Local Rankin—Selberg integrals for Speh
representations

Erez M. Lapid and Zhengyu Mao

ABSTRACT

We construct analogues of Rankin—Selberg integrals for Speh representations of the
general linear group over a p-adic field. The integrals are in terms of the (extended)
Shalika model and are expected to be the local counterparts of (suitably regularized)
global integrals involving square-integrable automorphic forms and Eisenstein series on
the general linear group over a global field. We relate the local integrals to the clas-
sical ones studied by Jacquet—Piatetski-Shapiro—Shalika. We also introduce a unitary
structure for Speh representation on the Shalika model, as well as various other models
including Zelevinsky’s degenerate Whittaker model.
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1. Introduction

The theory of Rankin—Selberg integrals for GL,, x GL,,, studied by Jacquet—Piatetski-Shapiro—
Shalika in a series of papers starting from the late 1970s (notably [JPSS83]), is a basic tool in the
theory of automorphic forms with an abundance of applications. The theory is based on global
zeta integrals (which involve Eisenstein series in the case n’ = n) that unfold to adelic integrals
of Whittaker—Fourier coefficients of cuspidal representations. By local multiplicity one, these
integrals factorize into a product of local zeta integrals pertaining to generic representations and
their Whittaker models.

The purpose of this paper is to study a modification of the local Rankin-Selberg integrals
in the equal rank case for a class of representations Sp(w, m) where 7 is an irreducible generic
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representation of GL,, over a p-adic field and m > 1 is an integer. If 7 is unitarizable (and generic),
m—1 m—3
Sp(m,m) is the Langlands quotient of the parabolic induction of 7 |det| 2= @ w|det|] 2 ®---®

W\det|l_Tm. In particular, if 7 is discrete series, Sp(w,m) is the usual “Speh representation”.
These representations (of GL,,;) are not generic if m > 1 (i.e., they do not admit a Whittaker
model). Instead, the integrals involve a different model which for simplicity we will call a Shalika
model. (We caution, however, that it does not exactly coincide with the standard notion of
Shalika model in the literature.) It is known that any Sp(w, m) admits a unique Shalika model,
a fact which reflects the “smallness” of Sp(m, m). Structurally, the new integrals look very much
like the classical ones and in fact they can be explicitly related. In particular, the unramified
computation reduces to that of the classical Rankin—Selberg integrals [JS81] (which in turn, uses
Cauchy’s identity and Shintani’s formula for the unramified Whittaker function of GL,, [Shi76]).

Just like the Whittaker model gives rise to the so-called Kirillov model [GK75] (by restric-
tion to the mirabolic subgroup, namely, the stabilizer of a vector in GL, in its standard n-
dimensional representation) the Shalika model gives rise to a closely related object which we
call the Kirillov—Shalika model. The role of the mirabolic subgroup is now played by the joint
stabilizer of m linearly independent vectors in GL,y,,. The argument of Gelfand—Kazhdan shows
that the Kirillov—Shalika model contains all functions that are compactly supported modulo the
equivariance subgroup.

There are however some differences between the classical theory and its suggested analogue.
First, in the unramified case, we are unaware of a simple closed formula for the spherical function
in the Shalika model, except if n < 2 or if n = 3 and m = 2. A related, equally difficult, problem
is the asymptotic behavior of a function in the Shalika model. Apart from the above-mentioned
cases, both problems go beyond the “comfort zone” of spherical varieties, for which the works
of Sakellaridis [Sak13] and Sakellaridis-Venkatesh [SV17] provide a conceptual framework and
satisfactory answers to the questions above. Moreover, at this stage it is not clear whether there
is analogue of the Bernstein—Zelevinsky theory of derivatives [BZ76, BZ77] in the case at hand.
In particular, we do not know whether the restriction of Sp(w,m) to a parabolic subgroup of
type ((n — 1)m,m) is of finite length.

Another aspect of the paper is to provide an explicit, manifestly positive, unitary structure
for the Speh representation in its Shalika model. (By this we mean that the positive-definiteness
is “clear and obvious” from the definition.) Once again, this is modeled on the case of generic
unitarizable representations, in which Bernstein gives a unitary structure for their Whittaker
models by taking the L?-inner product of Whittaker functions restricted to the mirabolic sub-
group [Ber84|. For m > 1 we use instead the joint stabilizer of m vectors, as before.

Along with the abovementioned Shalika model, the representations Sp(w, m) admit various
other models, for instance the degenerate Whittaker model considered by Zelevinsky (for any
irreducible representation) in [Zel80]. We can think of this as a sequence of models starting
from the Zelevinsky model and ending with the Shalika model. They all involve a character
on a unipotent subgroup and are covered by the general construction of Maeglin—Waldspurger
[MgW387]. The unipotent subgroups in the sequence are decreasing. One can write down explicit
isomorphisms (transition maps) between these models. This idea was used by many authors,
most recently and systematically by Gomez—Gourevitch-Sahi [GGS, GGS17]. It also played a
role in the recent work of Cai-Friedberg—Kaplan on new doubling constructions of L-functions
[CFGK19, CFK18]. We write an inner product for each of these models and show that the
transition maps are unitary.



LOCAL RANKIN—SELBERG INTEGRALS FOR SPEH REPRESENTATIONS

As far as we know, this is the first time a purely local, manifestly positive hermitian form
for a general Speh representation is given explicitly. Of course, the intertwining operator on the
standard module whose image is the Speh representation induces its unitary structure — a fact
that is true in general for any unitarizable representation on a reductive group (cf. [KZ77, §4]).
(In the case at hand we will explicitly relate this unitary structure to the one on the Shalika
model.) However, the semidefiniteness of the intertwining operator is far from obvious — in fact it
is equivalent to unitarizability, which is known to be a difficult problem in general, as is evident
from the work of Vogan and many others. Another realization of the inner product is obtained
by using global theory to embed Speh representations as local constituents of automorphic forms
in the discrete spectrum of GL,,,, over the adeles [Spe83]. Finally, in the m = 2 case one can also
realize a Speh representation in the discrete spectrum of L?(H\ GLsa,) where H is the symplectic
group of rank n [Smil8, LO19]. However, there is no such analogue for m > 2.

In principle, the new local integrals are the local counterpart of certain global integrals, just
as in the classical case. However, in addition to Eisenstein series, these global integrals involve
automorphic forms in the discrete spectrum, rather than cusp forms, and they unfortunately
do not converge (for any value of s). It should be possible (for instance, using the recent work
of Zydor [Zyd19]) to carry out a regularization procedure to make sense of these integrals and
to justify the unfolding procedure. However, we will not discuss this aspect in the paper. Nor
we will discuss the archimedean case, for which we expect many of our results to hold without
change.

The main new results of this paper are in sections 4 and 5. The unitary structure for Speh
representations (and more generally, Sp(m, m) for unitarizable generic 7), on their various models,
is given in Theorem 4.3. The new zeta integrals are defined in §5. The convergence, unramified
computation and local functional equations are stated in Theorem 5.1.

We now give some more details about the contents of the paper. In §2, we first introduce some
notation and recall Zelevinsky’s classification of irreducible representations of the general linear
group over a local non-archimedean field F'. We then introduce the class of m-homogeneous
representations, which includes the usual Speh representations and which is the main focus
of the paper. In terms of Zelevinsky’s classification, they simply correspond to multisegments
consisting of segments of length m, where m > 1 is a fixed integer parameter. The case m = 1
exactly corresponds to generic representations — i.e., the classical theory. In §3 we introduce the
models pertaining to m-homogeneous representations, following Mceglin—Waldspurger. (In order
to use their results, we assume from §3 onward that F' is of characteristic 0. As was pointed out to
us by Dmitry Gourevitch, this assumption can be lifted. Details will appear elsewhere.) We also
introduce the transition maps between the models. They are given by integrals which entail no
convergence issues. Finally, we introduce the Kirillov—Shalika model which is the analogue of the
classical Kirillov model for generic representations. In §4 we introduce a family of bilinear forms on
a pair of models of m-homogeneous representations. In the case where the two representations are
in duality, these bilinear forms specialize to an invariant pairing, at least under some restrictions.
In the unitarizable case it gives rise to a manifestly positive invariant unitary structure. The
invariance is proved by induction on m using Bernstein’s theorem on invariant distributions with
respect to the mirabolic subgroup. In §5 we define the local Rankin—Selberg integrals for m-
homogeneous representations using their Shalika models. Applying the transition maps we can
express these integrals in terms of the Zelevinsky model. Hence, we get their rationality in ¢,
the unramified computation and functional equations. In §6 we obtain more information about
the poles of the zeta functions and relate them to the abovementioned bilinear forms, and in
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particular, to the invariant pairing. In §7 we go back to the Kirillov—Shalika model and analyze
in detail the case of Speh representations of GL4 pertaining to supercuspidal representations
of GLy. We study the asymptotic behavior of a function in the Kirillov—Shalika model. At this
stage, it is hard to tell whether the result is representative of the general case or it is merely a
low-rank fluke. In §8 we write an informal global expression, modeled after the classical Rankin—
Selberg integrals, whose regularization is expected to unfold to the local integrals studied in the
paper. The regularization is necessary as the integral does not converge. (It would also eliminate
extraneous terms in the unfolding procedure.) However, we do not discuss the regularization
procedure and only give a purely heuristic argument. Finally, in Appendix A we relate the
pairing of §4 to the one induced by the intertwining operator on the standard module.
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2. Preliminaries

2.1 Notation

Throughout the paper, fix a non-archimedean local field F' with ring of integers O and absolute
value |-|. In principle it should be possible to deal with the archimedean case as well with proper
adjustments, but we do not consider this case here.

From section 3 onward, F' is assumed to be of characteristic 0.
If H is an algebraic group over F', we often also use H to denote H(F).

We will consider complex, smooth representations of finite length of the groups GL, (F),
n > 0. We denote the set of irreducible representations of GL,,(F) (up to equivalence) by Irr GL,,
and set Irr = Uy, Irr GL,,. We write Irr GLyg = {1}. (In contrast, the one-dimensional trivial
character of GL; will be denoted by 1p+.) The subset of supercuspidal (resp., square-integrable,
essentially square-integrable, tempered, generic) representations will be denoted by Irreysp (resp.,
Irreqr, ITesqr, IT¢mp, IrTgen). Thus,

Irreusp C Irrggr C IrTegqr and Invegqr, ITmp C Irrgen -

By convention 1 € Irrymp but 1 ¢ Irregqr.

Let 7 be a representation of GL,,(F'). We denote by " the contragredient of = and by soc(7)
the socle of 7 (the maximal semisimple subrepresentation of 7). If 7 is non-zero, then we write
deg m = n, the degree of m. For any character w of F* (i.e., w € Irr GL;) we denote by nw the
representation obtained from 7 by twisting by the character w o det. For instance, 7|-| is the
twist of 7 by |det|. We also write Jp () for the (normalized) Jacquet module of 7 with respect
to a parabolic subgroup P of GL,, defined over F. If 7 € Irr GL,, then we write 7 < 7 if 7
occurs as a subquotient of , i.e., if 7 occurs in the Jordan—Holder sequence of 7. If 7 occurs
with multiplicity one in the Jordan-Holder sequence of 7, then we write 7 <unq 7.
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If mq,...,m are representations of GLy, (F'),...,GLy, (F') respectively, then we denote the
representatlon parabolically induced from m; ® - ® 7 (normalized induction), with respect to
the standard parabolic subgroup of block upper triangular matrices, by m X - -+ X 7 and refer
to it as the product representation. We also use the notation Ind% and ind% to denote induction
and induction with compact support (both normalized) from a subgroup H of G.

For any 7 € Irresqr let €(7) be the unique real number s such that the twisted representation
7|-|7% is unitarizable (i.e., has a unitary central character). Note that e(t") = —e(7). Any
T € Irrgen can be written uniquely (up to permutation) as 7 = 7y X --- X 7, where 7; are
essentially square-integrable. Let e(m) = mine(r;). (For consistency we write e(1) = 0.) Then,
e(m) +e(m") < 0 with equality if and only if 7 is essentially tempered. Moreover, 7 is tempered
if and only if e(r) = e(m") = 0. More generally, we will say that 7 is “approximately tempered”
(AT) if e(m) + e(n") + 1 > 0. Equivalently, e(r;) — e(7j) < 1 for all ¢, j. It is known that every
unitarizable 7 € Irrgey is (AT). (This follows from the classification of unitary dual of GL,,(F)
by Tadi¢ [Tad86].) We denote by Irr 47y the set of (AT) representations.

