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A HIGHER-DIMENSIONAL BOURGAIN–DYATLOV
FRACTAL UNCERTAINTY PRINCIPLE

RUI HAN AND WILHELM SCHLAG

We establish a version of the fractal uncertainty principle, obtained by Bourgain and Dyatlov in 2016, in
higher dimensions. The Fourier support is limited to sets Y � Rd which can be covered by finitely many
products of ı-regular sets in one dimension, but relative to arbitrary axes. Our results remain true if Y is
distorted by diffeomorphisms. Our method combines the original approach by Bourgain and Dyatlov, in
the more quantitative 2017 rendition by Jin and Zhang, with Cartan set techniques.

1. Introduction

Bourgain and Dyatlov [2018] proved the following result.

Theorem 1.1. Let X; Y � R and N � 1 be such that X � Œ�1; 1� is ı-regular with constant CR on
scales N�1 to 1 and Y � Œ�N;N � is ı-regular with constant CR on scales 1 to N. Then there exist
constants ˇ > 0 and C depending on ı; CR so that

kf kL2.X/ � CN
�ˇ
kf kL2.R/

for all f 2 L2.R/ with supp. Of /� Y .

The ı-regularity condition is akin to asking for a Frostman measure at dimension ı; see Definition 6.1
below for the precise statement. Theorem 1.1 is most interesting for ı close to 1. For ı < 1

2
, Cauchy–

Schwarz and measure estimates in phase space suffice. The ˇ was made effective later by Jin and
Zhang [2017]. Combining this fractal uncertainty principle with earlier results by Dyatlov and Zahl [2016]
led to a breakthrough on the existence for an essential spectral gap for convex cocompact hyperbolic
surfaces. This refers to a strip to the left of the 1

2
line in the complex plane in which the Selberg zeta

function has only finitely many zeros. This result can be reformulated in terms of strips below the real
axis in which the meromorphic continuation of the resolvent of the Laplacian of the hyperbolic surface
exhibits only finitely many resonances. This in turn can be rephrased as a decay rate of the resolvent for
large energies within such a strip.

For other applications see [Bourgain and Dyatlov 2017; Dyatlov and Jin 2017; 2018], and for a survey
[Dyatlov 2017].

It remained an open problem to establish an analogue of Theorem 1.1 in higher dimensions. This is
the main goal of this paper.
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We now present our main results. Let X � Œ�1; 1�d be a ı-regular set in the sense of Bourgain and
Dyatlov with ı 2 .0; d/ and constant CR, on scales N�1 to 1. In [Bourgain and Dyatlov 2018] this
concept is defined only on the line, but the definition, together with its main properties, carries over to
higher dimensions. Strictly speaking, we do not need the regularity condition per se, but rather the porosity
property of such sets as stated precisely in Definition 5.1 below. Second, let Y � Œ�N;N �d be of the form

Y D

� dX
iD1

�i Eei W �i 2 Yi

�
; (1-1)

where Eei are unit vectors with jdet.Ee1; : : : ; Eed /j � "0, a positive constant (possibly small), and Yi �
Œ�2N; 2N � is a ı1-regular set with ı1 2 .0; 1/ and constant CR, on scales 1 to N.

Theorem 1.2. Let X; Y be as in the previous paragraph in dimension d � 2. Then there exists a constant
C D C.d; "0; ı; ı1; CR/ > 0 such that for

ˇ D exp
�
� exp

��
.C 2R=�/

2d�2ıC2
d�ı

ı1.1� ı1/

� 2
1�ı1

��
;

where � > 0 is a small constant depending on d and "0, and for any f 2 L2.Rd / with supp. yf / � Y
one has

kf kL2.X/ � CN
�ˇ
kf kL2.Rd / (1-2)

for sufficiently large N �N0.d; "0; ı; ı1; CR/.

As a corollary of our main theorem, we allow Y to be covered by the union of a finite number of Yj ’s,
each satisfying (1-1) but with a uniform "0:

Y �

m[
jD1

Yj ; where Yj D
� dX
iD1

�j;i Eej;i W �j;i 2 Yj;i

�
: (1-3)

Furthermore, the number m of covers can grow in N. To be specific, we prove:

Corollary 1.3. Let X be as above and Y be as in (1-3). Suppose m grows with N as follows:

mD bN 

c;

in which 0 � 
 < ˇ. Then for any f 2 L2.Rd / with supp. yf / � Y , and constants C; ˇ in Theorem 1.2,
one has

kf kL2.X/ � CN

�ˇ
kf k2 (1-4)

for sufficiently large N �N0.d; "0; ı; ı1; CR/.

Theorem 1.2 and Corollary 1.3 require that the Fourier support Y may be covered by products of
regular sets in one dimension along lines; see (1-3). Our third result asserts that one may distort these
lines by means of diffeomorphisms which are obtained as follows. Let ‰N W Œ�N;N �d ! Œ�N;N �d be a
diffeomorphism such that

kDˆN k1CkDˆ
�1
N k1CN kD

2ˆN k1 � C.d;D0/; (1-5)
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where the supremum norm is taken over the cube Œ�N;N �d. One example of a diffeomorphism satisfying
(1-5) is ‰N .x/DN‰0.x=N /, where ‰0 is a diffeomorphism from Œ�1; 1�d to Œ�1; 1�d such that

kD‰0k1CkD‰
�1
0 k1CkD

2‰0k1 �D0; (1-6)

where the supremum norm is taken over the cube.

Theorem 1.4. Theorem 1.2 remains correct with ˆN .Y / in place of Y . Constants depend on D0, but not
on ‰0.

In the following section we demonstrate the Cartan techniques by reproving a certain step in [Bourgain
and Dyatlov 2018] which was proved there by means of harmonic measure of the strip with a real
line-segment removed. In Section 3 we go beyond the one-dimensional setting via these Cartan methods.
The subsequent sections implement the argument in analogy with [Bourgain and Dyatlov 2018] albeit in
dimensions and higher. We haven striven to present the argument in a modular fashion. In particular, the
delicate Beurling–Malliavin step appears only in Section 6 in order to prove the existence of damping
functions. We do not use a higher-dimensional version of the Beurling–Malliavin theorem, which appears
to be unknown. Rather, we reduce ourselves in that step to the aforementioned product structure of Y
(or covers of finitely many of such products) precisely so as to be able to still use the one-dimensional
construction of such damping functions. Moreover, as in [Jin and Zhang 2017] it is important for us to
use the weaker form of the Beurling–Malliavin theorem obtained via outer functions; see [Mashregi et al.
2005]. Any other construction of damping functions in Section 6 would lead to different formulations
of our main theorems in terms of the conditions on Y without needing to change anything in the other
sections. Theorem 1.4 is proved in Section 6D. An FUP for Fourier integral operators is presented in
Section 6E.

2. L2 localization in one dimension

Let us first introduce notation. For � D .�1; �2; : : : ; �d / 2 Rd, let

j�j1 WD

dX
jD1

j�kj; j�j2 WD

dX
jD1

j�kj
2; and h�i WD .1Cj�j22/

1
2 :

Let e.�/ WD e2�i�. For x 2 R, let dxe WDminfn 2 N W n� xg, and bxc WDmaxfn 2 N W n� xg.
Throughout, we let R.q/ be the rectangle with vertices˙iq, 1˙iq. We begin with quantitative bounds

on the Schwarz–Christoffel map from the disk onto a rectangle. The goal is to control this conformal
mapping as the eccentricity of R.q/ tends to 0.

Lemma 2.1. Let 0< q � 1 and defineˆq to be the unique conformal map, continuous up to the boundary,
which takes the unit disk D onto the rectangle R.q/ and so that ˆq.�1/D 0 and ˆq.˙i/D˙iq; see
Figure 1. Then ˆq.1/D 1 and ˆq.e˙i�.q//D 1˙ iq, where

�.q/D 8 exp
�
�
�

2q

�
.1CO.q//; q! 0:
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ˆq
ˆq.i/D iq

ˆq.�1/D 0

ˆq.�i/D�iq ˆq.e
�i�.q//D 1� iq

ˆq.1/D 1

ˆq.e
i�.q//D 1C iqei�.q/

e�i�.q/

a1 a2
1
4

3
4

D

R.q/

Figure 1. Conformal map ˆq .

Moreover,
ˆq.Œa1.q/; a2.q/�/D

�
1
4
; 3
4

�
; aj .q/D 1� ıj .q/;

with
ı1.q/D 4 exp

�
�
�

8q

�
.1CO.q//; ı2.q/D 4 exp

�
�
3�

8q

�
.1CO.q//

as q! 0. Let E � Œa1.q/; a2.q/� be a measurable set. Then for sufficiently small q one has jˆq.E/j �
2ı2.q/

�2jEj, where j � j denotes Lebesgue measure.

Proof. Let 0 < k < 1 and consider the elliptic integral of the first kind

arcsn.z; k/D
Z z

0

dtp
.1� t2/.1� k2t2/

; Im z > 0;

which maps the upper half-plane onto the rectangle with vertices ˙L.k/, ˙L.k/CiH.k/; see Figure 2.
Here 2L.k/ and iH.k/ are the periods of the elliptic function sn.z; k/ and satisfy, as k! 0,

L.k/D

Z 1

0

dtp
.1� t2/.1� k2t2/

D
�
2
CO.k2/;

H.k/D

Z k�1

1

dtp
.t2� 1/.1� k2t2/

D

Z 1
0

dsp
.1C s2/.1C k2s2/

D log 4� log kCO.k/:

The latter expansion is a standard fact; see for example [Abramowitz and Stegun 1966, Section 17.3.26].
Let q WD L.k/=H.k/ and set

Fq.z/D�
i

H.k/
arcsn.z; k/; (2-1)

which maps the upper half-plane onto the rectangle with vertices ˙iq; 1˙ iq. With k D e�.�=2/`,

q D

�
2
CO.k2/

log 4C �
2
`CO.k/

D `�1
�
1�

log 16
�`
CO.k/

�
;

and thus

`D q�1
�
1�

2 log 4
�

qCO.q2/

�
; k D 4 exp

�
�
�

2q

�
.1CO.q//:
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gk. � / WD arcsn. � ; k/

upper half-plane
gk.�1/D�L.k/

gk.0/D 0

gk.1/D L.k/

gk.�k
�1/D
�L.k/C iH.k/

gk.k
�1/D
L.k/C iH.k/

gk.1/

�k�1 �1 0 1 k�1

iA.q/

iB.q/

iH.k/
4

3iH.k/
4

Figure 2. Elliptic integral arcsn.z; k/.

Define A.q/; B.q/ by Fq.iA.q//D 1
4

and Fq.iB.q//D 3
4

. Thus,Z A.q/

0

dsp
.1C s2/.1C k2s2/

D
1
4
H.k/;Z B.q/

0

dsp
.1C s2/.1C k2s2/

D
3
4
H.k/:

We make the ansatz A.q/D ck�1=4.1C ".q//. ThenZ A.q/

0

dsp
.1C s2/.1C k2s2/

D .1CO.k
3
2 //

Z A.q/

0

ds
p
1C s2

D arcsinh.ck�
1
4 .1C ".q///.1CO.k

3
2 //

D log.2ck�
1
4 .1C ".q///.1CO.k

3
2 //

D
1
4
.log 4� log kCO.k//:

Hence,

log.2c/� 1
4

log kC log.1C ".q//D 1
4
.log 4� log kCO.k//;

c D 1
2

p
2; ".q/DO.k/;

A.q/D 1
2

p
2 k�

1
4 .1CO.k//:

Similarly, with B.q/D Qck�3=4.1C Q".q//,

log.2 Qc/� 3
4

log kC log.1C Q".q//D 3
4
.log 4� log kCO.k//.1CO.k

1
2 //;

Qc D
p
2; Q".q/DO.k

1
2 log k/;

and so
B.q/D

p
2 k�

3
4 .1CO.k

1
2 log k//:

Expressing k in terms of q we obtain

A.q/D 1
2

exp
�
�

8q

�
.1CO.q//; B.q/D 1

2
exp

�
3�

8q

�
.1CO.q//:
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Next, we conformally map the upper half-plane Im z > 0 onto the unit disk jwj< 1 via

z D '.w/D i
wC 1

1�w
; w D

z� i

zC i
:

One has '.�1/D0, '.˙i/D�1, '.ei� /D�k�1 with �D2kCO.k3/. Furthermore, '.Œa1.q/; a2.q/�/D
i ŒA.q/; B.q/�, where

a1.q/D
A.q/� 1

A.q/C 1
D 1� 2A.q/�1CO.A.q/�2/;

a2.q/D
B.q/� 1

B.q/C 1
D 1� 2B.q/�1CO.B.q/�2/:

Setting aj .q/D 1� ıj .q/ we have

ı1.q/D 4 exp
�
�
�

8q

�
.1CO.q//; ı2.q/D 4 exp

�
�
3�

8q

�
.1CO.q//;

as claimed. The final claim of the lemma follows from

j.Fq ı'/
0.w/j � jF 0q.z/jj'

0.w/j � 2.1� jwj/�2;

where '.w/D z, w 2 .0; 1/. We used here that for z D is, s > 0,

jF 0q.z/j DH.k/
�1.1Cjzj2/�

1
2 .1C k2jzj2/�

1
2 �H.k/�1.1Cjzj2/�

1
2 � 1

for small q. �

By a subharmonic function v on a domain �� C we mean a function v W�! Œ�1;1/, which is
upper semicontinuous and satisfies the submean-value property. We recall the basic Riesz representation
of a subharmonic function on the disk, albeit with precise quantitative control on the Riesz mass and
the harmonic part. In view of Lemma 2.1 we need to consider the case where the lower bound on the
subharmonic function is attained arbitrarily close to the boundary of the unit disk.

Lemma 2.2. Let v be subharmonic on a neighborhood of D, with v �M on D, and assume sup�D v �m

for some 0 < � < 1. Let � < r1 < r < 1. Then there exists a nonnegative measure � on D, called the Riesz
measure, with the property that for all w 2 rD

v.w/D

Z
rD

log jz�wj�.dz/C h.w/; (2-2)

with h harmonic on rD. We have the quantitative bounds on the Riesz mass

�.rD/�
M �m

log..1C �r/=.�C r//
(2-3)

and on the deviations of the harmonic function

min
c2R

max
jwj�r1

jh.w/� cj � 1
2
.M �m/

r C r1

r � r1

log..1C �r/=.1� r2//
log..1C �r/=.�C r//

DW ": (2-4)
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The constant c which minimizes the left-hand side satisfies

c �m� "� log.r C �/�.rD/: (2-5)

Proof. We will assume that v is smooth, the general case following by approximation. The Green’s
function G W D�D! R given by

G.z;w/ WD
1

2�
log

ˇ̌̌̌
z�w

1� z Nw

ˇ̌̌̌
satisfies �zG.z;w/D ıw and G.z;w/D 0 when jzj D 1.

