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A HIGHER-DIMENSIONAL BOURGAIN-DYATLOV
FRACTAL UNCERTAINTY PRINCIPLE

RUI HAN AND WILHELM SCHLAG

We establish a version of the fractal uncertainty principle, obtained by Bourgain and Dyatlov in 2016, in
higher dimensions. The Fourier support is limited to sets ¥ € R¢ which can be covered by finitely many
products of §-regular sets in one dimension, but relative to arbitrary axes. Our results remain true if ¥ is
distorted by diffeomorphisms. Our method combines the original approach by Bourgain and Dyatlov, in
the more quantitative 2017 rendition by Jin and Zhang, with Cartan set techniques.

1. Introduction

Bourgain and Dyatlov [2018] proved the following result.

Theorem 1.1. Let X,Y C Rand N > 1 be such that X C [—1, 1] is §-regular with constant Cg on
scales N~V to 1 and Y C [N, N] is 8-regular with constant Cg on scales 1 to N. Then there exist
constants B > 0 and C depending on §, CR so that

1f 2y < CN 21 f e
forall f € L?(R) with supp(f) C Y.

The §-regularity condition is akin to asking for a Frostman measure at dimension §; see Definition 6.1
below for the precise statement. Theorem 1.1 is most interesting for § close to 1. For § < 1, Cauchy—
Schwarz and measure estimates in phase space suffice. The f was made effective later by Jin and
Zhang [2017]. Combining this fractal uncertainty principle with earlier results by Dyatlov and Zahl [2016]
led to a breakthrough on the existence for an essential spectral gap for convex cocompact hyperbolic
surfaces. This refers to a strip to the left of the % line in the complex plane in which the Selberg zeta
function has only finitely many zeros. This result can be reformulated in terms of strips below the real
axis in which the meromorphic continuation of the resolvent of the Laplacian of the hyperbolic surface
exhibits only finitely many resonances. This in turn can be rephrased as a decay rate of the resolvent for
large energies within such a strip.

For other applications see [Bourgain and Dyatlov 2017; Dyatlov and Jin 2017; 2018], and for a survey
[Dyatlov 2017].

It remained an open problem to establish an analogue of Theorem 1.1 in higher dimensions. This is
the main goal of this paper.
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We now present our main results. Let X C [—1,1]¢ be a §-regular set in the sense of Bourgain and
Dyatlov with § € (0, d) and constant Cg, on scales N~! to 1. In [Bourgain and Dyatlov 2018] this
concept is defined only on the line, but the definition, together with its main properties, carries over to
higher dimensions. Strictly speaking, we do not need the regularity condition per se, but rather the porosity
property of such sets as stated precisely in Definition 5.1 below. Second, let Y C [-N, N]¢ be of the form

d
YZ{Z&@}I&EYZ}, (1'1)

i=1
where ¢; are unit vectors with |det(éy,...,€4)| > &g, a positive constant (possibly small), and ¥; C
[-2N,2N] is a §;-regular set with §; € (0, 1) and constant Cg, on scales 1 to N.

Theorem 1.2. Let X,Y be as in the previous paragraph in dimension d > 2. Then there exists a constant
C =Cd,¢,68,81,Cr) > 0 such that for

- (CI%/L) 24;3%—1—2 ﬁ
ﬂ‘e"p{_e"p[( 51(1—61) ) }}

where 1 > 0 is a small constant depending on d and &o, and for any f € L2(R?) with supp(f) cY
one has

1 £ llL2cey < EN TP f L2 a) (1-2)
for sufficiently large N > Ny(d, &9, 8,81, CR).

As a corollary of our main theorem, we allow Y to be covered by the union of a finite number of Y;’s,
each satisfying (1-1) but with a uniform gg:

m d
Y C U Y;, whereY; = {ij,igj,i & €Y. (1-3)

Furthermore, the number m of covers can grow in N. To be specific, we prove:

Corollary 1.3. Let X be as above and Y be as in (1-3). Suppose m grows with N as follows:
m=|NY],

in which 0 <y < B. Then for any f € L%(R%) with supp(fA) C Y, and constants C, B in Theorem 1.2,
one has

12y < CNY 2L 2 (1-4)
for sufficiently large N > No(d, &9, 8,61, CR).

Theorem 1.2 and Corollary 1.3 require that the Fourier support ¥ may be covered by products of
regular sets in one dimension along lines; see (1-3). Our third result asserts that one may distort these
lines by means of diffeomorphisms which are obtained as follows. Let Wy : [-N, N]¢ — [N, N]¢ be a
diffeomorphism such that

ID® x|l + | DDN [loo + NI D2 @ |loo < C(d, Do), (1-5)
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where the supremum norm is taken over the cube [—N, N]¢. One example of a diffeomorphism satisfying
(1-5) is Wy (x) = NWo(x/N), where Wy is a diffeomorphism from [—1,1]¢ to [—1, 1]¢ such that

[ DWolloo + [ D5 oo + | D*Wolloo < Do. (1-6)
where the supremum norm is taken over the cube.

Theorem 1.4. Theorem 1.2 remains correct with ® 5 (Y) in place of Y. Constants depend on Dy, but not
on V.

In the following section we demonstrate the Cartan techniques by reproving a certain step in [Bourgain
and Dyatlov 2018] which was proved there by means of harmonic measure of the strip with a real
line-segment removed. In Section 3 we go beyond the one-dimensional setting via these Cartan methods.
The subsequent sections implement the argument in analogy with [Bourgain and Dyatlov 2018] albeit in
dimensions and higher. We haven striven to present the argument in a modular fashion. In particular, the
delicate Beurling—Malliavin step appears only in Section 6 in order to prove the existence of damping
functions. We do not use a higher-dimensional version of the Beurling—Malliavin theorem, which appears
to be unknown. Rather, we reduce ourselves in that step to the aforementioned product structure of Y
(or covers of finitely many of such products) precisely so as to be able to still use the one-dimensional
construction of such damping functions. Moreover, as in [Jin and Zhang 2017] it is important for us to
use the weaker form of the Beurling—Malliavin theorem obtained via outer functions; see [Mashregi et al.
2005]. Any other construction of damping functions in Section 6 would lead to different formulations
of our main theorems in terms of the conditions on ¥ without needing to change anything in the other
sections. Theorem 1.4 is proved in Section 6D. An FUP for Fourier integral operators is presented in
Section 6E.

2. L2 localization in one dimension

Let us first introduce notation. For £ = (€1, &, ..., &E7) € RY, let
d d .
€= Il (el = Y I&l2 and (€)= (1+[EB)}.
j=1 j=1

Let e(0) := e27% For x € R, let [x] :=min{n € N: n > x}, and | x| := max{n e N: n < x}.

Throughout, we let R(q) be the rectangle with vertices +iq, 1 £ig. We begin with quantitative bounds
on the Schwarz—Christoffel map from the disk onto a rectangle. The goal is to control this conformal
mapping as the eccentricity of R(g) tends to 0.

Lemma 2.1. Let 0 < g <1 and define @, to be the unique conformal map, continuous up to the boundary,
which takes the unit disk D onto the rectangle R(q) and so that ®4(—1) = 0 and ®4(+i) = £ig; see
Figure 1. Then ®4(1) =1 and qu(eiie(q)) =1+iq, where

0(g) = 86xp(—%)(1 + 0(q)), g—0.
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010(@) ®, (i) =igr——731 ("’ D)=1+iq
— s D(-D=0¢ 2 (D=1
e—i0(@) d,(—i) = —iq D, (e70D) =1—iq
R(q)

Figure 1. Conformal map ®,.

Moreover,
®y(la1(q).a2(@) =[5.3]. aj(@) =1-58(q).

with
51(q) = 4exp(~g )1+ 0. 52(q) = 4exp( =37 )1+ 0(g))

asq— 0. Let E C [a1(q), a2(q)] be a measurable set. Then for sufficiently small q one has |®4(E)| <
282(q)"2|E|, where | - | denotes Lebesgue measure.

Proof. Let 0 < k < 1 and consider the elliptic integral of the first kind

Imz >0,

arcsn(z, k)

B /Z dt

o V(=2 (1—k2:2)
which maps the upper half-plane onto the rectangle with vertices L (k), +L(k)+iH (k); see Figure 2.
Here 2L (k) and i H (k) are the periods of the elliptic function sn(z, k) and satisfy, as k — 0,

1 dt
k)= =2 4+ 0(k?),
£ /0 Jaoa-km 2 “©
k! dt o0 ds
© 1 /(2= —k2t2) /o V(A +52)(1 + k2s52) og4=logk + Ok)

The latter expansion is a standard fact; see for example [Abramowitz and Stegun 1966, Section 17.3.26].
Let ¢ := L(k)/H (k) and set

Fy(z) = _#k) arcsn(z, k), (2-1)

which maps the upper half-plane onto the rectangle with vertices £ig, 1 £iqg. With k = e~ /2

Z 4+ 0(k?) log 16
= 2 =0 11- o)),
17 g4+ 20+ O(k) zt TOW
and thus 2l d
ezq—1(1— ‘;g q+0(q2)), k =4exp(—;—q)(1+0(q)).
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0
sk = 8(20) akh=
iB(q) —L(k)+iH(k) Bzfi(k) L(k)+iH(k)
iA(q) grx(+) :=arcsn(-, k)
iH (k)
kU101 g gk(—1) = —L(k) flam =1k
upper half-plane gx(0) =0
Figure 2. Elliptic integral arcsn(z, k).
Define A(g). B(q) by Fy(iA(q)) = § and F4(iB(¢)) = 3. Thus,
A(q)
& — 1H ().
0 V(A +52)(1 + k2s52)
B(q) d
a = 3H(k).
0 VA +52)(1 + k252)
We make the ansatz A(q) = k=141 + €(q)). Then
A(g) Alq)
ds =1+ O(ki))/ ds
o V(1 +52)(1 +k2s2) 0 NI1+s2

= arcsinh(ck ™% (1 + £(¢q))) (1 + O(k2))
— log(2ck™ (1 + £(q)))(1 + O(k3))

= %(10g4 —logk + O(k)).
Hence,

log(2¢) — + logk +log(1 + &(¢q)) = (log4 —logk + O(k)).
c=3v2 eg) =0k,
A(g) = V273 (1 + O(k)).
Similarly, with B(g) = ¢k—3/*(1 + &(q)),
log(2¢) — % logk +log(1 +&(q)) = %(log4—logk + 0k))(1+ O(k%)),

F=+2, &q)=O0(k2logk),
and so
B(q) = V2k™3(1+ O(k2 logk)).

Expressing k in terms of ¢ we obtain

A@) = exp(5) 1+ 0@). B@) = Jexp(F) (1 +0(q)).

817
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Next, we conformally map the upper half-plane Im z > 0 onto the unit disk |w| < 1 via

w1 z—1

z=p(w)=1i , w= -,
¢(w) 1—w zZ4+1i

One has p(—1)=0, g(+i)=F1, p(e’®)=—k~! with =2k + O (k). Furthermore, ¢([a1(q). a2(¢)]) =
i[A(q), B(q)], where

_ A(g) —1 1 -1 -2
ai(q) = A 1 =1-24(q)" + O(A(g)™).
. B(g)—1 1 -1 -2
az(q) = B 1 =1-2B(q)" + O(B(q) ™).
Setting a;(q) = 1 —§;(q) we have
$1@) = 4exp( g )1+ (@), 52(0) = 4exp( =7 )1+ 0(@))

as claimed. The final claim of the lemma follows from

|(Fg09) ()| < |Fy(2)ll¢"(w)] < 2(1—w]) 7,

where p(w) =z, w € (0, 1). We used here that for z = is, s > 0,
Fj@)] = HO ™ 1+ 223+ K212D)73 < HB) T a+ 772 <1
for small g. .

By a subharmonic function v on a domain  C C we mean a function v : Q — [—00, 00), which is
upper semicontinuous and satisfies the submean-value property. We recall the basic Riesz representation
of a subharmonic function on the disk, albeit with precise quantitative control on the Riesz mass and
the harmonic part. In view of Lemma 2.1 we need to consider the case where the lower bound on the
subharmonic function is attained arbitrarily close to the boundary of the unit disk.

Lemma 2.2. Let v be subharmonic on a neighborhood of D, with v < M on D, and assume sup oDV =m
for some 0 < p < 1. Let p < r1 <r < 1. Then there exists a nonnegative measure (L on D, called the Riesz
measure, with the property that for all w € rD

v(w) = /Dlog |z —w| u(dz) + h(w), (2-2)

with h harmonic on rD. We have the quantitative bounds on the Riesz mass

M—m

p(rD) < (2-3)
log((1+pr)/(p+r1))
and on the deviations of the harmonic function
log((1 1—r?
min max |h(w) —c| < LM —m) og+pn)/d=r7) _ (2-4)

ceR jwl<r) r—ri log(1+pr)/(o+r)
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The constant ¢ which minimizes the left-hand side satisfies

c>m—e—log(r + p)u(rD). (2-5)
Proof. We will assume that v is smooth, the general case following by approximation. The Green’s
function G : D x D — R given by

G(z,w):= % log'

zZ—w
1—zw
satisfies A, G(z,w) = 8y and G(z, w) = 0 when |z| = 1.