For any set A we denote by M(A) the free commutative monoid generated by A, considered
as an ordered monoid. Thus, an element of M(A) (a multiset of A) is a finite (possibly empty)
formal sum of element of A.

2.2 Zelevinsky classification
We recall the well-known results and terminology of [Zel80].

A segment A (of length [ > 0 and center p € Irreysp) is @ non-empty finite subset of Irreys, of
the form

1-1 3-1 -1
A,(ol):{pH 2 7pH 2 77p|‘2}
We define deg A = I deg p and write e(A) = p Hl%l € Irreysp (the endpoint of A),

1-1 3-1 =1
(B =plIZ 4 p T ot pF € M)

and AV = A/(JQ' For compatibility we also write AE,O) = (). Denote by SEG the set of all segments.
We extend deg additively to a function M(SEG) — Z=g. Similarly, we extend e and ¢ additively
to functions M(SEG) — M(Irreysp)-

For any A = AY) € SEG let

Z(8) =soc(p|| T x p|| T x -+ x p|| 7)€ Irr CLugga
(For compatibility we also set Z((Z)) 1.) Then Z(A) Z(AY). Given A1, Ay € SEG we write

Ay < A1if A; = Agl) with po |- \ 22+e =p1 ] \ > for some o € Z~q such that lo —1; < a < lo. If
either Ay < Ay or Ay < As, then we say that A; and As are linked. The induced representation
Z(A1) x Z(Aa) is reducible if and only if A; and Ay are linked.

The well-known classification result of Zelevinsky [Zel80, Theorem 6.5] extends the map
A — Z(A) to a degree preserving bijection

m— Z(m)
between M(SEG) and Irr. If m = A; + -+ + Ak and A; A A for any ¢ < j (which can
always be arranged), then Z(m) = soc(Z (A ) - X Z(Ag)). An element of M(SEQG) is called
a multisegment. We have Z(m)¥ = Z(m") where we extend ¥ from SEG to M(SEG) additively.

For any m;, my € M(SEG) we have Z(m; +my) <unq Z(my) x Z(mg) ([LM16, Proposition 3.5]).
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In particular, if Z(my) x Z(mg) is irreducible, then it is equal to Z(m; + ms).
We note the following fact.

If every segment that occurs in m; is unlinked with every segment that occurs in mo,
then Z(my) x Z(my) is irreducible.

(1)

By identifying an irreducible supercuspidal representation with a singleton segment we view
M(Irreysp) as a submonoid of M(SEG). The map Z restricts to a bijection

M(Irreysp) — Irrgen - (2)
An element of M(Irreygp) is called a cuspidal data. We write ¢(Z(m)) = ¢(m). The resulting map
¢ : Irr = M(Irreysp)

is the supercuspidal support (which of course can be defined without reference to the Zelevinsky
classification). The restriction of ¢ to Irrge, is the inverse of (2).
For any segment A = Ag) let A= = A(ll_‘l)l denote either the segment obtained by removing
el 2
the endpoint e(A) of A if [ > 1 or the empty set otherwise.

Let now 0 = Z(m) where m = A; + -+ + Ag. Let
m- =A] +---+ A, (disregarding empty sets).

Define recursively, m() = m and m®) = (m*=1)= % > 0 with m®) = 0, [ minimal. Let nj =
dege(m*D) & =1,...,1s0that ny +---+n; = dego and let wy, = Z(e(mF~1)) € Irrgey, GLy, .
Let P = P, = M, x U, = M x U be the standard parabolic subgroup of type (n;,...,n1). By
[Zel80, §8.3] the Jordan—Holder sequence of Jp(o) admits a unique generic irreducible represen-
tation w of M and moreover w <unq Jp(0). Equivalently (by uniqueness of Whittaker model),
this means that

Homy,, (Jp(c),¥p) = Homy (o, v¥p) = Homg(o, Ind$; ¥p) is one-dimensional (3)

where N is the maximal nilpotent group of upper unitriangular matrices and ¥ p is a character
of N which is trivial on U and non-degenerate on Np; = N N M. (This property determines P
uniquely up to association.) Moreover, w = w; ® -+ ® w; (see e.g., [MS14, Lemma 9.17]). (For
an arbitrary P, Homy(c,vp) is finite-dimensional.) We will call the image of ¢ in Ind% ¥p the
Zelevinsky model of . In general, 0 £ w; X - -+ X wy. For example if 0 = Z({1p+, ||} + {1r+}),
then | =2, wy = 1px, w1 = Z({||} + {1p+}) and wo x wy is irreducible (and generic).

2.3 Ladder representations

A multisegment m is called a (strict) ladder if it can be written as m = A; + --- + Ay where
Ajt1 < A;foralli=1,...,k—1. The corresponding irreducible representation Z(m) is called a
ladder representation.

LeMMA 2.1 [LM16]. The following two statements hold.

(i) [LM16, Lemma 6.17] Let 71, ..., be ladder representations. Then, my X --- X 7y, Is irre-
ducible if and only if m; X m; is irreducible for all i,7.1

(ii) [LM16, Lemma 6.21] Suppose that Z(m;) and Z(mg) are two ladder representations and
that each segment of my also occurs in myp. Then, Z(m;) x Z(mg) is irreducible.

n fact, this holds for any 71, ..., 7x € Irr by using a result of Hernandez [Her10] and the quantum Schur-Weyl
duality [CP96].
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The Jacquet module of ladder representations was described in [KL12]. The following is an
immediate consequence.

LemmA 2.2 [KL12|. Let m = Z(m) be a ladder representation and P a maximal parabolic
subgroup. Then,

(i) Jp(m) is a direct sum of irreducible representations of the form T ® w where both T and w
are products of ladder representations.

(ii) fr®w < Jp(m) and w ¢ Irrgen, then there exists p € Irreysp such that p < ¢(w), p|-| < e(m)
but p £ e(m).

iil) If T @ w < Jp(m) with w € Irrgen, then ¢(w) < e(m). Moreover, if p € Irreusp iS such that

g P

p < e(m) and p|-| < ¢(w), then p < ¢(w).

iv) If r®w < Jp(wm) and p € Irreysp Is such that p |- ¢(w), then p occurs in ¢(w) with

P

multiplicity at most one.

Strictly speaking, the results of [KL12| are stated in terms of the Langlands classification.
However, they are also valid in the form above (for the Zelevinsky classification) by either re-
peating the arguments, or using the Zelevinsky involution.

2.4 m-homogeneous representations?

From now on let m,n > 1 be integers and G = GLy,,. We say that o € Irr G is m-homogeneous
if o = Z(A1 +--- + Ay) where each A; is of length m. (If m = 1 this simply means that o is
generic.) We denote by Irry, _hmgns G the set of irreducible m-homogeneous representations of G.
For any m = Z({p1} + -+ {pr}) € Irrgen define

Sp(r,m) = Z(AU™ + ...+ AlM) € Ir.

The following is clear.

LEMMA 2.3. The map m — Sp(w,m) defines a bijection between Irrgen, GL,, and Irry, hmgns G-
We have Sp(m,m)¥ = Sp(7¥,m) for any 7 € Irrgep.

Remark 2.4. The notion of m-homogeneous is very close to the concept of “representations of
type (n,m)” introduced in [CFGK19] and studied further in [CFK18]. The difference is that we
only consider irreducible representations and emphasize the roles of the Moeglin—Waldspurger
models.

Remark 2.5. If m € Irrgyy GLy, then Sp(m,m) is known as a “Speh representation”. (Strictly
speaking, these representations were introduced by Speh in the archimedean case.)

Remark 2.6. In general, if 7 is unramified (and generic), then Sp(m,m) is not necessarily un-
ramified if m > 1. More precisely, if 7 = Z({p1} + --- + {px}) is unramified (so that p; are
unramified characters of F* and p; # p; |-| for all 4, j), then Sp(w,m) is unramified if and only if

AE;T), cey Agkn) are mutually unlinked. For instance, this is the case if 7w is (AT).

Suppose that ¢ = Sp(m, m) with 7 € Irrgen GLy,. Then, in the notation of §2.2 P, = P, ,, =

m

M x U is the standard parabolic subgroup of G of type (n,...,n), consisting of the block upper
m

triangular matrices with blocks of size n x n. Thus, M ~ GL,, x - -+ x GL,,.

2This notion should not be confused with Zelevinsky’s notion of homogenous representations [Zel80]
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Just as in the case m = 1, there are simple building blocks for m-homogeneous representations.

PROPOSITION 2.7. Let 0 = Sp(w, m) € Irr G be m-homogeneous. Then, there exist 7y, ..., T €
Irrgen such that
(i) o; := Sp(mi, m) is a ladder representation for all i.
(ii) Sp(m,l) = Sp(m1,1) x -+ x Sp(m, 1) for alll = 1,...,m. In particular, 1 = w1 X --- X m; and
=01 XX 0¢.
Moreover, let Q be the maximal standard parabolic subgroup of type ((m — 1)n,n) and denote

by Jg(o): the direct summand of Jg(o) pertaining to the supercuspidal data d € M(Irreyusp) in
the second (GL,,) factor. Then,

1 m—1
Jo(o),, mpr = Splmm — ) @5
Remark 2.8. For m = 1, m; is essentially discrete series. This is not the case for m > 1 in general.
Proof. Write m = Z (3 _;c;{pi}) with p; € Irreysp and let I > 1. We say that a subset .J of I is an I-
chain if it can be written, necessarily uniquely, as J = {i1,...,i,} where forall j =1,...,7r—1 we
have p;; = pi;,, ||* with o € {1,...,1}. (For example, for a 1-chain, p;,,...,p;, is a segment.)
Clearly, J is an I-chain if and only if Z(3_,c;

We say that two partitions of I are equivalent if one can be obtained from the other by
applying a permutation 7 of I such that p,;) = p; for all i. It is easy to see that for any [ > 1

there exists a partition P?)(I) of I consisting of I-chains, such that for any J,.J’ € PO(I) at
least one of the following conditions holds.
(i) {pj:iedtcipj:jed}
(i) {pj:ieJ}C{pj:jeJ}
(iii) For every j € J and j' € J' the segments Agj) and Agj), are unlinked.

Ag])) is a ladder representation.

Moreover, P (I) is unique up to equivalence. Indeed, P (I) can be defined inductively by taking
a maximal I-chain .J of I (with respect to inclusion) together with the partition P (I'\ J). It
follows from this description that if I < m, then up to equivalence, P (J) = {J € PO(I): J' C
J} for any J € P™)(I) and in particular, P () is a refinement of P ().

For any J C I let w5 = Z(Zjej{pj}) € Irrgen and oy = Sp(my,m). Then, o; is a (m-
homogeneous) ladder representation for any J € P (I). It follows from the defining property
of P(™)(I), (1) and Lemma 2.1 that X jeptm (1) 0J is irreducible, hence equals o.

Likewise, for any [ < m we have Sp(w,[) = X yrepiy(n) Sp(mys,1). Since we may assume that
Sp(mg,l) = X prepWyrca Sp(my,1) for all J € PU™)(I), we infer that

Sp(m,l) = X Sp(m,1).
JePlm)(I)

In particular, 7 = X jeptm)(1)TJ-
By [KL12] we have

_1 m—1
Sp(ry,m—1)|-| 2 @ms|| 2 Sung J((mfl)n‘],nJ)(O'J)

for all J € PU™(I) where n; = degm;. Therefore, by the geometric lemma of Bernstein-
Zelevinsky [BZ77],

_1 m—1 _ 1 m—1
Sp(m,m—1) [ 2 ®@n|| 2 :Xjepm)([)SP(ﬂ'J»m_l)H 2®XJ€7D(W)([)7rJ|'| 2 < Jg(o).
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On the other hand, suppose that 7;,w; € Irr with 7y ® wy < Jp(oy), J € PU)(I) and

Y ws) =) [T (4)

JeP(m)(T)

m—1

1
We claim that this is possible only if 7; = Sp(7wy,m —1)|-|" 2 and wy = 7wy |-| 2 for all J. We
prove it by induction on deg 7 using the geometric lemma. The base of the induction is trivial.

m—1

For the induction step, it is enough to prove that if J is a maximal m-chain, then w; =7y |-| 2 .
We use Lemma 2.2. By part ii, if J is a maximal m-chain, then w is generic. For otherwise, since

c(wy) < e(m) HmT_l, there would exist i € I such that p; ¢ {p; : j € J} but p;|-| € {p; : j € J} in
contradiction to the maximality of J. On the other hand, by part iv, if p|-| £ ¢(m) HMTA, then p
can occur in ¢(wy) at most once for any .J € P (I). It follows from (4) that if p|-| £ ¢(7) ]|mT_l,
then p < ¢(wy) if and only if p = p; HmTil for some j € J. By part iii, it now follows that if J is a
maximal m-chain, then c(wy) = >, ;{p; HmT_l} and hence wy = 7y HmT_l (since wy is generic)
as required.

