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Abstract. This is a review of old and new results and methods related
to the Yau conjecture on the zero sets of Laplace eigenfunctions. The
review accompanies two lectures given at the conference CDM 2018. We
discuss the works of Donnelly and Fefferman including their solution of
the conjecture in the case of real-analytic Riemannian manifolds. The
review exposes the new results for Yau’s conjecture in the smooth set-
ting. We try to avoid technical details and emphasize the main ideas of
the proof of Nadirashvili’s conjecture. We also discuss two-dimensional
methods to study zero sets.
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1. Yau’s conjecture

Yau conjectured [92] that for any n-dimensional C∞-smooth closed Rie-
mannian manifold M (compact and without boundary) the Laplace eigen-
functions ϕλ on M :

Δϕλ + λϕλ = 0,

satisfy

c
√
λ ≤ Hn−1({ϕλ = 0}) ≤ C

√
λ,

where c, C depend only on the Riemannian metric onM and are independent
of the eigenvalue λ. The symbol Hk denotes the k dimensional Hausdorff
measure.

The question of Yau is connected to the quasi-symmetry conjecture,
which states that

c <
Hn({ϕλ > 0})
Hn({ϕλ < 0}) < C

for any non-constant eigenfunction ϕλ. In dimension two Yau’s conjecture
implies the quasi-symmetry conjecture, see the discussion in Section 3.5.

The list of topics on geometry of Laplace eigenfunctions covered in this
review is very limited. In particular we do not discuss the celebrated Courant
nodal domain theorem, the variational methods, random eigenfunctions, the
Kac-Rice formula and quantum ergodicity. The focus of this review is on the
results and methods related to Yau’s conjecture and to the growth properties
of solutions to elliptic PDE. We would like to formulate some of the previous
results on Yau’s conjecture and the quasi-symmetry conjecture.

• Brunning 1978 ([16]), Yau: Lower bound is true for n = 2.
• Donnelly & Fefferman 1988 ([29]): Yau’s conjecture and the quasi-
symmetry conjecture are true for real analytic metrics. In particular
the conjectures are true for the spherical harmonics.

• Nadirashvili 1988 ([71]): n = 2, H1({ϕλ = 0}) ≤ Cλ log λ.
• Donnelly & Fefferman 1990 ([31]), Dong 1992 ([28]): n = 2,

H1({ϕλ = 0}) ≤ Cλ3/4.

• Hardt & Simon 1989 ([42]): n ≥ 2, Hn−1({ϕλ = 0}) ≤ CλC
√
λ.

• Nazarov & Polterovich & Sodin 2005 ([76]): n = 2, local bounds
for asymmetry of sign. If ϕλ(x) = 0, then for any r > 0

H2({ϕλ > 0} ∩Br(x))

H2({ϕλ < 0} ∩Br(x))
< C log λ log log λ, λ > 10.

• Colding & Minicozzi 2011 ([25]), Sogge & Zelditch 2011 ([84]), 2012
([85]), Steinerberger 2014 ([87]):

cλ
3−n
4 ≤ Hn−1({ϕλ = 0}).

In Section 4 we discuss the breakthrough work [29] of Donnelly and Fef-
ferman, which brought many ideas to nodal geometry. The solution of the
real-analytic case of Yau’s conjecture uses the idea of the holomorphic ex-
tension for eigenfunctions. The works of Donnelly and Fefferman explained
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how one can apply the methods of complex and harmonic analysis to nodal
sets in the case when the Reimannian metric is real-analytic. Their works
also gave us a point of view (for the general case of smooth metrics) that
the geometry of nodal sets is related to the growth properties of the eigen-
functions.

In Section 6 we discuss two other useful ideas for the study of nodal
sets: the harmonic extension for eigenfunctions and a powerful monotonic-
ity property for harmonic functions. The latter monotonicity property can
be formulated in two different forms. The first form is the three balls inequal-
ity, which means that harmonic functions satisfy some sort of logarithmic
convexity property. Agmon [2] noticed that a logarithmic convexity property
holds for harmonic functions in the Euclidean space, Landis [52] proved a
version of the three balls inequality for solutions of elliptic PDE with variable
coefficients. The second form involves the notion of frequency for harmonic
functions, which was introduced by Almgren [4]. The frequency function in
a fixed ball is a characteristic of growth of the harmonic function in this ball.
Almgren did a remarkable discovery that the frequency function is mono-
tone with respect to the radius when the center of the ball is fixed. Garofalo
and Lin [36] proved a version of the monotonicity property of the frequency
for harmonic functions on smooth Riemannian manifolds, which has many
applications for nodal sets.

