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ABSTRACT

In recent years, solid state drives (SSDs) have become a staple of

high-performance data centers for their speed and energy e�ciency.

In this work, we study the failure characteristics of 30,000 drives

from a Google data center spanning six years. We characterize the

workload conditions that lead to failures and illustrate that their

root causes di�er from common expectation but remain di�cult

to discern. Particularly, we study failure incidents that result in

manual intervention from the repair process. We observe high

levels of infant mortality and characterize the di�erences between

infant and non-infant failures. We develop several machine learning

failure prediction models that are shown to be surprisingly accurate,

achieving high recall and low false positive rates. �ese models

are used beyond simple prediction as they aid us to untangle the

complex interaction of workload characteristics that lead to failures

and identify failure root causes from monitored symptoms.
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1 INTRODUCTION

�e longevity of solid state drives (SSDs) and their reliability is of

much importance in recent years as increasing amounts of data

in modern data centers reside on SSDs. Unfortunately, there are

relatively few studies on the reliability of SSD devices, especially

compared to the extensive studies of hard disk drives (HDDs) oc-

curring over the past several decades. HDD reliability research

is not generalizable to SSDs as the physical mechanics of HDDs

are distinct from SSDs and, correspondingly, their failure symp-

toms and causes are fundamentally di�erent. For the few existing

SSD reliability analyses, their scope has focused more on speci�c

errors in controlled, laboratory environments using simulated work-

loads [4, 10, 15, 23, 32]. Non-simulated studies of SSD reliability

analysis, centered around production systems, typically focus on

the type of errors (in particular, raw bit error rates and uncor-

rectable bit error rates), their relationship with the workload, drive

age, and drive wear out. However these results also extend to �eld

characteristics of block failures, chip failures, and rates of repairs

and replacements [17, 18, 25].

In this paper we look into the process of SSD retirements by

examining those drive failures that necessitate manual intervention

and repairs. We study this through analysis of a selection of daily

performance logs for three multi-level cell (MLC) models collected

at a Google production data center over the course of six years. We

concern ourselves with the conditions of drive activity that precede

these total failures. �ough we are unaware of the data center’s ex-

act work�ow for drive repairs and replacements (e.g., whether they

are done manually or automatically, or the replacement policies

in place), we are able to discover key correlations and pa�erns of

failure, as well as generate useful forecasts of future failures. Being

able to predict an upcoming retirement could allow early action:

for example, early replacement before failure happens, migration

of data and VMs to other resources, or even allocation of VMs to

disks that are not prone to failure [31].

In this paper, we study the various error types accounted by the

logs to determine their roles in triggering, or otherwise portending,

future drive failures. It is interesting to note that although we

have ample data, statistical methods are not able to achieve highly

accurate predictions: we �nd no evidence that the repair process is

triggered by any deterministic decision rule. Since the complexity

of the data does not allow for a typical treatment of prediction

based on straightforward statistical analysis, we resort to machine
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learning predictors to help us detect which quantitative measures

provide strong indications of upcoming failures. We show that

machine learning models that are trained from SSD monitoring

logs achieve failure prediction that is both remarkably accurate and

timely. Beyond prediction, the models are interpreted to provide

valuable insights on which errors and workload characteristics are

most indicative of future catastrophic failures.

�e models are able to anticipate failure events with reasonable

accuracy up to several days in advance, despite some inherent

methodological challenges. Although the frequency of failures

is signi�cant (14% of the drives experience failures during their

lifetime), the data set is highly imbalanced. �is is a common

problem in classi�cation, and makes achieving simultaneously high

true positive rates and low false positive ones very di�cult. We

train a set of six machine learning predictors and illustrate that it

is possible to achieve robust predictions. Crucially, we focus on the

interpretability of the machine learning models and derive insights

that can be used to drive proactive SSD management policies. Our

�ndings are summarized as follows:

• Although a signi�cant portion of drives (up to 14%) are swapped

during their lifetime, a very small percentage of swapped drives

that go into repair mode re-enter the work�ow within a month,

this percentage is as low as 5% and as high as 9.4%, depending

on the drive type. Up to 28% of drives are repaired within a year

and about 50% of those that are swapped are never put back into

production.