This concludes the proof of the proposition. O

Remark 2.9. Tt can be shown that up to permutation, oy, ..., o; are the unique ladder represen-
tations such that ¢ = o1 X --- X g;. We will not need to use this fact.

By Frobenius reciprocity and [LM16, Corollary 4.10] we conclude
COROLLARY 2.10. For any m € Irrgen GLj,,
Sp(r,m) = soc(Sp(m,m — 1) |72 x 7 || ) Sung Sp(m,m — 1) |72 x | [*T .
By induction on m we get

COROLLARY 2.11. For any m € Irrgen GLy,, Sp(m,m) is a subrepresentation of
1-m 3—m m—1
Mi=nl|| 2 x7l]| 2 x---x7m|| 2 .
Equivalently (by passing to the contragredient), Sp(m,m) is a quotient of

~ m=1 m=3 1-m
Mi=n|| 2 x7|| 2 X---x7|]| 2 .

Remark 2.12. If w is (AT), then Sp(m,m) is the Langlands quotient of II, In particular, in this
case Sp(m,m) is the image of the standard intertwining operator from II to II and Sp(m,m) =
soc(IT) <unq II. However, in general for m > 2 and 7 € Irrgen GLy, it is not true that Sp(m, m) <unq
IT. For instance, if 7 = |-| x || € Irrgen GL2, then Sp(w,3) occurs with multiplicity two in the
Jordan-Holder sequence of 7 |-| " x 7 x 7 |-|. Note that in this case we still have Sp(r, m) = soc(II)
but we do not know whether this holds in general, i.e., whether soc(II) is always irreducible.

3. The models

3.1 Definition of models
Throughout this section, fix 7 € Irrgen GL,, and let 0 = Sp(w,m) € IrrG and P = Py = Py, =

m

—— _
M x U the standard parabolic subgroup of G of type (n,...,n). Let U = 'U be the opposite of
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U. Fix a non-trivial character ¥ of F. Let ¥ be the function on G given by
W(g) = ( Z Giji+1)-
1<i<nm:nti

We denote the restriction of ¥ to a subset A of G by U4. Let N = N, (resp., N = !N)
be the group of upper (resp., lower) unitriangular matrices in G. Then, Uy is a (degenerate)
character on N that is trivial on U and non-degenerate on Nj; := N N M. Recall that by (3),
Homg (o, Ind$ W) is one-dimensional.

Denote by WY~ (o) the image of o in Ind§; Wy, i.e. the Zelevinsky model of o. By Corollaries
2.10 and 2.11, for any Wz, € W¥N (o) we have

(|det| =" ® [det] DY) WLy x Ly € WHNCL 1y X G (S (7 m — 1) @ 1), (5a)

_1
0528 Wae|pr € WY¥Nur (7™, (5b)

m

— 1
where 78" =7 ® -+ ®m, dp is the modulus character of P and 6’ = §2" is the character of M
given by
1-m
§'(diag (g1, .. gm)) = Idet g1 “T [det go| T ... |det g 2

The model WY¥N (o) is a particular case of more general models considered in [MgW87] (for
any reductive group). Let us recall the setup. Let g = Maty;; nm be the Lie algebra of G over F.
For any co-character ¢ of the diagonal torus T let g = @jezgf be the corresponding grading

g7 = {X € g: Ad(p(s))X = ' X}

and let g> = Dk>;05 i:»J € Z be the corresponding filtration. Let P, be the semistandard parabolic
subgroup Such that Lie P, = g>0 Then, P, = M, x U where M, is the centralizer of ¢, Lie M, =

gy and Lie U, = g¥,. Concretely, if ¢(s) = diag(s’1, .. ., shmn) where (AL, ..., A%,) € Z™ then
P¢:{gEGigi7j:OifAi<>\j},
M¢:{g€G:gi7j:OifAi#Aj},
U<p = {g €G: Gij = 5i,j if \; < )\j}.
Consider the nilpotent nm x nm matrix J,, , consisting of m lower triangular Jordan blocks of
size n x n each. We say that ¢ is of type (m,n) if Ad(¢(8))Jmn = 8 1 Jmn, or equivalently, if
A, — A, =1 for all i not dividing n. If ¢ is of type (m,n), then ¥y, is a character of U,. By
[MgW87] (in particular, §11.2) we conclude?
THEOREM 3.1 [MgW8T7]. Suppose that ¢ is of type (m,n). Then, the space
Homy, (o, ‘I’U¢,) = Homg (o, Indgp ‘I’Uv)
is one-dimensional.
In the setting of [MgW87] the data pertaining to Theorem 3.1 is the pair (¢?, J;, ). (The more

general context of [MgW87] applies to cocharacters which are not necessarily even. However, we
will not discuss them here.)

3This is the only place in the paper where we use that F is of characteristic 0, but as mentioned in the
introduction, this assumption can be removed. (Note that the assumption on the residual characteristic in [MgW87]
was removed in [Varl4]).

10
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We denote by WY (5) the image of o in Ind&; Uy, It consists of functions that are left
equivariant (with respect to some character) under the centralizer of ¥y, in P,.

Clearly, any ¢ of type (m,n) is determined by the m-tuple (A5, A} ..., An). We consider
(m — 1)n + 1 co-characters @y, ..., Qm—1), of T of type (m,n) such that A7} — Af?m) =
max(0,nk — i), k = 1,...,m — 1. (Up to a cocharacter of the center of G, the cocharacter

@%m_l)n corresponds to the SLo-triple pertaining to Jy,,.) For simplicity we write P; = P,,,
M; = My,, Uy = Uy,. If i = nd+r where d = | | and 0 < r < n, then U; consists of the matrices
whose n x n blocks A; . satisfy

(i) Aj; is upper unitriangular for all j =1,...,m.

(ii) Aj is strictly upper triangular if j # &k and j, k < d + 1.
(iii) For any k <d+ 2, (Agyok)ap =0ifb—a <n—rand (Agg42)ep =0ifa—b=>n—r.
(iv) Ajp,=0if j>kand j >d+2.
(There is no constraint on A, if j <k and d+2 < k.)

In particular, Uy = N while U, 1), consists of the matrices whose difference from the
identity matrix is strictly upper triangular in each n x n block. Also, U;y1 "N C U; N N and
U, N N C Uir1 N N for all 3.

n

For brevity we write P’ = Pry,_1)n, M" = M1y = GLyy X -+ X GLy, U' = Upy—1y,- In
analogy with the case m = 2 we will refer to WYv’(0) as the Shalika model of 0. We caution
however that in the literature, this terminology usually refers to the image of 7 € Irr GLo,
(possibly generic) under a non-trivial intertwining operator to IndgLQ” g, if exists (in which
case it is unique up to a scalar [JR96]), where S is the Shalika group

S={(%y) (I";i) : g € GLy, X € Maty, ,,}

and 1)g is the character on S given by #(tr X). In the case at hand, any Wg, € WY¥v'(0)
automatically satisfies an equivariance property under the centralizer of Uy in P’ (which is
conjugate to S in the case m = 2) which justifies our terminology. In general, even for m = 2,
Homyy (7, Uyr) is infinite-dimensional for 7 € Irr G.

Letting G act on right on the vector space F™" of row vectors with standard basis e, . . ., €mn,
P’ is the stabilizer of the flag

(span{enj—r:j=1,...,m, k=0,...,i—1})i—0, . n
n

We denote by & : GL,, X - -+ X GL,;, — M’ the isomorphism such that the i-th copy of GL,,
acts on span{epj;:j=0,...,m—1}.

If X is a matrix over F, then we write || X|| for the maximum of the absolute value of its
entries.

LEMMA 3.2. Suppose that Wg,, € WYv' (o). Then, there exists C > 0 with the following property.
Suppose that g € G with Wg,(g) # 0. Write g = v’k where ' € U', ' = k(g1,...,9n) € M’
and k € G(O). Then, Hgijrllgz-H < C for alli < n.

Proof. It is enough to consider the case g = k(g1,...,9,) € M'. Assume that Wgy(g) # 0.
Fix 1 < i < n. For any X € Maty, ,,(F) let Y € U’ be the matrix such that Yy i nktit1 =
Xjt1,k+1 for all 0 < j, & < m and all other non-diagonal entries of Y are zero. Then, Wsy,(9Y) =
P(trg; X gilll)WSh(g). It follows that there exists C; > 0 depending only on Wgy such that if

11
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Wsn(g) # 0, then ¢(tT9iX9i_+11) = w(trgilllgiX) =1 for all X € Mat,,,,(F') with || X| < C;.
The lemma follows. ]

3.2 Model transition part I
We denote by MY (resp., PY = MY x U;) the stabilizer of ¥y, in M; (resp., P;). (Note that
M; determines 4 so this notation is unambiguous.) We also write M'Y = M(‘I’ and PV =

m—1)n
P(‘fn_l)n = M"Y x U’. Note that P'Y is unimodular. Explicitly, M'? is the image under & of GL,,

n

diagonally embedded in GL,,, X - -+ X GL,,. It consists of the matrices in G whose n x n blocks
are all scalar matrices. Let ¢ : GL,,, — M"Y be the resulting identification.

In general, write i = nd 4+ r, 0 < r < n. Then, the reductive part of M;I’ is the image under ¢
of the subgroup

{diag(l,td+2, . ,tm) :le GLd+1,td+2, oy tm € F*}
The unipotent radical of MY consists of the matrices whose n x n blocks Aj 1 satisfy
(i) Aj; =1, for all j.

(i) If j # k, then A = 0 unless k = d + 2 and j < k in which case (A;)qap = 0 unless
a —b=mn —r. Moreover, all the entries of A;; on the diagonal a — b = n — r coincide.

This group is trivial if ¢ is divisible by n, and is of dimension d 4+ 1 otherwise.
LEMMA 3.3. Let 0 <i < (m — 1)n. Then,

(i) The commutator [U;, U; 1] is contained in U;NU,11. Thus, U;-U,; 41 Is a subgroup of G which
contains U; and Uj41 as normal subgroups and the quotients U;U;11/U; ~ Uj41/U; N Uiy
and U;U;11/U;+1 ~ U; /U; N U; 41 are abelian. Moreover,

Uis1 = (MiNUj41) X (UiNUiy1) and U; = (M1 N Ui) X (U; NUjz1). (6)
(ii) We have a short exact sequence
0 —— M¢£1 nNU; —— Uz/Uz NUi+1 SN PD(UZ‘_H/UZ‘ N Ui—‘rl) — 0
M1 NU; L) PD(MZ N Uz’+1)
where ¢; denotes the map u — V([-,u]) and PD denotes the Pontryagin dual. Dually,

0 —— Ui+1/UiﬁUi+1 —2——> PD(Ui/UiﬂUZ'+1) e PD(MZS’_lﬂUi) — 0

¢
MinUiy1r  —— PD(Miy1NU;)

where ¢, is defined by the same formula as ¢;.

Proof. For any j, k we have )\}Di —AY - ()\;p“’l — A7) € {~1,0,1}. Tt follows that

ggi;j:l C gl C ggif_ll for all j. (7)

Therefore, U; C P;11 and U;1 C F;. Hence, U; and U1 normalize each other, so that U; - U; 11
is a subgroup of G that contains U; and U4 as normal subgroups. The equalities (6) are now
clear since T C M;, Mi11. By (7) we have Lie M1 NU; = g24 N gyt C gf'. It follows that

12
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M;+1 NUj is abelian since [g7*, g7'] C g5'. Similarly M; N U;41 is abelian. The rest of the lemma
follows easily from the fact that U;41 N Mi‘I’ =1. O

Remark 3.4. If i = nd+r,0 < r < n, then U; ﬂMi\il consists of the upper unitriangular matrices
whose n x n blocks A, satisfy

(i) A;; =1, for all j.

(ii) If j <k, then A;; =0 unless k = d + 2 in which case (Ajx)qp =0 unlessa—b=n—r—1
and all entries of A along the diagonal a —b =mn —r — 1 are identical.