Let w € D. By Green’s second identity for the domain D, we have

0G
ony

v(w)—/DG(Z,w)Av(Z) Vol(dz) = /8Dv(z) (z,w)o(dz),

where Vol is the standard volume measure and o is the (unnormalized) arc-length measure on the circle dD.
Since v is smooth and subharmonic, Av is a nonnegative, continuous function, call it 2. Therefore

o(w) = [ 276 w) u(d2) +ho(w), (2:6)
D
where
. G
ho(w) .=/ v(z)=—(z,w)o(dz). 2-7)
aD anZ
Let 0 < r < 1. On the disk rD we have the Riesz representation
o(w) = [ tog|z ~wlu(dz) + h(w) 2-8)
rD
where
h(w) := / log — w_ ' u(dz) —/ log |1 —zw|u(dz) + ho(w) (2-9)
D\rD l—zw D

is harmonic in rD. Note that (0G/dn;)(z, w) is the Poisson kernel, whence

1
o (w) = /0 0((6)) Py (0 — 0)d6.  w = wle(@). (2-10)

We now set out to bound the Riesz measure . Without loss of generality, assume m = v(p). Then setting
w = p in (2-6) yields

/Dlog“_pz'u(dz)zho(m—v(p)sM—m, @11)

|z —pl
in which we used

ho(p) < M. (2-12)

This follows from the maximum principle and the fact that /¢ is the harmonic function on D with boundary
values v by (2-10). By an elementary calculation,
[l—pz| 1+pr
min =
zl<r [z=pl  p+r

> 1
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for all 0 < p, r < 1. Inserting this bound into (2-11) implies

D) < M—m
“log((1+pr)/(p+71))

Let p<ry <r < 1. Forall w € rD we have

p(r

h(w) = /D\ DZJTG(w,Z)pL(dZ) —/Dlog |1 —zw| u(dz) + ho(w)
< —log(1 —r®)u(rD) + M =: h*.

By Harnack’s inequality on 1D we conclude from this that for any w € r{D

r+r

(" = h(w) = - — 20" = h(p)).

whence
2
hw) = (o) = .
—rI
By (2_8)9
h(p) = v(p) — /D log|z — pl u(dz) = m —log(r + p)(rD)
r
and thus
2
h(w) > rtn (m —1log(r + p)u(rD)) — T —. Nx.
r—ri r—ri

In summary,

min max |h(w)—c| <= (h*—h*)

ceR |w|<r;
r+r
= LT 4% — 4 log(r + p)u(rD))
2r—r
=lr+r1 M —m +log r+e w(rD)].
2r—r 1—r2

Finally, bounding the p-mass by (2-13) finally implies

r+rylog((1+pr)/(1-r?)
min max |h(w) —c| < 3 (M —m) log((1+pr)/(p+71))

(2-13)

(2-14)

(2-15)

(2-16)

as claimed. Finally, to establish (2-5), we return to (2-15) and note that the left-hand side is at most ¢ + ¢

for ¢ the minimizer in the previous line. Then
¢ >m—log(r + p)u(rD) —e.

Note that one may insert (2-13) on the right-hand side to control the mass.

|

We now apply the Cartan estimate for logarithmic potentials to the Riesz representation (2-2) in order

to derive lower bounds on v up to a small measure of exceptions.
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Corollary 2.3. Let v be as in Lemma 2.2 with p =1—38, 0 <§ < % Then for all 0 < H < 1 there exist
disks D(zj,s;) so that

v(z) >m— (M —m) [28_3 log(g) +6872 log(zﬁe)]
forallz € riD\U; D(z;,sj) with 3 ; 5; <5H andry = 1-28.
Proof. By Cartan’s estimate, for any H > 0 there exist disks D(z;,s;) such that ) ; s; <5H and

/Dlog|w—z|,u(dw) > u(rD) log(g) for allzerl[D)\l |D(zj,sj). (2-17)
r N
J

See [Levin 1996, Theorem 3, Section 11.2]. To invoke the measure bound (2-3) we estimate

1+ pr 2—45+368% 382 382 )
1 —log 22T —jog(1 >log(14+ 22 ) =6
Og(p+r) Og( 2-48 os\lto ) el o) =

since §2 < % and log (1 + %x) >xfor0<x< % Consequently,

u(rD) < 8§ 2(M —m).

Next,
14+ pr -1
< <5 (1+56),
1—r2 —25§-62 — (1+9)
as well as
r+r :2_38528_1,

r—ri )
whence (2-4) implies

min max |h(w)—c|<e< (M —m)§3 log(%) =:¢.

CER w|<r)
Finally, by (2-5), one has
c>m—e—log(r +p)u(rD) > m—e—1log2)u(rD).

In view of (2-2) and the preceding estimates we obtain

v(z) = c+ u@D) log(g) —e>m—2e+ log(f—e),u(rﬂ]))
> m— (M —m)[ 257 log(%) _§72 1og(f—e)] (2-18)
for all z as in (2-17). O

By means of the conformal transformation ®,; from Lemma 2.1 we can obtain a version of the Riesz
representation theorem on thin rectangles R(q).
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Corollary 2.4. There exists g« € (0, 1] with the following property: Let u be subharmonic on R(q) for

some 0 < g < gx, continuous up to the boundary. Assume that u < M on R(q) and max,.c[1 %]u(x) > m.
Then
9 3 2e
ux)>m—(M —m) exp( 3 ) [log(4) + == —l— exp( 3 ) log(ﬁ)] (2-19)

forall x € [%, %]\Uj Ij, where ) ; |1;| <3H exp(ﬁ).

Proof. Let v = u o ®,4, with ®, as in Lemma 2.1. Then v satisfies the assumptions of Corollary 2.3 with
p>1—262(¢), and

b2(q) = dexp(~57 ) (1+ 0(@) = 35,

 ew( 3T 1
8= exp( 8q><3’
provided g is small enough. By Corollary 2.3 we have
o 2 2e
v(iz)=m— (M — m)exp(8 )[2log(8)+810g(H)]
On 3 2e
=m— (M —m) exp( 3 ) [10g(4) + = 4q T+ exp( 8 ) log(H )]
forall z € rl[D)\Uj D(zj,s)), Zj sj <5H, where r{ = 1—26. The inverse image of [% %] under ®,
Ij| =

(2-20)

is [a1(q), a2(q)]. Define I~J =RND(z,s5), I; = qu(fj), and E :=J; fj sothat 3 |/j| < 10H. By
Lemma 2.1 we have

|0 (E)| < 20H62(q)"2< 3H exp(i—g),
as claimed. O

Next, we apply the previous results on subharmonic functions to log | F'|, where F is analytic.

Corollary 2.5. Let F be an analytic function on a neighborhood of R(q) with 0 < q < q*, and F not
identically equal to zero. Define

Br:=1Fl2q2,2))  B2:=Fll2gra)-

1
1
Then for some absolute constant Cy, and all H > 0,

BE+1 <0 pK |F<x>|
Qe

holds for any K > exp(iq ) [log(4) + == + exp( :;Z) log(ﬁ)] (2-21)

forall x € [%, %]\Uj I, where Zj |1;| <3H exp(ﬁ).

Proof. We apply our previous results to u(z) :=log | F(z)|, which is subharmonic on a neighborhood of
R(g). However, Corollary 2.4 does not apply directly since we do not have a pointwise upper bound
on u. Returning to the subharmonic function v = u o ®; on the unit disk [, we note that the pointwise
upper bound M on v only entered through the estimate 7o < M ; see (2-12), (2-14). The analytic function
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F = F o &, satisfies log | F| = v. Denoting by

1—|wl?
1 —2|w]|cos 2 (0 —¢)) + |w|?

Py (dO) = Py (d(0 —¢))=

the Poisson kernel centered at w = |w|e(¢), we estimate hg from (2-11) as follows:

1

1 ~
ho(w) = fo v(e(8)) Po (d6) = fo log | F (e(6))| Pu (d6)

1 ~
- 1og( /0 F(e(0))] P (de))

1 db
SlOg(/o |F(e(9))|d9HP( )” )

do

<log(B,) + log( (2-22)

)
O llL2(0r(9))

where do denotes arc-length measure on dR(g), and the correspondence between d) and dR(g) is given
by & = ®4(e(£)). On the one hand,

H—P (‘m)H <2(1—w) !,

- L

Using the notation of Lemma 2.1, the boundary map dD — 0R(q) induced by ®, is

and on the other hand,

do |?
do

do

dg. (2-23)

H do | 12r(q)) /aR(q)

£ > L) i=iH (k)™ arcsn(x(§), k),
xX(€) = p(e(§) = —cot(n§), x'(§) =n(1+x(£)?)
where ¢(w) = i(w + 1)/(1 — w) takes the disk to the upper half-plane. If 0 < 27§ < 6(g), then
’(€) =14iy(§), where

d_y b4 1+ x2
d¢  H(k) /(x2—-1)(k2x2—1) ~ kH(k)

Therefore, this region contributes at most

x(€) < -k L.

%kH (k)0(g) <1 uniformly in ¢
to the integral in (2-23). Next, if 0(q) < 27§ < Z, then { = u + iq, with

du
d§

T 1+ x2

T
= > ) _k_l _ ’
H(k) /62— D)(1—k2x2) ~ H(k) <x()<-1
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and so this case contributes < H (k) to (2-23). Finally, the region 7 < 27§ < 27 similarly adds < H (k)
to (2-23).
Combining these estimates with (2-22) yields

ho(w) <log(B3) + log(CH (k)) + 10g(7‘[(+—}”)) <log(By)+ Coqg ' =M (2-24)

for all |w| < r =1 —§ with some absolute constant Cp; see (2-20). This bound replaces (2-12) and (2-14)
above.
As for the lower bound m on u, one has m > log(Bj) and thus (2-19) holds with

By 1
M —m <log B, + Cogq .
Finally, (2-21) follows from (2-19) by exponentiating. |

Integrating the previous result over a small set of x yields the following localization estimate for the
L? norm of F.

Proposition 2.6. There exists an absolute constant Cy > 0 with the following property: Let F be an
analytic function on a neighborhood of R(q) with 0 < g < g*, and F not identically equal to zero. Define

Bi:=Flp2q,3)): B2=I1Fl20ry-
Forany J C [% %] some Borel set of positive measure,
Bi < BYF|FIa,,
with 0 < k < e~C1/9(1log(1/]J]))~L

Proof. We apply Corollary 2.5 with 3H exp(4—”) |J]/2. Thus,

B"“(m)é <e v BE|F| 20
K= eXp(zq)[logM) + — 4q +6Xp( zg)<log(ﬁ—7) + Z_Z)]

C, K
315670(%) CBIKFI sy <+ K (2-26)

(2-25)

or

We write k < (1 + K)~! instead of k = (1 + K)~L, since we may increase the value of K. One checks
that

(')

NI

log (2/|J|) <exp(

3
)<exp(s—”)[10g(4)+ % texp(—22) (log(12¢/J )+32)] ~ _4)<0-1’ (2-27)
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uniformly in 0 < g < I and in |J|. Note that
exp(3Z)[log(4) + 3= +exp(——)(log (12¢) + 3%)] if log2 <log(1/|J]) < 3=
86xp( )[1 +exp( )] log(1/|J]) if max(logZ, i—’;) <log(1/|J])
< log(1/[J])—1

for some absolute constant C, > 0. Taking C; := max (2Cyp, C3) and

Ko:=e 7 log(-L
0:=¢ Og(|J|)

we conclude from (2-25), (2—26) and (2-27) with the estimate K < Ky — 1 that

C
0401 p1- L pi1- —1
By IFll>y e By “IFlfo,) «=Kp'

Bl < e q
as claimed. O

We next apply Proposition 2.6 to a band-limited L2 function in order to obtain the main result of this
section.

Proposition 2.7. Fix A € ( ] andfor each integer n let I, C [n,n + 1] be some Borel set with |I,| = A
Let f € L%(R) be band-limited; i.e., f is of compact support. Then for each 0 < g < q*

1 oy <12¢ ¢ (Z 17172, )) e 1 F @)1 5 (2-28)

with 0 < k < e=5€1/4(—log \)~, and Cy., q* are as in Proposition 2.6.

Proof. Let F be the entire function with F = f on the real line. Fix 0 < ¢ <1 and define R, ;(q) to be
the rectangle with vertices n —1 —t +ig, n +2 +1 £ iq. We claim that by Proposition 2.6 we have

||f||L2([n n+1]) Ee KR ”F”Lz(aRn,(q))||f||22(1,,)’ (2-29)

with k < e=5C1/4 (log((3 +2t)/ |1y |))_1. To see this, we set n = 0 without loss of generality, translate
Rnt(q) = Rn:(q)+1+¢, and dilate z +— z /(3 +2¢). After these operations, the transformed interval /g

lies in
[H—t 2+z]c[1 g]
3+2¢° 3+2¢ 4’47

and the height ¢ becomes ¢/ (3 4+ 2¢) > q/5, whence the claim.
Squaring, summing, and applying Holder’s inequality yields

0C, 2 1—« 2 K
< (T NF I 20m, 0n) (21 152,) -
n n

Let E denote the expected value with respect to 0 < ¢ < 1, uniformly distributed. On the one hand, taking

1122

expectations of the previous line yields

1—«k K
0Cy
(T i, a) (LI By (2:30)
n n

11320 <
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On the other hand, since
SUp Y A i—rmt2tn) < 5. (2-31)

0<t<1%,

we have

2
> EIFIZ 20, @)
n

1 rq
§5||F(-+iq)||,{2(R)+5||F(-—iq)||,{2(R)+2Z/O/ |F(n—t+is)|*dsdt. (2-32)
n —-q
Since | F(- £iq)llz2@) = [¥27% f (§)l|2 ) and

Z[I/q |F(n—t+is)|>dsdt :/ /q |F(x +is)|?dsdx
o Jo J—q RJ—g
= /_ qq /R E| £ (§)2 dE ds < 21 F ()12 -
assuming as we may that ¢* < 1, we infer from (2-32) that
Y EIF I 20, @ = 12127 £ )17 2gy-
n
Inserting this into (2-30) concludes the proof. O

3. L2 localization in higher dimensions

Our goal is to prove a version of Proposition 2.7 for band-limited functions f € L2(R%), d > 2. For the
sake of simplicity, we first limit ourselves to d = 2 and begin with a Cartan-type estimate for functions
on D x D which are subharmonic relative to each variable.