Let w 2 D. By Green’s second identity for the domain D, we have

v.w/�

Z
D

G.z;w/�v.z/ Vol.dz/D
Z
@D

v.z/
@G

@nz
.z; w/ �.dz/;

where Vol is the standard volume measure and � is the (unnormalized) arc-length measure on the circle @D.
Since v is smooth and subharmonic, �v is a nonnegative, continuous function, call it 2��. Therefore

v.w/D

Z
D

2�G.z;w/�.dz/C h0.w/; (2-6)

where
h0.w/ WD

Z
@D

v.z/
@G

@nz
.z; w/ �.dz/: (2-7)

Let 0 < r < 1. On the disk rD we have the Riesz representation

v.w/D

Z
rD

log jz�wj�.dz/C h.w/; (2-8)

where

h.w/ WD

Z
DnrD

log
ˇ̌̌̌
z�w

1� z Nw

ˇ̌̌̌
�.dz/�

Z
rD

log j1� z Nwj�.dz/C h0.w/ (2-9)

is harmonic in rD. Note that .@G=@nz/.z; w/ is the Poisson kernel, whence

h0.w/D

Z 1

0

v.e.�//Pjwj.' � �/ d�; w D jwje.'/: (2-10)

We now set out to bound the Riesz measure �. Without loss of generality, assume mD v.�/. Then setting
w D � in (2-6) yields Z

D

log
j1� �zj

jz� �j
�.dz/D h0.�/� v.�/�M �m; (2-11)

in which we used
h0.�/�M: (2-12)

This follows from the maximum principle and the fact that h0 is the harmonic function on D with boundary
values v by (2-10). By an elementary calculation,

min
jzj�r

j1� �zj

jz� �j
D
1C �r

�C r
> 1
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for all 0 < �; r < 1. Inserting this bound into (2-11) implies

�.r D/�
M �m

log..1C �r/=.�C r//
: (2-13)

Let � < r1 < r < 1. For all w 2 rD we have

h.w/D

Z
DnrD

2�G.w; z/ �.dz/�

Z
rD

log j1� z Nwj�.dz/C h0.w/

� � log.1� r2/�.rD/CM DW h�:

(2-14)

By Harnack’s inequality on r1D we conclude from this that for any w 2 r1D

.h�� h.w//�
r C r1

r � r1
.h�� h.�//;

whence

h.w/�
r C r1

r � r1
h.�/�

2r1

r � r1
h�:

By (2-8),

h.�/D v.�/�

Z
rD

log jz� �j�.dz/�m� log.r C �/�.rD/ (2-15)

and thus

h.w/�
r C r1

r � r1
.m� log.r C �/�.rD//�

2r1

r � r1
h� DW h�:

In summary,

min
c2R

max
jwj�r1

jh.w/� cj �
1

2
.h�� h�/

D
1

2

r C r1

r � r1
.h��mC log.r C �/�.rD//

D
1

2

r C r1

r � r1

�
M �mC log

�
r C �

1� r2

�
�.rD/

�
: (2-16)

Finally, bounding the �-mass by (2-13) finally implies

min
c2R

max
jwj�r1

jh.w/� cj � 1
2
.M �m/

r C r1

r � r1

log..1C �r/=.1� r2//
log..1C �r/=.�C r//

DW ";

as claimed. Finally, to establish (2-5), we return to (2-15) and note that the left-hand side is at most cC "
for c the minimizer in the previous line. Then

c �m� log.r C �/�.rD/� ":

Note that one may insert (2-13) on the right-hand side to control the mass. �

We now apply the Cartan estimate for logarithmic potentials to the Riesz representation (2-2) in order
to derive lower bounds on v up to a small measure of exceptions.
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Corollary 2.3. Let v be as in Lemma 2.2 with �D 1� 3ı, 0 < ı < 1
3

. Then for all 0 < H � 1 there exist
disks D.zj ; sj / so that

v.z/�m� .M �m/
h
2ı�3 log

�
2

ı

�
C ı�2 log

�
2e

H

�i
for all z 2 r1D n

S
j D.zj ; sj / with

P
j sj � 5H and r1 D 1� 2ı.

Proof. By Cartan’s estimate, for any H > 0 there exist disks D.zj ; sj / such that
P
j sj � 5H andZ

rD

log jw� zj�.dw/� �.rD/ log
�
H

e

�
for all z 2 r1D n

[
j

D.zj ; sj /: (2-17)

See [Levin 1996, Theorem 3, Section 11.2]. To invoke the measure bound (2-3) we estimate

log
�
1C �r

�C r

�
D log

�
2� 4ıC 3ı2

2� 4ı

�
D log

�
1C

3ı2

2� 4ı

�
� log

�
1C

3ı2

2

�
� ı2

since ı2 � 1
2

and log
�
1C 3

2
x
�
� x for 0� x � 1

2
. Consequently,

�.rD/� ı�2.M �m/:

Next,
1C �r

1� r2
�

2

2ı� ı2
� ı�1.1C ı/;

as well as
r C r1

r � r1
D
2� 3ı

ı
� 2ı�1;

whence (2-4) implies

min
c2R

max
jwj�r1

jh.w/� cj � "� .M �m/ı�3 log
�
2

ı

�
DW Q":

Finally, by (2-5), one has

c �m� "� log.r C �/�.rD/�m� "� log.2/�.rD/:

In view of (2-2) and the preceding estimates we obtain

v.z/� cC�.rD/ log
�
H

e

�
� "�m� 2"C log

�
H

2e

�
�.rD/

�m� .M �m/
h
2ı�3 log

�
2

ı

�
� ı�2 log

�
H

2e

�i
(2-18)

for all z as in (2-17). �

By means of the conformal transformation ˆq from Lemma 2.1 we can obtain a version of the Riesz
representation theorem on thin rectangles R.q/.
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Corollary 2.4. There exists q� 2 .0; 1� with the following property: Let u be subharmonic on R.q/ for
some 0 < q � q�, continuous up to the boundary. Assume that u�M on R.q/ and max

x2Œ 1
4
; 3
4
�u.x/�m.

Then
u.x/�m� .M �m/ exp

�
9�

8q

�h
log.4/C 9�

4q
C exp

�
�
3�

8q

�
log

�
2e

H

�i
(2-19)

for all x 2
�
1
4
; 3
4

�
n
S
j Ij , where

P
j jIj j � 3H exp

�
3�
4q

�
.

Proof. Let v D u ıˆq , with ˆq as in Lemma 2.1. Then v satisfies the assumptions of Corollary 2.3 with
� � 1� ı2.q/, and

ı2.q/D 4 exp
�
�
3�

8q

�
.1CO.q//� 3ı;

ı WD exp
�
�
3�

8q

�
<
1

3
;

(2-20)

provided q� is small enough. By Corollary 2.3 we have

v.z/�m� .M �m/ exp
�
9�

8q

�h
2 log

�
2

ı

�
C ı log

�
2e

H

�i
Dm� .M �m/ exp

�
9�

8q

�h
log.4/C 9�

4q
C exp

�
�
3�

8q

�
log

�
2e

H

�i
for all z 2 r1D n

S
j D.zj ; sj /,

P
j sj � 5H, where r1 D 1� 2ı. The inverse image of

�
1
4
; 3
4

�
under ˆq

is Œa1.q/; a2.q/�. Define QIj WD R\D.zj ; sj /, Ij Dˆq. QIj /, and E WD
S
j
QIj so that

P
j j
QIj j � 10H. By

Lemma 2.1 we have
jˆq.E/j � 20Hı2.q/

�2< 3H exp
�
3�

4q

�
;

as claimed. �

Next, we apply the previous results on subharmonic functions to log jF j, where F is analytic.

Corollary 2.5. Let F be an analytic function on a neighborhood of R.q/ with 0 < q � q�, and F not
identically equal to zero. Define

B1 WD kF kL2.Œ 1
4
; 3
4
�/; B2 WD kF kL2.@R.q//:

Then for some absolute constant C0, and all H > 0,

BKC11 � e
C0K

q BK2 jF.x/j

holds for any K � exp
�
9�

8q

�h
log.4/C 9�

4q
C exp

�
�
3�

8q

�
log

�
2e

H

�i
(2-21)

for all x 2
�
1
4
; 3
4

�
n
S
j Ij , where

P
j jIj j � 3H exp

�
3�
4q

�
.

Proof. We apply our previous results to u.z/ WD log jF.z/j, which is subharmonic on a neighborhood of
R.q/. However, Corollary 2.4 does not apply directly since we do not have a pointwise upper bound
on u. Returning to the subharmonic function v D u ıˆq on the unit disk D, we note that the pointwise
upper bound M on v only entered through the estimate h0 �M ; see (2-12), (2-14). The analytic function
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zF D F ıˆq satisfies log j zF j D v. Denoting by

Pw.d�/D Pjwj.d.� �'//D
1� jwj2

1� 2jwj cos .2�.� �'//Cjwj2

the Poisson kernel centered at w D jwje.'/, we estimate h0 from (2-11) as follows:

h0.w/D

Z 1

0

v.e.�// Pw.d�/D

Z 1

0

log j zF .e.�//jPw.d�/

� log
�Z 1

0

j zF .e.�//jPw.d�/

�
� log

�Z 1

0

j zF .e.�//j d�





Pw.d�/d�






1

�
� log.B2/C log

�



d�d�





L2.@R.q//

�
C log





Pw.d�/d�






1

; (2-22)

where d� denotes arc-length measure on @R.q/, and the correspondence between @D and @R.q/ is given
by � 7!ˆq.e.�//. On the one hand, 



Pw.d�/d�






1

� 2.1� jwj/�1;

and on the other hand, 



d�d�




2
L2.@R.q//

D

Z
@R.q/

ˇ̌̌̌
d�

d�

ˇ̌̌̌2
d� D

Z 1

0

ˇ̌̌̌
d�

d�
.�/

ˇ̌̌̌�1
d�: (2-23)

Using the notation of Lemma 2.1, the boundary map @D! @R.q/ induced by ˆq is

� 7! �.�/ WD iH.k/�1 arcsn.x.�/; k/;

x.�/ WD '.e.�//D� cot.��/; x0.�/D �.1C x.�/2/

where '.w/ D i.w C 1/=.1 � w/ takes the disk to the upper half-plane. If 0 < 2�� < �.q/, then
�.�/D 1C iy.�/, where

dy

d�
D

�

H.k/

1C x2p
.x2� 1/.k2x2� 1/

�
�

kH.k/
; x.�/ < �k�1:

Therefore, this region contributes at most

1
2
kH.k/�.q/. 1 uniformly in q

to the integral in (2-23). Next, if �.q/ < 2�� < �
2

, then � D uC iq, withˇ̌̌̌
du

d�

ˇ̌̌̌
D

�

H.k/

1C x2p
.x2� 1/.1� k2x2/

�
�

H.k/
; �k�1 < x.�/ < �1;
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and so this case contributes .H.k/ to (2-23). Finally, the region �
2
< 2�� < 2� similarly adds .H.k/

to (2-23).
Combining these estimates with (2-22) yields

h0.w/� log.B2/C log.CH.k//C log
�

2

�.1� r/

�
� log.B2/CC0q�1 DWM (2-24)

for all jwj< r D 1� ı with some absolute constant C0; see (2-20). This bound replaces (2-12) and (2-14)
above.

As for the lower bound m on u, one has m� log.B1/ and thus (2-19) holds with

M �m� log
�
B2

B1

�
CC0q

�1:

Finally, (2-21) follows from (2-19) by exponentiating. �

Integrating the previous result over a small set of x yields the following localization estimate for the
L2 norm of F.

Proposition 2.6. There exists an absolute constant C1 > 0 with the following property: Let F be an
analytic function on a neighborhood of R.q/ with 0 < q � q�, and F not identically equal to zero. Define

B1 WD kF kL2.Œ 1
4
; 3
4
�/; B2 WD kF kL2.@R.q//:

For any J �
�
1
4
; 3
4

�
some Borel set of positive measure,

B1 � e
C1
q B1��2 kF k�

L2.J /
;

with 0 < � � e�C1=q.log.1=jJ j//�1.

Proof. We apply Corollary 2.5 with 3H exp
�
3�
4q

�
D jJ j=2. Thus,

BKC11

�
jJ j

2

�1
2
� e

C0K

q BK2 kF kL2.J /;

K WD exp
�
9�

8q

�h
log.4/C 9�

4q
C exp

�
�
3�

8q

��
log

�
12e

jJ j

�
C
3�

4q

�i (2-25)

or

B1 � e
C0
q

�
jJ j

2

���
2
B1��2 kF k�

L2.J /
; � � .1CK/�1: (2-26)

We write � � .1CK/�1 instead of � D .1CK/�1, since we may increase the value of K. One checks
that

log
��
jJ j

2

���
2
�
�

log.2=jJ j/

exp
�
9�
8q

��
log.4/C9�

4q
Cexp

�
�
3�
8q

��
log.12e=jJ j/C3�

4q

�� � exp
�
�
3�

4

�
<0:1; (2-27)
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uniformly in 0 < q < 1 and in jJ j. Note that

K �

(
exp

�
9�
8q

��
log.4/C 9�

4q
C exp

�
�
3�
8q

��
log .12e/C 3�

2q

��
if log 2� log.1=jJ j/ < 3�

4q
;

8 exp
�
9�
8q

��
1C exp

�
�
3�
8q

��
log.1=jJ j/ if max

�
log 2; 3�

4q

�
� log.1=jJ j/

� e
C2
q log.1=jJ j/� 1

for some absolute constant C2 > 0. Taking C1 WDmax .2C0; C2/ and

K0 WD e
C1
q log

�
1

jJ j

�
;

we conclude from (2-25), (2-26) and (2-27) with the estimate K �K0� 1 that

B1 � e
C0
q
C0:1B1��2 kF k�

L2.J /
� e

C1
q B1��2 kF k�

L2.J /
; � �K�10 ;

as claimed. �

We next apply Proposition 2.6 to a band-limited L2 function in order to obtain the main result of this
section.

Proposition 2.7. Fix � 2
�
0; 1
2

�
and for each integer n let In � Œn; nC1� be some Borel set with jInj D �.

Let f 2 L2.R/ be band-limited; i.e., Of is of compact support. Then for each 0 < q � q�

kf k2
L2.R/

� 12e
10C1
q

�X
n

kf k2
L2.In/

��
ke2�qj�j Of .�/k

2.1��/

L2.R/
; (2-28)

with 0 < � � e�5C1=q.� log�/�1, and C1; q� are as in Proposition 2.6.

Proof. Let F be the entire function with F D f on the real line. Fix 0� t � 1 and define Rn;t .q/ to be
the rectangle with vertices n� 1� t ˙ iq, nC 2C t ˙ iq. We claim that by Proposition 2.6 we have

kf kL2.Œn;nC1�/ � e
5C1
q kF k1��

L2.@Rn;t .q//
kf k�

L2.In/
; (2-29)

with � � e�5C1=q
�
log..3C 2t/=jInj/

��1. To see this, we set nD 0 without loss of generality, translate
Rn;t .q/!Rn;t .q/C1C t , and dilate z 7! z=.3C2t/. After these operations, the transformed interval I0
lies in h

1Ct

3C2t
;
2Ct

3C2t

i
�

h
1

4
;
3

4

i
;

and the height q becomes q=.3C 2t/� q=5, whence the claim.
Squaring, summing, and applying Hölder’s inequality yields

kf k2
L2.R/

� e
10C1
q

�X
n

kF k2
L2.@Rn;t .q//

�1���X
n

kf k2
L2.In/

��
:

Let E denote the expected value with respect to 0� t � 1, uniformly distributed. On the one hand, taking
expectations of the previous line yields

kf k2
L2.R/

� e
10C1
q

�X
n

EkF k2
L2.@Rn;t .q//

�1���X
n

kf k2
L2.In/

��
: (2-30)
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On the other hand, since
sup
0�t�1

X
n

1Œn�1�t;nC2Ct/ � 5; (2-31)

we haveX
n

EkF k2
L2.@Rn;t .q//

� 5kF. � C iq/k2
L2.R/

C 5kF. � � iq/k2
L2.R/

C 2
X
n

Z 1

0

Z q

�q

jF.n� t C is/j2 ds dt: (2-32)

Since kF. � ˙ iq/kL2.R/ D ke
˙2�q� Of .�/kL2.R/ and

X
n

Z 1

0

Z q

�q

jF.n� t C is/j2 ds dt D

Z
R

Z q

�q

jF.xC is/j2 ds dx

D

Z q

�q

Z
R

e4�s� j Of .�/j2 d� ds � 2qke2�qj�j Of .�/k2
L2.R/

;

assuming as we may that q� � 1
2

, we infer from (2-32) thatX
n

EkF k2
L2.@Rn;t .q//

� 12ke2�qj�j Of .�/k2
L2.R/

:

Inserting this into (2-30) concludes the proof. �

3. L2 localization in higher dimensions

Our goal is to prove a version of Proposition 2.7 for band-limited functions f 2 L2.Rd /, d � 2. For the
sake of simplicity, we first limit ourselves to d D 2 and begin with a Cartan-type estimate for functions
on D�D which are subharmonic relative to each variable.