• A signi�cant proportion of failed drives (roughly 10%) remain in

the system in a failed state for a period on the order of months.

• �ere is no single metric that triggers a drive failure a�er it

reaches a certain threshold.

• Several di�erent machine learning predictors are quite successful

for failure prediction. Random forests are found to be the most

successful of all.

• We identify the drive age as the most important feature for swap

prediction (and also for non-transparent error prediction).

• We are unable to demonstrate a correspondence between P/E

cycles and failure, suggesting that write behavior is not as highly

indicative of failure as previously thought.

• Di�erent predictors need to be trained for drives of di�erent age

groups and the which features are useful for failure prediction

depends heavily on the age of the drive.

�e above insights can be used to anticipate failures and take ap-

propriate actions such as proactive SSD management, spare drive

provisioning, and perhaps even workload allocation.

�is paper is organized as follows. We �rst characterize the

data and summarize our �ndings in Section 2 and 3, respectively.

Section 4 connects statistics between failure statistics to workload

statistics to identify symptoms and causes of drive failures. In

Section 5, we propose several machine learning predictors of SSD

failure and conduct detailed post-prediction analysis. Section 6

presents related work, followed by the summary and conclusions

in Section 7.

2 SSD TRACE DATA

�e data consist of daily performance logs for three MLC SSD

models collected at a Google data center over a period of six years.

Each of the three models are manufactured by the same vendor and

have a capacity 480GB and a lithography on the order of 50nm. All

three models utilize custom �rmware and drivers, meaning that

error reporting is done in a proprietary format rather than through

standard SMART features [1]. We refer to the three models as MLC-

A, MLC-B, and MLC-D in accordance with the naming in [17, 25].

We have data on over 10,000 unique drives for each drive model,

totaling over 40,000,000 daily drive reports overall.

�e logs used in this paper report daily summaries of drive

activity. Drives are uniquely identi�ed by their drive ID, which is a

hashed value of their serial number. For each day of operation, the

following metrics are reported:

• �e timestamp of the report, given in microseconds since the

beginning of the drive’s lifetime

• �e number of read, write, and erase operations performed by

the drive over the course of the day

• �e cumulative number of program–erase (P/E) cycles seen by

the drive over its lifetime. A program–erase cycle is the process

by which a memory cell is wri�en to and subsequently erased.

�e cumulative amount of these cycles is a measure of device

wear.

• Two status �ags indicatingwhether the drive has died andwhether

the drive is operating in read-only mode.

• �e number of bad blocks in the drive. A block is marked bad ei-

ther when it is non-operational upon purchase (denoted a factory

bad block) or when a non-transparent error occurs in the block

and it is subsequently removed from use. Cumulative counts of

both of these bad block types are provided in the log.

• �e counts of di�erent errors that have occurred over the course

of the day, speci�c counts are provided for the following error

types:

– correctable error: the total number of bits that were found

corrupted and corrected using drive-internal error correc-

tion codes (ECC) during read operations during that day,

– erase error: number of erase operations that failed,

– �nal read error: the number of read operations that fail, even

a�er (drive-initiated) retries,

– �nal write error: the number of write operations that fail,

even a�er (drive-initiated) retries,

– meta error: number of errors encountered while reading

drive-internal metadata,

– read error: the number of read operations that experienced

an error, but succeeded on retry (initiated drive-internally),

– response error: number of bad responses from the drive,

– timeout error: number of operations that timed out a�er

some wait period,

– uncorrectable error: number of uncorrectable ECC errors

encountered during read operations during that day, and

– write error: the number of write operations that experienced

an error, but succeeded on retry (initiated drive-internally).