We begin with the definition of a Cartan-2 set; see [Goldstein and Schlag 2001, Definition 8.1; 2008,
Definition 2.12].

Definition 3.1. We say that B C C? is a Cartan-2 set with parameter H > 0 if for all (z1, z5) € B one
has either

ez € Uj D(g;, sj) with Zj s; <5H,
e or for all other z;, one has z; € | D(wg. tx) with ) 4 tx < 5H and (wg, ;) depend on zj.

Of particular relevance to us with be the fact that a Cartan-2 set has a real “trace” of small measure.
Lemma 3.1. Let B C ]_[J2~=1 D(zj,0,1) be a Cartan-2 set with parameter H > 0. Then
IBNR?| < 40H.
Proof. This follows from Fubini and |D(¢,s) NR| < 2s forall ¢ € C. O

We can now formulate a Cartan-type bound for plurisubharmonic functions.
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Lemma 3.2. Let v : D x D — [—00, 00) be continuous so that v = v(z1, z2) is separately subharmonic
in each variable. Suppose for 0 < p <r <1

max [ e(@).e(6) Py (d80) Proldr) < M (1)
Slxs!

|z1]<r,|z2|<r
and
max v(z1,22) = m. (3-2)
|z11<p,lz2|<p

Let p=r(1-38) with0 < § < % Then for any 0 < H <1 one has
v(z1.22) = m—(M —m)(L + 1%, where L := 28> log(%) 572 1og(2ﬁ€), (3-3)
for all (z1,z2) € 1D x riD\ B where B is a Cartan-2 set with parameter rH, and ri = r(1 —24).

Proof. The function
BGr)i= [ ole).e) Pry @0) Pry(dte) G4

is separately harmonic in each variable, is continuous up to d(D x D), and satisfies v < & pointwise. The
latter property follows from the pointwise inequalities

012 < [ oG, e®) ey (),

which hold due to harmonicity of the right-hand side in z,, whence

ez = [ vle@).z) Pyt < [

1 v(e(th),e(62)) Pz, (dOy) Pz,(d02) = h(z1,2z2) (3-5)
S'xS
as claimed. Define

0(z1) := max wv(zy,2z2). (3-6)
lz21=<p

Then ¥ is continuous (by uniform continuity) and subharmonic (as the supremum of a family of subhar-
monic functions). It satisfies v(z1) < M for all |z1| < r by (3-1) and (3-5), and max|;, <, U(z1) > m.
The latter follows from
v(z1,22) =v(z1) forall [z1] <r, [22] < p,

and (3-2).

We apply Corollary 2.3 to v, which requires rescaling from D to rD. Thus, with p = r(1 —3§), and
rp =r(1—20),

v(z1)>m— (M —m)L =: m* (3-7)

for all zy € 1D\ U; D(§;, ;) with 3, s; < 5rH. Fix such a good zy. By definition, there exists z5
with [z3| < p and v(z1, zJ) = m™. On the other hand, v(zy,22) < M forall |z3| <r.
Once again, by Corollary 2.3 rescaled from D to rD, it follows that

v(z1,22) >m*—(M —m*)L>m— (M —m)L(2+ L) (3-8)
forall z2 € 1D\ U; D(wj, ;) with 3, ¢; < 5rH. These disks depend on z;. O
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By means of Lemma 3.2 we establish a two-dimensional analogue of Proposition 2.6.

Proposition 3.3. Let F be an analytic function of two variables on a neighborhood of R(q) X R(q) with
0 < g <q*, and F not identically equal to zero. Define

Bii=1Flpo(12x2.2]) B2:=1Fl20r@xor@):
Forany J C [% %] X [% %] some Borel set of positive measure,
c
BlfquZI K”F”]K}(J)s

with 0 < ik < e~€/4(log(1/|J|))~2 with some absolute constant C.

Proof. Set u(z1, z2) :=log | F(z1, z2)|, which is plurisubharmonic on a neighborhood of R(g) x R(q).
We pull u back to the polydisk D x D, and define

v(z1,22) = u(Pg(21), Bg(22)) =log |[F(z1.22)],  F(z1,22) = F(Pq(z1), Bg(22)).

With & defined as in (3-4), for all |zq], |z2| <,
1 p1
h(z1,20) = / / 0(e(61). (6)) Py, (d6y) Pz, (d62)
0JO
1 1
= [ [ 1og1Fe(@n).e(@a| Py (@01) Pt
0JO

1 1
< log( /0 fo F(e(61). e(62))] P, (d6y) P, (dez))

1,1
Slog(// |F(e(61),e(02))| d61 dbs le(d(?)H ‘PZZ(dQ)H )
0Jo
<10g(B2)+210g( @ )+2 sup log Pw(d@) ”
T lL2@R@)) lw|<r
= log(B2) +loglCq™ 1)+2log(12 ) (3-9)

where do denotes arc-length measure on dR(g); see (2-24). By Lemma 2.1, we can apply Lemma 3.2 to
v with p = 1 —exp(—A/q) with some absolute constant A4,

m=1log By, M =1log(B,)+34¢~', §= exp(—%), r=p(1—38)7",
and 0 < g <¢* < 1. Thus, for any H > 0 there exists a Cartan-2 set B with parameter H such that for
r= l—exp(—g) <r(1-29),
and any (z1,z2) € 1D x riD\ B, we have

v(z1,22) = m— (M —m)(L + 1)2,
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where

64 24 44 2e 84 44 Qe
L =2ed log2e « )+e 4 log(ﬁ)<eq +ea IOg(F)_l'

Returning to the original geometry, and analytic function F, we conclude the following via Lemmas 2.1
and 3.1: with K := (e34/9 4 ¢*4/410g(2¢/H))?,

BEH! < o%4% [F(x1,x2) | BS
1 3 13 2 54/q
for all (xlaXZ)e[Z’Z]X[Z»Z]\g’ where £ CR* and |€] <e H.

We now pick H so that e>4/4 H = |J|/2, and integrate over J, and we obtain

1
K JI\2 3AK
B! +1(%) <e ¢ BX|Flp

or
1

) B IF Iy k(K (3-10)

34
Blfeq(

We write k < (1 + K)~ ! instead of x = (1 + K)~! since we could increase K. One easily checks that

(17]/2)7%/2 < 1, and
e o)
e (0] —_— — 1,

with some absolute constant Cy. Taking C := max (44, C;), and

okl )

We conclude from (3-10) with the estimate K < Ky — 1 that
Cc _q_ _
Bi<ea By |Flfs) k=Kol
as claimed. O

In analogy with the one-dimensional case in Proposition 2.7, we can deduce the following L? localiza-
tion result.

Proposition 3.4. Fix A € (O, %] and for each integers ny,n; let
Inyny C[n1,n1+ 1] x [n2,n2 + 1]

be some Borel set with | I, n,| = A. Let f € L?(R?) be band-limited, i.e., f is of compact support. Then
foreach0<q <q*
K
2C A 2(1—
1/ 1722y <€ Xjnfﬁmww)whmmﬂwvﬁm;@; (3-11)

(n1,n2)€z?

with 0 < k < e=Cla (—1log A)_z, and C some absolute constant.
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Proof. Let F be the entire function with F = f on R2. Fix 0 <t1,#, < 1 and for J = 1,2 define Ry ¢; (q)
to be the rectangle with vertices n — 1 —1¢; £ig, n+2+1t; iq. We obtain from Proposition 3.3 that for
any ni,ny €7

5C 1—
1A L2 i +10xinz,ma 41D = € 4 WEIL2Go, o (@x0Ry 0y @)1 12200, )0

K< e_% (log((3 +20)( + 202) ))_2,

[ n1.mo|

with

and C being the absolute constant in Proposition 3.3. Squaring, summing, and applying Holder’s
inequality, we have

K

1—«
2 1o0c 2 2
117202y < ( > ||F||L2(3R,,l,t1(q)xa%,z(q») ( > ||f||L2(,nl,nz)).

(n1,n2)€z? (n1,n2)€z?

Taking expectation of the previous line with respect to 0 < ¢,1, < 1, we obtain

1—« K
2 10C 2 2
AR ( 2 [E"[E’2”F”Lz(aml,zl(q)xaRnQ,u(q))) ( 2 ”f”Lz(lnl.nz))'
(n1,n2)€2? (n1,n2)€z?
(3-12)
By decomposing each 0R, ;(g) into its four sides, we decompose
2

Y. EnEulFl2gn,, . @x3Ray @) (3-13)

(n1,n2)€z?
into the following three parts:

Part 1: vertical and horizontal mixed terms. This part contains eight terms; each can be bounded in the
same way. Taking the left vertical side of R, ;, (¢) and upper horizontal side of R, s, (¢q) for example,

we have
o 2
> E,2/1[,,2_1_t2,,12+2+t2)E,1/ |F(ni—1—t1 +is,x2+iq)|*ds dx,
R —q
(n1,n2)€z?

q
SSZ[EII/R/ |F(n1—1—tl+is,x2+iq)|2dsdx2
—q

ni€Z

q
:5/ / |F(x1+is,x2+1iq)|*dxydx,ds
—q R2

1 4 ; 2
<5 [ [ et e )P e deads
—q JR

< 10q >0 HED £6)2 5 5)-

in which we used (2-31) in the first step. Hence, Part 1 contributes in total at most

80g|e* 4 (EIFED F&)12, oy (3-14)
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Part 2: vertical+vertical sides. This part contains four terms. Taking the left vertical sides of Ry, ¢, (q)
and Ry, s, (q) for example, we have

q q
Z IEtllEt2/ / |F(n1—1—l1+iS1,n2—1—12+i52)|2dS1dS2
—-qJ—q

(n1,n2)ez?

q rq
:/ / / |F(x1 +1is1,x2 +is52)|* dx1 dxzdsy dsy
-qJ—q JR?

< dg?(| 2D £6))175 o).
Hence, Part 2 contributes in total at most
16¢7||e*™ 1 EHIED £ 12, o). (3-15)

Part 3: horizontal+horizontal sides. This part also contains four terms. Taking the upper horizontal sides
of Rn,,1,(q) and Ry, 1, (g) for example, we have

> E [El‘2/2 Lni—1—trm+2400) Una—1-tama 4240 | F (1 +iq, x2 +iq) [ dxy dox
(n1,n2)€z? "

525/2 |F(x14iq, x2+iq)|* dxy dx,
R
<2527 10D £ ()12 4o
in which we used (2-31) in the first step. Hence, the contribution of Part 3 is at most
100[e>maE11+ED Figy 2, oo, (3-16)
Plugging the estimates in (3-14), (3-15) and (3-16) into (3-13), we obtain

Z [Etl [Et2 ||F||i2(37an| 1 (q)x372,,2,,2 (61)) E (4q + 10)2||62]Tq(|$1 I+|E2|)f($)||i2(R2)

(nl,nz)EZZ A

< 144271 0EIHED 76) |7, o) (3-17)

forg < % Plugging (3-17) into (3-12) yields
K
10C ~ 2(1—
”f”iZ(RZ) < 144e¢ a Z ||f||iz(1n1!n2)) ”eZﬂq('El|+|$2|)f(€:)”L(2(IRIZC;’
(n1,n2)€z?

as claimed. O

In general dimensions, one can proceed similarly. First, we inductively define Cartan sets in higher
dimensions.

Definition 3.2. We say that B C C? is a Cartan-d set with parameter H > 0 if for all (z1,22,....24) € B
one has either

* z1€U; D(&j,s;) with 3, s; <5H or for all other z; one has

e (z2,...,24) belongs to a Cartan-(d —1) set with parameter H > 0 depending on z;.
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By arguments analogous to those used above for d = 2, one can exploit these Cartan sets in higher
dimensions to obtain the following result. We leave the details to the reader. Throughout, we let C(d) > 1
be a constant depending only on the dimension 4. It is allowed to change its values from line to line.

Proposition 3.5. Fix A € ( ] and for each integer vectorn = (ny, ...,ng) € 7%, d > 2, let

d

I, C H[I’lj,ﬂj—}—l)
Jj=1

be some Borel set with |I,| = A. Let f € L2(R%) be band-limited; i.e., f is of compact support. Then for
each0<qg<q*=q*d) <1

@) “ A _
1 £ 12250y <€ @ (Z ||f||22(,n)) |2 €1 £ &) 1750 (3-18)

nezd
with 0 < k < e=C@/d(—1og 1), C(d) > 1 some absolute constant depending on d.