We begin with the definition of a Cartan-2 set; see [Goldstein and Schlag 2001, Definition 8.1; 2008,
Definition 2.12].

Definition 3.1. We say that B � C2 is a Cartan-2 set with parameter H > 0 if for all .z1; z2/ 2 B one
has either

� z1 2
S
j D.�j ; sj / with

P
j sj � 5H,

� or for all other z1, one has z2 2
S
kD.wk; tk/ with

P
k tk � 5H and .wk; tk/ depend on z1.

Of particular relevance to us with be the fact that a Cartan-2 set has a real “trace” of small measure.

Lemma 3.1. Let B �
Q2
jD1D.zj;0; 1/ be a Cartan-2 set with parameter H > 0. Then

jB\R2j � 40H:

Proof. This follows from Fubini and jD.�; s/\Rj � 2s for all � 2 C. �

We can now formulate a Cartan-type bound for plurisubharmonic functions.
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Lemma 3.2. Let v W D�D! Œ�1;1/ be continuous so that v D v.z1; z2/ is separately subharmonic
in each variable. Suppose for 0 < � < r < 1

max
jz1j�r;jz2j�r

Z
S1�S1

v.e.�1/; e.�2// Pz1.d�1/ Pz2.d�2/�M (3-1)

and
max

jz1j��;jz2j��
v.z1; z2/�m: (3-2)

Let �D r.1� 3ı/ with 0 < ı < 1
3

. Then for any 0 < H � 1 one has

v.z1; z2/�m� .M �m/.LC 1/
2; where L WD 2ı�3 log

�
2

ı

�
C ı�2 log

�
2e

H

�
; (3-3)

for all .z1; z2/ 2 r1D� r1D nB where B is a Cartan-2 set with parameter rH, and r1 D r.1� 2ı/.

Proof. The function

h.z1; z2/ WD

Z
S1�S1

v.e.�1/; e.�2// Pz1.d�1/ Pz2.d�2/ (3-4)

is separately harmonic in each variable, is continuous up to @.D�D/, and satisfies v � h pointwise. The
latter property follows from the pointwise inequalities

v.z1; z2/�

Z
S1
v.z1; e.�2// Pz2.d�2/;

which hold due to harmonicity of the right-hand side in z2, whence

v.z1; z2/�

Z
S1
v.e.�1/; z2/ Pz1.d�1/�

Z
S1�S1

v.e.�1/; e.�2// Pz1.d�1/ Pz2.d�2/D h.z1; z2/ (3-5)

as claimed. Define
Qv.z1/ WD max

jz2j��
v.z1; z2/: (3-6)

Then Qv is continuous (by uniform continuity) and subharmonic (as the supremum of a family of subhar-
monic functions). It satisfies Qv.z1/ �M for all jz1j � r by (3-1) and (3-5), and maxjz1j�� Qv.z1/ � m.
The latter follows from

v.z1; z2/� Qv.z1/ for all jz1j � r; jz2j � �;

and (3-2).
We apply Corollary 2.3 to Qv, which requires rescaling from D to rD. Thus, with �D r.1� 3ı/, and

r1 D r.1� 2ı/,
Qv.z1/�m� .M �m/LDWm

� (3-7)

for all z1 2 r1D n
S
j D.�j ; sj / with

P
j sj � 5rH . Fix such a good z1. By definition, there exists z�2

with jz�2 j � � and v.z1; z�2 /�m
�. On the other hand, v.z1; z2/�M for all jz2j � r .

Once again, by Corollary 2.3 rescaled from D to rD, it follows that

v.z1; z2/�m
�
� .M �m�/L�m� .M �m/L.2CL/ (3-8)

for all z2 2 r1D n
S
j D.wj ; tj / with

P
j tj � 5rH . These disks depend on z1. �
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By means of Lemma 3.2 we establish a two-dimensional analogue of Proposition 2.6.

Proposition 3.3. Let F be an analytic function of two variables on a neighborhood of R.q/�R.q/ with
0 < q � q�, and F not identically equal to zero. Define

B1 WD kF kL2.Œ 1
4
; 3
4
��Œ 1

4
; 3
4
�/; B2 WD kF kL2.@R.q/�@R.q//:

For any J �
�
1
4
; 3
4

�
�

�
1
4
; 3
4

�
some Borel set of positive measure,

B1 � e
C
q B1��2 kF k�

L2.J /
;

with 0 < � � e�C=q.log.1=jJ j//�2 with some absolute constant C .

Proof. Set u.z1; z2/ WD log jF.z1; z2/j, which is plurisubharmonic on a neighborhood of R.q/�R.q/.
We pull u back to the polydisk D�D, and define

v.z1; z2/D u.ˆq.z1/; ˆq.z2//D log j zF .z1; z2/j; zF .z1; z2/D F.ˆq.z1/; ˆq.z2//:

With h defined as in (3-4), for all jz1j; jz2j � r ,

h.z1; z2/D

Z 1

0

Z 1

0

v.e.�1/; e.�2// Pz1.d�1/ Pz2.d�2/

D

Z 1

0

Z 1

0

log j zF .e.�1/; e.�2//jPz1.d�1/ Pz2.d�2/

� log
�Z 1

0

Z 1

0

j zF .e.�1/; e.�2//jPz1.d�1/ Pz2.d�2/

�
� log

�Z 1

0

Z 1

0

j zF .e.�1/; e.�2//j d�1 d�2





Pz1.d�/d�






1





Pz2.d�/d�






1

�
� log.B2/C 2 log

�



d�d�





L2.@R.q//

�
C 2 sup
jwj�r

log




Pw.d�/d�






1

� log.B2/C log.Cq�1/C 2 log
�

2

1� r

�
; (3-9)

where d� denotes arc-length measure on @R.q/; see (2-24). By Lemma 2.1, we can apply Lemma 3.2 to
v with �D 1� exp.�A=q/ with some absolute constant A,

mD logB1; M D log.B2/C 3Aq�1; ı D exp
�
�
2A

q

�
; r D �.1� 3ı/�1;

and 0 < q � q�� 1. Thus, for any H > 0 there exists a Cartan-2 set B with parameter H such that for

r1 D 1� exp
�
�
A

q

�
< r.1� 2ı/;

and any .z1; z2/ 2 r1D� r1D nB, we have

v.z1; z2/�m� .M �m/.LC 1/
2;
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where

LD 2e
6A
q log.2e

2A
q /C e

4A
q log

�
2e

H

�
< e

8A
q C e

4A
q log

�
2e

H

�
� 1:

Returning to the original geometry, and analytic function F, we conclude the following via Lemmas 2.1
and 3.1: with K WD .e8A=qC e4A=q log.2e=H//2,

BKC11 � e
3AK
q jF.x1; x2/jB

K
2

for all .x1; x2/ 2
�
1
4
; 3
4

�
�

�
1
4
; 3
4

�
n E , where E � R2 and jEj � e5A=qH.

We now pick H so that e5A=qH D jJ j=2, and integrate over J, and we obtain

BKC11

�
jJ j

2

� 1
2
� e

3AK
q BK2 kF kL2.J /

or

B1 � e
3A
q

�
jJ j

2

���
2
B1��2 kF k�

L2.J /
; � � .1CK/�1: (3-10)

We write � � .1CK/�1 instead of � D .1CK/�1 since we could increase K. One easily checks that
.jJ j=2/��=2 . 1, and

K � e
C1
q

�
log

�
1

jJ j

��2
� 1;

with some absolute constant C1. Taking C WDmax .4A; C1/, and

K0 WD e
C
q

�
log

�
1

jJ j

��2
:

We conclude from (3-10) with the estimate K �K0� 1 that

B1 � e
C
q B1��2 kF k�

L2.J /
; � �K�10 ;

as claimed. �

In analogy with the one-dimensional case in Proposition 2.7, we can deduce the following L2 localiza-
tion result.

Proposition 3.4. Fix � 2
�
0; 1
2

�
and for each integers n1; n2 let

In1;n2 � Œn1; n1C 1�� Œn2; n2C 1�

be some Borel set with jIn1;n2 j D �. Let f 2L2.R2/ be band-limited; i.e., Of is of compact support. Then
for each 0 < q � q�

kf k2
L2.R2/

� e
2C
q

� X
.n1;n2/2Z2

kf k2
L2.In1;n2 /

��
ke2�q.j�1jCj�2j/ Of .�/k

2.1��/

L2.R2/
; (3-11)

with 0 < � � e�C=q.� log�/�2, and C some absolute constant.
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Proof. Let F be the entire function with F D f on R2. Fix 0� t1; t2 � 1 and for j D 1; 2 define Rn;tj .q/
to be the rectangle with vertices n�1� tj ˙ iq, nC2C tj ˙ iq. We obtain from Proposition 3.3 that for
any n1; n2 2 Z

kf kL2.Œn1;n1C1��Œn2;n2C1�/ � e
5C
q kF k1��

L2.@Rn1;t1 .q/�@Rn2;t2 .q//
kf k�

L2.In1;n2 /
;

with

� � e�
5C
q

�
log

�
.3C 2t1/.3C 2t2/

jIn1;n2 j

���2
;

and C being the absolute constant in Proposition 3.3. Squaring, summing, and applying Hölder’s
inequality, we have

kf k2
L2.R2/

� e
10C
q

� X
.n1;n2/2Z2

kF k2
L2.@Rn1;t1 .q/�@Rn2;t2 .q//

�1��� X
.n1;n2/2Z2

kf k2
L2.In1;n2 /

��
:

Taking expectation of the previous line with respect to 0� t1; t2 � 1, we obtain

kf k2
L2.R2/

� e
10C
q

� X
.n1;n2/2Z2

Et1Et2kF k
2
L2.@Rn1;t1 .q/�@Rn2;t2 .q//

�1��� X
.n1;n2/2Z2

kf k2
L2.In1;n2 /

��
:

(3-12)
By decomposing each @Rn;t .q/ into its four sides, we decomposeX

.n1;n2/2Z2

Et1Et2kF k
2
L2.@Rn1;t1 .q/�@Rn2;t2 .q//

(3-13)

into the following three parts:

Part 1W vertical and horizontal mixed terms. This part contains eight terms; each can be bounded in the
same way. Taking the left vertical side of Rn1;t1.q/ and upper horizontal side of Rn2;t2.q/ for example,
we haveX
.n1;n2/2Z2

Et2

Z
R

1Œn2�1�t2;n2C2Ct2/Et1

Z q

�q

jF.n1� 1� t1C is; x2C iq/j
2 ds dx2

� 5
X
n12Z

Et1

Z
R

Z q

�q

jF.n1� 1� t1C is; x2C iq/j
2 ds dx2

D 5

Z q

�q

Z
R2
jF.x1C is; x2C iq/j

2 dx1 dx2 ds

� 5

Z q

�q

Z
R2
e4�.s�1Cq�2/j Of .�1; �2/j

2 d�1 d�2 ds

� 10qke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

;

in which we used (2-31) in the first step. Hence, Part 1 contributes in total at most

80qke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

: (3-14)
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Part 2W verticalCvertical sides. This part contains four terms. Taking the left vertical sides of Rn1;t1.q/
and Rn2;t2.q/ for example, we haveX
.n1;n2/2Z2

Et1Et2

Z q

�q

Z q

�q

jF.n1� 1� t1C is1; n2� 1� t2C is2/j
2 ds1 ds2

D

Z q

�q

Z q

�q

Z
R2
jF.x1C is1; x2C is2/j

2 dx1 dx2 ds1 ds2

� 4q2ke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

:

Hence, Part 2 contributes in total at most

16q2ke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

: (3-15)

Part 3W horizontalChorizontal sides. This part also contains four terms. Taking the upper horizontal sides
of Rn1;t1.q/ and Rn2;t2.q/ for example, we haveX
.n1;n2/2Z2

Et1Et2

Z
R2

1Œn1�1�t1;n1C2Ct1/1Œn2�1�t2;n2C2Ct2/jF.x1C iq; x2C iq/j
2 dx1 dx2

�25

Z
R2
jF.x1C iq; x2C iq/j

2 dx1 dx2

�25ke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

;

in which we used (2-31) in the first step. Hence, the contribution of Part 3 is at most

100ke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

: (3-16)

Plugging the estimates in (3-14), (3-15) and (3-16) into (3-13), we obtainX
.n1;n2/2Z2

Et1Et2kF k
2
L2.@Rn1;t1 .q/�@Rn2;t2 .q//

� .4qC 10/2ke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

� 144ke2�q.j�1jCj�2j/ Of .�/k2
L2.R2/

(3-17)

for q � 1
2

. Plugging (3-17) into (3-12) yields

kf k2
L2.R2/

� 144e
10C
q

� X
.n1;n2/2Z2

kf k2
L2.In1;n2 /

��
ke2�q.j�1jCj�2j/ Of .�/k

2.1��/

L2.R2/
;

as claimed. �

In general dimensions, one can proceed similarly. First, we inductively define Cartan sets in higher
dimensions.

Definition 3.2. We say that B�C2 is a Cartan-d set with parameter H >0 if for all .z1; z2; : : : ; zd /2 B
one has either

� z1 2
S
j D.�j ; sj / with

P
j sj � 5H or for all other z1 one has

� .z2; : : : ; zd / belongs to a Cartan-.d�1/ set with parameter H > 0 depending on z1.
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By arguments analogous to those used above for d D 2, one can exploit these Cartan sets in higher
dimensions to obtain the following result. We leave the details to the reader. Throughout, we let C.d/� 1
be a constant depending only on the dimension d . It is allowed to change its values from line to line.

Proposition 3.5. Fix � 2
�
0; 1
2

�
and for each integer vector nD .n1; : : : ; nd / 2 Zd, d � 2, let

In �

dY
jD1

Œnj ; nj C 1/

be some Borel set with jInj D �. Let f 2L2.Rd / be band-limited; i.e., Of is of compact support. Then for
each 0 < q � q� D q�.d/� 1

kf k2
L2.Rd /

� e
2C.d/
q

� X
n2Zd

kf k2
L2.In/

��
ke2�qj�j1 Of .�/k

2.1��/

L2.Rd /
; (3-18)

with 0 < � � e�C.d/=q.� log�/�d, C.d/� 1 some absolute constant depending on d .

As a precursor to the results of the next section, which involve L2 functions with Fourier support
in thin sets, we now establish an uncertainty principle for L2.Rd / functions under a quantitative decay
assumption on their Fourier transforms.

Corollary 3.6. Let ‚.�/ D ‚.j�j1/ D .log.2 C j�j1//�˛, 0 < ˛ < 1. Let S WD
S
n2Zd In be as in

Proposition 3.5. Then
kf k2 � C.d; ˛;A; �/kf kL2.S/ (3-19)

for all f 2 L2.Rd / with ke‚.�/j�j1 Of kL2.Rd / � Akf kL2.Rd /.