For a given drive, the error logmay have observations spanning over

a period of several days up to several years. �is is demonstrated

in the “Max Age” CDF in Figure 1, which shows the distribution

over “oldest” observations we have for each drive. �is measure

indicates the length of the observational horizons we possess.
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erase �nal read �nal write meta read response timeout uncorrect. write P/E cycle bad block

erase 1.00

�nal read 0.21 1.00

�nal write 0.24 0.12 1.00

meta 0.17 0.19 0.35 1.00

read 0.22 0.20 0.30 0.40 1.00

response 0.02 0.06 0.24 0.02 0.03 1.00

timeout 0.01 0.12 0.44 0.02 0.03 0.53 1.00

uncorrectable 0.20 0.97 0.06 0.16 0.15 0.03 0.03 1.00

write 0.32 0.28 0.13 0.14 0.25 0.02 0.02 0.28 1.00

P/E cycle 0.32 0.18 −0.05 −0.02 0.03 0.03 0.00 0.19 0.23 1.00

bad block count 0.38 0.37 0.19 0.19 0.18 0.01 0.01 0.37 0.34 0.16 1.00

drive age 0.20 0.36 0.06 0.05 0.06 0.04 0.05 0.36 0.14 0.73 0.18

Table 2: Matrix of Spearman correlations among cumulative error counts and cumulative P/E cycle count. Bolded text indicates

a large correlation value.

Model #Failures %Failed

MLC-A 734 6.95

MLC-B 1565 14.3

MLC-D 1580 12.5

All 3879 11.29

Table 3: High-level failure incidence statistics. �is includes,

for eachmodel, the number of failures observed and the pro-

portion of drives that are observed to fail at least once.

failed drives are extracted to be repaired. Swaps denote visits to

the repairs process — and not simply a swapping out for storing

spare parts, or moving a healthy SSD to a storage cabinet. All swaps

follow drive failures, and accordingly, each swap documented in the

log corresponds to a single, catastrophic failure. Incidence statistics

for these swaps/failures are provided in Table 3.

Number of Failures % of drives % of failed drives

0 88.71 —

1 10.10 89.60

2 1.038 9.208

3 0.133 1.180

4 0.001 0.001

Table 4: Distribution of lifetime failure counts. �e distri-

bution is expressed with respect to the entire population of

drives and with respect to those drives which fail at least

once (“failed drives”).

Table 3 shows that failures occur to a signi�cant proportion of

drives and are a relatively common occurrence in this data center:

a whole 14.3% of MLC-B drives have failed at least once, followed

by 12.5% of MLC-D drives and 6.95% of MLC-A ones. �is high fre-

quency of failures/swaps poses a large pressure in terms of mainte-

nance costs, since each swap requires manual intervention. Table 4

provides more insights by providing statistics on the frequency of

failures for the same drive. Unexpectedly, we �nd that some drives

have failed as many as four times over the course of their lifetime.

Nonetheless 89.6% of drives that have been swapped, are swapped

only once.

To be�er characterize the conditions of failure that lead to these

repairs, we must pinpoint the failures in the timeline. A natural

way to proceed is to de�ne failure events with respect to swap

events: a failure occurs on a drive’s last day of operational activity

prior to a swap. �is is a natural point of failure since, a�er this

point in the timeline, the drive has ceased normal function and is

soon be sent to the repairs process.

We now discuss what we consider to be “operational activity.” It

is o�en the case (roughly 80% of the time) that swaps are preceded

by at least one day for which no performance summaries are docu-

mented in the log. �is indicates that the drive was non-operational

during this period, having su�ered a complete failure. Prior to

this period, we also �nd substantially higher rates of inactivity

relatively to normal drive operation. In this case, inactivity refers

to an absence of read or write operations provisioned to the drive.

A period of inactivity like this is experienced prior to 36% of swaps.

�e length of these inactive periods is less than one week in a large

majority of cases. �e existence of such inactivity is an indication

that data center maintainers no longer provision workloads onto

the drive: this amounts to a “so�” removal from production before

the drive is physically swapped. Accordingly, we de�ne a failure

as happening directly prior to this period of inactivity, if such a

period exists.

To summarize, drive repairs undergo the following sequence of

events, represented in Figure 2: 1) At some point, the drive under-

goes a failure, directly a�er which the drive may cease read/write

activity, cease to report performance metrics, or both, in succession.