As a precursor to the results of the next section, which involve L? functions with Fourier support
in thin sets, we now establish an uncertainty principle for L2(R¢) functions under a quantitative decay
assumption on their Fourier transforms.

Corollary 3.6. Let ©(§) = O(|&|1) = (log(2+ £11))7*, 0 <o < 1. Let S := U, ,cza In be as in
Proposition 3.5. Then

[fllz2=Cd.a, A, V)| fliL2(s) (3-19)
forall f € L*®R?) with e®©EI £1|,5 0y < Al f | L2
Proof. With 0 < ¢ small to be determined, we fix R > 1 so that 2mrg = O(R). Split f = f1 + fa,
f}(é) = f(§)1[|§|1<R]- Then by (3-18), and since 2rg < O(§) for || < R,

113 < €0 1 1256 @D AR < 597 | 1125, (ANLF 1207079,

with (d) 27 C(d)
k=e 4 (—logd) @ =e @R (—logh)¢.

Moreover, since

2C(d) _
LA IZ=1AZ+IAIE<e e (12 + 12027 A1LFI1)2 + 11 £113

and
I f2ll2 < e ORR| OO £, < 4e=OWROR| 11, < 1| £l

where we chose R large enough depending on A > 1, it follows that

1712 <2679 (1 f 205 + Ae"OPR| £1)2 (A] £ ]12)2079),

whence

11—« C@ _
1fll2 <22 A% e ke (|| f |25y + Ae R £11)
C(d)
< || fllL2gs) +exp(=T(R))| fll2,

1 1—«
=22« 4 « e
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with

T(R) = ©(R)R — %;Z) —k og(v/24)

271C(d)
O(R)

= O(R)R — ( + 1og(ﬁA)) B (—log 1)?.

In addition to 24 < e®®R we require that 7(R) > 1. These conditions hold for sufficiently large R. [J

The proof of the corollary gives an explicit and effective dependence of the constant C(d, «, A, 1)
on A, A, but we have no need for it. Corollary 3.6 follows (perhaps with a different dependence on the
constants) from a quantitative version of the Logvinenko—Sereda theorem; see, e.g., [Kovrijkine 2001;
Muscalu and Schlag 2013]. The results in the next section, however, do not.

4. Uncertainty principle with thin Fourier support

We begin with the concept of a damping function.

Definition 4.1. Let © be as in Corollary 3.6, with « € (0, 1) fixed. Let ¥ C R?. We say that Y admits a
damping function with parameters c1, ¢, ¢3, all falling into the interval (0, 1), if there exists a function
¥ € L2(R?) satisfying

* supp(¥) C [—c1, c1]?,

* W lz2-1,010) = 2.

* P(E) = ()7 forall € RY,

o [Y ()] < exp(—c3O(|&]1)|g]1) forall £ €Y.
Lemma 4.1. Fixcy € (O, %] and for each integer vectorn = (ny,...,ng) € Zd, d > 2, let

d
I, C l_[[nj,nj +1)
j=1

be a square with side length 2c1. Define S :=\J,,cza In. Suppose Y C R? is such that Y +[—2,2]% admits

a damping function with parameters ci, and c», c3 € (0, 1). Then every f € L2(R%) with supp(f) cY
satisfies

||f ||]%2([_1’1]d)

47 C(d) _
< C(d)e5? (R €59 (| Ls £12 1 £ 12059 + exp(~2c3c®OR)R) | f12,-4) (1)

and k = e~ 27 C@)/(3OR) (_g Jog ¢1)~4, provided R > (2d /c3)? and 0 < ¢3 < c3(d) :=2mq«, where
g« is as in Proposition 3.5.
Proof. Let n € [-2, Z]d. Set fp(x) := 2™ f(x), and g, := f, * ¥, where ¥ is the damping function
as in Definition 4.1 associated with ¥ + [—2,2]¢. Split gy into

&n =811 &2,

supp(¢1) C {6 € R? 1 g, < R}, supp(¢2) C (£ R :|g]; > R, *-2)
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where 2rq = c3©(R). Note that our assumption c3 < 2w g, guarantees that ¢ < g, holds for any R > 1.

Note also that since supp(y) C [—c1, ¢1]%, we have legn = Lso(As fy * ¥), where S := U, cza I

with 7, a square with the same center as I, but half the side length. By Proposition 3.5 with A = cf one

has

~ 12(1—
lenl2 = lgrlZ+lg212 <e” @ (lgnllzags + lg2llz) U™ N & 12079 4 g2, (4-3)

with
_Cc@ _d _27C(d) 4
O<k<e a (=dlogcy) ™ =e 39® (—dlogcy) %,

C(d) some absolute constant. By construction, supp( ﬁ,) CY +nCY +[-2,2]%; hence

16 ()] <1 fn(E)lexp(—c3O(1)IEN)  forall € € RY,

whence
€27 EN & |1, = [[eBOPEL S 11, < sup (€4 follg—a < (R | foll gr—a-
€1 <R
lg2ll2 < sup exp(—c3®E[DIEINE)? | follg—a < exp(—=c3OR)R)(R) || fyll g—a.

|l1=R

where we used that |£|, < |€]1, and that r — exp(—c30(r)r)(r)¢ is decreasing for large r. To be specific,

exp(—C3®(r)r)(r)d =exp(—h(r)), h(r)=cz(log2+r))*r— % log(1 + r?).
Differentiating, we obtain

dr
1472

h'(r)=c3(og(2+r))™ [1 L (log(2 + r))_l} —
24r
33 (log2+7r)) % — dr=! > %3 (log2+r))~ 1 - dr 1,

where we used that

or _ 1
(log2+r)~" < =
r 2
for all 7 > 0. One has u > log(2 + u?) for u > 2, say. Hence, if r > (2d /c3)?, then
%3 (log2+7r) "L —dr !> 0

and thus /’(r) > 0. So it suffices to assume that R > (2d /c3)>.
Inserting these bounds into (4-3) yields

lenlZ <e™ 0 (115 fyllg—a +exp(—csORVRYRY I fyll r—a ) (RY 1| fyl sr—a) 21—
+exp(=2¢3O(R)R)(R)* || fyl1%,—a-

Since sup, .1, e [fyllg-a < C(d)| fllg-a. we can simplify this further:

g2 < C(d)(RY2 e 500 (15 £12, 1 £IP077 + exp(—2ckORIR) | fI—s).  (4-4)
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Finally,
g = [ | T ORd [ iePr s
st [ ] e nrer
sa?[ [ e nrierda=ct [ sl

and we are done. O

We now remove the localization in Fourier space on the left-hand side of (4-1) in order to obtain the
main result of this section.

Corollary 4.2. Fixcy € (0 ] and for each integer vectorn = (ny,...,ng) € 7%, d > 2, let

d
InC H[nj,nj +1)
j=1

be a square with side length 2c1. Define S :=\_J,,cza In. Suppose Y C [—o, 21]? € RY with oy > 1 s
such that Y + [—2,2]% + n admits a damping function with parameters c1, and c3, c3 € (0, 1) for each
nel-or—1,01+ l]d. Assume further that 0 < c3 < c3(d) < 1, with ¢ (d) as in Lemma 4.1. Then
every f € L2(R?) with supp(f) C Y satisfies

1 fll2 < Cull fllL2(s)s (4-5)

with constant Cy depending only on d, c1, c2, c3, o explicitly as in (4-15).

Proof. Let £ € (2Z)? be such that £ + [—1, 112 N [—a1, 21]? # @ and define f;(x) := 27Xt f(x) so
that fg(é) = f (§—10) and supp(]?e) C Y +£. In order to apply Lemma 4.1, we also need to ensure that
Y +[-2, 2]d + £ admits a damping function. This, however, follows from our assumptions. Hence, for
each such £,

Fn2
||f||L2([—1,l]d+€)
< C(d)c3? (RY2 5000 (|15 fy]26 AP 4 exp(=2e30O(R)R) || fel%-a)  (4-6)

and k = e 27C(@D)/(30MR) (g Jog ¢1)~?, provided R > (2d /c3)?. Summing over £ € (27)%, and using
Holder’s inequality yields

4xC(d) _
113 < Cd)e52(R)24 e300 (|15 £ 131 £ 1397 +exp(—2c3cOR)R) || £113)

47 C(d) _ 4 C(d)
_ C(d)Cz_z(R)Zd e 30’ ”LSf”%K ”f”;(l K)+C(d)6‘2_2<R)2d€ 30(R) €_263K®(R)R||f||%_
(4-7)
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Suppose further that R satisfies

N

exp[(lmcr(d))lia}

(i
1 €3
(i) exp (477%),
(iii) ((—dlogcl)d)s’

R > Ro(d,c1,c2,c3,0) := max

C3
(iv) (4log%(2d))2,
2
V) 8d)*.

Note that (i), (ii), (iii) of (4-8) imply

27C(d) 1

O (R42)1 =1, ORNR+DF =1, and —2

——(R+2
(—d loger)? (
respectively. Hence multiplying the three inequalities of (4-9) yields

c3k®O(R)(R+2)>VR+2 or k> (c30(R)VR+2)!,

)ézl,

and thus
echcG(R)R > eC3KG(R)(R+2) > e\/R+2‘

One also derives from (iv), (v) and (i) that

2C(d 4nC(d
IVRF2zIg ™ 0 IVRT2 2 2dlog(R42) 2o (RP, and JVRF2= TOES,
2

(4-8)

(4-9)

(4-10)

4-11)

(4-12)

respectively. Hence by summing up the three inequalities of (4-12), and exponentiating, we obtain

4rC(d)

eVRY2 > 2C(a’)c2_2 (R)Zd e 30

Combining (4-11) with (4-13), we arrive at

4rC(d)
C(d)C2_2 (R>2d e ©30R) e—2€3K®(R)R < %

Thus (4-7) yields
2 p\2d , S\ 2
1£ 12 < (2C(d)ey* (R)*® e<39® ) 2|15 f .
Combining the estimate of « in (4-10) with (4-13), we obtain

AnC(d) 1 c3O(R)(R+2)
(2C(d)e3 (R)?? e300 )28 <=2

Now we take Rg as in (4-8) and define R as

2d\?
Ri(d,c1,c2,c3,0) :=max || — ] , Ro(d,c1,¢2,c3,@)].
c3
Then
| fll2 < Cx(d,c1,c2,c3.0)||1s f ]2,
with
c3O(R1)(R1+2)
2

C*(d,C],CZ,C?,,a):e ’

as claimed.

(4-13)

(4-14)

(4-15)
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5. FUP assuming damping functions on Y

In this section we prove, by the same iteration as in [Bourgain and Dyatlov 2018], the fractal uncertainty
principle for sets X C [—1, l]d andY C[-N,N ]d . On Y we do not impose a geometric condition. Rather,
in this section we still restrict ourselves to assuming the existence of damping functions living on Y, as
well as on sets derived from Y through translations and dilations; see Definition 4.1. On X we impose a
certain tree structure “with gaps”; see [Bourgain and Dyatlov 2018, Lemma 2.10].

Definition 5.1. We say that X C [1,1]¢ C R? is porous at scale L > 3 with depth n, where L is an
integer, if the following holds: denote by C, the cubes obtained from [—1, l]d by partitioning it into
congruent cubes of side length L™". Thus, #C, = 2¢ L"%. The condition on X is that for all Q € C, with
0N X # &, there exists Q' € Cy+1 sothat Q' C Q and Q'NX = 2.

It is shown in [Bourgain and Dyatlov 2018] that sets X C R obeying the §-regularity condition on
scales N ™! to 1 (see Definition 6.1) satisfy this porosity property at depth z for all n > 0 with L"*t1 < N.
We include a d-dimensional analogy in Appendix A; see Lemma A.7. We can now formulate the fractal
uncertainty principle, conditionally on the existence of damping functions in Y. As in [Bourgain and
Dyatlov 2018] the argument is based on an induction on scales, where at each step a small gain is achieved
by means of Corollary 4.2. Recall that o € (0, 1) is the parameter from the damping function.

Theorem 5.1. Let X C [—1,1]% C R? be porous at scale L > 3 with depth n for all n > 0 with L1 < N.
Suppose Y C [—-N, N1% is such that for all n > 0 with L' < N one has that for all
ne[=NL™ -3, NL™" +3]¢
the set
L7"Y +[—4.4]% + 1 (5-1)

admits a damping function with parameters cy=(2L) "' e (O, %] and c3,¢3€(0,1). Assume 0 <c3 <c3(d)
as in Corollary 4.2. Then there exists B = B(L,c3,c3,d, o) > 0 and C = G(L, ca,c3,d,a) > 0 so that
any f € L2(R%) with supp(f ) C Y satisfies

1f 220y < CNTPI L2 gay (5-2)
forall N > No(L,ca,c¢3,d,).