Proof. With 0 < q small to be determined, we fix R � 1 so that 2�q D ‚.R/. Split f D f1 C f2,
Of1.�/D Of .�/1Œj�j1�R�. Then by (3-18), and since 2�q �‚.�/ for j�j1 �R,

kf1k
2
2 � e

2C.d/
q kf1k

2�
L2.S/ke

‚.�/j�j1 Of1k
2.1��/
2 � e

2C.d/
q kf1k

2�
L2.S/.Akf k2/

2.1��/;

with
� D e�

C.d/
q .� log�/�d D e�

2�C.d/
‚.R/ .� log�/�d :

Moreover, since

kf k22 D kf1k
2
2Ckf2k

2
2 � e

2C.d/
q .kf kL2.S/Ckf2k2/

2�.Akf k2/
2.1��/

Ckf2k
2
2

and
kf2k2 � e

�‚.R/R
ke‚.�/j�j1 Of k2 � Ae

�‚.R/R
kf k2 �

1
2
kf k2;

where we chose R large enough depending on A� 1, it follows that

kf k22 � 2e
2C.d/
q .kf kL2.S/CAe

�‚.R/R
kf k2/

2�.Akf k2/
2.1��/;

whence
kf k2 � 2

1
2�A

1��
� e

C.d/
�q .kf kL2.S/CAe

�‚.R/R
kf k2/

D 2
1
2�A

1��
� e

C.d/
�q kf kL2.S/C exp

�
�T .R/

�
kf k2;
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with

T .R/D‚.R/R�
C.d/

�q
� ��1 log.

p
2A/

D‚.R/R�

�
2�C.d/

‚.R/
C log.

p
2A/

�
e
2�C.d/
‚.R/ .� log�/d :

In addition to 2A� e‚.R/R we require that T .R/� 1. These conditions hold for sufficiently large R. �

The proof of the corollary gives an explicit and effective dependence of the constant C.d; ˛;A; �/
on A; �, but we have no need for it. Corollary 3.6 follows (perhaps with a different dependence on the
constants) from a quantitative version of the Logvinenko–Sereda theorem; see, e.g., [Kovrijkine 2001;
Muscalu and Schlag 2013]. The results in the next section, however, do not.

4. Uncertainty principle with thin Fourier support

We begin with the concept of a damping function.

Definition 4.1. Let ‚ be as in Corollary 3.6, with ˛ 2 .0; 1/ fixed. Let Y � Rd. We say that Y admits a
damping function with parameters c1; c2; c3, all falling into the interval .0; 1/, if there exists a function
 2 L2.Rd / satisfying

� supp. /� Œ�c1; c1�d,

� k y kL2.Œ�1;1�d / � c2,

� j y .�/j � h�i�d for all � 2 Rd,

� j y .�/j � exp
�
�c3‚.j�j1/j�j1/ for all � 2 Y .

Lemma 4.1. Fix c1 2
�
0; 1
2

�
and for each integer vector nD .n1; : : : ; nd / 2 Zd, d � 2, let

In �

dY
jD1

Œnj ; nj C 1/

be a square with side length 2c1. Define S WD
S
n2Zd In. Suppose Y �Rd is such that YCŒ�2; 2�d admits

a damping function with parameters c1, and c2; c3 2 .0; 1/. Then every f 2 L2.Rd / with supp. Of /� Y
satisfies

k Of k2
L2.Œ�1;1�d /

� C.d/c�22 hRi
2d e

4�C.d/
c3‚.R/

�
k1Sf k

2�
H�d
kf k

2.1��/

H�d
C exp.�2c3�‚.R/R/ kf k2H�d

�
(4-1)

and � D e�2�C.d/=.c3‚.R//.�d log c1/�d, provided R � .2d=c3/2 and 0 < c3 � c�3 .d/ WD2�q�, where
q� is as in Proposition 3.5.

Proof. Let � 2 Œ�2; 2�d. Set f�.x/ WD e2�ix��f .x/, and g� WD f� � , where  is the damping function
as in Definition 4.1 associated with Y C Œ�2; 2�d . Split g� into

g� D g1Cg2;

supp. yg1/� f� 2 Rd W j�j1 �Rg; supp. yg2/� f� 2 Rd W j�j1 >Rg;
(4-2)
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where 2�q D c3‚.R/. Note that our assumption c3 � 2�q� guarantees that q � q� holds for any R � 1.
Note also that since supp. / � Œ�c1; c1�d, we have 1S0g� D 1S0.1Sf� � /, where S 0 WD

S
n2Zd I

0
n,

with I 0n a square with the same center as In, but half the side length. By Proposition 3.5 with �D cd1 one
has

kg�k
2
2 D kg1k

2
2Ckg2k

2
2 � e

2C.d/
q

�
kg�kL2.S0/Ckg2k2

�2�
ke2�qj�j1 yg1k

2.1��/
2 Ckg2k

2
2; (4-3)

with
0 < � � e�

C.d/
q .�d log c1/�d D e

�
2�C.d/
c3‚.R/ .�d log c1/�d ;

C.d/ some absolute constant. By construction, supp. yf�/� Y C �� Y C Œ�2; 2�d ; hence

j yg�.�/j � j yf�.�/j exp
�
�c3‚.j�j1/j�j1/ for all � 2 Rd ;

whence

ke2�qj�j1 yg1k2 D ke
c3‚.R/j�j1 yg1k2 � sup

j�j1�R

h�idkf�kH�d � hRi
d
kf�kH�d ;

kg2k2 � sup
j�j1�R

exp.�c3‚.j�j1/j�j1/h�id kf�kH�d � exp.�c3‚.R/R/hRid kf�kH�d ;

where we used that j�j2 � j�j1, and that r 7! exp.�c3‚.r/r/hrid is decreasing for large r . To be specific,

exp.�c3‚.r/r/hrid D exp.�h.r//; h.r/D c3.log.2C r//�˛ r � d
2

log.1C r2/:

Differentiating, we obtain

h0.r/D c3.log.2C r//�˛
�
1�

˛r

2C r
.log.2C r//�1

�
�

dr

1C r2

�
c3

2
.log.2C r//�˛ � dr�1 �

c3

2
.log.2C r//�1� dr�1;

where we used that
˛r

2C r
.log.2C r//�1 �

1

2

for all r � 0. One has u > log.2Cu2/ for u� 2, say. Hence, if r � .2d=c3/2, then
c3

2
.log.2C r//�1� dr�1 > 0

and thus h0.r/ > 0. So it suffices to assume that R � .2d=c3/2.
Inserting these bounds into (4-3) yields

kg�k
2
2 � e

2C.d/
q

�
k1Sf�kH�d C exp.�c3‚.R/R/hRid kf�kH�d

�2�
.hRid kf�kH�d /

2.1��/

C exp.�2c3‚.R/R/hRi2d kf�k2H�d :

Since sup
�2Œ�2;2�d

kf�kH�d � C.d/kf kH�d , we can simplify this further:

kg�k
2
2 � C.d/hRi

2d e
4�C.d/
c3‚.R/

�
k1Sf k

2�
H�d
kf k

2.1��/

H�d
C exp.�2c3�‚.R/R/ kf k2H�d

�
: (4-4)
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Finally,

k yf k2
L2.Œ�1;1�d /

� c�22

Z
Œ�1;1�d

j yf .�/j2 d�

Z
Œ�1;1�d

j y .�/j2 d�

� c�22

Z
Œ�1;1�d

Z
Œ�2;2�d

j yf .� � �/j2j y .�/j2 d� d�

� c�22

Z
Œ�2;2�d

Z
Rd
j yf .� � �/j2j y .�/j2 d� d�D c�22

Z
Œ�2;2�d

kg�k
2
2 d�;

and we are done. �

We now remove the localization in Fourier space on the left-hand side of (4-1) in order to obtain the
main result of this section.

Corollary 4.2. Fix c1 2
�
0; 1
2

�
and for each integer vector nD .n1; : : : ; nd / 2 Zd, d � 2, let

In �

dY
jD1

Œnj ; nj C 1/

be a square with side length 2c1. Define S WD
S
n2Zd In. Suppose Y � Œ�˛1; ˛1�d � Rd with ˛1 � 1 is

such that Y C Œ�2; 2�d C � admits a damping function with parameters c1, and c2; c3 2 .0; 1/ for each
� 2 Œ�˛1� 1; ˛1C 1�

d. Assume further that 0 < c3 < c�3 .d/� 1, with c�3 .d/ as in Lemma 4.1. Then
every f 2 L2.Rd / with supp. Of /� Y satisfies

kf k2 � C�kf kL2.S/; (4-5)

with constant C� depending only on d; c1; c2; c3; ˛ explicitly as in (4-15).

Proof. Let ` 2 .2Z/d be such that `C Œ�1; 1�d \ Œ�˛1; ˛1�d ¤ ∅ and define f`.x/ WD e2�ix�`f .x/ so
that yf`.�/D yf .� � `/ and supp. yf`/� Y C `. In order to apply Lemma 4.1, we also need to ensure that
Y C Œ�2; 2�d C ` admits a damping function. This, however, follows from our assumptions. Hence, for
each such `,

k Of k2
L2.Œ�1;1�dC`/

� C.d/c�22 hRi
2d e

4�C.d/
c3‚.R/

�
k1Sf`k

2�
H�d
kf`k

2.1��/

H�d
C exp.�2c3�‚.R/R/ kf`k

2
H�d

�
(4-6)

and � D e�2�C.d/=.c3‚.R//.�d log c1/�d , provided R � .2d=c3/2. Summing over ` 2 .2Z/d, and using
Hölder’s inequality yields

kf k22�C.d/c
�2
2 hRi

2d e
4�C.d/
c3‚.R/

�
k1Sf k

2�
2 kf k

2.1��/
2 Cexp.�2c3�‚.R/R/kf k22

�
DC.d/c�22 hRi

2d e
4�C.d/
c3‚.R/ k1Sf k

2�
2 kf k

2.1��/
2 CC.d/c�22 hRi

2de
4�C.d/
c3‚.R/ e�2c3�‚.R/Rkf k22:

(4-7)
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Suppose further that R satisfies

R �R0.d; c1; c2; c3; ˛/ WDmax

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

.i/ exp
h�
16�C.d/

c3

� 1
1�˛

i
;

.ii/ exp .4
1
1�˛ /;

.iii/
�
.�d log c1/d

c3

�8
;

.iv/
�
4 log 2C.d/

c22

�2
;

.v/ .8d/4:

(4-8)

Note that (i), (ii), (iii) of (4-8) imply

e
�
2�C.d/
c3‚.R/ .RC 2/

1
4 � 1; ‚.R/.RC 2/

1
8 � 1; and

c3

.�d log c1/d
.RC 2/

1
8 � 1; (4-9)

respectively. Hence multiplying the three inequalities of (4-9) yields

c3�‚.R/.RC 2/�
p
RC 2 or � � .c3‚.R/

p
RC 2/�1; (4-10)

and thus
e2c3��.R/R � ec3��.R/.RC2/ � e

p
RC2: (4-11)

One also derives from (iv), (v) and (i) that

1
4

p
RC2� log

2C.d/

c22
; 1

2

p
RC2� 2d log.RC2/� loghRi2d ; and 1

4

p
RC2�

4�C.d/

c3‚.R/
; (4-12)

respectively. Hence by summing up the three inequalities of (4-12), and exponentiating, we obtain

e
p
RC2
� 2C.d/c�22 hRi

2d e
4�C.d/
c3‚.R/ : (4-13)

Combining (4-11) with (4-13), we arrive at

C.d/c�22 hRi
2d e

4�C.d/
c3‚.R/ e�2c3�‚.R/R � 1

2
:

Thus (4-7) yields

kf k2 �
�
2C.d/c�22 hRi

2d e
4�C.d/
c3‚.R/

� 1
2� k1Sf k2:

Combining the estimate of � in (4-10) with (4-13), we obtain�
2C.d/c�22 hRi

2d e
4�C.d/
c3‚.R/

� 1
2� � e

c3‚.R/.RC2/

2 :

Now we take R0 as in (4-8) and define R1 as

R1.d; c1; c2; c3; ˛/ WDmax
��
2d

c3

�2
; R0.d; c1; c2; c3; ˛/

�
: (4-14)

Then
kf k2 � C�.d; c1; c2; c3; ˛/k1Sf k2;

with
C�.d; c1; c2; c3; ˛/D e

c3‚.R1/.R1C2/

2 ; (4-15)

as claimed. �
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5. FUP assuming damping functions on Y

In this section we prove, by the same iteration as in [Bourgain and Dyatlov 2018], the fractal uncertainty
principle for sets X � Œ�1; 1�d and Y � Œ�N;N �d. On Y we do not impose a geometric condition. Rather,
in this section we still restrict ourselves to assuming the existence of damping functions living on Y , as
well as on sets derived from Y through translations and dilations; see Definition 4.1. On X we impose a
certain tree structure “with gaps”; see [Bourgain and Dyatlov 2018, Lemma 2.10].

Definition 5.1. We say that X � Œ�1; 1�d � Rd is porous at scale L � 3 with depth n, where L is an
integer, if the following holds: denote by Cn the cubes obtained from Œ�1; 1�d by partitioning it into
congruent cubes of side length L�n. Thus, # CnD 2dLnd. The condition on X is that for all Q 2 Cn with
Q\X ¤∅, there exists Q0 2 CnC1 so that Q0 �Q and Q0\X D∅.

It is shown in [Bourgain and Dyatlov 2018] that sets X � R obeying the ı-regularity condition on
scales N�1 to 1 (see Definition 6.1) satisfy this porosity property at depth n for all n� 0 with LnC1 �N.
We include a d -dimensional analogy in Appendix A; see Lemma A.7. We can now formulate the fractal
uncertainty principle, conditionally on the existence of damping functions in Y . As in [Bourgain and
Dyatlov 2018] the argument is based on an induction on scales, where at each step a small gain is achieved
by means of Corollary 4.2. Recall that ˛ 2 .0; 1/ is the parameter from the damping function.

Theorem 5.1. LetX � Œ�1; 1�d �Rd be porous at scale L� 3 with depth n for all n� 0 with LnC1�N .
Suppose Y � Œ�N;N �d is such that for all n� 0 with LnC1 �N one has that for all

� 2 Œ�NL�n� 3;NL�nC 3�d

the set
L�nY C Œ�4; 4�d C � (5-1)

admits a damping function with parameters c1D.2L/�12
�
0; 1
2

�
, and c2; c32.0;1/. Assume 0<c3<c�3 .d/

as in Corollary 4.2. Then there exists ˇ D ˇ.L; c2; c3; d; ˛/ > 0 and zC D zC.L; c2; c3; d; ˛/ > 0 so that
any f 2 L2.Rd / with supp. yf /� Y satisfies

kf kL2.X/ � zCN
�ˇ
kf kL2.Rd / (5-2)

for all N �N0.L; c2; c3; d; ˛/.

