ (g)fΦ,ω,s(g) dg. (34)

This integral (which actually converges for Re s > m if ω is unitary) is Eulerian. Let S be a
finite set of places of F containing all the archimedean ones such that for all v /∈ S ϕ and ϕ′

are G(Ov)-invariant (and in particular, πv and π′v are unramified) ψv has conductor Ov, Φ is
invariant under translation by Matm,mn(Ov) and Φ(X) = 0 unless Xv ∈ Matm,mn(Ov). Using
(26) and Theorem 5.1 part iii, up to a measure-theoretic constant, the integral (34) is equal to

(m−1∏
i=0

LS(s− i, π × π′)
)
ZS(ϕU

′,ΨU′ |G(FS), ϕ
′U ′,Ψ−1

U′ |G(FS),Φ|Matm,mn(FS), s)

where LS(s, π×π′) is the partial Rankin-Selberg L-function and for any WSh ∈ WΨU′ (Sp(πS ,m))

and W ′Sh ∈ W
Ψ−1
U′ (Sp(π′S ,m))

ZS(WSh,W
′
Sh,Ψ, s) =

∫
U ′(FS)\G(FS)

WSh(g)W ′Sh(g)Φ(ηg) |det g|s dg,

31



Erez M. Lapid and Zhengyu Mao

which is essentially the product over v ∈ S of the integrals considered in §5. (We tacitly assume
that much of the analysis of sections 3–5 carries over to the archimedean case.)

Appendix A. Relation to intertwining operators

For this appendix assume that π ∈ Irr(AT ) GLn. Let

Π = π |·|
m−1

2 × π |·|
m−3

2 × · · · × π |·|
1−m

2

be the standard module which admits σ = Sp(π,m) as the Langlands quotient. We real-
ize Π in the subspace WΨN (Π) of IndGN ΨN consisting of functions W such that l ∈ M 7→
δ
− 1

2
P (l)δ′−1(l)W (lg) ∈ WΨNM (π⊗m) for all g ∈ G. Define an intertwining operator on WΨN (Π)

by

W 7→MW (·) =

∫
U
W (w̃−1

m,nu·) du (35)

where w̃m,n is as in Remark 3.10. The integral defining MW is absolutely convergent and its

image is WΨN (σ). Similarly, define WΨ−1
N (Π∨) ' Π∨ to be the subspace of IndGN Ψ−1

N consisting

of functions W∨ such that l ∈ M 7→ δ
− 1

2
P (l)δ′(l)W∨(lg) ∈ WΨ−1

NM ((π∨)⊗m) for all g ∈ G. Then,
the bilinear form〈

W,W∨
〉

=

∫
P\G

∫
NM\DM

δP (l)−1W (lg)W∨(lg) dl dg, W ∈ WΨN (Π), W∨ ∈ WΨ−1
N (Π∨)

converges absolutely and defines a G-invariant pairing on WΨN (Π) ×WΨ−1
N (Π∨) where DM =

D∩M is the product of m copies of the mirabolic subgroup of GLn. SinceWΨ−1
N (σ∨) is the socle

of WΨ−1
N (Π∨), for any W∨Ze ∈ WΨ−1

N (σ∨) the linear form W 7→ 〈W,W∨Ze〉 factors through MW
and it is a scalar multiple (independently of W ) of B0(MW,W∨Ze). In the rest of the appendix
we prove the following identity.

Proposition A.1. For any W ∈ WΨN (Π) and W∨Ze ∈ WΨ−1
N (σ∨) we have〈

W,W∨Ze

〉
= B0(MW,W∨Ze). (36)

The identity will follow from a series of identities proved below.

For i = 1, . . . ,m− 1, let U i be the unipotent radical of the standard parabolic subgroup P i

of G of type (in, n, n, . . . , n). Let Ū i = tU i be its opposite.

Lemma A.2. Let τ ∈ Irrgen GLn. Then, for any WZe ∈ WΨN (Sp(τ,m)) we have∫
D∩Ū i

WZe(ū) dū = WZe(ι(ŵi)) (37)

where the integrand on the left-hand side is compactly supported. Here

ŵi =

 (−1)m−1

. .
.