Proof. We pick a nonnegative Schwartz function ¢ in R¢ with supp(@) C [—1, 1]¢ and $(0) = 1. With
T €N to be determined, we set ¥ (x) := LT9¢(LT x) so that supp(tﬁ) c[-LT,LT]9 Let

L L7
So=|J) 0 and s; :=Sn+[—w,w], (5-3)
Qcc,
ONX+#o

and define ¥, := v, x 1 St where Y (x) := Lk (L*x). There exists a constant C, depending only

C‘P

on ¢ such that for any n > 0
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Thus, forallm > 1,

m—1 C m
[] %= (1 - LT‘ﬁl) 1x. (5-4)

Moreover, if Q € Cp+1 with n > 0 satisfies Q N X = &, denote by Q* the cube with the same center
as Q, but half the side length, i.e., of side length L=®*+1 /2. Denote the collection of all such cubes Q*
by Un+1. By the definitions of S, ; and O*, we clearly have

Ske1 N Unst + [ L™ D, %L—(nﬂ)]d) —

n

Then for x € Uy, and a constant ¢, that depends on ¢ only, we have
00 = [ onirlsy, (=) dy
R4

= /Rd e(ls, (x=L7"*Dy)dy

<

C
o(y)dy < 7 (5-5)
/Rd\[_lloLT—l’ %LT—l]d LT

uniformly in 7.
Let f € L2(R?) with supp(f ) C Y. Then for m > 1,

m—1
Jm = l_[ V- f
n=0
satisfies
m—1
supp(fm) CY + Y supp(¥nr)
n=0
m—1
n=0
where r
Lmt —1
b =LT=———.
LT -1

One has fi+1 = VYT fm for all m >0 with fo = f. We claim that there exists yo = yo(L.,d, c1,¢2,¢3) €
(0, 1) with
| fm+1ll2=1,114) = L=yl fm |l L2 ((=1,179)- (5-7)
Define g (x) := fin(L™T x). Then
supp(gm) C LY 44y LT [—1, 119 c L™™TY +[-2,2]9, (5-8)
where we used

LT
LT —1

0, LT < <2.
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In particular, assuming also that LmT <N,
supp(gn) C [-NL™™T NL7T19 4 [-2,2]1¢ = [-NL™"T —2, NL7"T 4+ 2)9,

where NL™™T 4+ 2 will be our parameter o1 in Corollary 4.2.

LmT+1

Under this rescaling, the cubes in C,,7 turn into unit cubes. Assuming further < N, the porosity

condition at scale L with depth mT ensures that we always have a “missing cube” of side length L1
inside. In view of our definition of Q*, we only use the concentric cube of half that side length. In view
of the conditions on Y in the theorem we can apply Corollary 4.2 to g, to obtain the following: with all
norms being taken locally on [—1, 1], and with Uy, 74| the missing cubes of the next generation as above,

197 nl13 < Nz 121 fon 22 vy sy + 19T o r o B )

2 2 2
= ||fm||L2([—1,l]d\UmT+1) + ”\IjmT”Loo(UmT-i-l) ||fm”L2(UmT+l)

= ”meiZ([_l’l]d) - (1 - ||\IjmT||%00(UmT+l))”fm”iz(UmT_H)
2

C
< (1= (1= gty ) 1wl 5-9)

To obtain this estimate, we used that

¢
||\IJWIT”00 = 1’ ||lPMT||L°°(UmT+1) = LT—w—l’
and
ol 2@ i) = Ca Il fonl3,
with Cx = C«(d, L, ¢c2, c3, ) by Corollary 4.2. Choosing

1—¢2/L2T~D

T):=
yo(T) 2C2

: (5-10)

and using (l—x)l/2 <1l—x/2for0<x <1, we have

-2 < :
(1—c* (1_L2(T_1))) = 1=yo(T).

This establishes the claim (5-7).
Applying (5-7) iteratively and using (5-4), we obtain
m

C —(m+1)
1/ 2o < (1 - LT*”_I) I s
n=0

C -1 m+1 7y\Vet
§|:(1_LT¢_1) (l—yo(T))] ||f||2§(1—y0; )) 1£ - (5-11)

L2(X)

In the last inequality we used

2 2
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which requires

2

c log(2C,C2 + V4C2CH + 2
pr-1__¢ 24C¢Cf or TZTo(d,L,Cz,C:;,O{)i:’V()g( 0Ci 0 Cx +¢5)

log L

LT-1

—‘. (5-12)

Finally, for any T > Ty, taking m € N be such that LT +1 < N < Ln+DT+1 (5.11) yields (5-2) with
_log (1=y0(T)/2)

= TloglL (5-13)
and .
&= (1 _ V‘);T)) " (5-14)

as claimed. In the current theorem, we could simply choose T' = Ty. The flexibility of choosing T will
simplify our computations in our proof of Theorem 1.2. O

6. Geometry of Y and damping functions

6A. Regular sets. We will call a set I = [a1,b1] X [az,b2] X --- X [ag,bg] of equal side lengths a
d-dimensional cube in R?; we denote its side length by r7.

Recall the notion of §-regularity from [Bourgain and Dyatlov 2018, Definition 1.1]; below is a
d-dimensional analogy.

Definition 6.1. Suppose X C RY, X # @isclosed,and 0 <§ <d, Cr>1, 0 <wap <a1 <oo. Then X
is §-regular on scales g to a1, with constant Cp, if there exists a Borel measure py with the following
properties:

* wy is supported on X.
e ux(I)<C Rr}g for each d-dimensional cube 7 of side length cg <77 < 3.

e ux(l)> CElr}g for each d-dimensional cube I C RY, centered at a point in X and of side length
Qo =77 =0g.

See [Bourgain and Dyatlov 2018, Section 2.2] for the geometry of such sets in R. Loosely speaking,
they behave like §-dimensional fractal sets. The properties of §-regular sets carry over to higher dimensions.
We include some properties in Appendix A.

6B. Geometry of Y and damping functions. Bourgain and Dyatlov observed that §-regular sets on R
admit damping functions as in Definition 4.1 above with o = (1 4 §)/2. They obtained these functions
as a consequence of the Beurling—Malliavin theorem [1962]. However, one does not need the full
strength of this theorem. To be more precise, in place of the original Beurling—Malliavin condition
|(log )’ |lco < 00, With w the weight, a much easier proof is possible (via outer functions) if we assume
instead that ||(H logw)'||cc < 1 where H is the Hilbert transform on R; see [Mashregi et al. 2005,
Section 1.14, Theorem 1]. By means of this technique, Jin and Zhang [2017, Lemma 4.1] proved the
following quantitative result on damping functions.



A HIGHER-DIMENSIONAL BOURGAIN-DYATLOV FRACTAL UNCERTAINTY PRINCIPLE 841

Lemma 6.1. Let S > 1 be a constant. Let Y C [-SN, SN] be §1-regular on scales 2 to N, with
constant Cgr, 0 < 81 < 1. Forany 0 < cy < 1, Y admits a damping function with o = (1 4+ 81)/2 and
parameters c1,

Cy = ch, c3 = t61C§251(1 —61), (6-1)

where 1 > 0 is some small constant that depends on S. Instead of the pointwise global decay of (£)™1 in
Definition 4.1, we have

V(§)] <exp(—c3(§)) forall § €R. (6-2)

In this paper we need a slightly different version, where we have pointwise lower bound of |1ﬁ(§)|
on [—2, 2]. The advantage of a pointwise lower bound over an L2 bound is that it leads to a lower bound
of the product of several fﬁ\’s. Let us also note that in Lemma 4.1 of [Jin and Zhang 2017], S = 1. But it
is clear from their proof that it works for any S > 1. We will briefly discuss the changes of constants

caused by S in Appendix B. We need the extra factor S in our proof of Lemma 6.3.

Lemma 6.2. Let S > 1 be a constant. Assume that Y C [-SN, SN is a §1-regular set with constant Cg
on scales 2 to N and 81 € (0, 1). Fix 0 < ¢y < 1; then there exists a function ¥ € L*(R) such that

supp ¥ C [—7g¢1. 15¢1]-
0(§)| <exp(—c3(§)2)  forallE €R,
[V (§)] < exp(—c3O(ENE]) forall € €Y, |g] > 10,

and
V()| >c2 forallEe[-3,3], (6-3)
with

1436 .
a=-— =’ a=1Chi(1-8)

where ¢ > 0 is some small constant that depends on S.

We include the proof of Lemma 6.2 in Appendix B.

In higher dimensions, we reduce ourselves to this one-dimensional setting by taking finite unions of
products. For simplicity, we restrict ourselves to two dimensions, although the exact analogue can be
done in any finite dimension.

Definition 6.2. Pick some &g € (0, 1) and let Y C R? be of the form
m

Y)Y, whereY) ={£181+&82:& €Y. i=12} (6-4)
j=1

Here é;; € S! with |€;,1-¢j,2| < 1—¢g forall 1 < j <m, and Y;; are §;-regular on scales g to o1 with con-
stant Cg, where 0 < 81 < 1. In that case Y is called admissible on scales ag to oy with parameters &1, Cg,
g0, m. In general dimensions, we require that ¢;; are unit vectors with |det(¢; 1. ..., €, 4)| = &o; see (1-3).
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Throughout, we will freeze g9 and constants are allowed to depend on it. The admissible sets on scale 2
to N that are contained in [-N, N]¢ carry damping functions.

We note that for our proof of Theorem 1.2, we only need m = 1. We give a construction with arbitrary
m > 1 here, since the construction itself may be of independent interest.

Lemma 6.3. Let Y C [-N, N|? be admissible on scales 2 to N as in Definition 6.2. Then Y admits a
damping function with parameters c1,

Cr = L2m+4Cf0m+4 m—20m CES(Sl(l —81))4,

Cc3 = 1L1C1 m_lcgzé’l(l —51),
where t > 0 is a small constant that depends on .

Remark 6.4. For general dimension d, we can take

cy = LmC§10m+2)d m—lOdeE4d(81(1 _ 81))2d,

c3 =1(C] m_1C1€281(1 —61),
where ¢ > 0 is a small constant that depends on g¢ and d.

Proof. Let ¥ ; be the damping function associated with Y;; C [-SN, SN], with § = S(gg) > 1, via
Lemma 6.2 with parameters ¢ := ercym~1, where £ is a small parameter depending on &g, and ¢3, c3
are as given by Lemma 6.2, but in terms of ¢1; i.e.,

2= Lsio c}om_lo,

Cc3 = (1 m_llé‘l C§281(1 —51),

where ¢ depends £9. We will absorb the constant €1 into ¢. In the following we will also allow ¢ to change
its value from line to line, as long as it only depends on &g.
Denote the coordinates associated with the basis e i1 é 2 by (§j,1,85,2). We set, with § € R2,

UE = []9©. 076 =v1EDv2E2).
j=1
Then

197 (6)] < exp(—c3(Ej,1)7) exp(—c3(£j2)?) < exp(—c3(£)?), (6-5)

where c3, more precisely, ¢, can change its value in the last line depending on &¢. Taking products gives

19/(8)] < exp(—me3(€)2) = exp(—c1v(£)2), v =1Cg281(1—81). (6-6)

In particular, € L2(R?) as well as y; € L?(R?). Since y; are also compactly supported functions,
¥; € L'(R?). Hence in the sense of L! functions,

v =K.
j=1
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whence
m m
supp(¥) € _ supp(¥;) € ¥ [~erm™ L eim ™ C [—er,e1]?,
j=1 j=1

where we used that each v;; is a damping function with ¢; = ercym~ L Next, if £ € Y;, then

19 (§)] < exp(—c30(1&,1D1&/,1]) exp(—c3O(I&/,2])[€).2]) < exp(—c3O([E[)IEN),

where again ¢ is allowed to change in the second line. Since Y is covered by the union of Y;, we have

V(&) < exp(—c3O([§[1)[E]1) forall § € Y. (6-7)

Finally, from (6-3), foreach 1 < j <m,

i (§)| > c% forall §1,&2 € [—%, %]
Hence,
~ 1
1V 21172 = 3™ E|2,
where E is the subset of [—1, 1]* where all conditions &;; € [-2,3], i = 1,2, 1 < j <m, are met.
Clearly, | E| 1/2 is some number depending on gq. It follows that

1V 1221y = 2™ e30mm™20m, (6-8)

where ¢ depends on &g.
We required |1,ﬂ\($)| < (£)™2 in our definition of damping function; see Definition 4.1. Since for any
O<p<l1

exp(—p (£)7) < 5p*(£) 2,

it follows from (6-6) that ¥ := %(clv)“w is a damping function in the sense of the definition. Since
%(01 v)4 < 1, the decay (6-7) remains intact, as does the support condition. However, (6-8) needs to be
modified:

”W”Lz([—l,lp) > %(Cll))4t2m C%Omm—ZOm — %£2m+4C%0m+4m_20mC§8(81(1 —81))4.

Absorbing the % into ¢, the lemma is proved. O
Finally, we need to check that Y remains admissible if it is transformed by the similarities in (5-1).