2) Data center maintenance takes notice of the failure and swap the

faulty drive with an alternate. Such swaps are notated as special
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�e output of themodels that we consider is a continuous output

in the interval [0, 1], which may be interpreted as the conditional

probability of failure given the input. We o�en �nd it useful or nec-

essary to have a binary prediction, i.e., failure vs. non-failure. Such

binary predictions are of great practical importance. To accomplish

this, we may discretize this output into a binary prediction using a

discrimination threshold α : if the failure probability exceeds α , we

predict that failure will occur, otherwise we predict that no failure

will occur.

Consistent with the standard practice of evaluating a classi�er

with highly imbalanced data sets (as is the case here, our data

contains 1 failure for each 10,000 non-failure cases), we choose

to measure predictive performance using the receiver operating

characteristic (ROC) curve [7] because it is insensitive to class

imbalance. Furtheremore, the ROC curve illustrates the practical,

diagnostic performance of a binary classi�er as the discrimination

threshold α is varied. �e ROC curve plots the true positive rate

(i.e., recall) against the false positive rate for the selected classi�er.

�ese are calculated as

TPR =
# of True Positives

# of Positive Samples

FPR =
# of False Positives

# of Negative Samples

�e values of these two statistics vary depending on the chosen

discrimination threshold α . Plo�ing a curve across all values of

these two statistics, we �nd the area under this curve to obtain a

summary statistic of classi�er performance. �is is called the ROC

AUC (area under curve) statistic. �e ROC AUC ranges between 0.5

(indicating performance not exceeding that of random guessing)

and 1.0 (indicating perfect, deterministic prediction). We chose

this metric since it is known to be robust in cases of imbalanced

classes [7]. �is is due to the fact that the true positive rate and false

positive rate metrics are independent of the level of imbalance. �e

false negative rate for the classi�er may also be read from the ROC

curve using the identity FNR = 1−TPR. �is transformation allows

a method of comparison between our predictions and those shown

in a previous machine learning prediction study on this same data

set that focuses on predicting the occurence of so� errors only [17].

For further assurance of model validity, 5-fold cross-validation

is used. �is is done by spli�ing the drive ID numbers into �ve

equally sized groups. We train the model �ve times, successively

using a di�erent group as the testing set, with the remaining four

groups used as the training set. For each train–test split, we cal-

culate the ROC AUC value, and we report the mean value of the

metric across the �ve splits. We found cross-validation to be im-

portant since the sampling bias for train–test split can be quite

signi�cant in this imbalanced classi�cation problem. Furthermore,

error and workload for a given drive are highly correlated across

di�erent drive days, leading to results that are biased to be larger

than expected. Accordingly, we avoid spli�ing observations for a

given drive across the training and testing sets. �is is done by

partitioning the folds based on drive ID.

Since we are dealing with a heavily imbalanced data set (out of

40,000,000 observed days of data, we have only 4000 failures), we

randomly downsample the majority class to produce a 1:1 positive–

negative ratio. �is is a standard machine learning tactic used to

make the classi�er more sensitive to the minority class [13]. One

concern with downsampling is that the model is not able to capture

all of the variation within the majority class. To ensure the model’s

accuracy, we performed multiple random downsamplings on the

same training set and observed the ROC AUC for each resulting

model. We found that the AUC score only wavers on the order of

±0.001. We determined this variability induced by downsampling

to be negligible. We also tested di�erent downsampling ratios

beyond 1:1 and observed either miniscule improvements or overall

reductions in performance.