(−1)i

Ii

 =
(
Im−i

w̃−1
i

)
w̃m ∈ SLm

where the signs on the upper right (m− i)× (m− i)-corner are alternating. Thus,∫
D∩Ū i

WZe(ūv̄) dū =

∫
D∩Ū i

WZe(ū) dū
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for all v̄ ∈ Ū i. In particular, for i = 1,∫
ŪD

WZe(ū) dū = WZe(w̃m,n)

where ŪD = Ū ∩D.

Proof. Let W i
Sh = T(i−1)nWZe ∈ W

ΨU(i−1)n (Sp(τ,m)). Recall that U(i−1)n is the subgroup of P i

consisting of matrices whose n× n blocks Aj,k satisfy

– Aj,j is upper unitriangular for all j = 1, . . . ,m,

– Aj,k is strictly upper triangular if j 6= k and j, k 6 i,

– Aj,k = 0 if j > k and j > i.

(There are no conditions on Aj,k if k > j and k > i.)

The inverse transform in Proposition 3.5 gives

WZe(g) =

∫
N∩U(i−1)n\ND

W i
Sh(ug) du.

We may replace the domain of integration by (N ∩ U(i−1)n ∩GLin)\(ND ∩GLin) where GLin is

embedded in G by h 7→
(
h
I(m−i)n

)
. Let U ′i = U(i−1)n ∩GLin = U ′ ∩GLin and Di = D ∩GLin.

Thus, the above integral can be taken over N ∩U ′i\N ∩Di, and by Lemma 3.11 the integrand is
compactly supported.

The expression on the left-hand side of (37) is∫
D∩Ū i

∫
N∩U ′i\N∩Di

W i
Sh(uū) du dū.

The same argument as in Lemma 3.8 shows the function W i
Sh(uū) is compactly supported in ū

uniformly in u. Thus, the above double integral is absolutely convergent. Changing the order of
integration and making a change of variable in ū we get∫

N∩U ′i\N∩Di

∫
D∩Ū i

W i
Sh(ūu) dū du.

Notice that the partial integration over U ′ ∩ Ū i ⊂ D ∩ Ū i is the composition of the transforms
Tj defined in Proposition 3.5 for j = (i− 1)n, . . . , (m− 1)n− 1. Thus, the above is∫

N∩U ′i\N∩Di

∫
U ′∩Ū i\D∩Ū i

WSh(ūu) dū du

where WSh = TWZe. By Lemma 3.9, WSh(ι(ŵi)g) = WSh(g). The above becomes∫
N∩U ′i\N∩Di

∫
U ′∩Ū i\D∩Ū i

WSh(ι(ŵi)ūu) dū du =

∫
N∩U ′\ND

WSh(uι(ŵi)) du.

Now Lemma 3.11 gives (37). For the second part, we only need to note that for all v̄ ∈ Ū i we
have WZe(ι(ŵi)v̄) = WZe(ι(ŵi)).

Write Ū as a (semidirect) product of abelian groups Ū2Ū3 . . . Ūm, where Ūi consists of the
elements ū in Ū such that ūj,k = δj,k if j 6 n(i− 1) or j > ni. For brevity, for any i = 1, . . . ,m
we denote the iterated integral∫

Ū2∩D

( ∫
Ū3∩D

· · ·
( ∫

Ūi∩D
f(ūi · · · ū3ū2) dūi

)
· · · dū3

)
dū2
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(assuming convergent) by ∫ it

Ū∩Di
f(ū) du.

Lemma A.3. Let WZe be as before and let φ ∈ S(Ū). Then,∫ it

ŪD

∫
Ū
φ(ū)WZe(ūv̄) dū dv̄ = WZe(w̃m,n)

∫
Ū
φ(ū) du

where each integrand in the iterated integral on the left-hand side is compactly supported.