Lemma 6.5. Let Y C [-N, N]¢ with N > 10 be admissible on scales 2 to N with parameters 81,
CRr.c0,m. Let L > 4 be an integer. Then for all integers n > 0 with Lt <N and for all

ne[-NL™—3,NL™" +3]¢,
the set
L7"Y +[—4,4]% + nC [-@NL™" +7),2NL™" +7)¢

is admissible at scale S(2N L™ 4 7) with parameters 81, 576S*Cg, &9, m, where S = S(g9,d) > 1.
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Proof. First,
LY +[-4,4% +nC[-2NL™" —7,2NL™" +7)¢

for all n as above. Second, by (6-4),

m
LY + =447 +nc LY + 4.4 +n),

j=1
where
d
L_anZ{ZEkgj,kikaL_n j,k,k21,2,...,d},
k=1
and
d
LY +[-4.4% +nC {Z Eéin ik € LMY 5+ [-4S,48]+njp, k=1,2,.. .,d},
k=1

where § = S(eo.d) > 1 and |n; x| < S(NL™" + 3). By Lemmas 2.1, 2.2, and 2.3 in [Bourgain and
Dyatlov 2018], see also Lemmas A.2, A.3, and A.4 with d = 1, the sets

L7"Y; ) +[—4S,4S] +njx C[-SQNL™ +7), S@NL™" +7)]

are §1-regular with constant 5765 2Cg on scales 2 to S (2NL™™ + 7). Indeed, for n > 1, Lemma A.2
implies that L™"Y j is 61-regular on scales 2L™" < % to L™" N with constant Cgr. Lemma A.4 implies
that

LY +[-4S.48]=L7"Y;, +8S[-1. 3]

is 61-regular on scales 1 to L™" N with constant 32SCg. Lemma A.3 allows us to increase the upper
scale from L™"N to 9SL™"N > S(2L™" N + 7), with changing the constant from 32SCg to 57652CRg.
Note that shifting a set does not change its §1-regularity; hence L™"Y; x + [—4S,4S]+n; i is §;-regular
with constant 57652Cg. The proof for n = 0 is similar.

The lemma now follows from Definition 6.2. O

6C. Proof of Theorem 1.2.

Proof. The proof of Theorem 1.2 is now a corollary to Theorem 5.1 and the considerations in this section,
with m = 1. We will keep track of various constants in order to obtain the effective exponent .
First, let

L:=[(%V2d +1CR) 751> 4

be as in (A-3). Lemma A.7 implies that for all n > 0 with L"T1 < N, X is porous at scale L with depth 7.
This verifies the porosity condition on X in Theorem 5.1.

Combining Lemma 6.3, more specifically Remark 6.4, with Lemma 6.5, we obtain that for any n € N
such that L"*t! < N, and forall n € [-L™"N —3, L™ N + 3], the set

L7"Y +[—4.4]% + 1
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admits a damping function with parameters c;,
c2 = 1024 (57652 CR)™* (8:1(1-81))*,
c3 =1C1 (576SZCR)_251 (1-=461),
where ¢ and S are constants depending on gg9. We absorb the constant .S into ¢, and allow ¢ to depend on
d as well. Hence we can simply write
cr =1c)?d C1;4d (61(1—681))%4,
c3 = L61CI;281(1 — 81)
Note that this verifies the condition on Y in Theorem 5.1.

Before applying Theorem 5.1, let us first determine the constant Cy in Corollary 4.2 with ¢y, ¢z, ¢3

defined above. Recall that
c30(R1)(R]+2)
2

’

22
o (o i)

2
exp(41-%1)

(CI%(— logcl)d )8
tc181(1-381)

8d
Plog(w%“d(alcg—al))“d>]2

C* =e
with @ = (1 +81)/2 and let

R1 = max (6-9)

e (81(1-81))2
be as in (4-14), in which we absorb all the d-dependent constants into ¢.
Now we can apply Theorem 5.1 with

=L =Q[2%V2d +1CR) T3]
We need to trace out the constant f3.

Plugging c; into (6-9), and making ¢ smaller if necessary (depending only on d and &¢), we have

2d-26+2  _2
(C3/1)” a=s =5
vzl (Shi) e

This implies
Csx = exp(c1Cx?81(1—81)O(R1)(R1 +2)) < exp(R2).

Recall Ty as in (5-12) and yg as in (5-10). We compute that

2 W
To = Fog@C«JC* +VACZCE+ "“’)W L 2ogCi+108(5Cy) _2Ra+102(5Cy) _ 1 (¢ 10

log L - log L - log L
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and

1— C2 L2(T1—1) 1 1
o/ > — exp(—2R>). (6-11)

T) = >
ro(Ty) 2C2 = 4CZ "4

In both inequalities above, we used Cx < exp(R>).
Recall 8 as in (5-13). Using that —log(1 — x) > x for x < 1, we have

_log(1=yo(T)/2) _  vo(T1)
Tilog L T 2TylogL’

B =

Combining this with the estimates of 77 and y(77) as in (6-10) and (6-11), we have

> (CI%/L) 2d-28+2 ﬁ
ﬂ—e"p{_exp[( 51(1=51) ) “

with ¢ being a small constant depending on &g and d. O

Corollary 1.3 follows from Theorem 1.2 by the triangle inequality.

Remark 6.6. If we try to combine the construction of a damping function for m covers as in Lemma 6.3,
with Theorem 5.1, we could allow m to grow in N like log log log N. This is worse than the power-law
growth obtained via the triangle inequality.

6D. Distortion of Y by diffeomorphisms. Let F3 be the unitary semiclassical Fourier transform on
L2(R%) defined by

Faf@=174 [ pwmar =147 (5).

h
We will use the following proposition which roughly says that the intersection of an admissible set
with a cube is still admissible. We only work with admissible sets with m = 1 throughout this section.

Proposition 6.7. Let Y C R? be an admissible set on scales N~ to 1 with parameters 81, CR, 9. Let
0cC R be a cube of side length rg < ro. Then

C(e0,d,r0)

ynoc |J w.

J=1

where each W; is contained in a cube of side length C (g9, d), and is admissible on scales N 110 1 with
parameters 01, (4CR)2/(1_51)CR, £0.

Proof. Let Y = {Z,‘;l Exer : &k € Yi ), where &, € S! and |det(éy, ..., 84)| = g9. We cover Q by the

smallest parallelepiped Q, whose edges are determined by €1, ..., €4, that contains Q. We can write

0 ={>0_ &ér:& O

By Lemma A.1, there exist disjoint intervals J such that

2
= |J McnJie).  with (4CR) 75 < |Jgy| <1 forall Ji € Ji.

Jk .0 €Tk
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where the (Y N Ji ¢)’s are §1-regular sets with constant Cr = (4Cg)%/(1=81) Cp on scales N~! to 1.
For any £ € N, let Yy = {Zzzl Erer & €Yr N Jk,gk}. Hence Yy is admissible on scales N7 1lto1
with parameters 81, CRr. €. Furthermore, Y, ¢ is contained in a cube of side length C(go, d). Finally note
that Q k intersects at most finitely many Ji ¢’s, and this number depends only on &g, d and ro. O

In this section we prove Theorem 1.4. We need to show that Theorem 1.2 remains valid if an admissible
set Y is distorted by a diffeomorphism ®y (x) from the cube [-N, N]¢ — [-N, N]¢; see (1-5). The
argument is related to Section 4 of [Bourgain and Dyatlov 2018]. Thus, let Y = & N(?), where
Y c [—N, N1 is an admissible set with constants Cg, &o on scales 1 to N. Suppose f € L2(R%) with
supp( f ) CY and set g := fA o @ so that supp(2) C Y. Furthermore,

Fx) = f AT Fe) d = / 2IXE GO () dE
[-N,N14 [-N,N14

=[O g e DOy () d, (6-12)
[_NaN]d
We claim that for some 8 > 0 and C > 0 depending on all the same parameters in Theorem 1.2 as well as
on Dy
Hf FTXEND iy dy| < CNPal (6-13)
[-N.NJ4 L2(X)

for all h € L? with supp(i;) C Y, in which ¥ c [-N, N]¢ is an admissible set with constants Cg, € on
scales 1 to N. Setting (1) := g(n) |det(D®x (n))], we conclude from (6-13) that

I 2200y CN Pkl < NP flla = CN TP f |2,

with possibly a different constant. So it remains to prove the claim (6-13). We will prove it from another
statement, namely

H / 2mX®N M) 15 () h(n) dn“ <CN7|h|, (6-14)
[-N,N]4 L2(X)

for all & € L?. Notice that by Plancherel we could remove the Fourier transform from /.

To prove (6-14), divide [-N, N ]d = Ji O into congruent cubes of side length Ly with % N <
Ly < ~/N. Let {xz} be a partition of unity adapted to these cubes. With 7 being the center of Qy,

/ TN 15 () h(n)ydn =Y / 2TEEN D () Ly (m) h(n)
[-N.N]¢ K VR
_ Z/Rd o2mix (N (1) +D Py (1) (n—nk)) ag(x,n) 1y () h(n)dn
k

=) (Tih) (). (6-15)
k
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where _
ar(x,n) 1= ¥R 4 (i),

1 (6-16)
Rk(n):=[0 (1= 1)(D2® (i + 1 01— 1)) 01— a0+ 11— i) 1.

the latter being the error in the second-order Taylor expansion (we are suppressing the parameter N here).

Then
”Rk”LOO(Suprk) <C= C(d9 Do),

o . (6-17)
1% @i (x. )| oo (1,110 xsupp 1) < €(d- Do), diamsupp e < CV/N.
for every multi-index «. By Hérmander’s variable-coefficient Plancherel theorem,

m]?x |T%|l2—2 < C(d, Dy). (6-18)

This follows by the usual 7*T argument:
| Tehll3 = (T¢ Tech. h).

* N o /

T T = [ Kl ony ) di, 619

Ki(f,n) = /Rd 27 ix (2N () —Pn (1)) 1?(77) 1?(77/) Yo xx (1) dx.

Since || @y (n) — PN (7)|| = Dy Yln = 7’| in the sense of Euclidean lengths, repeated integrations by
parts yield the decay

|Kx (', )| < C(d, Do) (n—n') 471,

whence (6-18) follows by Schur’s test. In particular, || 1x Ty ||2—2 < C with the same constant as in (6-18).
Next, we would like to show that 1y 7T} and 1x 7Ty do not interact much for all cubes Qy, Q, which
are not nearest neighbors. In order to integrate by parts in x, see (6-19), we need to smooth out 1y at the
correct scale. Define
X(N"2):=X +[-N"2,N"2)%.

By [Dyatlov and Zahl 2016, Lemma 3.3] there exists a smooth ¥ taking values in [0, 1] with ¥y =1 on X
and with supp(y) C X(N ~1/2), as well as so that

109 |10 < C@)N 5 (6-20)

for all multi-indices. Define Sy := ¥ Tj. On the one hand, S} still obeys (6-18). On the other hand, for
any cubes Qp, O, which are not nearest neighbors one has

IS Sell2>2 < C(d. Do. p)N 2 dist(Qk. Q)7 (6-21)

for every positive integer p. This follows from the fact that the kernel of S;’ Sy equals

Kio('.n) = /R NN 45 (n) 15 (1) i () ke () ¥ (x)? .
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Using the differential operator

_ L onm-onG)
2ri || PN () — PN (7))

X

which obeys
[ 27X (@n(m—2n (") — eZniX~(<I>N(n)—4>N(n’))’

repeated integration by parts now yields (6-21). Finally, given any k, only a uniformly bounded number
of choices of £ will satisfy

SKS; =V T T} ¥ #0.

This is due to the fact that yz (1) x¢(n) = 0 up to a bounded number of choices of £ given k. If we label
the cubes by lattice points k € Z<, then Nk = Lnk, whence

NZ dist(Qg. Q)P SN2 (Lylk—L)™7 kL7
which is summable over 74 provided p > d. On the other hand, we also have
I1SESell—2 < ISk ll2—2llSell2—2 < B?, B := SIJ}P [1S)1l2—2-
Combining these two estimates we infer that for any 0 < ¢ < 1
1Sk 57 22 + 1S Sella2 < C(d. Do. &) BX17) (k — £)=2(@+D

for all k,£ € Z%. Note that B < C(d, Do) by Hérmander’s bound (6-18). Hence by Cotlar’s lemma,

[ o 15 G d
[_NsN]d

< C(e.d. Do) max || Sk||3=5. (6-22)
L2(X) k

The claim (6-14) will now follow from (6-22) by applying the fractal uncertainty principle of
Theorem 1.2 to each Si. For this we need to linearize the phase as in (6-15), which in turn makes
the localization to scales \/N necessary.

To be specific, we reduce (6-14) to the following estimate. Let ¢ be compactly supported functions
satisfying the bounds

[0%¥0lloc < CsN® forall j¢| =5 >0, (6-23)

where N > 1 is arbitrary and all constant are independent of N. We assume that g is supported in a
§-regular set in [—1, 1] on scales 1/N to 1, and with 0 < § < d. Let

Z=N"1y;

be a rescaled version of an admissible set Y; with constants Cg, 81, g9 on scales 1 to N. The point is
Y7 is not assumed to be contained in [-N, N ]d; hence Theorem 1.2 does not apply directly. Hence we
need to use Proposition 6.7 instead, for which we need to make assumptions on supp a. Suppose that the
symbol a is smooth and compactly supported with the bounds

0%a(x,&)]loo < C(x) forall e, and suppa(x,-) C Q, (6-24)
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where Q is a cube in R? that is independent of x, and is of side length ro <ro. Then for some 8 >0
and C as above,
Yo ALz hlla < CN 7P|, (6-25)
where
YA 2mwiNx-&
() =N [ TV ot (o)
Indeed,

[ 2T ix(@N )+ DeN =1y (x) ag (x, 1) 15 (n) h(n) dn
R4

2

<

~

/Rd 2™y (x) a (x, DO () ~'¢ + k) 1g_, (DN ()T OMDON (k)™ ¢ +1k) d

2

d
=N14

/Rd TN 0 a (e NEE) NS Ly, (NEE) RN 3E) d

2
Here G, h signify the functions on the second line but with the linear isomorphism D ®y (1)~ ! and the
shift ny included, and Y1 = D®y (nx)(Y — ng) is an admissible set on scales 1 to N with constants that
depend on Dg. Note that 1y, (N 1/ 25)=17(£), withZ =N —1/2y, | which is an admissible set on scales
N~Y2 10 1. By (6-20), ¥o(x) := ¥ (x) satisfies the required bound, and furthermore ¢ is supported
on X(N~'2), which is a §-regular set on scales N~1/2 to 1; see Lemma A.4. As for the amplitude,

ignoring the distinction between @y and ay,
ak(x, N%é) = eZm’x-Rk(NUZE) Xk(N%s)v
1 ! 1
Ri(Nz2§):=N /0 (1 =0)(D?®N (1 + 1 (N2E =) (§ — 1), € — 1) dt,

where 77, = N™Y/2p;.. Setting a(x, §) = ag (x, N1/2£), we conclude from (6-17) that a satisfies (6-24)
with constant rg = C, which is an absolute constant. Finally,

d ~ 1
IN*h(N28)2 = [|2ll2.