This group is of dimension d + 1. (It coincides with the unipotent radical of M;{’H unless i + 1 is
divisible by n.)

In the rest of the section we endow various unipotent subgroups of G with Haar measures.
Thanks to the choice of basis ey, ..., emnn, the Lie algebra of any of these unipotent groups has a
natural basis as a vector space over F'. Our convention will be to take the measure corresponding
to the product measure where the Haar measure on F' is the one which is self-dual with respect
to 1.

The following is a special case of [GGS] (see also [GGS17]). For future reference and in order
to be self-contained we provide the (elementary) proof. We refer the reader to [ibid.] for a more
thorough discussion about interplay between models.

PROPOSITION 3.5. For any i =0,...,(m — 1)n — 1 the map
Wi — Wi(u' )y, (u)™! du :/ Wi )Wy, (u) "~ du/
UimUi+1\Ui+1 UiﬂU’\Ui+1ﬂU/ (8)
= / Wi(u'-) du
UiﬂN\Ui+1ﬂN

defines an isomorphism T; = 7?1) : WY0i (0) — W'Vt (). Its inverse is given by

Wit Wit (u) Wy, (u) ™! du. (9)
UiﬂP;ﬂ_l\Ui

In both cases the integrands are compactly supported.

Proof. For any W; € Ind& Uy., u € U; and v’ € U1 we have Wy (u'u) = ¢;(u)(u") Uy, (u)W;(u').
It follows from Lemma 3.3 and the smoothness of W; that Wj|y,, , is compactly supported modulo
U; NU;41 and that for any u € U;,

Uy, (u) ;Wi (u) is the Fourier transform of the function V[/'z\Ill_]ll+1 U, 1 JUinU4, 2t ciu). (10)

Recall that any W, € Ww¥0in (o) is left—Mi‘L—equivariant under a character, and in partic-
ular, is left-invariant under any unipotent subgroup of M;ﬁl. Also, U; N PE’H = (U;nN Ml‘il) X
(UiNUit1). By a similar reasoning as before, W;1|y, is compactly supported modulo U; N Py ;.
By Lemma 3.3 and Fourier inversion, the map (9) defines a G-equivariant left inverse to 7;. Since

the spaces are irreducible, it is also a right inverse. ]

Remark 3.6. Suppose that o is unramified, ¢ has conductor @ and W; € W¥0i (o) is the unram-
ified vector such that W;(e) = 1. Then, 7;W;(e) = 1. This follows immediately from the proof of
Proposition 3.5.

13
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We write
T=T"=Tm-1pm-10°0To: W'¥ (o) = W' (o).
This operator was considered in [CFK18, §2.4].

3.3 Model transition part II

We now introduce a subgroup of G' which would play an important role in what follows. Let
D = D,, ,, be the joint stabilizer of the vectors e;,, j =1,...,min G and let Np = NND D Nyy.
Note that U’ C D. (In the case m = 1, D is the standard mirabolic subgroup.)

The following is straightforward.

LEMMA 3.7. We have M; 1 NU; = (M1 NU; N D) x (U; N M\il) Hence, the restriction of ¢;

7

to DNU;/DNU;NU;j11 ~ DN M1 NU; is an isomorphism. Dually, cg defines an isomorphism
between Ujt1/U; N Uiy ~ M; N U;y1 and the Pontryagin dual of D NU;/D NU; N Uj1q ~
DNM;1NU; ~U; N Mi+1/Ui N MEH‘

Hence, we can rewrite (9) as

Wit1 — Wz‘-l—l(u‘)\IlUi (u)*l du = / Wi+1(u-)\I/Ui (U,)fl du.
DﬂUiﬂUi+1\DﬂU¢ NDﬂUiJrl\NDI"IUi

LEMMA 3.8. Any Wy, € Ind% U is compactly supported on D N N. Hence,
TWze = / Wae(u' )y (u) ™! du' = Woe(u'-) du' = Wae(u'-) du’
U'NN\U’ U'NN U'nt

where the integrand is compactly supported.

Proof. Let g = ank € G with a = diag(ai,...,anm), n € N and k € G(O). It is well-known and
easy to prove that if g € N, then ||g|| < max;—1,__mn ‘H?;”Z aj
to see that if g € D, then |aj,| < 1 for j =1,...,m. Thus, if g € D and Wy.(g) # 0, then by

the support condition for Whittaker functions we get |a;| < C for all i where C depends only
on Wye. By the above, if moreover g € N, then ||g|| is bounded in terms of Wz, as required. [J

. On the other hand, it is also easy

Recall that any W; € W¥i(0) is MY -equivariant with respect to some character x; of MY
(depending only on ). As in [CFGK19, CFK18] we can easily explicate this character.

LeEMMA 3.9. (cf. [CFGK19, Proposition 24|, [CFK18, §2.6]) For any i = nd +r, 0 < r < n,
l € GLg41 and tgqs,...,tm € F* we have

X’L(L(dlag(l7 ld+2;- - - atm)))
= wr(tasa .-ty det ) [det [[TEHE) =m0 1y ) G T g n=)(2579)
j=d+2
where w; is the central character of 7. In particular, for any Wg, € WY¥v' (o)

Wsn(e(l)g) = wr(det)Wsn(g) Vi€ GLy,, g € G.

Proof. 1t is enough to evaluate x; on an element ¢(t) where ¢t = diag(t1, ..., t,) is in the diagonal
torus of GL,,. Note that ¢(¢) lies in the center Zy; of M. Writing W; = meUV Wze(u-) du with

Wze € WYN (o) (the integrand is compactly supported by Lemma 3.8), the required relation

14
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follows from the equality

1 i mil
53 (u(e)) = T Iy 005

j=1
d+1 T n m —+1 - T
= (TT i~ @&y CTT ) g D0 by ()
j=1 j=d+2
O
(=pmt
Remark 3.10. Let w,, = € SL,, (alternating signs on the non-principal diagonal)
1
and Wy, , = t(Wy,). By Lemma 3.9 we have
Wsn(Wm,ng) = Wsn(g)
for any Wgy, € W¥v' (o).
LEMMA 3.11. The inverse of T is given by
Wep — WSh(u-)\IJN(u)_l du (11)

NNU\Np
where the integrand is compactly supported.

Proof. From Proposition 3.5 we only need to check that the integrand is compactly supported.
Assume that Wg, = TWy.. By Remark 3.10, the integral equals

/ W () ¥ (1)~ du = / ([ Waelwibmmu) U0 (v) W (u) ™ dv) du
NNU\Np Unu\Up JU'NT
where Up = U N D. The latter double integral is
/ (] Wae(vug ) O (v) T N (Wi Wl ) dv) d.
UnU'\Up JU'NU
By Lemma 3.8 the integrand is compactly supported in v, 4. Thus, the integrand on the right-
hand side of (11) is compactly supported. O

3.4 Kirillov—Shalika model
The following is an analogue of [GK75, Proposition 2]

LEMMA 3.12. Any non-zero D-invariant subspace of Indl[])/ Wy contains indlUj, Wy, In particular,
indg, Wy is irreducible.

The proof of [GKT75, p. 110-111] (for the case m = 1) applies word by word. One only needs
to observe that the unipotent radical V' of D is abelian, the stabilizer of the character ¥y under
the action of D modulo V' is isomorphic to D, ,—1 and the map p — Uy (p~! - p) defines an open
map from D to the Pontryagin dual of V.

Let @ be the stabilizer of span{e,; : i = 1,...,m} in G — a maximal parabolic subgroup of
G of type ((n — 1)m,m). Thus, Q = D x M"Y and d¢|ymw = 1.

COROLLARY 3.13. For any m-homogeneous o € Irr GG, the image of the restriction map

Wsn = Wesnlp, WY (o) — Indg), Uy (12)

15
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contains indg, Uy Equivalently, by Lemma 2.3 and Lemma 3.9, if o = Sp(w, m), then the image
KC¥ (o) of the restriction map

Wsp, — WSh‘Q, whv (o) — Indg,\p w;f

contains indg,q, wY where wY is the character of P'Y such that wY |y = Wy and wY o1 = wy odet.

We will call K¥ (o) the Kirillov-Shalika model of o.
LEMMA 3.14. For any i =0,...,(m — 1)n — 1, the map

Ti Wi — Wi/ )Wy, (W) du = / Wi(u') du’
UiﬂU’\Ui+1ﬁU' UiﬁN\Ui+1ﬂN

is an isomorphism between IndgmUi Yy, and IndgmUi+1 Vy,,1, whose inverse is given by
Wisy o Wisr ()0 ()" du = / Wisr () Uy (1)~ du.
DﬂUiﬂUi+1\DﬂUi NDﬂUi+1\NDﬁUi
Moreover,
7~;(indgﬁUi ‘llUi) = indgﬁUHl \IJU¢+1‘
Finally, the D-module indP;, Wy, is irreducible.
Proof. Let W; € IndBmUi Wy, As in the proof of Proposition 3.5, by Lemma 3.7 the function
ueDNU; N Ui+1\D NU; — \IJUZ' (u)_l’ﬁWl(u)
is the Fourier transform of the function Wi‘I’z;i1+1|UimU’\Ui o at ¢i(u). The first claim follows

by Fourier inversion.

Suppose that W; € indBmUi Uy,. From the definition (and since U’ C D) TW; is supported
on (DNU;-Uj;+1)S2 where Q is a compact subset of D. Fix g € Q. It follows from the above that
the function ﬁWz(g) is compactly supported modulo D NU; N U;41. Hence, 7~§W1 is compactly
supported modulo D N Uj4;.

The last part now follows from the fact that indg, Wy is irreducible. O
From Lemma 3.14, Proposition 3.5 and Corollary 3.13 we obtain

COROLLARY 3.15. For any m-homogeneous o € Irr G and for any i = 0,...,(m — 1)n, the image
of the restriction map

Wi = Wilp, WY0(0) — IndaﬂD Uy, (13)

contains ind{%m p Yu,.

Once again, in analogy with the case m = 1 (conjectured in [GK75], proved in [BZ76, BZ77])
it is natural to make the following

CONJECTURE 3.16. For any m-homogeneous o € Irr G the restriction map (12) (or equivalently,
(13)) is injective.

We will prove a special case in Corollary 4.4 below.

We do not know whether in general, the restriction of o to @ is of finite length. (See Propo-
sition 7.1 for a very special case.) Recall that in the case m = 1 this is known (for any 7 € Irr,
not necessarily generic) using the theory of derivatives of Bernstein—Zelevinsky [BZ76, BZ77]. It
would be very interesting to have an analogous theory for m > 1.

16
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4. Unitary structure

We take the unnormalized Tamagawa measure on GL, with respect to ¥, i.e. the Haar measure

. - dgi,j
associated to the standard gauge form dé't‘;q’: 99 on GL, and the self-dual Haar measure on

F with respect to 1. Following our convention on Haar measures for unipotent groups (see §3.2)
we obtain a (right) Haar measure on the F-points of any algebraic group whose reductive part
is a product of GL,’s. This will cover all algebraic groups considered here.

Throughout this section let m, 7" € Irrgen GLy, and let 0 = Sp(w, m) and o' = Sp(n’,m). We
will work with the models considered in the previous section.

1
For any 0 < i < (m — 1)n and s € C we define a bilinear form on W¥0i (o) x w'ui (') by
BW W) = [ Wig)Wilg)ldetgl" dy
DNU\D
(assuming convergent). In particular, for Wz, € WY (o), Wy, € W\I’Xfl(a’),

Bo(Wae, Whe, s) = / We(9)Whe(g) |det gI* dg, (14)
Np\D

and for Wgy, € WY (0), WY, € Wi ("),
Bsn(Wsh, W, 8) 1= B(m—1)n(Wsn, Wy, 8) = . Wan(9)Wen(g) [det g|* dg.
U\D
It follows from Lemma 3.2 that |det| is bounded above on the support of Wgy|p. Hence,

if Bsp(Wsn, Wy, s) converges absolutely at sg € R, (15)
then it converges absolutely for any s with Res > sp.

A similar statement holds for any B; although we will not use it.
We also write B;(W;, W/) = B(W;,W/,0) assuming the latter is well-defined (either as a
convergent integral, or by analytic continuation), in which case it is D-invariant.

In general, we do not know whether 5;(-,-) is always defined. (See §6 and in particular
Example 6.5 for further discussion.)