Proof. We pick a nonnegative Schwartz function ' in Rd with supp.y'/� Œ�1; 1�d and y'.0/D 1. With
T 2 N to be determined, we set  .x/ WD LTd'.LT x/ so that supp. y /� Œ�LT ; LT �d. Let

Sn WD
[
Q2Cn
Q\X¤∅

Q and S�n WD SnC
�
�
L�n

10
;
L�n

10

�d
; (5-3)

and define ‰n WD  n �1S�
nC1

, where  k.x/ WD Lkd .Lkx/. There exists a constant C' depending only
on ' such that for any n� 0

‰n �

�
1�

C'

LT�1

�
1X :
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Thus, for all m� 1,
m�1Y
nD0

‰n �

�
1�

C'

LT�1

�m
1X : (5-4)

Moreover, if Q 2 CnC1 with n � 0 satisfies Q\X D ∅, denote by Q� the cube with the same center
as Q, but half the side length, i.e., of side length L�.nC1/=2. Denote the collection of all such cubes Q�

by UnC1. By the definitions of S�nC1 and Q�, we clearly have

S�nC1\
�
UnC1C

�
�
1
10
L�.nC1/; 1

10
L�.nC1/

�d �
D∅:

Then for x 2 UnC1, and a constant c' that depends on ' only, we have

‰n.x/D

Z
Rd
'nCT .x/1S�

nC1
.x�y/ dy

D

Z
Rd
'.y/1S�

nC1
.x�L�.nCT /y/ dy

�

Z
RdnŒ� 1

10
LT�1; 1

10
LT�1�

d
'.y/ dy �

c'

LT�1
; (5-5)

uniformly in n.
Let f 2 L2.Rd / with supp. yf /� Y . Then for m� 1,

fm WD

m�1Y
nD0

‰nT �f

satisfies

supp. yfm/� Y C
m�1X
nD0

supp. y nT /

� Y C

m�1X
nD0

Œ�L.nC1/T ; L.nC1/T �d D Y C `mŒ�1; 1�
d ; (5-6)

where

`m WD L
T L

mT � 1

LT � 1
:

One has fmC1D‰mT fm for allm� 0 with f0Df . We claim that there exists 
0D 
0.L; d; c1; c2; c3/2
.0; 1/ with

kfmC1kL2.Œ�1;1�d / � .1� 
0/kfmkL2.Œ�1;1�d /: (5-7)

Define gm.x/ WD fm.LmT x/. Then

supp. ygm/� L�mT Y C `mL�mT Œ�1; 1�d � L�mT Y C Œ�2; 2�d ; (5-8)

where we used

`mL
�mT

�
LT

LT � 1
� 2:
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In particular, assuming also that LmT �N,

supp. ygm/� Œ�NL�mT ; NL�mT �d C Œ�2; 2�d D Œ�NL�mT � 2;NL�mT C 2�d ;

where NL�mT C 2 will be our parameter ˛1 in Corollary 4.2.
Under this rescaling, the cubes in CmT turn into unit cubes. Assuming further LmTC1�N, the porosity

condition at scale L with depth mT ensures that we always have a “missing cube” of side length L�1

inside. In view of our definition of Q�, we only use the concentric cube of half that side length. In view
of the conditions on Y in the theorem we can apply Corollary 4.2 to gm to obtain the following: with all
norms being taken locally on Œ�1; 1�d, and with UmTC1 the missing cubes of the next generation as above,

k‰mT fmk
2
2 � k‰mT k

2
1kfmk

2
L2.Œ�1;1�dnUmTC1/

Ck‰mT k
2
L1.UmTC1/

kfmk
2
L2.UmTC1/

� kfmk
2
L2.Œ�1;1�dnUmTC1/

Ck‰mT k
2
L1.UmTC1/

kfmk
2
L2.UmTC1/

D kfmk
2
L2.Œ�1;1�d /

� .1�k‰mT k
2
L1.UmTC1/

/kfmk
2
L2.UmTC1/

�

�
1�C�2�

�
1�

c2'

L2.T�1/

��
kfmk

2
2: (5-9)

To obtain this estimate, we used that

k‰mT k1 � 1; k‰mT kL1.UmTC1/ �
c'

LT�1
;

and
kfmkL2.UmTC1/ � C

�1
� kfmk

2
2;

with C� D C�.d; L; c2; c3; ˛/ by Corollary 4.2. Choosing


0.T / WD
1� c2'=L

2.T�1/

2C 2�
; (5-10)

and using .1� x/1=2 � 1� x=2 for 0� x � 1, we have�
1�C�2�

�
1�

c2'

L2.T�1/

��1
2

� 1� 
0.T /:

This establishes the claim (5-7).
Applying (5-7) iteratively and using (5-4), we obtain

kf kL2.X/ �

�
1�

C'

LT�1

��.mC1/



 mY
nD0

‰nf






L2.X/

�

��
1�

C'

LT�1

��1
.1� 
0.T //

�mC1
kf k2 �

�
1�


0.T /

2

�mC1
kf k2: (5-11)

In the last inequality we used

1� 
0.T /� 1�

0.T /

2
�

C'

LT�1
�

�
1�


0.T /

2

��
1�

C'

LT�1

�
;
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which requires

LT�1�
c2'

LT�1
� 4C'C

2
� or T � T0.d; L; c2; c3; ˛/ WD

�
log.2C'C 2� C

p
4C 2'C

4
� C c

2
'/

logL

�
: (5-12)

Finally, for any T � T0, taking m 2N be such that LmTC1 �N <L.mC1/TC1, (5-11) yields (5-2) with

ˇ D�
log .1� 
0.T /=2/

T logL
; (5-13)

and

zC D

�
1�


0.T /

2

�� 1
T

; (5-14)

as claimed. In the current theorem, we could simply choose T D T0. The flexibility of choosing T will
simplify our computations in our proof of Theorem 1.2. �

6. Geometry of Y and damping functions

6A. Regular sets. We will call a set I D Œa1; b1� � Œa2; b2� � � � � � Œad ; bd � of equal side lengths a
d -dimensional cube in Rd ; we denote its side length by rI .

Recall the notion of ı-regularity from [Bourgain and Dyatlov 2018, Definition 1.1]; below is a
d -dimensional analogy.

Definition 6.1. Suppose X �Rd, X ¤∅ is closed, and 0 < ı < d , CR � 1, 0� ˛0 � ˛1 �1. Then X
is ı-regular on scales ˛0 to ˛1, with constant CR, if there exists a Borel measure �X with the following
properties:

� �X is supported on X.

� �X .I /� CRr
ı
I for each d -dimensional cube I of side length ˛0 � rI � ˛1.

� �X .I /� C
�1
R rıI for each d -dimensional cube I � Rd, centered at a point in X and of side length

˛0 � rI � ˛1.

See [Bourgain and Dyatlov 2018, Section 2.2] for the geometry of such sets in R. Loosely speaking,
they behave like ı-dimensional fractal sets. The properties of ı-regular sets carry over to higher dimensions.
We include some properties in Appendix A.

6B. Geometry of Y and damping functions. Bourgain and Dyatlov observed that ı-regular sets on R

admit damping functions as in Definition 4.1 above with ˛ D .1C ı/=2. They obtained these functions
as a consequence of the Beurling–Malliavin theorem [1962]. However, one does not need the full
strength of this theorem. To be more precise, in place of the original Beurling–Malliavin condition
k.log!/0k1 <1, with ! the weight, a much easier proof is possible (via outer functions) if we assume
instead that k.H log!/0k1 � 1 where H is the Hilbert transform on R; see [Mashregi et al. 2005,
Section 1.14, Theorem 1]. By means of this technique, Jin and Zhang [2017, Lemma 4.1] proved the
following quantitative result on damping functions.
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Lemma 6.1. Let S � 1 be a constant. Let Y � Œ�SN; SN � be ı1-regular on scales 2 to N, with
constant CR, 0 < ı1 < 1. For any 0 < c1 < 1, Y admits a damping function with ˛ D .1C ı1/=2 and
parameters c1,

c2 D �c
6
1 ; c3 D �c1C

�2
R ı1.1� ı1/; (6-1)

where � > 0 is some small constant that depends on S . Instead of the pointwise global decay of h�i�1 in
Definition 4.1, we have

j y .�/j � exp.�c3h�i
1
2 / for all � 2 R: (6-2)

In this paper we need a slightly different version, where we have pointwise lower bound of j y .�/j
on

�
�
3
4
; 3
4

�
. The advantage of a pointwise lower bound over an L2 bound is that it leads to a lower bound

of the product of several y ’s. Let us also note that in Lemma 4.1 of [Jin and Zhang 2017], S D 1. But it
is clear from their proof that it works for any S � 1. We will briefly discuss the changes of constants
caused by S in Appendix B. We need the extra factor S in our proof of Lemma 6.3.

Lemma 6.2. Let S � 1 be a constant. Assume that Y � Œ�SN; SN � is a ı1-regular set with constant CR
on scales 2 to N and ı1 2 .0; 1/. Fix 0 < c1 < 1; then there exists a function  2 L2.R/ such that

supp �
�
�
1
10
c1;

1
10
c1

�
;

j y .�/j � exp.�c3h�i
1
2 / for all � 2 R;

j y .�/j � exp.�c3‚.j�j/j�j/ for all � 2 Y; j�j � 10;

and

j y .�/j � c2 for all � 2
�
�
3
4
; 3
4

�
; (6-3)

with

˛ D
1C ı1

2
; c2 D �c

10
1 ; c3 D �c1C

�2
R ı1.1� ı1/;

where � > 0 is some small constant that depends on S .

We include the proof of Lemma 6.2 in Appendix B.
In higher dimensions, we reduce ourselves to this one-dimensional setting by taking finite unions of

products. For simplicity, we restrict ourselves to two dimensions, although the exact analogue can be
done in any finite dimension.

Definition 6.2. Pick some "0 2 .0; 1/ and let Y � R2 be of the form

Y �

m[
jD1

Yj ; where Yj D f�1Eej;1C �2Eej;2 W �i 2 Yj;i ; i D 1; 2g: (6-4)

Here Eej;i 2S1 with jEej;1 � Eej;2j<1�"0 for all 1�j �m, and Yj;i are ı1-regular on scales ˛0 to ˛1 with con-
stant CR, where 0< ı1 <1. In that case Y is called admissible on scales ˛0 to ˛1 with parameters ı1, CR,
"0, m. In general dimensions, we require that Eej;i are unit vectors with jdet.Eej;1; : : : ; Eej;d /j � "0; see (1-3).
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Throughout, we will freeze "0 and constants are allowed to depend on it. The admissible sets on scale 2
to N that are contained in Œ�N;N �d carry damping functions.

We note that for our proof of Theorem 1.2, we only need mD 1. We give a construction with arbitrary
m� 1 here, since the construction itself may be of independent interest.

Lemma 6.3. Let Y � Œ�N;N �2 be admissible on scales 2 to N as in Definition 6.2. Then Y admits a
damping function with parameters c1,

c2 D �
2mC4c20mC41 m�20m C�8R .ı1.1� ı1//

4;

c3 D �c1m
�1C�2R ı1.1� ı1/;

where � > 0 is a small constant that depends on "0.

Remark 6.4. For general dimension d , we can take

c2 D �
mc

.10mC2/d
1 m�10mdC�4dR .ı1.1� ı1//

2d ;

c3 D �c1m
�1C�2R ı1.1� ı1/;

where � > 0 is a small constant that depends on "0 and d .

Proof. Let  j;i be the damping function associated with Yj;i � Œ�SN; SN �, with S D S."0/ � 1, via
Lemma 6.2 with parameters Qc1 WD "1c1m�1, where "1 is a small parameter depending on "0, and c2; c3
are as given by Lemma 6.2, but in terms of Qc1; i.e.,

c2 D �"
10
1 c101 m

�10;

c3 D c1m
�1�"1 C

�2
R ı1.1� ı1/;

where � depends "0. We will absorb the constant "1 into �. In the following we will also allow � to change
its value from line to line, as long as it only depends on "0.

Denote the coordinates associated with the basis Eej;1; Eej;2 by .�j;1; �j;2/. We set, with � 2 R2,

y .�/ WD

mY
jD1

y j .�/; y j .�/ WDb j;1.�j;1/b j;2.�j;2/:

Then

j y j .�/j � exp.�c3h�j;1i
1
2 / exp.�c3h�j;2i

1
2 /� exp.�c3h�i

1
2 /; (6-5)

where c3, more precisely, �, can change its value in the last line depending on "0. Taking products gives

j y .�/j � exp.�mc3h�i
1
2 /D exp.�c1�h�i

1
2 /; � D �C�2R ı1.1� ı1/: (6-6)

In particular,  2 L2.R2/ as well as  j 2 L2.R2/. Since  j are also compactly supported functions,
 j 2 L

1.R2/. Hence in the sense of L1 functions,

 D
m©
jD1

 j ;
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whence

supp. /�
mX
jD1

supp. j /�
mX
jD1

Œ�c1m
�1; c1m

�1�2 � Œ�c1; c1�
2;

where we used that each  j;i is a damping function with Qc1 D "1c1m�1. Next, if � 2 Yj , then

j y j .�/j � exp.�c3‚.j�j;1j/j�j;1j/ exp.�c3‚.j�j;2j/j�j;2j/� exp.�c3‚.j�j1/j�j1/;

where again � is allowed to change in the second line. Since Y is covered by the union of Yj , we have

j y .�/j � exp.�c3‚.j�j1/j�j1/ for all � 2 Y: (6-7)

Finally, from (6-3), for each 1� j �m,

j y j .�/j � c
2
2 for all �j;1; �j;2 2

�
�
3
4
; 3
4

�
:

Hence,
k y kL2.Œ�1;1�2/ � c

2m
2 jEj

1
2 ;

where E is the subset of Œ�1; 1�2 where all conditions �j;i 2
�
�
3
4
; 3
4

�
, i D 1; 2, 1 � j � m, are met.

Clearly, jEj1=2 is some number depending on "0. It follows that

k y kL2.Œ�1;1�2/ � �
2m c20m1 m�20m; (6-8)

where � depends on "0.
We required j y .�/j � h�i�2 in our definition of damping function; see Definition 4.1. Since for any

0 < � < 1

exp.�� h�i
1
2 /� 5��4h�i�2;

it follows from (6-6) that Q WD 1
5
.c1�/

4 is a damping function in the sense of the definition. Since
1
5
.c1�/

4 � 1, the decay (6-7) remains intact, as does the support condition. However, (6-8) needs to be
modified:

k
yQ kL2.Œ�1;1�2/ �

1
5
.c1�/

4�2m c20m1 m�20m D 1
5
�2mC4c20mC41 m�20mC�8R .ı1.1� ı1//

4:

Absorbing the 1
5

into �, the lemma is proved. �

Finally, we need to check that Y remains admissible if it is transformed by the similarities in (5-1).

Lemma 6.5. Let Y � Œ�N;N �d with N � 10 be admissible on scales 2 to N with parameters ı1,
CR,"0; m. Let L� 4 be an integer. Then for all integers n� 0 with LnC1 �N and for all

� 2 Œ�NL�n� 3;NL�nC 3�d ;

the set
L�nY C Œ�4; 4�d C �� Œ�.2NL�nC 7/; 2NL�nC 7�d

is admissible at scale S.2NL�nC 7/ with parameters ı1, 576S2CR, "0, m, where S D S."0; d /� 1.
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Proof. First,
L�nY C Œ�4; 4�d C �� Œ�2NL�n� 7; 2NL�nC 7�d

for all � as above. Second, by (6-4),

L�nY C Œ�4; 4�d C ��

m[
jD1

.L�nYj C Œ�4; 4�
d
C �/;

where

L�nYj D

� dX
kD1

�k Eej;k W �k 2 L
�nYj;k; k D 1; 2; : : : ; d

�
;

and

L�nYj C Œ�4; 4�
d
C ��

� dX
kD1

�k Eej;k W �k 2 L
�nYj;kC Œ�4S; 4S�C �j;k; k D 1; 2; : : : ; d

�
;

where S D S."0; d / � 1 and j�j;kj � S.NL�nC 3/. By Lemmas 2.1, 2.2, and 2.3 in [Bourgain and
Dyatlov 2018], see also Lemmas A.2, A.3, and A.4 with d D 1, the sets

L�nYj;kC Œ�4S; 4S�C �j;k � Œ�S.2NL
�n
C 7/; S.2NL�nC 7/�

are ı1-regular with constant 576S2CR on scales 2 to S.2NL�nC 7/. Indeed, for n � 1, Lemma A.2
implies that L�nYj;k is ı1-regular on scales 2L�n � 1

2
to L�nN with constant CR. Lemma A.4 implies

that
L�nYj;kC Œ�4S; 4S�D L

�nYj;kC 8S
�
�
1
2
; 1
2

�
is ı1-regular on scales 1 to L�nN with constant 32SCR. Lemma A.3 allows us to increase the upper
scale from L�nN to 9SL�nN � S.2L�nN C7/, with changing the constant from 32SCR to 576S2CR.
Note that shifting a set does not change its ı1-regularity; hence L�nYj;kC Œ�4S; 4S�C�j;k is ı1-regular
with constant 576S2CR. The proof for nD 0 is similar.