Proof. We show by descending induction on i = 1, . . . ,m that the left-hand side is equal to∫ it

Ū∩Di

∫
Ū i∩D

∫
Ū
φ(ū)WZe(v̄ūv̄

′) dū dv̄ dv̄′. (38)

Note that the integrand is compactly supported in ū and v̄. For i = m this is clear while for
i = 1 we obtain the statement of the lemma by Lemma A.2.

For the induction step, we assume i > 1 and use Lemma A.2 to rewrite (38) as∫ it

Ū∩Di

∫
Ū i∩D

∫
Ū
φ(ū)WZe(v̄pi(ū)v̄′) dū dv̄ dv̄′

where pi : GLinnŪ i → GLin is the projection. Now write v̄′ = v̄1v̄2 where v̄1 ∈ Ūi ∩ D and
v̄2 ∈ Ū ∩Di−1 and note that pi(ū) ∈ GLin ∩Ū normalizes Ūi ∩D. Therefore, (38) is equal to∫ it

Ū∩Di−1

∫
Ūi∩D

∫
Ū i∩D

∫
Ū
φ(ū)WZe(v̄v̄1pi(ū)v̄2) dū dv̄ dv̄1 dv̄2

=

∫ it

Ū∩Di−1

∫
Ū i−1∩D

∫
Ū
φ(ū)WZe(v̄pi(ū)v̄′) dū dv̄ dv̄′

=

∫ it

Ū∩Di−1

∫
Ū i−1∩D

∫
Ū
φ(ū)WZe(v̄ūv̄

′) dū dv̄ dv̄′

as required.

Denote by δŪD(l) the character of DM given by d(lūl−1) = δŪD(l) dū where dū is a Haar
measure on ŪD.

Let WΨN (Π)] be the linear subspace of WΨN (Π) generated by the functions W of the form

W (g) =

{
δP (l)

1
2 δ′(l)W ′(l)φ(ū) if g = ulū, u ∈ U, l ∈M, ū ∈ Ū ,

0 otherwise,

where φ ∈ S(Ū), W ′ ∈ WΨNM (π⊗m) and W ′|DM is compactly supported modulo NM .

Lemma A.4. For any W ∈ WΨN (Π)] and W∨Ze ∈ WΨ−1
N (σ∨) we have∫ it

ŪD

〈
W,W∨Ze(·v̄)

〉
dv̄ =

∫
NM\DM

MW (w̃m,nl)W
∨
Ze(w̃m,nl)δ

−1
ŪD

(l) dl. (39)

Proof. The left-hand side is∫ it

ŪD

∫
Ū

∫
NM\DM

δP (l)−1W (lū)W∨Ze(lūv̄) dl dū dv̄ =

∫ it

ŪD

∫
NM\DM

∫
Ū
W (ūl)W∨Ze(ūlv̄) dū dl dv̄.
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As M normalizes Ūi for any i, this equals∫
NM\DM

∫ it

ŪD

∫
Ū
W (ūl)W∨Ze(ūv̄l)δ

−1
ŪD

(l) dū dv̄ dl.

Here we can interchange the order of integration as l is integrated over a fixed compact set, by
the choice of W . The claim now follows from Lemma A.3 and (35).

LetWΨ−1
N (σ∨)[ be the subspace ofWΨ−1

N (σ∨) consisting of the functions W∨Ze such that W∨Ze|D
is contained in indDND ΨN and W∨Ze|D is supported in PŪ ∩D.

Lemma A.5. For any WZe ∈ WΨN (σ) and W∨Ze ∈ WΨ−1
N (σ∨)[ we have∫

ŪD

B0(WZe,W
∨
Ze(·v̄)) dv̄ =

∫
NM\DM

WZe(w̃m,nl)W
∨
Ze(w̃m,nl)δ

−1
ŪD

(l) dl.