PROPOSITION 4.1. The integral defining B;(W;, W/, s) converges for Re s +e(m) +e(n’) +1 > 0.
1
Moreover, for all 0 < i < (m — 1)n, W; € W¥0i(0), W/ € w'ui (0') we have
-1
BHl(ﬁbWi, ﬁb Wi,, S) = BZ(WZ, Wila 8). (16)
-1
Finally, there exist W; € W¥0i (o) and W] € w'ui (0') such that B;(W;,W/,s) =1 for all s € C.

Remark 4.2. In Proposition 6.2 below we prove that B;(W;, W/, s) admits meromorphic contin-
uation in s to a rational function in ¢°.

Proof. First note that the last statement follows from Corollary 3.15.

Next, we show the convergence of the integral defining By. Upon twisting © and 7' by
|-|(sFelm)=e(m)/2 apq || (+em=e™))/2 regpectively and using the inequality |zy| < (|z|* + y2|)/2
we may assume without loss of generality that 7’ =7, W, = Wy and s = 0. Thus, we need to

show the convergence of
| Wl dg
Np\D

17
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provided that e(w) > —%. In fact, we show a slightly stronger assertion, namely the convergence
of

/ / Wae(lg)l? di B(ng) |det g™ dg (17)
D\G JNp\D

for any 0 < ® € S(Maty, nm(F')) where n € Maty, nm(F') is the matrix whose i-th row is ey,
i =1,...,m. Note that the stabilizer of n under the right G-action on Maty, pm(F) is D. Since
the modulus character of D is |det|™, (17) is formally well-defined and can be rewritten as

/‘|mmmemwmd
Np\G

/ / [Wee(lg)|? / ®(nulg) du |detl|™ 6p(1)~" dl |det g|™ dg (18)
P\G JN\P
—[ ] WP [ atuig) du ldext” 5p() " di [det g™ dg

P\G J Ny, \M Up\U

We may identify the vector space Maty, pm(F) with Mat,, ,,(F"™). Observe that for any [ =
diag(g1,-.-,9m) € M, g € G we have

|det l|mT_1 /U w D (nulg) du = ®y4(engi, - - -, engm)d (1) (19)
D

where @, € S((F™)™) is the function

@Q(Ul,...,vm):/Q(Xg) dX, vi,...,vp, € F", (20)

where the integral is taken over the n(gl) -dimensional affine space of upper triangular F"-valued
m X m-matrices whose diagonal entries are vy, ..., vy,. Thus, (18) is equal to

/P\G / n\ GL,L)m

where | = diag(g1,...,9m) € M. Thus, by (5b) the inner integral is a finite linear combination of
products of Rankin—Selberg integrals for 7 x 7 at 7,7 = 1,..., m. The assumption that e(m) > —%
guarantees that these Rankin—Selberg integrals converge. Since the outer integral is a finite sum,

we obtain the convergence of (17).

—1
Now let 0 < i < (m — 1)n, W; € W'i(0), W/ € w'u; (0'). Recall that Wi|y,,, (resp.,
ﬁbWi|UiﬁD) is compactly supported modulo U; N U;4; (resp., U; N U;+1 N D).

2

m
Qg4(engis- - engm) H |det g;|" dgi...dgm |detg|™
i=1

5 () Wze(lg)

Moreover, by the unitarity of Fourier transform and the argument of Proposition 3.5 (cf. (10))
we have

TYWiw) T Wi () du = /N I TPWi(u) T W (u) du

/DﬁUi+1\DﬂUiUi+1

- / Wi ()W () du = / Wi ()W () du
Ul\U1U1+1 DﬂUi\DﬂUiUi_t,_l

(21)

where the integrals are absolutely convergent. (We can also write the integrals as

Wi ()W () du = / Wi ()W () du.)

/[]iﬂU/\Ui+1ﬁU/ Um]\_f\UHmJ\_f

18
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It follows that if at least one of integrals
2 2
[l WP dgor [ T+ [TW) dg
DNU\D DNU;41\D
converges, then so does the other and

Bt (T/Wi, TV W) = /

DNUUi4+1 \D /DﬁUi+1 \DﬁUi Uit

Wi(ug)Wj (ug) du dg = B;(W;, Wy).

T Wilug) T Wi(ug) du dg

~/Dl"‘|U¢ Ui+1\D /l)ﬂUi \DNU;U;+1

We can now conclude the convergence for all 7 and the identity (16) since they clearly reduce
to the case i = 0. O

THEOREM 4.3. Suppose that ©' = wV (or equivalently, ' = ¢") and 7 is (AT) (see §2.1). Then,
-1
B;(W;, W) is a well-defined G-invariant pairing on W¥Ui (o) x w'u (V).
In particular, if m € Irrgen GL, is unitarizable, then B; gives a unitary structure on wu; (o).

Proof. By Proposition 4.1 B;(-,-) is well-defined and not identically zero. To show invariance
it suffices to consider ¢ = 0. We use induction on m. The case m = 1 (in which D is the
standard mirabolic subgroup) is well known and follows from Bernstein’s theorem [Ber84|. For
the induction step, let m > 1 and let @’ be the subgroup of the standard maximal parabolic
subgroup of G of type ((m — 1)n,n) consisting of the matrices whose lower right n x n corner is
upper unitriangular. Write

Bo(We, Wiy — / / Wae(a9)Whe(ag) |det g™ dq dg
DNQ\D JNp\DnQ'

_ / / Wao(ag)Wie(ag) |det g™ dg dg.
DNQ'\D JDp—1 nNN\Dp—1,n

Here we consider GL;,_1), (and hence, Dy,—1,,) as a subgroup of G. (Note that ép = |det|™

while dpng: = [det|"™™ ') By (5a) and the induction hypothesis, the inner integral is left
(@, ]det]”_l)—equivariant in g. Hence, we can replace the domain of outer integration by Q"\ D1 s,
where D1 ,p, is the standard mirabolic subgroup of G (the stabilizer of e,,,). (Note that dp, ,,, =
|det| and 0 = |det|™.) It follows that By(-,-) is D1 mp-invariant. By Bernstein’s theorem, it is
G-invariant as required. O

We immediately deduce a special case of Conjecture 3.16.

COROLLARY 4.4. Conjecture 3.16 holds for any m € Irr(a7y GLy,. In particular, it holds for any
unitarizable m € Irrge, GLy,.

Remark 4.5. By analytic continuation it is easy to prove Conjecture 3.16 for 7w of the form
r=m7 || x - x 73 ||™ where 7; € Irrgy, are fixed and (g™, ..., ¢ ) is in general position.

In view of Theorem 4.3 and Bernstein’s theorem it is natural to make following related
conjecture.

CONJECTURE 4.6. For any m-homogeneous o € Irr G, every D-invariant bilinear form on o x oV
is G-invariant.

Perhaps even more is true.
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CONJECTURE 4.7. For any m-homogeneous o,0’ € Irr G, there is a unique up to scalar D-
invariant bilinear form on o X o’.

(We do not know whether this is known even in the case m = 1.)

5. Local zeta integrals

Throughout this section let m, " € Irrgen GL,, and o = Sp(m,m),o’ = Sp(n’,m) € Irr G. Let
L(s,mx ") and (s, 7 x 7, 1) be the local factors defined by Jacquet-Piatetski-Shapiro-Shalika
[JPSS83]. (See §5.2 below.)

5.1

We write an analog of the Rankin-Selberg integral for o x ¢’ on the Shalika model as follows.
Recall that 77 € Mat,, nm (F') is the matrix whose i-th row is en;, ¢ = 1,...,m, so that D is the

stabilizer of 1) in G. For any Wg, € W¥v' (o), W}, € Wi ('), ® € S(Maty, nm(F)) consider
Z(Wsn, Wy, @, 5) = one Wsn(9)Wen(9)2(ng) [det g|” dg.
This expression was already considered in some form in the proof of Proposition 4.1.

Note that in the case n =1 (where U’ = 1) Z reduces to the generalized Tate integral for (a
character of) GL,, considered by Godement-Jacquet [GJ72].

For any k let
L1
wk:< . )EGLk.
L

THEOREM 5.1. The integral Z(Wgn, W{,, ®, s) has the following properties.
(i) The integral defining Z(Wsn, W¢,,, ®, s) is absolutely convergent for Re s+e(m)+e(n’)+1 >
m.

(ii) The function
m—1
(TI (s — ivm x 7)) ™' Z(Wan, Wy, @, 5)
=0

is a Laurent polynomial in ¢°, hence entire.

(iii) If 0,0’ are unramified, Ws, € WY’ (0), W, € Wi (o) are the unramified vectors such
that Wgp(e) = Wan(e) = 1, @ is the characteristic function of Maty, nm(O) and 1 has
conductor O, then

m—1
Z(Wsn, W, ®,8) = ¢ H L(s—i,mx )
i=0
where c is a measure-theoretic constant (depending only on F';, m and n).

(iv) We have a local functional equation

m—1

Z(@,VI//;], ,m — 5) = wp(—1)" D" <H v(s —i,m X ﬂ,@!))) Z(Wsn, W, @, 8) (22)
=0
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— —1 — ~
where Wg, € WYv' (6V) is given by Wan(g) = Wn (wnm g~ 1) and ® is the Fourier transform

d(X) = / (Y)(tr 'Ywn,X) dY.
Matym nm (F)

We will prove the theorem below by relating Z(Wgn, W¢,, ®, s) to the usual Rankin-Selberg
integrals.

5.2

Recall the GL, x GL, local Rankin-Selberg integrals studied by Jacquet—Piatetski-Shapiro—
Shalika [JPSS83]. They are given by

28 W) = [ WigW(g)B(eng) et gl dy
Np\ GL,
-1
where W € WY (1), W’ € WYNn(z'), ® € S(F") and s € C. The integral converges for
Re s+ e(m) +e(n’) > 0 and admits a meromorphic continuation in s to a rational function in ¢°.
The quotient
ZCGLn (W, W', ®, 5)
L(s,m x 7)
is a Laurent polynomial in ¢° which can be made non-zero at any given s € C by an appropriate
choice of W, W', ®. Moreover, we have a functional equation

ZGn (W, W, 8,1 — 8) = wa (= 1) Iy(s, 7 x 7, ) 280 (W, W', B, 5)
where W € W¥¥a (1Y), W' € WY (7'V) are given by
W(g) =W(wn'g™), W(g) =W (wn'g™")

and @ is the Fourier transform of ® given by

by) = [ @@il(e) do

where ((z1,...,2n), (Y1,-..,Yn)) = >, iy; denotes the standard pairing on F".
—1 ~
Slightly more generally, for W € WY (z®m) W' € W Nu (/™) & € S((F")™) and
($1,-.-,8m) € C"™ we write

m

ZMW, W B, (s1, ., 5m)) :/ WOW )®(engi, - ., enga) [ Idet gif* i
Ny \M i=1

where [ = diag(gi,...,9m) € M. This is a linear combination of products

m
126" (Wi, Wi, 4, 5)
i=1
where W; € WY (1), W/ € W% () and ®; € S(F™). Thus,
the integral defining ZM (W, W', ®, (s1,...,5m)) is absolutely convergent

23
provided that Res; + e(m) + e(n’) > 0 for all i. (23)
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Moreover, we have a functional equation

o~ o~ M
ZMWM WM & (1 —s1,...,1—5m))
e - (24)
= wo (=)D [T (sism x 7, 0) ZM (W, W, @, (51, .. 5m))
=1

where WM (1) = W (diag(@n, - 5 wn) 1~1) and

)

5.3

The fulcrum for Theorem 5.1 is the following proposition.

PROPOSITION 5.2. For any Wz, € WYN(a), W) € W¥ (0') and ® € S(Maty, nm (F)) we have

Z(TwWZev TwilWée? P, S) = /\ ZM((WZG)97 (Wée)ga (i)ga (S -m+1,... 8)) |detg|s dg (25)
P\G

_1 _1 -1 .
where (Wze)g = 6p°0'Wye(-g) € W¥NM (78™), (W}h)g = 6528 Wi (-g) € WY Nar (/™) and P,
is given by (20). The integral on the right-hand side is absolutely convergent for Re s + e(m) +
e(r’) +1>m.