Thus, we can apply (6-25) with N replaced by N 1/2 to obtain a gain of N ~P/2_and we are done.
It remains to prove (6-25). Note that this is equivalent to proving

1o Alzng hlla < CN~P|h]l. (6-26)

By Proposition 6.7, we can cover Z N Q by C(gg,d, ro) many admissible sets W; with constants d1,
Cg := (4CR)*/A=8)Cp, &y = &9(c0, Do). Hence, via triangle inequality, it suffices to prove (6-26)
with Z N Q replaced by W;.

If a = 1 on the supp(¥o) x W}, then this follows immediately from Theorem 1.2 by a rescaling. Indeed,

_ 2mix-& E -4 é

Z_waze 1”"(’“)“V-’(N)N h(N)dS

vy
N

one has by that theorem

‘N% [ 2TINYE Yo () Ly (8) h(E) d&
[Rd

2

= N"P|h.
2
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Let us now consider general a satisfying (6-24). Let p € (0, 1) with its value determined later.
Let us note that by the usual A* A argument, we have Hérmander’s bound,
||A||2_>2 <C. (6-27)
Next we decompose Yo A 1yy; into
VoA lw;, = Yo ]:h_lAl + A2 Fp A ly;,
A= 1Rd\u/j(N—p)thlu/j, Ay = 1,00.7{11%(1\]—0),
where i = N 1. Clearly, by (6-27), we have

Vo Alw;ll2—2 < 4122 + [ A2]22- (6-28)

Thus it suffices to bound ||A1]|2—2 and || A2||2—2.
We compute the integral kernel of Ay:

Kay (61) = La\w, (v-n) €) Tw; () N /R 2T (x ) dx.

Note that the Euclidean distance satisfies ||[n —&|| > N~ on the support of K4,. Hence by repeated
integration by parts in x, we obtain that
_rd+10 _rd+10 3
|Kay &) < Ca NI 1) 1550 T < ¢ 10,

By Schur’s test, we arrive at
|A1]2—2 <CN0. (6-29)
In view of A,. Note that
winT e T +k),

lklloo<N1=F
kez?

and
d

Wi (N"H CcWw; = {Z%‘e?e g e N W),
=1

which is an admissible set on scales 2N ~! to 1. Thus by Theorem 1.2 and triangle inequality, we have
for f € L2(R%)
1271 D WoFi' 15 4 fl2

lkl<N1=P

S ) Nlawwe Byl gy Sla = CNTPHA| 7y,
lkl|<N1-r

where # = N 1. Hence for p = 1 —/2d,
_B
[A2]l2>2 <CN™2. (6-30)
Combining (6-28), (6-29) with (6-30), we obtain (6-25). This concludes the proof of Theorem 1.4.
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6E. Fourier integral operator. In this section, we prove a fractal uncertainty principle for Fourier integral
operators on R?. The proof follows that of the one-dimensional case in [Bourgain and Dyatlov 2018,
Section 4]; thus we shall be very brief.

Let

27n<1>(x y)

B 0= [ b 100y (6-31)

where for some open set U C R2d

®eC®U:R), beCPU), det(aa

(22 (ol 22 )

for some constant Cg > 1, in which || - || is the matrix norm.

)70 v

)=c

Proposition 6.8. Let X, Y C [—1, 1] Assume that X is a §-regular set on scales 0 to 1 with constant Cg,

(6-32)

and Y is an admissible set on scales 0 to 1 with parameters 81, CR, &o. Assume (6-32) holds. Then there
exist B >0, p € (0,1) depending only on 8, §1, Cp, €9, d, Cop, and C > 0 depending only on 8, §1, CR,
€0, d, @, b such that for 0 < h < ho(P) < 1,

1 1x(nor2y B(M) 1y eyl L2rd)—L2(R) = ChP.

Proof. As was pointed out in [Bourgain and Dyatlov 2018], it is enough to prove Proposition 6.8 under

( 4 )
det
ij ayk

Let i := h1/2. Divide [—2,2)¢ = Uk Ok into congruent cubes of side length L with 5/2 <L <h. Let
{Xx}x be a partition of unity adapted to these cubes. With y; being the center of O, we have

the assumption that

1<

<2 onU. (6-33)

d

d 27rl<l>(x 2mi P(x,y)
4 /R K b )Ly () £() dy

=Yt [T b a0y () 1 0) dy
k

_2midxyg) 4 _2wiVy P(x.yp) (Y —yg) ~
=TI [ )y 000 dy

=) (Te f)(x).
k

where 2 (x.0)

b(x,y)=e"" +  x(»b(x,y).
1 (6-34)
Wi (x,y) = /0 (=¥ = yi), HO(x, yg +1(y — yi))(y — yr)) dt

in which H®(x, -) is the Hessian of ®(x,-) in the y-variable.
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We will prove

11

xiioy Tl 22 < CHP, (6-35)

and the estimate for ) 1X(;}p)Tk follows from almost orthogonality and Cotlar’s lemma; see the proof
of Proposition 4.3 in [Bourgain and Dyatlov 2018].
Let

@(x) =V, ®(x, yi).

By (6-33), the Jacobian matrix Jg satisfies 1 < |det(Jo(x))| < 2; hence ¢ admits an inverse function.
We have, by a change variable x — ¢~ !(x),

1Ly iy @ (T @) 2

_ 1._4d _2@ixy ~ _
=11, x oy ) Idet@p ™" (x))] 27 2fRde P (97 0, Y YO Ly oy ) S O30 A 2

2mwix-y

— 1 —_ETIXY ~ _ ~ ~ ~
= 11, x ey (¥ Idet(Jgp l(x))|2/Rd€ (97 () hy i) Ly hoy—y (hY) f (hy+yi) dy 2

NQ ~
< 1Ly iy A s iy 222 W8S £+
= Hl(p(X(flp)) A(h) ly(ﬁprl)_ﬁflyk lz2oz2 Il flz2

where

N =i [ b 10 ay,

bx, y) = [det(p ™" (x))|2 br (0" (x), iy + i)

(6-36)

Now it suffices to bound

1L g(x oy A Ly o1y 1y, L2 12 (6-37)

Let X := ¢(X). By (6-32),
(sup [ITel]) - (sup [|[Jp) ') < Ce.

Note (6-33) implies C; := sup ||J¢|| > 1 and hence C; := sup |(Jo) || < Cp. By Lemma A.5, X is
§-regular with constant Cg(d Ce)?/? on scales 0 to d_l/zCz_l.

If =1/ 2¢; 1 <1, Lemma A.3 implies X is 8-regular with constant

5 o
2(d2Co)  Cr(d Co)? <2d 3" CRCET? =: g

onscalesOto 1. If d_l/zcz_l >1,let Cg:=Cg (d Cq>)8/2. Hence X is always §-regular with constant Cr
on scales 0 to 1.

It is also easy to see that p(X (1)) € X (C(®)hP), where C(®) is a constant depending on ®. For
0 < h < ho(®), we have C(P)h? < h*P~1; hence

||l(p(x(;;p))A(h)l(y(ﬁzp—l)_ﬁ—lyk)||L2—>L2 = ”1)‘(‘(];2,;—1)A(h)l(y(;;zp—l)_;;—lyk)||L2_>L2-
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Next note that

X he | Ed+ip= | X

J€Z jez
Nl<h20—2 i <h20—2
o Iill= o ||]~||§ (6-38)
Y(* Y-y | @-rTly+hp)= | Y.
kez kez
lpll<h?r—2 Ipll<h?,—2
Hence, it is eventually reduced to estimating each |1 ¢ A(h)lyp 12— 12-
It is easy to check that bk (x, y) satisfy (6-24); hence by (6-25), we have
I1g, A1y, lIL2mp2 < CHP
for some B > 0. Choosing 2d(p — 1) < /2, we conclude that
~B
||1X(h2p I)A(h)l(y(th =1y, )||L2—>L2 <Chz
by the triangle inequality. O

Appendix A: Regular sets

We show that certain operations preserve the class of §-regular sets if we allow one to increase the
regularity constant and shrink the scales.

The first lemma is from [Bourgain and Dyatlov 2018]. It shows a §-regular set in R, 0 < § < 1, can be
split into smaller §-regular sets.

Lemma A.l. Let X C R! be a 8-regular set with constant Cg on scales g to a1, and assume that
0<é<1land (4CR)2/(1_8)010 < p < «y. Then there exists a collection of disjoint intervals J such that

x=J&nn, @R TSp<|J|<p forallJed.
JeJg
and each X N J is §-regular with constant Cr:= (4CR)* =9 Cg on scales ag to p.

The rest of this section concerns §-regular sets in R%. We show that certain operations preserve the
class of §-regular sets if we allow one to increase the regularity constant and shrink the scales.

Lemma A.2. Let X be a §-regular set with § € (0, d) and constant Cg on scales o to a1. Fix A > 0 and
y € R2. Then the set X:= y 4+ AX is a §-regular set with constant CR on scales Aag to Aay.

Proof. Taking the measure
pg(A) =2 ux A7 (A- ).

it is easy to verify. O

Lemma A.3. Let X be a §-regular set with constant Cgr on scales ag to ay. Fix T > 1. Then X is
8-regular with constant Cg 1= 2TdCR on scales ag to Toy.
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Proof. Let I be a cube such that «g <r; < Ta;. For ag <ry; <oy, the upper bound is immediate. For
o1 <ry <Tay, I can be covered by (T}d <274 cubes of side length «; each; therefore

ux(I) <27 Craf < Crry.

In view of the lower bound estimate, we assume [ is centered at a point in X. As before, we may
assume a1 < 1y < Taq. Let I’ C I be the cube with the same center and r;» = 7. Then

px (I = px (1) = Cglad = C'rf.
as claimed. O
Lemma A.4. Let X be a §-regular set with constant Cg on scales oo to aq. Fix T > 1:

(1) Suppose oy > 2a. Then the neighborhood X + [—Tay, Tao]d is 8-regular with constant Cr:=
4d TdCR on scales 20 to a.

(2) Suppose that a1 > Tag. Then X + [Ty, Tao]d is §-regular with constant CI/Q = 49 Cg on scales
Toag to aj.

Proof. Let X=X+ [—T g, Tap]? and define p & supported on X by convolution
1
pp)i= o | Hx (A+y) dy.
X (Tag)? [~Tao,Taol?
Let I be a cube such that Moy < r;y < ay with M > 1. Then
pg(l) <29Cgr},

which proves the upper bound estimates for both cases.
Now assume that [ is centered at a point x1 € X. Take xo € X such that xg € x; + [-Tag, Tao]d,
and let /' be the cube centered at x¢ with side length r;» = ry /2. Then

§
ux(I'y = Cx! (%’) >27d gl

Let J = xo — X1 + [—a0/2,00/2]%; then J N [~Tag, Tag]¢ contains a cube with side length at
least oo /2. Clearly, I’ C I + y for any y € J. Hence

1 ~_
pg) = WMX(I/) > CRIV}S,

which proves the lower bound estimate for (1).
Let J = xo—x1 + [-Tao/2, Tag/2]%; then J N [—Tag, Tag]? contains a cube with side length at
least Tag/2. Clearly, I’ C I + y for any y € J. Hence

1 _
pg(l) > 2—dux(1’) > (Cp) s,

which proves the lower bound estimate for (2). O
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Lemma A.5. Assume F : R? — R? is C! diffeomorphism. Let Cy := SUp,epd [JF(x)| and Cy :=
sup,.epa |JF1(x)|, where JF is the Jacobian matrix and | - | is the matrix norm. Assume that for some
constant Cp > 1, we have

Ci1Cy <CF. (A-1)

Let X be a §-regular set with constant Cg on scales o to o1 > CI%O(O. Then F(X) is a §-regular set with
constant Cg := Cr(d CF)%/? on scales d"/?Craqg to d_l/zcz_lal.