In Sections 9 and 10 we expose the recent results in the smooth case
including the polynomial upper bound [55] and the lower bound [56] in
Yau’s conjecture:

c
√
λ ≤ Hn−1({ϕλ = 0}) ≤ CλCn .

The recent results follow the path suggested by Nadirashvili [74], who argued
that there is no hope to understand nodal sets if we don’t understand zero
sets of harmonic functions. In order to attack Yau’s conjecture Nadirashvili
formulated two conjectures on harmonic functions in the three dimensional
Euclidean space. One of them was recently solved [56] and the proof of
Nadirashvili’s conjecture implied the lower bound in Yau’s conjecture. The
second conjecture was asked by several mathematicians and goes back to
at least Lipman Bers. We will formulate it in Section 7.4. The conjecture
concerns the Cauchy uniqueness problem and is still open. However weaker
results on unique continuation properties of elliptic PDE were used to prove
polynomial upper bounds [55] in Yau’s conjecture.

Let us also mention that in dimension n = 2, one can improve 3/4 from
Donnelly-Fefferman’s bound by a tiny ε ([57]):

H1({ϕλ = 0}) ≤ Cλ3/4−ε.

The conjectured upper bound is still a challenging problem even in dimension
two where a lot of tools are available. We describe two-dimensional methods
in Section 3.
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2. Introduction: eigenfunctions, zeros and growth

2.1. Eigenvalues of Laplace operator. We briefly recall the basic
properties of Laplace eigenfunctions and refer to [22], [21] for the intro-
duction to the subject. Let M be a closed manifold (compact and without
boundary) with a given Remannian metric g. We denote by Δ the Laplace
operator on M defined by this metric. An eigenfunction of the Laplace op-
erator on M is a solution of the equation

Δϕ+ λϕ = 0.

The operator −Δ is non-negative and has a discrete spectrum,

0 = λ0 < λ1 ≤ λ2 ≤ ... .

The smallest eigenvalue is λ0 = 0 and the corresponding eigenfunction is
constant. Eigenfunctions that correspond to distinct eigenvalues are orthog-
onal:

∫
M ϕkϕl = 0.

For a subdomain Ω of M with (piecewise) smooth boundary the eigen-
functions of the Laplace operator on Ω with Dirichlet boundary conditions
are solutions of the problem{

Δϕ+ λϕ = 0 in Ω

ϕ = 0 on ∂Ω.

All eigenvalues of the Dirichlet Laplacian are positive,

0 < λ1(Ω) < λ2(Ω) ≤ ... .

The first eigenvalue is simple and the corresponding first eigenfunction does
not change sign in Ω. The eigenfunctions corresponding to the higher eigen-
values are orthogonal to the first one and take both positive and negative
values in Ω. There is a variational characterization of the eigenvalues known
as the Rayleigh quotient. The first eigenvalue is given by

λ1(Ω) = inf
f

∫
Ω |∇f |2∫
Ω |f |2 ,

where the infimum is taken over all non-zero functions f ∈ C1(Ω̄) such that
f = 0 on ∂Ω. This implies in particular that if Ω0 ⊂ Ω then

λ1(Ω0) ≥ λ1(Ω).

We denote by jn the first eigenvalue of the Dirichlet Laplace operator for
the unit ball Bn ⊂ R

n. Then a simple renormalization implies that λ1(Br) =
r−2jn for the n-dimensional Euclidian ball of radius r. If M is a closed
Riemannian n-dimensional manifold, then (using the Rayleigh quotient and
the normal coordinates) one can check that

lim
r→0

r2λ1(Br(x)) = jn

for any x ∈ M , where Br(x) is the geodesic ball centered at x; the limit is
uniform in x, see [22, chapter 3.9].
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2.2. Density of zeros. Suppose that ϕλ is a non-constant eigenfunc-
tion of the Laplace operator on M , then

∫
M ϕλ = 0 and it changes sign. We

consider the zero set of ϕλ,

Z(ϕλ) = {x ∈ M : ϕλ(x) = 0},

and the connected components of its complement, M \ Z(ϕλ) = ∪jΩj . The
domains Ωj are called nodal domains of the eigenfunction ϕλ. The restriction
of ϕλ onto each domain Ωj is an eigenfunction of the Dirichlet Laplace
operator and, since ϕλ does not change sign in Ωj , it is the first eigenfunction
(we skip the discussion of the regularity properties of the domains, one can
find the details in [24] and [21, chapter 1.5]). Therefore λ1(Ωj) = λ for
each Ωj .

Now it is easy to see that Z(ϕλ) is c/
√
λ dense in M . If x ∈ M and

dist(x, Z(ϕλ)) > r then Br(x) ⊂ Ωj for some j. It implies that

λ = λ1(Ωj) < λ1(Br(x)) < C(M)r−2.