The lemma now follows from Definition 6.2. �

6C. Proof of Theorem 1.2.

Proof. The proof of Theorem 1.2 is now a corollary to Theorem 5.1 and the considerations in this section,
with mD 1. We will keep track of various constants in order to obtain the effective exponent ˇ.

First, let
L WD d.2

d
2

p
2d C 1CR/

2
d�ı e� 4

be as in (A-3). Lemma A.7 implies that for all n� 0 with LnC1�N, X is porous at scale L with depth n.
This verifies the porosity condition on X in Theorem 5.1.

Combining Lemma 6.3, more specifically Remark 6.4, with Lemma 6.5, we obtain that for any n 2N

such that LnC1 �N, and for all � 2 Œ�L�nN � 3;L�nN C 3�d, the set

L�nY C Œ�4; 4�d C �
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admits a damping function with parameters c1,

c2 D �c
12d
1 .576S2CR/

�4d .ı1.1� ı1//
2d ;

c3 D �c1.576S
2CR/

�2ı1.1� ı1/;

where � and S are constants depending on "0. We absorb the constant S into �, and allow � to depend on
d as well. Hence we can simply write

c2 D �c
12d
1 C�4dR .ı1.1� ı1//

2d ;

c3 D �c1C
�2
R ı1.1� ı1/:

Note that this verifies the condition on Y in Theorem 5.1.
Before applying Theorem 5.1, let us first determine the constant C� in Corollary 4.2 with c1; c2; c3

defined above. Recall that
C� D e

c3‚.R1/.R1C2/

2 ;

with ˛ D .1C ı1/=2 and let

R1 Dmax

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

exp
h� C 2R
�c1ı1.1�ı1/

� 2
1�ı1

i
exp.4

2
1�ı1 /�C 2R.� log c1/d

�c1ı1.1�ı1/

�8
h
4 log

� C 8dR
�c24d1 .ı1.1�ı1//4d

�i2
.8d/4

C 4R
�c21.ı1.1�ı1//

2

(6-9)

be as in (4-14), in which we absorb all the d -dependent constants into �.
Now we can apply Theorem 5.1 with

c1 D .2L/
�1
D .2d.2

d
2

p
2d C 1CR/

2
d�ı e/�1:

We need to trace out the constant ˇ.
Plugging c1 into (6-9), and making � smaller if necessary (depending only on d and "0), we have

R1 � exp
��
.C 2R=�/

2d�2ıC2
d�ı

ı1.1� ı1/

� 2
1�ı1

�
DWR2:

This implies
C� D exp

�
c1C

�2
R ı1.1� ı1/‚.R1/.R1C 2/

�
� exp.R2/:

Recall T0 as in (5-12) and 
0 as in (5-10). We compute that

T0 D

�
log.2C'C 2� C

p
4C 2'C

4
� C c

2
'/

logL

�
�
2 logC�C log .5C'/

logL
�
2R2C log .5C'/

logL
DW T1; (6-10)
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and


0.T1/D
1� c2'=L

2.T1�1/

2C 2�
�

1

4C 2�
�
1

4
exp.�2R2/: (6-11)

In both inequalities above, we used C� � exp.R2/.
Recall ˇ as in (5-13). Using that � log.1� x/� x for x < 1, we have

ˇ D�
log.1� 
0.T1/=2/

T1 logL
�


0.T1/

2T1 logL
:

Combining this with the estimates of T1 and 
0.T1/ as in (6-10) and (6-11), we have

ˇ � exp
�
� exp

��
.C 2R=�/

2d�2ıC2
d�ı

ı1.1� ı1/

� 2
1�ı1

��
;

with � being a small constant depending on "0 and d . �

Corollary 1.3 follows from Theorem 1.2 by the triangle inequality.

Remark 6.6. If we try to combine the construction of a damping function for m covers as in Lemma 6.3,
with Theorem 5.1, we could allow m to grow in N like log log logN. This is worse than the power-law
growth obtained via the triangle inequality.

6D. Distortion of Y by diffeomorphisms. Let F„ be the unitary semiclassical Fourier transform on
L2.Rd / defined by

F„f .�/D „�
d
2

Z
Rd
e�

2�ix��
„ f .x/ dx D „�

d
2 Of

�
�

„

�
:

We will use the following proposition which roughly says that the intersection of an admissible set
with a cube is still admissible. We only work with admissible sets with mD 1 throughout this section.

Proposition 6.7. Let Y � Rd be an admissible set on scales N�1 to 1 with parameters ı1, CR, "0. Let
Q � Rd be a cube of side length rQ � r0. Then

Y \Q �

C."0;d;r0/[
jD1

Wj ;

where each Wj is contained in a cube of side length C."0; d /, and is admissible on scales N�1 to 1 with
parameters ı1, .4CR/2=.1�ı1/CR; "0.

Proof. Let Y D
˚Pd

kD1 �k Eek W �k 2 Yk
	
, where Eek 2 S1 and jdet.Ee1; : : : ; Eed /j � "0. We cover Q by the

smallest parallelepiped zQ, whose edges are determined by Ee1; : : : ; Eed , that contains Q. We can write
zQD

˚Pd
kD1 �k Eek W �k 2

zQk
	
.

By Lemma A.1, there exist disjoint intervals Jk such that

Yk D
[

Jk;`2Jk

.Yk \Jk;`/; with .4CR/
� 2
1�ı1 � jJk;`j � 1 for all Jk;` 2 Jk;
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where the .Yk \ Jk;`/’s are ı1-regular sets with constant zCR D .4CR/2=.1�ı1/ CR on scales N�1 to 1.
For any ` 2 Nd, let Y` WD

˚Pd
kD1 �k Eek W �k 2 Yk \ Jk;`k

	
. Hence Y` is admissible on scales N�1 to 1

with parameters ı1; zCR; "0. Furthermore, Y` is contained in a cube of side length C."0; d /. Finally note
that zQk intersects at most finitely many Jk;`’s, and this number depends only on "0; d and r0. �

In this section we prove Theorem 1.4. We need to show that Theorem 1.2 remains valid if an admissible
set Y is distorted by a diffeomorphism ˆN .x/ from the cube Œ�N;N �d ! Œ�N;N �d ; see (1-5). The
argument is related to Section 4 of [Bourgain and Dyatlov 2018]. Thus, let Y D ˆN . zY /, where
zY � Œ�N;N �d is an admissible set with constants CR, "0 on scales 1 to N. Suppose f 2 L2.Rd / with
supp. yf /� Y and set yg WD yf ıˆN so that supp.yg/� zY . Furthermore,

f .x/D

Z
Œ�N;N�d

e2�ix�� yf .�/ d� D

Z
Œ�N;N�d

e2�ix�� yg.ˆ�1N .�// d�

D

Z
Œ�N;N�d

e2�ix�ˆN .�/ yg.�/ jdet.DˆN .�//j d�: (6-12)

We claim that for some ˇ > 0 and C > 0 depending on all the same parameters in Theorem 1.2 as well as
on D0 



Z

Œ�N;N�d
e2�ix�ˆN .�/ yh.�/ d�






L2.X/

� CN�ˇkhk2 (6-13)

for all h 2 L2 with supp.yh/� zY , in which zY � Œ�N;N �d is an admissible set with constants CR; "0 on
scales 1 to N. Setting yh.�/ WD yg.�/ jdet.DˆN .�//j, we conclude from (6-13) that

kf kL2.X/ � CN
�ˇ
kyhk2 � CN

�ˇ
k yf k2 D CN

�ˇ
kf k2;

with possibly a different constant. So it remains to prove the claim (6-13). We will prove it from another
statement, namely 



Z

Œ�N;N�d
e2�ix�ˆN .�/ 1 zY .�/ h.�/ d�






L2.X/

� CN�ˇkhk2 (6-14)

for all h 2 L2. Notice that by Plancherel we could remove the Fourier transform from h.

To prove (6-14), divide Œ�N;N �d D
S
kQk into congruent cubes of side length LN with 1

2

p
N �

LN �
p
N . Let f�kgk be a partition of unity adapted to these cubes. With �k being the center of Qk ,Z

Œ�N;N�d
e2�ix�ˆN .�/1 zY .�/h.�/d�D

X
k

Z
Rd
e2�ix�ˆN .�/�k.�/1 zY .�/h.�/d�

D

X
k

Z
Rd
e2�ix�.ˆN .�k/CDˆN .�k/.���k//ak.x;�/1 zY .�/h.�/d�

DW

X
k

.Tkh/.x/; (6-15)
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where
ak.x; �/ WD e

2�ix�Rk.�/ �k.�/;

Rk.�/ WD

Z 1

0

.1� t /hD2ˆN .�kC t .�� �k//.�� �k/; �� �ki dt;
(6-16)

the latter being the error in the second-order Taylor expansion (we are suppressing the parameter N here).
Then

kRkkL1.supp�k/ � C D C.d;D0/;

k@˛x ak.x; �/kL1.Œ�1;1�d�supp�k/ � C.d;D0; ˛/; diam supp�k � C
p
N;

(6-17)

for every multi-index ˛. By Hörmander’s variable-coefficient Plancherel theorem,

max
k
kTkk2!2 � C.d;D0/: (6-18)

This follows by the usual T �T argument:

kTkhk
2
2 D hT

�
k Tkh; hi;

.T �k Tkh/.�
0/D

Z
Rd
Kk.�

0; �/ h.�/ d�;

Kk.�
0; �/D

Z
Rd
e2�ix�.ˆN .�/�ˆN .�

0// 1 zY .�/1 zY .�
0/ �k.�/�k.�

0/ dx:

(6-19)

Since kˆN .�/�ˆN .�0/k � D�10 k�� �
0k in the sense of Euclidean lengths, repeated integrations by

parts yield the decay
jKk.�

0; �/j � C.d;D0/h�� �
0
i
�d�1;

whence (6-18) follows by Schur’s test. In particular, k1XTkk2!2 �C with the same constant as in (6-18).
Next, we would like to show that 1XTk and 1XT` do not interact much for all cubes Qk;Q` which

are not nearest neighbors. In order to integrate by parts in x, see (6-19), we need to smooth out 1X at the
correct scale. Define

X.N�
1
2 / WDX C Œ�N�

1
2 ; N�

1
2 �d :

By [Dyatlov and Zahl 2016, Lemma 3.3] there exists a smooth  taking values in Œ0; 1� with  D 1 on X
and with supp. /�X.N�1=2/, as well as so that

k@˛x k1 � C.˛/N
j˛j
2 (6-20)

for all multi-indices. Define Sk WD  Tk . On the one hand, Sk still obeys (6-18). On the other hand, for
any cubes Qk;Q` which are not nearest neighbors one has

kS�kS`k2!2 � C.d;D0; p/N
p
2 dist.Qk;Q`/

�p (6-21)

for every positive integer p. This follows from the fact that the kernel of S�
k
S` equals

Kk;`.�
0; �/D

Z
Rd
e2�ix�.ˆN .�/�ˆN .�

0// 1 zY .�/1 zY .�
0/ �k.�/�`.�

0/  .x/2 dx:
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Using the differential operator

LD
1

2�i

ˆN .�/�ˆN .�
0/

kˆN .�/�ˆN .�0/k2
� rx;

which obeys
L e2�ix�.ˆN .�/�ˆN .�

0//
D e2�ix�.ˆN .�/�ˆN .�

0//;

repeated integration by parts now yields (6-21). Finally, given any k, only a uniformly bounded number
of choices of ` will satisfy

SkS
�
` D  TkT

�
`  ¤ 0:

This is due to the fact that �k.�/�`.�/D 0 up to a bounded number of choices of ` given k. If we label
the cubes by lattice points k 2 Zd, then �k D LNk, whence

N
p
2 dist.Qk;Q`/

�p .N
p
2 .LN jk� `j/

�p . jk� `j�p;

which is summable over Zd provided p > d . On the other hand, we also have

kS�kS`k2!2 � kSkk2!2kS`k2!2 � B
2; B WD sup

j

kSj k2!2:

Combining these two estimates we infer that for any 0 < " < 1

kSkS
�
` k2!2CkS

�
kS`k2!2 � C.d;D0; "/ B

2.1�"/
hk� `i�2.dC1/

for all k; ` 2 Zd. Note that B � C.d;D0/ by Hörmander’s bound (6-18). Hence by Cotlar’s lemma,



Z
Œ�N;N�d

e2�ix�ˆN .�/ 1 zY .�/ h.�/ d�






L2.X/

� C."; d;D0/ max
k
kSkk

1�"
2!2: (6-22)

The claim (6-14) will now follow from (6-22) by applying the fractal uncertainty principle of
Theorem 1.2 to each Sk . For this we need to linearize the phase as in (6-15), which in turn makes
the localization to scales

p
N necessary.

To be specific, we reduce (6-14) to the following estimate. Let  0 be compactly supported functions
satisfying the bounds

k@˛x 0k1 � CsN
s for all j˛j D s � 0; (6-23)

where N � 1 is arbitrary and all constant are independent of N. We assume that  0 is supported in a
ı-regular set in Œ�1; 1�d on scales 1=N to 1, and with 0 < ı < d . Let

Z DN�1Y1

be a rescaled version of an admissible set Y1 with constants CR, ı1, "0 on scales 1 to N. The point is
Y1 is not assumed to be contained in Œ�N;N �d ; hence Theorem 1.2 does not apply directly. Hence we
need to use Proposition 6.7 instead, for which we need to make assumptions on supp a. Suppose that the
symbol a is smooth and compactly supported with the bounds

k@˛xa.x; �/k1 � C.˛/ for all ˛; and supp a.x; � /�Q; (6-24)
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where Q is a cube in Rd that is independent of x, and is of side length rQ � r0. Then for some ˇ > 0
and C as above,

k 0A 1Z hk2 � CN
�ˇ
khk2; (6-25)

where
.Ah/.x/ WDN

d
2

Z
Rd
e2�iNx�� a.x; �/h.�/ d�:

Indeed,



Z
Rd
e2�ix�.ˆN .�k/CDˆN .�k/.���k//  .x/ ak.x; �/1 zY .�/ h.�/ d�






2

.