Proof. Let X:=F (X) and define the measure p  supported on X as
_8
pg(A):=Cp?CY ux (F~'(A)).
Let I be a cube with side length r 7 with
d3Ciag <r;<d~3C;lay. (A-2)

Clearly, F —1] is contained in a cube of side length r, where r < Jd Cor i Indeed, let y be the center
of I. Then for any x € I, we have

_ _ Vd
IF1 0= F )l = Collx =yl = S5 Cary.
Let I be the cube centered at F~!y of side length Vd Cyr 7 <a1. Then
~ _$ r
pg() < pux(I) < Cp> CYCr(Vd Carp)® = Cr(d Cr)>rs.
If, in addition, y € X, let y = F(z), where z € X. Then the cube Q centered at z of side length
r= d_l/zCl_lri > @ is contained in F_l(f). Indeed, for any x € Q, we have
Vd ri
|F(x)=F()| < —~Cir = ..
2 2
Hence
~ _3 1~ _s . 1 _ 8
pg()=Cp?Clux(FH (D) = C2C{CRMd™2C )’ = CR'(d Cr) 21,
This proves the claim. O

Lemma A.6. Let X be a §-regular set with constant Cr on scales ag to o1, and 0 < § < d. Fix an integer

L>Q2%v2d + 1Cg)as. (A-3)
Assume that I is a cube withao <ry/L <ry <oajandIy,...,1;a is the partition of I into cubes of side

length ry /L. Then there exists £ such that X N Iy = @.

Proof. Using Lemma A.2, it suffices to consider / = [0, L]d, g <1< L <«a;. We argue by contradiction.
Assume that each [, intersects X. Then [ := Iy + [—%, %]d contains a unit cube centered at a point
in X and thus

px (1)) > Cx' forall 1<¢<L?.
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On the other hand, 1d

1 114
Uzi=[-3L+3]"
=1

and each point in [—% L+ %]d can be covered by at most 2d +1 of the cubes / é. Therefore
L4
— d
Cr'L? <) pux(Ip) < @d + Dux([-3. L+ 3]%) = @d + DCr(L +1)°,
(=1
which contradicts (A-3). |

Recall our definition of C,, and porosity in Definition 5.1.

Lemma A.7. Let X C [—1, 112 be a §-regular set with constant Cg on scales aq to «y. Let L satisfy
(A-3), and take n € Z such that ag < L™"71 < L™ < «y. Then X is porous at scale L with depth n.

Lemma A.8. Let X be a §-regular set with constant Cg on scales g to ay1. Let C > 1 be a constant. Let
I be a cube of side length ry satisfying a9 < ry < Cay. Let p > 0 satisfy a9 < p < min(ry,a1). Then
there exists a nonoverlapping' collection J of N s cubes of side length p each such that

3+C d 5 r18

XnlI Ns<|6] —— — .

SRR
Jeg

We will only use this lemma in dimension 1. Note that in [Bourgain and Dyatlov 2018], this is
formulated with C = 1. We use this form with a constant C in the proof of Lemma 6.2.

Proof. Let J consist of all cubes of the form ngl oljks jx + 11, Gis j2. ..., jg) € Z%, which intersect
XNI.ThenXNICUje 7 J. Next, we will prove the upper bound on N ;.

For each J € 7, let J' D J be the cube with the same center and with side length 2p. Since J
intersects X, J’ contains a cube of side length p centered at a point in X. Therefore

ux(J') = Cglol.

It is also clear that | J ;. , J' C I (% p), and each point lies in at most 34 of the cubes J'.
If ry <ai, I(%p) can be covered by 49 cubes of side length ry. If @1 <r; < Coy, I(%p) can be
covered by 2¢[(3 + C)/2]9 cubes of side length «y. Therefore, we always have

~ 3+CT\?
NoeCite = 30 e =30 (U 77) = (o 255 |) cart,
JeJg

JeJg
and this proves the upper bound on N 7. O

Appendix B: Proof of Lemma 6.2

We follow the proofs of Theorem 3.2 and Lemma 4.1 in [Jin and Zhang 2017]. Let us start with introducing
some notation.

LA collection of cubes is nonoverlapping if the intersection of every two distinct cubes has empty interior.
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Hilbert transform. Let 1 be the standard Hilbert transform defined as convolution with p.v. %: for
f € C§°(R) (or more generally, f € LY (R, (x)~!dx)

xX—t

1 ..
H =—1
o(f)(x) im /X_HZS

T ge—0t

Let A be the modified Hilbert transform with integral kernel that decays like |x|~2 as |x| — oo:

H()) =1 tim, FO(— 4

dt. feL'R. (x)dx).
=07 Jix—t|>¢ x—t t2+1) / (R, {x) X)

The advantage of # is that it applies to a larger space that contains L°°(R) as well as functions that grow
like |x|17¢ as |x]| — oo.

If f e LY(R, (x)~1dx), then H( f) differs from Ho( /) by a constant. Moreover, we have the inversion
formula for all f € LY(R, (x)~2 dx) with H(f) € L'(R, (x)~2 dx):

HH( ) =—f +c(f). (B-1)

where ¢(f') is a real constant depending on f.
We will use the following example later in the proof.

Example B.1 [Jin and Zhang 2017, Example 2.3]. Let f(x) = log(x? + 1), then we can compute

H() (x) = Ho(f)(x) = - (B-2)

x24+1
Hardy space and outer functions. We recall the definition of Hardy space on the real line
H? = H?®)={f € L*(R) :supp f C [0.00)}.

If f € L?(R),then f +iHo(f) € H*(R).
The space of modulus of functions in H? can be characterized by the logarithmic integral: for w € L2,

]
L(w) = /R ‘;g%f;) dx.

o > 0, we define

Theorem B.2 [Havin and Joricke 1994, Section 1.5]. If f € H? and L(| f|) = —o0, then f = 0. On the
other hand, if w € L? and L(w) > —o0, then there exists a function f € H? with | f| = w, unique up to a
multiplication by a complex constant with unit modulus.

If L(w) > —o0. Let @ = —logw, then Q € L1 (R, (x)72 dx). Therefore we can define Q =H(Q)
and take

f=ae~@HD g =1 (B-3)

We call functions of the form (B-3) for general Q € LY(R, (x)~2 dx) outer functions. The class of outer
functions is closed under multiplications. Moreover if two outer functions have the same modulus, then
they differ by a complex constant with unit modulus.
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The following lemma gives a sufficient condition of a function to be the modulus of the Fourier
transform of a function supported in [0, o].

Lemma B.3 [Mashregi et al. 2005, Theorem 1]. Assume that = e~ € L2 and L(w) > —oo. In

2miox

addition, we assume that w’e is an outer function. Then there exists Y € L? with supp ¢ C [0, o]

and |1ﬁ| =w.

An effective multiplier theorem. We prove an effective multiplier theorem. This proof is essentially in

[Jin and Zhang 2017, Section 3], the only change we make lies in the definition of k(x) below. Our

modified definition makes sure that k(x) is a constant function in a neighborhood of 0, which leads to a
33

pointwise lower bound of 1/7(x) on the whole interval [_Z’ Z]‘

Theorem B.4. Assume that 0 < w < 1 satisfies L(w) > —o0, and
IH(R) || < Fo,

where 0 < 0 < %, Q = —log w. Then there exists ¥ € L?(R) with

suppy C [0,0], || <o,

and "
i 33
iz o onl-3-1l
Proof. We first set
w(x)
wo(x) = m» Q0(x) = —log (wo(x)),

with constant 7" that will be specified later. We then have

Qo= Q+5log (x2+T2).

We compute

1 t
H(og (x% + T?))(0) = lim log(t? + T2 (—— )d:,
(log ( )(0) S e g( ) Sl

in which the integrand is an odd function. Hence the integration is zero. Therefore we have
H(20)(0) = H(2)(0) + 5H(log (x* + T2)) = H(2)(0). (B-4)

By (B-2), we compute

. 2T
2 2Ny _ —1 2 ’ _
Thus if we choose T = % > znﬁ > 60, we have
1#7(R0) I < 1H(Q) [|lLoe + 5| H(log(x* + T?)) ||z < 7o. (B-5)

Let us define
so(x) = mox + H(20)(x).
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Hence by (B-4),
$0(0) = H(£2)(0),

depending only on w.

Let 5(x) be defined as

s(x) = so(x) — 7wk (x) — 7,
in which
Lso(x)] if Lso(0) €[§.2] mod 1,

| Esox) =1 if Lso(0) € [0, 1)U, 1) mod 1.
Note that our definition of k(x) is different from that in [Jin and Zhang 2017]. We modify the definition
in order to make sure k(x) is a constant near x = 0. This will be explained and used later in the proof.

By (B-5), so(x) is a nondecreasing function and so is k. Note also that by our definition of s(x), we have

k(x) (B-6)

Isl|poe <. (B-7)

Let m = e~M_ where M = #(s). Next, we will estimate M (x) = H(s)(x). We split the integral into
three parts M(x) = J1(x) 4+ J2(x) + J3(x), where
l‘ —_
nw=L[ 00y
Ix—t|<i

T X —1

1 t
J == t dt,
= 0E

1 1 t
J = — Hl — dt.
30 n/|x_t|zés()(x—t+tz+l)

We estimate J, and J3 in the same way as in [Jin and Zhang 2017]. By (B-7), we have

|2 < £ sllze - 5 < 3 (B-8)
Also, we have
1
J <1 0o / dt <61 2). B-9
|J3(x0)] = - lIsliL il x—l+t2+1 <6log (|x]+2) (B-9)

Finally, we need to bound |J;]|. By (B-5), we know so(x) = wox + H(S2¢)(x) is nondecreasing with
IsollLee < 2mo. Since we assume 0 < o < %, we have
lm " spllLo < 3.
This leads to the following:
« If 77 150(0) € [+, 2] mod 1,
%so(x) €(0,1) mod1 forall x e [—%, %]
o If 77 1s50(0) € [0. 1) U(3. 1) mod 1,

Lso(x)—3€(0,1) mod 1 forall x €[-3.3].
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Recalling our definition of k(x) in (B-6), we know in each case k(x) is a constant function on the interval

[-3.3]-

Thus for x € [—%, %], we have

1
)] < 4 [
T |x—t|<%

For all x, we only have a lower bound of J;. Since k is nondecreasing, we have

So(f) — s0(x)
xX—t

dr = Lysgllie <20 (B-10)

L) >+ / o =50 ;o oy (B-11)
T Jix—t|<% x—1

Now combining (B-8), (B-9) with (B-10), we have the following estimate of M on [—%, %]:
|M(x)| <20+ 5 +6log Lt <7. (B-12)
Using (B-11) instead of (B-10), we obtain that for all x,

M(x) > —20 — 5 —6log (|x| +2) > —1 — 6log(|x| + 2). (B-13)

1

Next we will apply Lemma B.3 to @ = 3mw¢. We check that o satisfies all the assumptions. First,

by (B-13), we have

~ w
OSCUS %€(|X|+2)6a)0§ m

Hence 0 < & < w and @ € L?. Moreover
L(@) = L(3m) + L(wo) > —c0.
By the construction M = H(s) and the inversion formula (B-1), we have
H(—2M —2Q¢) =25 —2H(Ro) —2¢(M) =2n0x —2nk(x) — 71 —2¢c(M),

where k(x) € Z and ¢(M) is a real constant. Therefore for some constant ¢ with |a| = 1, we have

a~)2€2mox — ée—2M—2§20+2max — %ae—ZM—290+lH(—2M—290)’

which shows @2e27%X ig an outer function.
By Lemma B.3, there exists ¥ € L2 with supp(y) C [0, 0] and || <& < w. Furthermore, on [—3, 3],

by (B-12), and since T = %, we have
7 ~ 1 2y=5,—7 al?
V()| =a(x)=31+T) e o(x) = mw(x),

as claimed. U

Multiplier adapted to the regular sets. Now we are in the place to finish the proof of Lemma 6.2.

Proof. The proof is the essentially same as that of Lemma 4.1 of [Jin and Zhang 2017]. We briefly go
through the various constants below.
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We define n; € Nby 271 < Say <21+ For 1 <n <ny,let A, :=[-2"T1, =2"]|J[2",2""1]. Then
by Lemma A.8, we have a collection J;, of N, intervals of size p, := n~(148)/29n gych that each element
is of the form [j, j + 1], j € Z, intersects A,, and

Ynd,c | J 7.
JEeTn
Moreover, the number N,, satisfies
3+S 2n\8 3+S
Ny < 6{L—‘ c2 (—) - 6’VL—‘C12Qn8(12+8). (B-14)
2 On 2

Following the proof of [Jin and Zhang 2017], we define a weight function @ such that

w() = exp(—(é)%) >0.3 forall £ e[-1,1],

w() < exp(—(é)%) for all £ € R,
w(§) <exp(=O(|§))[E])  forall§ Y, [§]= 10,
1o '
[H(w) [lLee = 51 (—61)

where 0 < ¢ < 1 is a constant depending only on S. The dependence comes from the upper bound of N,
in (B-14).
Applying Theorem B.4 to w3 with

c1, Cc3 = %L61CE251(1 —81) < 1.

W=

o =
We obtain ¥ with
supp ¥ C [0, 2¢1].
> cp° 3 10
[y ()] > T 10180)(5)63 Z % 1019¢1 forall § € [-3, 2],
9 (6)] < exp(—c3(£)?) for all £ € R,

19 (§)] < exp(—c3O(€])[£]) forall £ € ¥, |£] > 10.

Finally, shifting ¥ by 1—1001 yields the desired function. O
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