Proof. Note that PŪ ∩D = UDDM ŪD. Thus, the left-hand side is∫
ŪD

∫
ND\D

WZe(p)W
∨
Ze(pv̄) dp dv̄ =

∫
ŪD

∫
NM\DM

∫
ŪD

WZe(ūl)W
∨
Ze(ūlv̄) dū dl dv̄

=

∫
NM\DM

∫
ŪD

∫
ŪD

WZe(ūl)W
∨
Ze(ūlv̄) dv̄ dū dl

=

∫
NM\DM

∫
ŪD

∫
ŪD

WZe(ūl)W
∨
Ze(v̄l)δ

−1
ŪD

(l) dv̄ dū dl

where we made a change of variable v̄ 7→ l−1ū−1v̄l. By the condition on W∨Ze|D and Lemma 3.8,
the integrand is compactly supported, which justifies the previous steps. Applying Lemma A.2
for both integrals over ŪD we get the required statement.

Since (36) holds up to a scalar, in order to conclude Proposition A.1, it suffices, in view of

Lemmas A.4 and A.5, to show the existence of W ∈ WΨN (Π)] and W∨Ze ∈ WΨ−1
N (σ∨)[ such that

the right-hand side of (39) is nonzero. By Corollary 3.15, given φ ∈ S(ŪD) and W ′ ∈ indDMNM Ψ−1
NM

there exists (a unique) W∨Ze ∈ WΨ−1
N (σ∨)[ such that

W∨Ze(ulv̄) = φ(v̄)W ′(l) ∀u ∈ UD, l ∈ DM , v̄ ∈ ŪD.

Thus,

l 7→W∨Ze(w̃m,nl) =

∫
ŪD

W∨Ze(v̄l) dv̄ = δŪD(l)

∫
ŪD

W∨Ze(lv̄) dv̄

can be taken to be an arbitrary function in indDMNM Ψ−1
NM

Thus, we only need to show that

MW (w̃m,n) is nonzero for some W ∈ WΨN (Π)]. However, this is clear since MW (w̃m,n) =∫
Ū W (ū) dū.

This finishes the proof of Proposition A.1.

Remark A.6. Let us go back to setup of §8. It is well-known that the Petersson inner product of
cusp forms in π factorizes as the product over v of the Bernstein inner product on the Whittaker
model of πv. Now let ϕ be as in (32). The ΨN -th Fourier coefficient of ϕ is the ΨNM -th Whittaker
coefficient of the constant term of ϕ, which is given by the iterated residue M−1 of the global
intertwining operator. Proposition A.1 (assumed to work in the archimedean case as well) gives a
factorization of the square of the Petersson norm of ϕ in terms of the local inner product (14) on
the Zelevinsky model of Sp(πv,m). Indeed, by the Maass–Selberg relations, the Petersson inner
product is given by M−1 and Proposition A.1 will reduce the statement to the classical case.
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Math. Z. 196 (1987), no. 3, 427–452. MR 913667

MgW89 , Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674.
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MS14 Alberto Mı́nguez and Vincent Sécherre, Représentations lisses modulo ` de GLm(D), Duke
Math. J. 163 (2014), no. 4, 795–887. MR 3178433

Sak06 Yiannis Sakellaridis, A Casselman-Shalika formula for the Shalika model of GLn, Canad. J.
Math. 58 (2006), no. 5, 1095–1120. MR 2260513

Sak13 , Spherical functions on spherical varieties, Amer. J. Math. 135 (2013), no. 5, 1291–1381.
MR 3117308

Sat05 Fumihiro Sato, Fourier coefficients of Eisenstein series of GLn, local densities of square matri-
ces and subgroups of finite abelian groups, Comment. Math. Univ. St. Pauli 54 (2005), no. 1,
33–48. MR 2153954

Shi76 Takuro Shintani, On an explicit formula for class-1 “Whittaker functions” on GLn over P -adic
fields, Proc. Japan Acad. 52 (1976), no. 4, 180–182. MR MR0407208 (53 #10991)

Smi18 Jerrod Manford Smith, Speh representations are relatively discrete, 2018, arXiv:1812.04091.

Spe83 Birgit Speh, Unitary representations of Gl(n, R) with nontrivial (g, K)-cohomology, Invent.
Math. 71 (1983), no. 3, 443–465. MR 695900 (84k:22024)

SV17 Yiannis Sakellaridis and Akshay Venkatesh, Periods and harmonic analysis on spherical vari-
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