Proof. Write Z(T¢er,T¢_lWée, D, s) as
/ T Wae(lg) T We(lg) [det 1" di ®(ng)|det g|* dg.
D\G JU\D
By Proposition 4.1 we get

/ / Wae(19)Whe(Ig) |det 1™ di ®(ng) |det g|* dg
D\G JNp\D

= / Wze(9)Wyo(9)®(ng) dg|det g|* dg.
Np\G
We write it as

/ / er(lg)Wée(lg)/ B(nulg) du |det [|° 5p(1)~" dl |det g|" dg.
P\G J Ny \M Up\U

The required identity now follows from (19). For convergence, as in the proof of Proposition 4.1,
we may assume that ® > 0, s € R, 7/ = © and W5 = W, so that all the integrands considered
above are non-negative. Therefore, the manipulations are justified for s + 2e(w) + 1 > m by

(23). 0

Proposition 5.2 immediately implies the first part of Theorem 5.1 (absolute convergence).
In view of Remark 3.6, Proposition 5.2 also reduces the second and third parts of Theorem 5.1
(analyticity and unramified computation) to the analogous statements for the usual Rankin—
Selberg integrals.

Remark 5.3. If 0 and ¢’ are unramified, then

m—1

m—1
HL(s—i,wxw/):L(s— ,Txo0')=L(s— ,ox 7).
=0
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However, in general for 7,7’ € Irrgen GLy, the equality

does not always hold.

Finally, we prove the functional equation (last part of Theorem 5.1).
For any Wze € WY (o) define Wy, € WY () by Wie(g) = Wae(wnm tg™L). Then, TWye =
m
T(W//Ze) Note that wp, = diag(Wn, . .., Wn)Wmn Where Wy, = t(wy); write ¢ = Wy, tg™ 1,

g € G. Then, for any g € G we have

— M

(Wze)g() = Wze)y (wimnlwyl,), 1€ M

and by Fourier inversion

= —~ M
(@), (v1,...,0m) = |detg| ™ Py (Um,...,01), VI,...,0m € F".
9

The last part of Theorem 5.1 therefore follows from Proposition 5.2 and the functional equa-
tion (24) using the change of variable g — ¢ in the integral on the right-hand side of (25).

This finishes the proof of Theorem 5.1.

6. More analytic results

In this section we prove some more analytic properties of the zeta integrals defined in the last
section, as well as the bilinear forms of §4. Some of these properties are well known in the case
m = 1. However, there are also some new phenomena.

6.1 Relation between zeta integrals and Bgy

Recall that Q@ = D x M"Y, 6g|p = 6p = |det|™ and dg|yw = 1. Hence, we can write
Z(Wsn, W, ®, s) as

/ / Wen(Ipg) Wiy (Ipg)®(nlg) |det I|° dI |detp|*™™ dp |detg|® dg.
Q\G N\D J M"Y

Using Lemma 3.9 and the identification ¢ : GL,, — M"Y we get

Z(Wsn, Wgp,, @, 5) = o Bsu(Wsn(-9), Wén(-9), s — m) fowrw,s(9) dg (26)

where for any character w of F™*

Fral9) = [ O Dw(dett) fdecl™ dl |detgl
GL.,

and &y € S(Maty,,(F)) is given by @ (X) = ®(u(X)g) where u(X) € Matpxpm is the
matrix whose i-th row is E;nzl X jenj. Note that & — fg . s is an intertwining map from

S(Maty, nm (F)) @ |det|® to Indg vy where v, is the character on Q such that vg|p = |det|*”"/2
and vs 01 = w™ ! o det.

LEMMA 6.1. There exist Wg, € WYv' (o), WY, € W\Ijl_ﬂl(a’) and ® € S(Maty, nm(F')) such that
Z(Wsh, Wéh’ d,.5)=1.
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Proof. This follows from Corollary 3.13 and (26) by taking W), such that Wgy|p is supported
in U’'Q for a small neighborhood 2 of e and ® supported in a small neighborhood of 7. O

Let ordg(s) = ordg.q . (s) be the maximal order of pole of B;(W;, W/, -) at s fori = 0,..., (m—

-1
1)n as we vary W; € WY0i (0), W/ € wYui (¢’). (Recall that this does not depend on i by (16).)
By Corollary 3.13 we have ordg(s) > 0 for all s.

Similarly, let ordz(s) = ordz,, . (s) = 0 be the maximal order of pole of Z(Wgp, W{¢, ®, ) at

s as we vary W € WYv'(0), W' € W¥ui (0') and ® € S(Maty; nm(F)). By Lemma 6.1 we have
ordz(s) > 0 for all s. We can sharpen this as follows.

PROPOSITION 6.2. The bilinear form B;(-,-,s) on W¥0i(a) x WWUz‘l(a’) admits meromorphic
continuation in s to a rational function in q°. Moreover, for every s € C we have ordg(s —m) <
ordz(s) with an equality unless wywy = |-7~" for some j € {0,...,m — 1} in which case
ordz(s) < ordg(s — m) + 1. In particular, if 7’ = w, then By(-,-) is defined if and only if
Z(-,-,-,s) is holomorphic at s = m for all data.

Proof. 1t is enough to prove the meromorphic continuation for i = (m — 1)n, i.e., for Bgy. This
case follows from the equality (26). Indeed, taking w = wrw,» and ® to be the characteristic
function of a small neighborhood of 1, fs . s is supported in Q€2 for a small neighborhood €2 of
e and hence Z(Wgy, W§,, ®, s) is a nonzero constant multiple of Bsy(Wsn, W¢,, s —m). We also
get that ordp(s —m) < ordz(s) for all s.

On the other hand, fg s(g) is a generalized Tate integral with respect to GL,,, and hence

1 m—1
L(ns—m ,wodetgr,, ) fows = HLns—zw fows
1=0
is entire. We get from (26) that ordz(s) < ords(s—m) unless w = |-/~ for some j € {0,...,m—
1} in which case ordz(s) < ordp(s — m) + 1. The corollary follows. O

Remark 6.3. Note that if 7 and 7’ are tempered, then it follows from Theorem 5.1 part ii that
ordz(s) = 0 unless Res € %Z and Re s < m. Thus, in general, many poles of f 4, ., s do not
contribute a pole for Z(-,-, -, s).

Remark 6.4. In general, we do not know what precisely is the fractional ideal of Z[g**] generated
by

Z (Wan, Wi, ®, 5) where Wy, € WY (), W&, € WY (0!), ® € S(Maty, i (F)).

If both 7 and 7’ are unitarizable, then we expect that this ideal is generated by H?;Bl L(s —
i,m X '), i.e., part ii of Theorem 5.1 is tight in this case.

Ezample 6.5. Consider n =m =2 and © = || x || 7" € Irrgen GLg. Then, 7 = 7V and L(s, 7 x
V) = L(s,1p+)2L(s + 2,1p+)L(s — 2,1p+). Therefore, L(s,m x ©')L(s — 1,7 x 7') has a pole
at s = 2. However, we do not know whether Z(-,-, -, s) is holomorphic at s = 2, or equivalently

(by Proposition 6.2) whether By(, -) is well-defined. Recall that Sp(m, 2) is not unramified in this
case (cf. Remark 2.6).

24



LOCAL RANKIN—SELBERG INTEGRALS FOR SPEH REPRESENTATIONS

6.2 More results in the (AT) case
PROPOSITION 6.6. Suppose that 7 is (AT) and let ©' = ©¥. Then, for any Wg, € WY’ (o),
—1
Wi, € WYv' (0') we have
Z(Wsn, Wy, ®,m) = Bsu (Wsn, W) $(0)
where both sides are well-defined.

Proof. By the first part of Theorem 5.1, the integral defining Z(Wsy, WY, ®,m) is absolutely
convergent. Moreover, since the modulus function of D is |det|”, we can write

Z(Wan, Wy, ®,m) = o Wan(9)Wn(9)®(ng) |det g|™ dg

= / Wsn(pg)Wen(pg) dp ®(ng) |det g|™ dg.
D\G Ju\D
For 7’ = 7V, by Theorem 4.3 we get
BSh(WShaWéh)/\G O (ng) |det g™ dg = &(0)Bsy(Wsn, W)
D
as required. O

From the functional equations (22) we deduce

COROLLARY 6.7. Suppose that 7 is (AT) and let 7' = ©V. Then, ordz(0) is equal to the order
of the zero of the product of y-factors on the right-hand side of (22) at s = 0.

Example 6.8. If 7 € Irrsqr GL,, corresponds to a segment of length k and 7/ = 7V, then ordz(0) =

min(m, k). Indeed, In this case (Hk 1—qf (=)

=1 m)’y(s, 7 X V¥, 1) is entire for a suitable integer

f > 0 depending on 7.

Under mild assumptions, we can give a lower bound for the real part of the first location of
a pole.

LEMMA 6.9. Suppose that w, is unitary and let 7' = 7. Then, for suitable Wg, € WYv'(a),
W§, € W¥or (0¥) and ® € S(Maty, nm (F)), Z(Wsn, WY, ®, s) has at least one pole for Res >
m — 1.

Proof. Indeed, taking W¢, = Ws, and ® > 0, the right-hand side of (25) is a power series
in ¢7° with non-negative coefficients a; which vanish for £ < 0. Assume on the contrary that
Z(Wgn, W{,, ®, s) is holomorphic throughout Re s > m—1. Then, the power series would converge
at s = m — 1. However, the integral on the right-hand side of (25) diverges at s = m — 1 since it
contains [, é@g(/\en, €nye--sCn) \)\]S_mﬂ d) as an inner integral. We obtain a contradiction. []

COROLLARY 6.10. Suppose n,m > 1, 7’ =7 and w, is unitary. Then, any BB; admits a pole in the
right half plane Res > —1. Hence, there exists Ws, € WYv’ () such that the integral defining
Bsn (Wsn, Wen, s) diverges for all s < —1. In particular, fU/M,q,\G [Wen(g)|* dg diverges.

Proof. Indeed, by Lemma 6.9 we have ordz(s) > 0 for some s with Res > m — 1. Hence, by
Proposition 6.2 ordg(s — m) > 0 for that s (since n,m > 1). Therefore, the integral defining
Bsh(Wsh, Wan, s) diverges for all s < —1 (cf. (15)). In particular,

/ Wen(g)|? dg = / / Wen(g)[? |det g| ™ dg
U'M\G o\G Jun\p
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diverges. n

Our final result in this section is the following.

LEMMA 6.11. Suppose that m is (AT) and let 7' = ©". Then, ordz(0) = ordg(—m) + 1. In
particular, if 7 is supercuspidal, then B is holomorphic at s = —m (cf. Example 6.8). Moreover,
let

Z*(WSha Wéha (I)) = hH(l](qs - 1)OrdZ(O)Z(WSh7 Wéha P, 5)
s
and
B, (Wen, Why) = lim (¢*F™ — 1)) By (W, Wy, 5).

S——m

Then, there exists a constant ¢ (depending only on F';, m and n) such that

2 (W W ®) = c8(0) | B3 (Won(9). W c9).—m) dy

for all Wg, € WY0' (o), Wh, € W07 (6V) and ® € S(Maty, m (F)).

Proof. By the local functional equation and Proposition 6.6, Z*(Wsy, W¢,,, ®) = 0 if ®(0) = 0.
Therefore, the argument in the proof of Corollary 6.10 (taking ® supported near 7, which localizes
J®,1,4,s near Q) shows that ordz(0) = ordg(—m) + 1. Since Ress—q f,1,.,s is proportional to
®(0), we get the required relation from (26). O

We may view
| B (W (o). W (o). —m) dg
\G
as a regularization of
/ Wen(9)Wen(9) dg.
M'YUNG

(Recall that the latter diverges for W, = Wgy, if m > 1.)

7. The case n =m = 2

Given o = Sp(m, m), it is natural to ask what is the asymptotic behavior of a function in W¥v’ (o)
or (what is essentially the same thing) in K% (o). In the case n = 2 orif n =3 andm =2, PV is a
spherical subgroup of G and the problem can in principle be analyzed by the methods of [SV17].
We will only treat here the case where m = n = 2 and 7 is supercuspidal, in a self-contained
way, without appealing to the general results of [ibid.]. For n > 2 and m > 1 (excluding the case
n = 3 and m = 2) P'Y is no longer a spherical subgroup and the problem seems to be more
difficult than the analogous problem for WY~ (o). We have little to say about it.

We note that in the case where n = 2 and ¢ is unramified, an explicit formula for the
unramified Wgy, was given by F. Sato [Sat05]. This is a special case of a formula of Sakellaridis
[Sak06]. In general, it would be an interesting problem to obtain such an explicit formula in the
unramified case for any m,n. Once again, this goes beyond the scope of [Sak13].