Z

Rd
e2�ix��  .x/ ak.x;DˆN .�k/

�1�C �k/1 zY��k .DˆN .�k/
�1�/h.DˆN .�k/

�1�C �k/ d�






2

DN
d
4





Z
Rd
e2�iN

1=2x��  .x/ Qak.x;N
1
2 �/N

d
4 1Y1.N

1
2 �/ Qh.N

1
2 �/ d�






2

:

Here Qa, Qh signify the functions on the second line but with the linear isomorphism DˆN .�k/
�1 and the

shift �k included, and Y1 DDˆN .�k/. zY � �k/ is an admissible set on scales 1 to N with constants that
depend on D0. Note that 1Y1.N

1=2�/D 1Z.�/, with ZDN�1=2Y1, which is an admissible set on scales
N�1=2 to 1. By (6-20),  0.x/ WD  .x/ satisfies the required bound, and furthermore  0 is supported
on X.N�1=2/, which is a ı-regular set on scales N�1=2 to 1; see Lemma A.4. As for the amplitude,
ignoring the distinction between Qak and ak ,

ak.x;N
1
2 �/ WD e2�ix�Rk.N

1=2�/ �k.N
1
2 �/;

Rk.N
1
2 �/ WDN

Z 1

0

.1� t /hD2ˆN .�kC t .N
1
2 � � �k//.� � �

0
k/; � � �

0
ki dt;

where �0
k
DN�1=2�k . Setting a.x; �/D ak.x;N 1=2�/, we conclude from (6-17) that a satisfies (6-24)

with constant r0 D C , which is an absolute constant. Finally,

kN
d
4 Qh.N

1
2 �/k2 ' khk2:

Thus, we can apply (6-25) with N replaced by N 1=2 to obtain a gain of N�ˇ=2, and we are done.
It remains to prove (6-25). Note that this is equivalent to proving

k 0A 1Z\Q hk2 � CN
�ˇ
khk2: (6-26)

By Proposition 6.7, we can cover Z \Q by C."0; d; r0/ many admissible sets Wj with constants ı1,
zCR WD .4CR/

2=.1�ı1/CR, Q"0 D Q"0."0;D0/. Hence, via triangle inequality, it suffices to prove (6-26)
with Z \Q replaced by Wj .

If aD 1 on the supp. 0/�Wj , then this follows immediately from Theorem 1.2 by a rescaling. Indeed,
one has by that theorem



N d

2

Z
Rd
e2�iNx��  0.x/1Wj .�/ h.�/ d�






2

D





Z
Rd
e2�ix��  0.x/1Wj

�
�

N

�
N�

d
2 h

�
�

N

�
d�






2

.N�ˇ




N�d2 h� �

N

�




2

DN�ˇkhk2:
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Let us now consider general a satisfying (6-24). Let � 2 .0; 1/ with its value determined later.
Let us note that by the usual A�A argument, we have Hörmander’s bound,

kAk2!2 � C: (6-27)

Next we decompose  0A1Wj into

 0A 1Wj D  0 F
�1
„
A1CA2F„A1Wj ;

A1 WD 1RdnWj .N��/
F„A1Wj ; A2 WD  0F�1„ 1Wj .N��/;

where „ DN�1. Clearly, by (6-27), we have

k 0A1Wj k2!2 . kA1k2!2CkA2k2!2: (6-28)

Thus it suffices to bound kA1k2!2 and kA2k2!2.
We compute the integral kernel of A1:

KA1.�; �/D 1RdnWj .N��/
.�/ 1Wj .�/ N

d

Z
Rd
e2�iNx�.���/a.x; �/ dx:

Note that the Euclidean distance satisfies k�� �k � N�� on the support of KA1 . Hence by repeated
integration by parts in x, we obtain that

jKA1.�; �/j � Cd;�N
d�ddC10

1��
e
h�� �i�d

dC10
1��
e
� Cd;�N

�10:

By Schur’s test, we arrive at
kA1k2!2 � CN

�10: (6-29)

In view of A2. Note that

Wj .N
��/�

[
kkk1�N

1��

k2Zd

.Wj .N
�1/C k/;

and

Wj .N
�1/� bW j WD

� dX
`D1

�`Ee` W �` 2N
�1
�Wj;`.2/

�
;

which is an admissible set on scales 2N�1 to 1. Thus by Theorem 1.2 and triangle inequality, we have
for f 2 L2.Rd /

kA2f k �
X

kkk�N 1��

k 0 F�1„ 1bWjCk
f k2

.
X

kkk�N 1��

k1supp  0 F�1
„

1bWjCk
f k2 � CN

�ˇCd.1��/
kf k2;

where „ DN�1. Hence for �D 1�ˇ=2d ,

kA2k2!2 � CN
�
ˇ
2 : (6-30)

Combining (6-28), (6-29) with (6-30), we obtain (6-25). This concludes the proof of Theorem 1.4.
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6E. Fourier integral operator. In this section, we prove a fractal uncertainty principle for Fourier integral
operators on Rd. The proof follows that of the one-dimensional case in [Bourgain and Dyatlov 2018,
Section 4]; thus we shall be very brief.

Let

.B.„/f /.x/ WD „�
d
2

Z
Rd
e�

2�iˆ.x;y/
„ b.x; y/f .y/ dy; (6-31)

where for some open set U � R2d

ˆ 2 C1.U IR/; b 2 C10 .U /; det
�

@2ˆ

@xj @yk

�
¤ 0 on U;�

sup
U





� @2ˆ

@xj @yk

�



� ��sup
U





� @2ˆ

@xj @yk

��1



�� Cˆ
(6-32)

for some constant Cˆ � 1, in which k � k is the matrix norm.

Proposition 6.8. Let X; Y � Œ�1; 1�d. Assume that X is a ı-regular set on scales 0 to 1 with constant CR,
and Y is an admissible set on scales 0 to 1 with parameters ı1, CR, "0. Assume (6-32) holds. Then there
exist ˇ > 0, � 2 .0; 1/ depending only on ı, ı1, CR, "0, d , Cˆ, and C > 0 depending only on ı, ı1, CR,
"0, d , ˆ; b such that for 0 < „< h0.ˆ/ < 1,

k1X.„�=2/B.„/1Y.„�/kL2.Rd /!L2.Rd / � C„
ˇ :

Proof. As was pointed out in [Bourgain and Dyatlov 2018], it is enough to prove Proposition 6.8 under
the assumption that

1 <

ˇ̌̌̌
det

�
@2ˆ

@xj @yk

�ˇ̌̌̌
< 2 on U: (6-33)

Let Qh WD „1=2. Divide Œ�2; 2�d D
S
kQk into congruent cubes of side length L with Qh=2� L< Qh. Let

f�kgk be a partition of unity adapted to these cubes. With yk being the center of Qk , we have

„
�d
2

Z
Rd
e�

2�iˆ.x;y/
„ b.x; y/1Y.„�/.y/f .y/ dy

D

X
k

„
�d
2

Z
Rd
e�

2�iˆ.x;y/
„ b.x; y/�k.y/1Y.„�/.y/f .y/ dy

D

X
k

e�
2�iˆ.x;yk/

„ „
�d
2

Z
Rd
e�

2�iryˆ.x;yk/�.y�yk/

„ Qbk.x; y/1Y.„�/.y/f .y/ dy

DW

X
k

.Tkf /.x/;

where
Qbk.x; y/D e

�
2�i‰k.x;y/

„ �k.y/b.x; y/;

‰k.x; y/D

Z 1

0

.1� t /h.y �yk/;Hˆ.x; ykC t .y �yk//.y �yk/i dt;
(6-34)

in which Hˆ.x; � / is the Hessian of ˆ.x; � / in the y-variable.
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We will prove

k1
X. Qh�/

TkkL2!L2 � C
Qhˇ ; (6-35)

and the estimate for
P
k 1

X. Qh�/
Tk follows from almost orthogonality and Cotlar’s lemma; see the proof

of Proposition 4.3 in [Bourgain and Dyatlov 2018].
Let

'.x/ WD ryˆ.x; yk/:

By (6-33), the Jacobian matrix J' satisfies 1 < jdet.J'.x//j< 2; hence ' admits an inverse function.
We have, by a change variable x! '�1.x/,

k1
X. Qh�/

.x/.Tkf /.x/kL2

Dk1
'.X. Qh�//

.x/jdet.J'�1.x//j
1
2„
�d
2

Z
Rd
e�

2�ix�y
„ Qbk.'

�1.x/;yCyk/1Y.„�/�yk .y/f .yCyk/dykL2

Dk1
'.X. Qh�//

.x/jdet.J'�1.x//j
1
2

Z
Rd
e
�
2�ix�y
Qh Qbk.'

�1.x/; QhyCyk/1Y.„�/�yk .
Qhy/f . QhyCyk/dykL2

�k1
'.X. Qh�//

A.„/1 Qh�1.Y. Qh2�/�yk/kL2!L2 �k
Qh
d
2 f . QhyCyk/kL2

Dk1
'.X. Qh�//

A.„/1
Y. Qh2��1/�Qh�1yk

kL2!L2 �kf kL2 ;

where

.A.„/f /.x/D Qh�
d
2

Z
Rd
e
�
2�ix�y
Qh Obk.x; y/f .y/ dy;

Qb.x; y/D jdet.J'�1.x//j
1
2 Qbk.'

�1.x/; QhyCyk/:

(6-36)

Now it suffices to bound

k1
'.X. Qh�//

A.„/1
Y. Qh2��1/�Qh�1yk

kL2!L2 : (6-37)

Let zX WD '.X/. By (6-32),

.sup kJ'k/ � .sup k.J'/�1k/� Cˆ:

Note (6-33) implies C1 WD sup kJ'k � 1 and hence C2 WD sup k.J'/�1k � Cˆ. By Lemma A.5, zX is
ı-regular with constant CR.d Cˆ/ı=2 on scales 0 to d�1=2C�12 .

If d�1=2C�12 < 1, Lemma A.3 implies zX is ı-regular with constant

2.d
1
2C2/

dCR.d Cˆ/
ı
2 � 2d

dCı
2 CRC

dC ı
2

ˆ DW zCR

on scales 0 to 1. If d�1=2C�12 �1, let zCR WDCR.d Cˆ/ı=2. Hence zX is always ı-regular with constant zCR
on scales 0 to 1.

It is also easy to see that '.X. Qh�// � zX.C.ˆ/ Qh�/, where C.ˆ/ is a constant depending on ˆ. For
0 < „< h0.ˆ/, we have C.ˆ/ Qh� < Qh2��1; hence

k1
'.X. Qh�//

A.„/1
.Y. Qh2��1/�Qh�1yk/

kL2!L2 � k1 zX. Qh2��1/A.„/1.Y. Qh2��1/�Qh�1yk/kL2!L2 :
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Next note that

zX. Qh2��1/�
[
j2Z

kjk� Qh2��2

. zX. Qh/C Qhj /DW
[
j2Z

kjk� Qh2��2

zXj ;

Y. Qh2��1/� Qh�1y �
[
k2Z

kpk� Qh2��2

.Y. Qh/� Qh�1yC Qhp/DW
[
k2Z

kpk� Qh2��2

Yp:
(6-38)

Hence, it is eventually reduced to estimating each k1 zXjA.„/1YpkL2!L2 .
It is easy to check that Obk.x; y/ satisfy (6-24); hence by (6-25), we have

k1 zXjA.„/1YpkL2!L2 � C
Qhˇ

for some ˇ > 0. Choosing 2d.�� 1/ < ˇ=2, we conclude that

k1 zX. Qh2��1/A.„/1.Y. Qh2��1/�Qh�1yk/kL2!L2 � C
Qh
ˇ
2

by the triangle inequality. �

Appendix A: Regular sets

We show that certain operations preserve the class of ı-regular sets if we allow one to increase the
regularity constant and shrink the scales.

The first lemma is from [Bourgain and Dyatlov 2018]. It shows a ı-regular set in R1, 0 < ı < 1, can be
split into smaller ı-regular sets.

Lemma A.1. Let X � R1 be a ı-regular set with constant CR on scales ˛0 to ˛1, and assume that
0 < ı < 1 and .4CR/2=.1�ı/˛0 � � � ˛1. Then there exists a collection of disjoint intervals J such that

X D
[
J2J

.X \J /; .4CR/
� 2
1�ı � � jJ j � � for all J 2 J ;

and each X \J is ı-regular with constant zCR WD .4CR/2=.1�ı/CR on scales ˛0 to �.

The rest of this section concerns ı-regular sets in Rd. We show that certain operations preserve the
class of ı-regular sets if we allow one to increase the regularity constant and shrink the scales.

Lemma A.2. Let X be a ı-regular set with ı 2 .0; d/ and constant CR on scales ˛0 to ˛1. Fix � > 0 and
y 2 Rd. Then the set zX WD yC�X is a ı-regular set with constant CR on scales �˛0 to �˛1.

Proof. Taking the measure

� zX .A/ WD �
ı�X .�

�1.A�y//;

it is easy to verify. �

Lemma A.3. Let X be a ı-regular set with constant CR on scales ˛0 to ˛1. Fix T > 1. Then X is
ı-regular with constant zCR WD 2T dCR on scales ˛0 to T˛1.
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Proof. Let I be a cube such that ˛0 � rI � T˛1. For ˛0 � rI � ˛1, the upper bound is immediate. For
˛1 < rI � T˛1, I can be covered by dT ed � 2T d cubes of side length ˛1 each; therefore

�X .I /� 2T
dCR˛

ı
1 �
zCRr

ı
I :

In view of the lower bound estimate, we assume I is centered at a point in X. As before, we may
assume ˛1 < rI � T˛1. Let I 0 � I be the cube with the same center and rI 0 D ˛1. Then

�X .I /� �X .I
0/� C�1R ˛ı1 �

zC�1R rıI ;

as claimed. �

Lemma A.4. Let X be a ı-regular set with constant CR on scales ˛0 to ˛1. Fix T � 1:

(1) Suppose ˛1 � 2˛0. Then the neighborhood X C Œ�T˛0; T ˛0�d is ı-regular with constant zCR WD
4dT dCR on scales 2˛0 to ˛1.

(2) Suppose that ˛1 � T˛0. Then X C Œ�T˛0; T ˛0�d is ı-regular with constant C 0R D 4
dCR on scales

T˛0 to ˛1.

Proof. Let zX WDX C Œ�T˛0; T ˛0�d and define � zX supported on zX by convolution

� zX .A/ WD
1

.T ˛0/d

Z
Œ�T˛0;T˛0�d

�X .ACy/ dy:

Let I be a cube such that M˛0 � rI � ˛1 with M � 1. Then

� zX .I /� 2
dCRr

ı
I ;

which proves the upper bound estimates for both cases.
Now assume that I is centered at a point x1 2 zX. Take x0 2 X such that x0 2 x1C Œ�T˛0; T ˛0�d,

and let I 0 be the cube centered at x0 with side length rI 0 D rI=2. Then

�X .I
0/� C�1R

�
rI

2

�ı
� 2�dC�1R rıI :

Let J D x0 � x1 C Œ�˛0=2; ˛0=2�
d ; then J \ Œ�T˛0; T ˛0�d contains a cube with side length at

least ˛0=2. Clearly, I 0 � I Cy for any y 2 J. Hence

� zX .I /�
1

.2T /d
�X .I

0/� zC�1R rıI ;

which proves the lower bound estimate for (1).
Let J D x0� x1C Œ�T˛0=2; T ˛0=2�d ; then J \ Œ�T˛0; T ˛0�d contains a cube with side length at

least T˛0=2. Clearly, I 0 � I Cy for any y 2 J. Hence

� zX .I /�
1

2d
�X .I

0/� .C 0R/
�1rıI ;

which proves the lower bound estimate for (2). �
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Lemma A.5. Assume F W Rd ! Rd is C 1 diffeomorphism. Let C1 WD supx2Rd kJF.x/k and C2 WD
supx2Rd kJF

�1.x/k, where JF is the Jacobian matrix and k � k is the matrix norm. Assume that for some
constant CF � 1, we have

C1C2 � CF : (A-1)

Let X be a ı-regular set with constant CR on scales ˛0 to ˛1 � C 2F ˛0. Then F.X/ is a ı-regular set with
constant zCR WD CR.d CF /ı=2 on scales d1=2C1˛0 to d�1=2C�12 ˛1.