5.2 Prediction Accuracy

Table 6 reports on the average ROC AUC values for six machine

learning predictors: logistic regression, k-nearest neighbors (k-NN),

support vector machine (SVM), neural network, decision tree, and

random forest [2]. For each method, we performed a grid search

over hyperparameters in order to �nd the best con�guration. Most

of these hyperparameters were regularization parameters, tuning

the complexity of the trained model. �ese include the ridge re-

gression coe�cient for logistic regression, the maximum depth of

the trees in the random forest, and the sizes of the hidden layers in

the neural network. We avoided over��ing by choosing the values

of the hyperparameters that provided the best cross-validated per-

formance with respect to ROC AUC. �e classi�ers (and respective

AUC predictions) are for the entire log, i.e., we do not distinguish

among drive types. Similarly to [17] where predictions of the disk

error types is done (and not the catastrophic failures that we focus

on here), we �nd that Random Forest models perform best on this

data set compared to other common classi�ers, including logistic

regression and neural networks. We believe random forests to be so

successful on this data set since they work well with discrete data

are able to model nonlinear e�ects. It is also interesting to see that

a single decision tree is able to achieve competitive performance

to the random forest ensemble. In addition, across all models, it is

clear that the shorter the lookahead window, the higher the quality

of predictions we are able to achieve.

�e performance of the Random Forest model is shown for a

wider range of values for the detection window size N in Figure 12.

We see that for lookahead that ranges up to 30 days, the e�ec-

tiveness of prediction drops from 0.90 (1 day) to 0.77 (30 days),

suggesting that strong prediction of swaps can be done with a

range of windows but predictions are especially strong for 1 to 3

days lookahead.

Next, we consider the e�ectiveness of the classi�er when evalu-

ated individually on each drive type: MLC-A, MLC-B, and MLC-D.

Figure 13 reports results on this for a 1-day lookahead window

and show that the Random Forest model performs nearly identi-

cally across the three MLC logs. Next, to test robustness across

MLC model types, we see whether predictive success on one model

implies predictive success on another. To test this, we train the

classi�er using one MLC model in order to predict failures for an-

other. Table 7 presents the ROC AUC results and shows that this

is feasible with AUC values showing only minor degradation. Yet,

if all data (all three MLC logs) are used for training (see the last

column of Table 7), prediction is superior.
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Error Combined Young Old

Bad block 0.877 0.878 0.873

Erase 0.889 0.934 0.882

Final read 0.906 0.959 0.852

Final write 0.841 0.937 0.780

Meta 0.854 0.890 0.842

Read 0.971 0.917 0.973

Response 0.806 — —

Timeout 0.755 0.812 0.735

Uncorrectable 0.933 0.960 0.931

Write 0.916 0.911 0.914

Table 8: ROC AUCs for random forest to predict various er-

ror types for N = 2. Response errors are too rare to predict

for di�erent age granularities.

than heuristics and statistical models. Mahdisoltani et al. [17] ex-

plore di�erent machine learning models to predict uncorrectable

errors and bad blocks in hard disk drives and solid state disks. Ding

et al. [6] capture the fuzzy rules and combine time series mod-

els to predict online so�ware system failures. Botezatu et. al. [3]

and Narayanan et. al. [20] use machine learning to predict disk

replacements using SMART data. Xu et. al. [31] use SMART data

and system-level signals to develop a machine learning model to

improve service availability of Microso� Azure.

Compared with statistical models in prior works [12, 16, 22],

our work leverages machine learning models to predict disk drive

failures with low false positive rate. In contract to prediction for

systems in a manufacturer-controlled environment [19] or using

data sets of very limited size [9], we focus here on trace data col-

lected in a production system consisting of over 10,000 drives over

a period of six years. �e same trace has been examined in [17]

but focused on machine learning models for predicting SSD errors

rather than complete disk failures. We recreate and expand their

work here in Section 5.4. Schroeder et al. [25] also utilized the

same trace, but focused orthogonally on bit error rates, without

discussing causes, symptoms, or prediction.

7 CONCLUSION

In this paper we do a detailed workload characterization study

of SSD failures using a Google trace of more than 30,000 drives

within a time period of six years in production data centers. We

reach several surprising conclusions, in particular, that the usual

suspects of drive failure (write behavior and error incidence) are

nowhere near as informative as one would expect. We extract

informative features from this characterization to train several

machine learning predictors, and �nd that random forests are the

most successful, achieving extremely accurate predictions of drive

failure. Our analysis concludes that the age of the drive is a crucial

factor for failure prediction. If the drive does not fail within its �rst

3 months of operation, then wear and tear play a more substantial

role in its reliability. We are currently working on advancing our

understanding of disk activity prior to a swap and directly following

re-entry in order to improve our prediction models for large N .
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