For the rest of this section we consider the very special case where n = m = 2. Fix an
infinite-dimensional 7 € Irr GLy and ¢ = Sp(7, 2). The transition map 7 : WY~ (o) — WYv’ (5)
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is
1
Wiye — Wgp = / Wye(u(z)-) doz where a(z) = < b ) :
F 1

Recall that 7V ~ mw_1. Let 7y = 7 |-|°. Fix a pairing A : 71 ®7_1 — C such that A(71(g)v1®
2 2 2
m_1(g)v2) = wr(det g)A(v1®@vg) for all g € GLg. For any v € m1 ®7_1 let MC,, : GLy x GLgy — C
2 2 2
be the twisted matrix coefficient MC, (g1, g2) = A((71(g1)®7_1(g2))(v)). Thus, v — MC, defines
2 2

to Indf;j;)%izdiag x where Z is the center of GLo, GL(Qiiag is
2

GL2 diagonally embedded in GLg x GLg and x((A1l2, A2l2)(g,9)) =

an equivariant map from 71 ® 7_1
2 2

wr(A1Aedet g). If 7 is
X- If mis (AT), then upon identifying

AL
A2
supercuspidal, then the image is contained in ind G2 x GLQdia

(ZxZ)GLy"8

71 @71 with WYNu (m1 ® m_1) we may realize A as the convergent integral
2 2 2

1
2

A(W) = . W (diag(1, —t,1,t))wa ()" d*t, W € W¥Nu (Tl'% ® 77_%). (27)

It follows from the Schur orthogonality relations that if m, 7" € Irreysp GLo with wrwy = 1,
then 7’ is equivalent to 7" if and only if

dg
MC,(g,1) MCy (g, 1 0 28
/Z\GL2 (0 DMCy (0. ) el 7 (28)

/

forsomevEW%®7r7%,U’E7r’1®7r_l.
2 2

1
Recall that in the case at hand, Q@ = P’ = P¥ where w = < ! ) and that w%’ is the
1

character of P'Y whose restriction to U’ is ¥ and whose composition with ¢ is wy o det. Also,
12 5) 1| = max(lal , b], ||, |d]).

PROPOSITION 7.1. Suppose that m € Irreusp GLa. Then, we have a short exact sequence of Q-
modules

. A
0—>1ndg,ww$—>a|Q —m1®m_1—0
2

1

2

where @) acts on m1 ® m_1 through M’ (identified with GLg x GLg via k). Upon identifying ol
2 2

with K¥ (o), the map A is characterized by the property that for any L € K¥(c) there exists

¢ > 0 such that

L(k(g1,92)) = MCy(g1, g2) for all g1, g2 € GLa(F') such that Hg;lglﬂ <ec (29)
where ¢ = A(L). Moreover,
L(k(-,1)) is compactly supported in {g € GLa(F) : ||g|| = ¢}. (30)

Proof. First note that the property (29) determines ¢ uniquely (if it exists). It then also follows
that if (29) is satisfied, then A necessarily intertwines the Q-action. Moreover, if (30) is satisfied,
then ¢ = 0 if and only if L is compactly supported modulo P"I’..Also note that in the relation
(29) it is enough to consider go = 1 since both sides are (G‘:L;h‘%g,mr o det)-equivariant. (For
simplicity write g = ¢g;.)

Recall that by Lemma 3.2 there exists a constant C; > 1 such that L(k(g,1)) = 0 unless
lgll < Ch.
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Suppose that L = T (Wze)|q. Write g = u'(y) diag(t1,t2)k where «/(y) = ('¥) with k €
GL2(0O). We claim that there exists C'3 such that

Wi (8(2)(9. 1)) = Ja] ™ wn () W (ding(1, 2, 1,2 ding(g, L)) (31)
for all z € F such that |z| > Cjs |ta].

Indeed, write

1
a(z) = u(z~ 1) diag(1, 1, z, z) diag(1, —z ', 1, 27 Dwu(z™) where u(y) = < 1y > .
1

a(2)r(g, 1) = u(a) ding(1, 1,2, 2) diag(1, o, 1o~ Ywn(g, Lu(tsa ™)<

where the superscript denotes conjugation. Our claim follows since wx(g, 1)w~! = diag(g, I2).
Next, we show that there exists a compact set C' of GLy(F') such that if ||g]] < Cy and g ¢ C,
then both sides of (31) vanish if |z| < Cs [ta].
First note that the condition ||g|| < C1 means that |t1],|t2], |[t2y| < C1. Now,

diag(1, —2z~ 1, 1,27 ") diag(g, Iz) € N diag(t;, —z 't2,1,271) GL4(O).

Therefore, if the right-hand side of (31) is non-zero, then by the supercuspidality of 7, x and
t1ty ! are confined to a compact subset of F*. Since |z| < C3|ta|, we infer that ¢ belongs to a
compact set of F*, and hence also ¢;. Finally, |y| is bounded since |toy| < C. Hence, g belongs
to a compact set.

On the other hand,
u(z)k(g,1) € N diag(t, 1,t2, )a(ty ' x) K
and since ‘tQ_ lx} < C3 we infer from the supercuspidality of = that if the left-hand side of (31)

is non-zero, then t1, to belong to a compact subset of F*. As before, g belongs to a compact set.
Our claim follows.

In conclusion, (31) holds for all x € F provided that ||g|| < C; and g ¢ C. Integrating (31)
over z € F' we conclude that if ||g|| < C; and g ¢ C, then

L(k(g,1)) = / (-1 Wige (diag (1, —t, 1, £) diag(g, I»)w) d*t.

*

By (27) this is equal to MCy(g, 1) where ¢ € W¥¥u (11 @ m_1) is the restriction of Wze(-w) to
2 2

M. Thus, (29) and (30) hold. In view of Corollary 3.13 this proves the proposition. (Note that

Wze — ¢ is Q-equivariant since w conjugates P to @.) O

Remark 7.2. Tt follows from (the proof of) Proposition 7.1 that there exists a non-zero Wy, €
WYN () that vanishes on M (in which case T Wz (-w)|g € K¥ (o) is compactly supported modulo
P'Y). This can be also shown directly by realizing o as the image of the intertwining operator

— T

T1 X T_ X T
2

1 1 1
2 2 2

and taking the image of a suitable vector in w1 X 7w_1 that is supported in the big cell.

N

3
COROLLARY 7.3. Suppose that m € Irreusp GLo and let n' = V. Then, the poles of the bilinear

form B;(Wep, W, , ), as we vary Ws, € WY’ (o) and WY, € W¥ur (¢"), coincide with those of
L(s+ 1,7 x7).

28



LOCAL RANKIN—SELBERG INTEGRALS FOR SPEH REPRESENTATIONS

Proof. We may assume without loss of generality that 7 is unitary. Then,
B(Wan Wans = 1) = [ [detgl"™ Wan(s(, D) d.
GLo

By Proposition 7.1, the analytic properties are governed by those of
[ ety O ) dg
GLa:[|gll<1

which can be written as

/ ( / AP d°A) IMC,(g, 1) [det g* " dg
Z\ GL2 A< lgll—t

1—q! / ) 2 s—1
= — - gl == IMCy(g, 1)|” |det g|"" dg.
1—q% Jpar, v

Thus, the poles are simple and are confined to ¢ = 1. If ¢° = 1, then the residue is clearly
non-zero. If ¢° = —1, then the residue is a constant multiple of

/ IMCy (g, 1) 2 w(det g) [detg| " dg
7\ GLo

where w is the non-trivial quadratic unramified character of F*. Thus, by (28) the residue is
non-zero if and only if 7 ~ mw. This matches exactly with the poles of L(s, 7 x wV) ([JPSS83,
Proposition 8.1}). O

8. Global heuristics

Let F' be a number field with ring of adeles A. We consider G = GL,,,, as a group over F' and
write G(A)! = {g € G(A) : |detg| = 1}. As before, let Q be the stabilizer of span{e,; : i =
1,...,m} in G — a maximal non-standard parabolic subgroup of G of type ((n — 1)m,m). For
any ® € S(Maty, nm(A)) and a Hecke character w of F*\A* consider the degenerate normalized
Eisenstein series that is given by

Z (2 1vyg) |det 2| 7" w(det 2) ! |det g|° dz
YE Mm mn (F):rky=m

= > fows19)

YEQFN\G(F)

for Res > 0 (more precisely, Re s > m if w is unitary) where as in §6.1

g@,w(g7 3) = /
GLwm (F)\ GLm (A)

fow.s(9) :/ @} (Nw(det ) [det 1| dl |det g|°
GLm (A)

and @} € S(Maty,m(A)) is given by @ (X) = ®(u(X)g) where u(X) € Maty, num (A) is the matrix
whose i-th row is Z;n:l X jenj. By the method of Tate’s thesis (which goes back to Riemann)
Ep . admits a meromorphic continuation with finitely many (simple) poles and a functional
equation

Ecb,w(ga 8) = S@M—l(tg_l?m - S).

m

As before, let P = M x U be the standard maximal parabolic subgroup of G of type (1, ...,n)
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and let |-|,, : M(A) — RZ, be the homomorphism

|diag(l1, ..., lm)| = (|det 1], ..., |det ly]).
We extend ||, to aleft U(A) and right K-invariant function |-| , on G(A) where K is the standard
maximal compact subgroup of G(A). For any z = (x1,...,2,) € R¥yand A = (Ar,..., \p) € C™
we write 2 = lxl)‘l

Let m = ®m, be an irreducible cuspidal representations of GL,(A). Let ¢ : G(A) — C be a
smooth function such that for all ¢ € G(A) the function [ € M(A) — 5p(l)7%¢(lg) belongs to

m

——
the space of T ® - -+ ® 7. The Eisenstein series

B¢ g = > o9 llp

YEP(F)\G(F)
converges if Re(A; — \jt1) > n forall i =1,...,m — 1 and admits a meromorphic continuation
to C™. The limit
w(g) = lim M—=2—=1)...Am—1 — A — 1D E(o, N\, 9) (32)

A= (55T

exists and is a square-integrable automorphic form on G(F)\G(A)! which is non-zero for a
suitable ¢. As we vary ¢, we obtain an irreducible automorphic representation of G(A) whose
local components are Sp(m,,m). (It is well-known that as we vary over m and m > 1, these
representations furnish the entire automorphic discrete spectrum of the general linear group
[MgW89].) Similarly, let 7’ be another irreducible cuspidal representation of GL, (A) and let ¢’
and ¢’ be analogous functions with respect to 7.

Formally, we would have liked to consider the integral

/ ©(9)¢' (9)€o,w(g, s) dg (33)
GF)\G(A)!

where w = wyrw,. For m = 1, this is of course the classical Rankin—Selberg integral. Unfor-
tunately, for m > 1 this integral does not converge as none of the functions that appear in
the integrand is rapidly decreasing. A suitable regularization (in the spirit of [Zag81] or later
accounts) is therefore needed in order to make sense of (33). We will not pursue this matter
here. Instead, we will be content with a purely heuristic argument, anticipating what a possible
regularization of (33) would yield.

As in the case m = 1, we unfold (formally) the expression (33). For any ¢ = 1,...,m let
Q; = L; x V; be the stabilizer of the flag

(Span{enj—k : ] = 17 s, M, k= 07 sy T = 1})r:1,...,i
in G. Thus, @1 = Q@ D Q2 O - D Qn1 = Qn = P and L; ~ GL,,—;) xLj with L] ~

)

GL, X -+ x GLyy,. Let p; : Q; — L be the resulting projection and let @ be the inverse image
of GLy, diagonally embedded in L. In particular, Q] = Q1 = Q and @/, = M'¥ x U’. Note that
foralli=1,...,n—1, Qj,, is the stabilizer in Q; of the character ¥y, and V;/V;_; is abelian
(and can be identified with Mat,,, (,_;),,) Where for consistency we let V5 = 0.