Proof. Let zX WD F.X/ and define the measure � zX supported on zX as

� zX .A/ WD C
� ı
2

F C ı1 �X .F
�1.A//:

Let QI be a cube with side length r QI with

d
1
2C1˛0 � r QI � d

� 1
2C�12 ˛1: (A-2)

Clearly, F�1 QI is contained in a cube of side length r , where r �
p
d C2r QI . Indeed, let y be the center

of QI . Then for any x 2 QI , we have

kF�1.x/�F�1.y/k � C2kx�yk �

p
d

2
C2r QI :

Let I be the cube centered at F�1y of side length
p
d C2r QI � ˛1. Then

� zX .
QI /� �X .I /� C

� ı
2

F C ı1CR.
p
d C2r QI /

ı
D CR.d CF /

ı
2 rı
QI
:

If, in addition, y 2 zX , let y D F.z/, where z 2 X. Then the cube Q centered at z of side length
r D d�1=2C�11 r QI � ˛0 is contained in F�1. QI /. Indeed, for any x 2Q, we have

kF.x/�F.z/k �

p
d

2
C1r D

r QI
2
:

Hence

� zX .
QI /D C

� ı
2

F C ı1�X .F
�1. QI //� C

� ı
2

F C ı1C
�1
R .d�

1
2C�11 r QI /

ı
D C�1R .d CF /

� ı
2 rı
QI
:

This proves the claim. �

Lemma A.6. Let X be a ı-regular set with constant CR on scales ˛0 to ˛1, and 0 < ı < d . Fix an integer

L� .2
d
2

p
2d C 1CR/

2
d�ı : (A-3)

Assume that I is a cube with ˛0 � rI=L� rI � ˛1 and I1; : : : ; ILd is the partition of I into cubes of side
length rI=L. Then there exists ` such that X \ I` D∅.

Proof. Using Lemma A.2, it suffices to consider I D Œ0; L�d, ˛0� 1�L�˛1. We argue by contradiction.
Assume that each I` intersects X. Then I 0

`
WD I`C

�
�
1
2
; 1
2

�d contains a unit cube centered at a point
in X and thus

�X .I
0
`/� C

�1
R for all 1� `� Ld :
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On the other hand,
Ld[
`D1

I 0` D
�
�
1
2
; LC 1

2

�d
;

and each point in
�
�
1
2
; LC 1

2

�d can be covered by at most 2dC1 of the cubes I 0
`
. Therefore

C�1R Ld �

LdX
`D1

�X .I
0
`/� .2d C 1/�X

��
�
1
2
; LC 1

2

�d �
� .2d C 1/CR.LC 1/

ı ;

which contradicts (A-3). �

Recall our definition of Cn and porosity in Definition 5.1.

Lemma A.7. Let X � Œ�1; 1�d be a ı-regular set with constant CR on scales ˛0 to ˛1. Let L satisfy
(A-3), and take n 2 Z such that ˛0 � L�n�1 � L�n � ˛1. Then X is porous at scale L with depth n.

Lemma A.8. Let X be a ı-regular set with constant CR on scales ˛0 to ˛1. Let C � 1 be a constant. Let
I be a cube of side length rI satisfying ˛0 � rI � C˛1. Let � > 0 satisfy ˛0 � � � min.rI ; ˛1/. Then
there exists a nonoverlapping1collection J of NJ cubes of side length � each such that

X \ I �
[
J2J

J; NJ �

�
6

�
3CC

2

��d
C 2R

�
rI

�

�ı
:

We will only use this lemma in dimension 1. Note that in [Bourgain and Dyatlov 2018], this is
formulated with C D 1. We use this form with a constant C in the proof of Lemma 6.2.

Proof. Let J consist of all cubes of the form
Śd
kD1 �Œjk; jkC 1�, .j1; j2; : : : ; jd / 2 Zd, which intersect

X \ I . Then X \ I �
S
J2J J. Next, we will prove the upper bound on NJ .

For each J 2 J , let J 0 � J be the cube with the same center and with side length 2�. Since J
intersects X, J 0 contains a cube of side length � centered at a point in X. Therefore

�X .J
0/� C�1R �ı :

It is also clear that
S
J2J J

0 � I
�
3
2
�
�
, and each point lies in at most 3d of the cubes J 0.

If rI � ˛1, I
�
3
2
�
�

can be covered by 4d cubes of side length rI . If ˛1 < rI � C˛1, I
�
3
2
�
�

can be
covered by 2d d.3CC/=2ed cubes of side length ˛1. Therefore, we always have

NJ �C
�1
R �ı �

X
J2J

�X .J
0/� 3d�X

� [
J2J

J 0
�
�

�
6

�
3CC

2

��d
CRr

ı
I ;

and this proves the upper bound on NJ . �

Appendix B: Proof of Lemma 6.2

We follow the proofs of Theorem 3.2 and Lemma 4.1 in [Jin and Zhang 2017]. Let us start with introducing
some notation.

1A collection of cubes is nonoverlapping if the intersection of every two distinct cubes has empty interior.
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Hilbert transform. Let H0 be the standard Hilbert transform defined as convolution with p.v. 1
�x

: for
f 2 C10 .R/ (or more generally, f 2 L1.R; hxi�1 dx)

H0.f /.x/ WD
1

�
lim
"!0C

Z
jx�t j�"

f .t/

x� t
dt:

Let H be the modified Hilbert transform with integral kernel that decays like jxj�2 as jxj !1:

H.f /.x/ WD 1

�
lim
"!0C

Z
jx�t j�"

f .t/
� 1

x� t
C

t

t2C 1

�
dt; f 2 L1.R; hxi�2 dx/:

The advantage of H is that it applies to a larger space that contains L1.R/ as well as functions that grow
like jxj1�" as jxj !1.

If f 2L1.R; hxi�1 dx/, then H.f / differs from H0.f / by a constant. Moreover, we have the inversion
formula for all f 2 L1.R; hxi�2 dx/ with H.f / 2 L1.R; hxi�2 dx/:

H.H.f //D�f C c.f /; (B-1)

where c.f / is a real constant depending on f .
We will use the following example later in the proof.

Example B.1 [Jin and Zhang 2017, Example 2.3]. Let f .x/D log.x2C 1/, then we can compute

H.f /0.x/DH0.f 0/.x/D�
2

x2C 1
: (B-2)

Hardy space and outer functions. We recall the definition of Hardy space on the real line

H 2
DH 2.R/D ff 2 L2.R/ W supp Of � Œ0;1/g:

If f 2 L2.R/, then f C iH0.f / 2H 2.R/.
The space of modulus of functions in H 2 can be characterized by the logarithmic integral: for ! 2L2,

! � 0, we define

L.!/ WD
Z

R

log!.x/
1C x2

dx:

Theorem B.2 [Havin and Jöricke 1994, Section 1.5]. If f 2H 2 and L.jf j/D�1, then f � 0. On the
other hand, if ! 2L2 and L.!/ >�1, then there exists a function f 2H 2 with jf j D !, unique up to a
multiplication by a complex constant with unit modulus.

If L.!/ > �1. Let � D � log!, then � 2 L1.R; hxi�2 dx/. Therefore we can define z� D H.�/
and take

f D ae�.�Ci
z�/; jaj D 1: (B-3)

We call functions of the form (B-3) for general � 2 L1.R; hxi�2 dx/ outer functions. The class of outer
functions is closed under multiplications. Moreover if two outer functions have the same modulus, then
they differ by a complex constant with unit modulus.
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The following lemma gives a sufficient condition of a function to be the modulus of the Fourier
transform of a function supported in Œ0; ��.

Lemma B.3 [Mashregi et al. 2005, Theorem 1]. Assume that ! D e�� 2 L2 and L.!/ > �1. In
addition, we assume that !2e2�i�x is an outer function. Then there exists  2 L2 with supp � Œ0; ��
and j y j D !.

An effective multiplier theorem. We prove an effective multiplier theorem. This proof is essentially in
[Jin and Zhang 2017, Section 3], the only change we make lies in the definition of k.x/ below. Our
modified definition makes sure that k.x/ is a constant function in a neighborhood of 0, which leads to a
pointwise lower bound of y .x/ on the whole interval

�
�
3
4
; 3
4

�
.

Theorem B.4. Assume that 0 < ! � 1 satisfies L.!/ > �1, and

kH.�/0kL1 � �
2
�;

where 0 < � < 1
10

, �D� log!. Then there exists  2 L2.R/ with

supp � Œ0; ��; j y j � !;

and

j y j �
�10

4� 1011
! on

�
�
3
4
; 3
4

�
:

Proof. We first set

!0.x/D
!.x/

.x2CT 2/5
; �0.x/D� log .!0.x//;

with constant T that will be specified later. We then have

�0 D�C 5 log .x2CT 2/:

We compute

H.log .x2CT 2//.0/D lim
"!0C

Z
jt j�"

log.t2CT 2/
�
1

�t
�

t

t2C 1

�
dt;

in which the integrand is an odd function. Hence the integration is zero. Therefore we have

H.�0/.0/DH.�/.0/C 5H.log .x2CT 2//DH.�/.0/: (B-4)

By (B-2), we compute

H.log.x2CT 2//0 D T �1H.log.x2C 1//0
�
�

T

�
D�

2T

x2CT 2
:

Thus if we choose T D 20
��
�
200
�
� 60, we have

kH.�0/0kL1 � kH.�/0kL1 C 5kH.log.x2CT 2//0kL1 � ��: (B-5)

Let us define
s0.x/D ��xCH.�0/.x/:
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Hence by (B-4),
s0.0/DH.�/.0/;

depending only on !.
Let s.x/ be defined as

s.x/D s0.x/��k.x/�
�
2
;

in which

k.x/D

(�
1
�
s0.x/

˘
if 1
�
s0.0/ 2

�
1
4
; 3
4

�
mod 1;�

1
�
s0.x/�

1
2

˘
if 1
�
s0.0/ 2

�
0; 1
4

�S�
3
4
; 1

�
mod 1:

(B-6)

Note that our definition of k.x/ is different from that in [Jin and Zhang 2017]. We modify the definition
in order to make sure k.x/ is a constant near x D 0. This will be explained and used later in the proof.

By (B-5), s0.x/ is a nondecreasing function and so is k. Note also that by our definition of s.x/, we have

kskL1 � �: (B-7)

Let mD e�M, where M DH.s/. Next, we will estimate M.x/DH.s/.x/. We split the integral into
three parts M.x/D J1.x/CJ2.x/CJ3.x/, where

J1.x/D
1

�

Z
jx�t j< 1

2

s.t/� s.x/

x� t
dt;

J2.x/D
1

�

Z
jx�t j< 1

2

s.t/
t

t2C 1
dt;

J3.x/D
1

�

Z
jx�t j� 1

2

s.t/

�
1

x� t
C

t

t2C 1

�
dt:

We estimate J2 and J3 in the same way as in [Jin and Zhang 2017]. By (B-7), we have

jJ2.x/j �
1
�
� kskL1 �

1
2
�
1
2
: (B-8)

Also, we have

jJ3.x/j �
1
�
� kskL1

Z
jx�t j� 1

2

ˇ̌̌̌
1

x� t
C

t

t2C 1

ˇ̌̌̌
dt � 6 log .jxjC 2/: (B-9)

Finally, we need to bound jJ1j. By (B-5), we know s0.x/D ��xCH.�0/.x/ is nondecreasing with
ks00kL1 � 2�� . Since we assume 0 < � < 1

10
, we have

k��1s00kL1 <
1
5
:

This leads to the following:

� If ��1s0.0/ 2
�
1
4
; 3
4

�
mod 1,

1
�
s0.x/ 2 .0; 1/ mod 1 for all x 2

�
�
5
4
; 5
4

�
:

� If ��1s0.0/ 2
�
0; 1
4

�S�
3
4
; 1

�
mod 1,

1
�
s0.x/�

1
2
2 .0; 1/ mod 1 for all x 2

�
�
5
4
; 5
4

�
:
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Recalling our definition of k.x/ in (B-6), we know in each case k.x/ is a constant function on the interval�
�
5
4
; 5
4

�
.

Thus for x 2
�
�
3
4
; 3
4

�
, we have

jJ1.x/j �
1

�

Z
jx�t j< 1

2

ˇ̌̌̌
s0.t/� s0.x/

x� t

ˇ̌̌̌
dt �

1

�
ks00kL1 � 2�: (B-10)

For all x, we only have a lower bound of J1. Since k is nondecreasing, we have

J1.x/�
1

�

Z
jx�t j< 1

2

s0.t/� s0.x/

x� t
dt � �2�: (B-11)

Now combining (B-8), (B-9) with (B-10), we have the following estimate of M on
�
�
3
4
; 3
4

�
:

jM.x/j � 2� C 1
2
C 6 log 11

4
< 7: (B-12)

Using (B-11) instead of (B-10), we obtain that for all x,

M.x/� �2� � 1
2
� 6 log .jxjC 2/ > �1� 6 log.jxjC 2/: (B-13)

Next we will apply Lemma B.3 to Q! D 1
3
m!0. We check that Q! satisfies all the assumptions. First,

by (B-13), we have

0� Q! � 1
3
e.jxjC 2/6!0 �

!

x2CT 2
:

Hence 0� Q! � ! and Q! 2 L2. Moreover

L. Q!/D L
�
1
3
m
�
CL.!0/ > �1:

By the construction M DH.s/ and the inversion formula (B-1), we have

H.�2M � 2�0/D 2s� 2H.�0/� 2c.M/D 2��x� 2�k.x/�� � 2c.M/;

where k.x/ 2 Z and c.M/ is a real constant. Therefore for some constant a with jaj D 1, we have

Q!2e2�i�x D 1
9
e�2M�2�0C2�i�x D 1

9
ae�2M�2�0CiH.�2M�2�0/;

which shows Q!2e2�i�x is an outer function.
By Lemma B.3, there exists  2L2 with supp. /� Œ0; �� and j y j � Q! �!. Furthermore, on

�
�
3
4
; 3
4

�
,

by (B-12), and since T D 20
��

, we have

j y .x/j D Q!.x/� 1
3
.1CT 2/�5e�7!.x/�

�10

4� 1011
!.x/;

as claimed. �

Multiplier adapted to the regular sets. Now we are in the place to finish the proof of Lemma 6.2.

Proof. The proof is the essentially same as that of Lemma 4.1 of [Jin and Zhang 2017]. We briefly go
through the various constants below.
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We define n1 2N by 2n1 <S˛1 � 2n1C1. For 1� n� n1, let An WD Œ�2nC1;�2n�
S
Œ2n; 2nC1�. Then

by Lemma A.8, we have a collection Jn of Nn intervals of size �n WD n�.1Cı/=22n such that each element
is of the form Œj; j C 1�, j 2 Z, intersects An, and

Y \An �
[
J2Jn

J:

Moreover, the number Nn satisfies

Nn � 6

�
3CS

2

�
C 2R

�
2n

�n

�ı
D 6

�
3CS

2

�
C 2Rn

ı.1Cı/
2 : (B-14)

Following the proof of [Jin and Zhang 2017], we define a weight function ! such that

!.�/D exp.�h�i
1
2 /� 0:3 for all � 2 Œ�1; 1�;

!.�/� exp.�h�i
1
2 / for all � 2 R;

!.�/� exp.�‚.j�j/j�j/ for all � 2 Y; j�j � 10;

kH.!/0kL1 �
��1C 2R
ı1.1� ı1/

;

where 0 < � < 1 is a constant depending only on S . The dependence comes from the upper bound of Nn
in (B-14).

Applying Theorem B.4 to !c3 with

� D 1
5
c1; c3 D

�
10
�c1C

�2
R ı1.1� ı1/ < 1:

We obtain  with

supp �
�
0; 1
5
c1

�
;

j y .�/j �
c101

4� 1018
!.�/c3 �

3

4� 1019
c101 for all � 2

�
�
3
4
; 3
4

�
;

j y .�/j � exp.�c3h�i
1
2 / for all � 2 R;

j y .�/j � exp.�c3‚.j�j/j�j/ for all � 2 Y; j�j � 10:

Finally, shifting  by 1
10
c1 yields the desired function. �
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