In the first step we unfold (33) to write it as

902 (9) fo.msg) dg = /

/ o(v9)¢ (vg) dv fowslg) dg
Q1(F)\G(A)! JV1(F)\V1(A)

/ o(
QUF\G(A)!
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and expand

p(vg)¢' (vg) dv = > P"1X(g)¢" X (g)

/Vl(F)\Vl(A) XEPD(V1(F)\Vi(4))

where

P X(g) = / e(vg)x(v)~" dv.
Vi(F)\Vi(A)

The Pontryagin dual of the compact abelian group V1 (#)\Vi(A) is isomorphic to Mat,, (,—1)m (F').
We consider only the contribution from the non-degenerate x’s, i.e. those corresponding to matri-
ces of rank m (anticipating that the degenerate ones will not contribute, either by the cuspidality
of m or by the regularization procedure itself). The non-degenerate characters form a single orbit
under @ = @1, namely the orbit of Wy, , and the stabilizer of ¥y, is Q5. We thus get

Vi,
/ " (9)0" TV (g) fow,s(9) dg
QPNG(A)!

which we write as

1,0y, ( ’V1=‘I’\711(

® ug)p ug) du fé,w,S(g) dg.

/Q’Z(F)\G(A)l /VQ(F)\VQ(A)

Once again, we expand the inner integral according to characters of the compact abelian group
Vo(A)/V1(A)Va(F) and consider only the non-degenerate characters. Continuing this way we get
fork=1,...,n

Vie1, 97!
/ P Vi1 () Vi1 (g) fo ,s(g) dy.
QLN\G(A)!
For k = n we obtain

’ rl
/ SOU U (g)dU RV (9) fo.w.s(g) dg.
M"Y (F)U'(A)\G(A)!

Now, oV Yv' is (M"Y (A),wy o det)-equivariant (taking into account the identification ¢ : GL,, —
M"). Therefore, up to a volume factor we get

! —1
/ V1 (g)g 0 (g) f i s(9) dy. (34)
M"Y (AU (A\G(A)
This integral (which actually converges for Res > m if w is unitary) is Eulerian. Let S be a
finite set of places of F' containing all the archimedean ones such that for all v ¢ S ¢ and ¢’
are G(O,)-invariant (and in particular, m, and =] are unramified) 1, has conductor O,, ® is
invariant under translation by Mat, mn,(O,) and ®(X) = 0 unless X, € Maty, ymn(O,). Using
(26) and Theorem 5.1 part iii, up to a measure-theoretic constant, the integral (34) is equal to

m—1

. 2 (A s
(JT L5 —i,m x 7)) Zs(07" "0 |Gre), @ 7V la(Fe)» @Inatymn (Fs)» S)
=0

where L°(s, ™ x 7') is the partial Rankin-Selberg L-function and for any W, € WYv’ (Sp(rs, m))
-1
and WY, € W¥v' (Sp(ry,m))

Zs(Wsn, W, ¥, s) = / Wsn(9)Wsn(9)®(ng) |det g|* dg,
U'(Fs)\G(Fs)
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which is essentially the product over v € S of the integrals considered in §5. (We tacitly assume
that much of the analysis of sections 3-5 carries over to the archimedean case.)

Appendix A. Relation to intertwining operators

For this appendix assume that 7 € Irr 47y GLy,. Let
m—1 m—3 1—m
M=nl|"7 x7||"T x-xa|| 2
be the standard module which admits ¢ = Sp(w,m) as the Langlands quotient. We real-
ize I in the subspace WY¥N(II) of Ind§ Wy consisting of functions W such that [ € M
_1
552 (1MW (lg) € WM (7®™) for all g € G. Define an intertwining operator on WY~ (1I)
by
W= MW () :/ W (i@, ue) du (35)
U
where W, is as in Remark 3.10. The integral defining MW is absolutely convergent and its
image is WYV (o). Similarly, define WYY (TIIV) ~ IV to be the subspace of Ind§ Wy consisting
_1 -1
of functions WV such that [ € M — 6,2(1)0' ()WY (lg) € W\IINM((WV)@)’") for all g € G. Then,

the bilinear form

(W, W) = / / Sp(l) " W (i)W (lg) dI dg, W € WYN(IT), WY € W' (11Y)
P\G N]\/[\D]W

converges absolutely and defines a G-invariant pairing on WY (II) x WY (I1Y) where Dy =
DN M is the product of m copies of the mirabolic subgroup of GL,,. Since WYy (V) is the socle
of WY~ (T1V), for any Wy, € WY (6V) the linear form W — (W, W) factors through MW
and it is a scalar multiple (independently of W) of By(MW, W.,). In the rest of the appendix
we prove the following identity.

PROPOSITION A.1. For any W € WY~ (IT) and Wy, € W' (0V) we have
<M/7 Wé/e> = BO(MW7 Wge)‘ (36)

The identity will follow from a series of identities proved below.

Fori=1,...,m —1, let U’ be the unipotent radical of the standard parabolic subgroup P*
of G of type (in,n,n,...,n). Let U* = tU* be its opposite.

LEMMA A.2. Let 7 € Irrgen GLy,. Then, for any Wy, € WYN (Sp(r,m)) we have
_ er(ﬂ) du = er(b(if)i)) (37)
DNU*
where the integrand on the left-hand side is compactly supported. Here
(=pm-t
N . Iy—i ~
w; = :< Ufl)meSLm

where the signs on the upper right (m — i) X (m — i)-corner are alternating. Thus,

- Wze(uv) du = Wze(u) du
DNU* DNU?
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for all v € U*. In particular, for i = 1,
_ er(ﬂ) du = WZe(QDm,n)
Up
where Up = U N D.
Proof. Let W, = Ti—1ynWze € WY -1n (Sp(7,m)). Recall that U;_;), is the subgroup of Pl
consisting of matrices whose n x n blocks A; ;. satisfy
— Aj; ; is upper unitriangular for all j = 1,...,m,
— Aj, is strictly upper triangular if j # k£ and j, k < 1,
— Ajr=0if 5> kand j > 1.
(There are no conditions on A if £ > j and k > i.)
The inverse transform in Proposition 3.5 gives

Walo) = | Wi (ug) du.
NOU—1)n\ND

We may replace the domain of integration by (N NU(;_1), N GLix)\(Np N GLin) where GL, is
embedded in G by b ("1, ). Tet U = Ugg_1)n N GLin = U’ N GLiy and D; = D 11 GLp,

Thus, the above integral can be taken over N NU/\N N D;, and by Lemma 3.11 the integrand is
compactly supported.

The expression on the left-hand side of (37) is

/ / W, (ut) du di.
DU J NNU\NND;

The same argument as in Lemma 3.8 shows the function W¢, (ui) is compactly supported in
uniformly in w. Thus, the above double integral is absolutely convergent. Changing the order of
integration and making a change of variable in u we get

/ W, (au) da du.
NNUA\NND; J DNO*

Notice that the partial integration over U’ N U* € D N U® is the composition of the transforms
T; defined in Proposition 3.5 for j = (i — 1)n, ..., (m — 1)n — 1. Thus, the above is

/ / Wen(uu) du du
NNU/\NND; JU'NU\DNU*

where Wg, = TWge. By Lemma 3.9, Wgy, (¢(w;)g) = Wsn(g). The above becomes

/ / Wn (u(in)itn) dii du — / Wign (e (1)) du.
NNUNANND; JU'NON\DNU? NNU\Np

Now Lemma 3.11 gives (37). For the second part, we only need to note that for all ¥ € U’ we
have WZe(L(QfJZ‘)’l_)) = WZe(L(Qf}Z‘)). O

Write U as a (semidirect) product of abelian groups UsUs...U,,, where U; consists of the
elements @ in U such that u;, = 6 if j <n(i — 1) or j > ni. For brevity, for any i =1,...,m
we denote the iterated integral

/UQmD (/USHD"'(/Ume(Uz""USUQ) dﬂl) dﬂg) diiy
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(assuming convergent) by

it
UNnD;
LEMMA A.3. Let Wy, be as before and let ¢ € S(U). Then,

/ /¢ YWze(0) du dl_):WZe(UNJmm)/UQS(ﬂ) du

where each integrand in the iterated integral on the left-hand side is compactly supported.

Proof. We show by descending induction on ¢ = 1,...,m that the left-hand side is equal to

it
/U . /U . /U (1) Wye(vuv') du do dv'. (38)

Note that the integrand is compactly supported in @ and v. For ¢ = m this is clear while for
i = 1 we obtain the statement of the lemma by Lemma A.2.

For the induction step, we assume ¢ > 1 and use Lemma A.2 to rewrite (38) as

it
/UQDZ» /U,-QD /U O(w)Wee(vpi(n)?') du dv dv

where p; : GL;, xU? — GL;, is the projection. Now write o/ = 102 where v, € U; N D and
Do € U N D;_1 and note that p;(@) € GL;, NU normalizes U; N D. Therefore, (38) is equal to

/ / / / ¢ WZe lepz( )'U2) du dv dvy doo
UnD;—, JU,ND JU'ND
/ / / & (W) Wye(vpi ()0 du dv dv’
UND;_1 JU-1nD JU
= / / / () Wye(vud') du do dv’
UND;_1 JU—nD JU

as required. O

Denote by 05, (1) the character of Dy given by d(lul™) = 65 (I) du where du is a Haar
measure on Up.
Let WY~ (I); be the linear subspace of WY~ (II) generated by the functions W of the form

Wig) = {5p(l)26’(l)W’(1)¢(u) ifg=ult, ueU, L€ M, ael,

0 otherwise,
where ¢ € S(U), W' € WYV (7®™) and W’|p,, is compactly supported modulo Ny;.

LEMMA A.4. For any W € WY~ (I1); and Wy, € WYN (¢V) we have
it
| W) do= [ MW )Wyl )35 0) . (39)
Up Ny \Dny b

Proof. The left-hand side is
it
/ // YW (la)Wy,(luv) dl du d@:/ / /W(al)WZVe(al@) du dl dv.
Up NM\DM Up JNy\Dy JU

34



LOCAL RANKIN—SELBERG INTEGRALS FOR SPEH REPRESENTATIONS

As M normalizes U; for any i, this equals

it
/ / / W ()W, (avl)s;" (1) du do dl.
Ny \Dy JUp JU b

Here we can interchange the order of integration as [ is integrated over a fixed compact set, by
the choice of W. The claim now follows from Lemma A.3 and (35). O

Let WY’ (0V), be the subspace of WYy (V) consisting of the functions W), such that W,/ | p
is contained in 1ndND Uy and W, |p is supported in PUND.

LEMMA A.5. For any Wz, € WYN (o) and W), € WYN (¢V), we have
Bo(Wye, W(-0)) dv = / W e (W) W (tGm 1) 05 (1) dl.
Up Ny \Dy P
Proof. Note that PU N D = UpDj;Up. Thus, the left-hand side is

/ / Wze(p) Wy (pv) dp dv = / / - Wae(ul)Wy, (ulv) du dl dv
UD ND\D NM\DM UD
= / / Wye(ul)W5, (ulv) dv du dl
Ny \Dyr JUp JUp

_ / / Wae ()W, (81)05 (1) do da dI
Ny \Dy JUp JUp b

where we made a change of variable ¥ — [~'a~'9l. By the condition on W,.|p and Lemma 3.8,
the integrand is compactly supported, which justifies the previous steps. Applying Lemma A.2
for both integrals over Up we get the required statement. O

Since (36) holds up to a scalar, in order to conclude Proposition A.1, it suffices, in view of
Lemmas A.4 and A.5, to show the existence of W € WY~ (II); and W), € W' (oY), such that
the right-hand side of (39) is nonzero. By Corollary 3.15, given ¢ € S(Up) and W’ € indﬁﬁ \IIJ_V}M
there exists (a unique) W, € WY¥N' (6V), such that

W (ulv) = ¢(0)W'(I) Yu € Up, 1 € Dy, © € Up.
Thus,
L Woe(mal) = | Wy (ol) dv =65, (1) | W5.(10) dv
Up Up
can be taken to be an arbitrary function in ind v leu Thus, we only need to show that
MW (@) is nonzero for some W € WY~ (II);. However this is clear since MW (W, ) =

fUW ) du

This finishes the proof of Proposition A.1.

Remark A.6. Let us go back to setup of §8. It is well-known that the Petersson inner product of
cusp forms in 7 factorizes as the product over v of the Bernstein inner product on the Whittaker
model of m,. Now let ¢ be as in (32). The ¥ n-th Fourier coefficient of ¢ is the Uy;,,-th Whittaker
coefficient of the constant term of ¢, which is given by the iterated residue M_; of the global
intertwining operator. Proposition A.1 (assumed to work in the archimedean case as well) gives a
factorization of the square of the Petersson norm of ¢ in terms of the local inner product (14) on
the Zelevinsky model of Sp(m,, m). Indeed, by the Maass—Selberg relations, the Petersson inner
product is given by M_;1 and Proposition A.1 will reduce the statement to the classical case.
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