Hence r < c/
√
λ.

The lower bound in Yau’s conjecture is supported by the fact that the
zero set of ϕλ is C√

λ
dense on M .

2.3. Two examples. Let Tn denote the standard torus. We identify it
with the cube [0, 1]n with glued opposite faces. There is a basis for L2(Tn)
consisting of eigenfunctions of the Laplace operator. The elements are prod-
ucts of trigonometric functions (sines and cosines) with frequencies that are
integer multiples of 2π. For example

φ(x1, ..., xn) = sin(2πk1x1)... sin(2πknxn)

is an eigenfunction with the eigenvalue λ = 4π2(k21+...+k2n). The zero sets of
such eigenfunctions considered on the cube [0, 1]n are unions of hyperplanes
parallel to the coordinate hyperplanes.

Another example is the unit sphere Sn. The eigenfunctions on Sn are
restrictions of homogeneous harmonic polynomials in R

n+1. For n = 2 we
get the classical spherical harmonics. There is a basis consisting of spherical
harmonics, whose zero sets are unions of “meridians” and circles of constant
“latitude”.

In both examples the zeros sets for basis eigenfunctions look very regu-
lar. However for the torus and for the sphere of dimension larger than one
the multiplicities of the eigenvalues of the Laplace operator can be large. In-
teresting examples appear when we take zero sets of linear combinations of
basic eigenfunctons corresponding to the same eigenvalue. A beautiful topic
that we do not discuss here is the zero sets of random eigenfunctions (linear
combinations with random coefficients). The interested reader can start wtih
[77], [81], [18], [93], [51] for the introduction to random eigenfunctions.
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2.4. Vanishing order. It is said that the vanishing order of a smooth
function f at a point x is k if any derivative of order smaller than k of f
at x is zero and there is some non-zero derivative of order k. The vanishing
order of f at x is zero if f(x) 
= 0 and ∞ if all derivatives of any order at x
are zero.

In dimension two the vanishing order of any eigenfunction ϕλ at a point
x has a geometrical meaning of the number of nodal curves intersecting at x
and the nodal curves have equiangular intersection at this point [9]. A very
natural question is how large could be the vanishing order of ϕλ?

Donnelly and Fefferman [29] answered this question for smooth Rie-
mannian manifolds of any dimension by showing that vanishing order of ϕλ

at any point is smaller than C
√
λ. The result is sharp if we don’t make

any extra assumptions on the Riemannian manifold. There are spherical
harmonics with vanishing order comparable to

√
λ. Peter Sarnak suggested

that for surfaces with negative curvature the bound on the vanishing order
should be improved to cελ

ε for any ε > 0, and it would imply a good bound
on the multiplicity of the eigenvalues.

The proof [29] of the doubling index estimate C
√
λ for general closed

Riemannian manifolds is using Carleman inequalities and is inspired by the
paper [5] of Aronszajn on unique continuation properties of solutions of
elliptic PDE of second order. The basic question of unique continuation is
whether a non-zero solution can vanish on an open set.

2.5. Doubling index. Donnelly and Fefferman also proved [29] a use-
ful bound for the growth of ϕλ:

(1) log
sup2B |ϕλ|
supB |ϕλ|

≤ CM

√
λ

for any geodesic ball B on M and the geodesic ball 2B with the same center
and twice bigger radius than B.

The number log2
sup2B |f |
supB |f | is called the doubling index of the function f

in the ball B and is denoted by Nf (B). Note that for C∞ smooth functions

lim
r→0

Nf (Br(x)) = vanishing order of f at x.

The doubling index estimate (1) implies the bound C
√
λ for the vanishing

order for eigenfunctions.

2.6. BMO norm of log |ϕλ|. One of the ideas of the works of Donnelly
and Fefferman is that the eigenfunctions ϕλ behave as polynomials of degree√
λ. In particular they prove [30] Bernstein type inequalities for the norms of

∇ϕλ and conjecture that ‖ log |ϕλ|‖BMO ≤ C
√
λ, see [86] for the definition

of BMO space. If P is a polynomial of one variable of degree d then P (z) =
a(z−z1)..(z−zd) and it is clear that ‖ log |P (z)|‖BMO ≤ Cd. Similar estimate
holds for polynomials of several variables.
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Donnelly and Fefferman showed that ‖ log |ϕλ|‖BMO ≤ Cλn(n+2)/4. This
estimate was improved [20] by Chanillo and Muckenhoupt and then [61] by
Lu, and [40] by Han and Lu. The recent result [59], [58] on quantitative
unique continuation for solutions of second order elliptic PDEs implies the
conjectured bound ‖ logϕλ‖BMO ≤ C

√
λ. The conjectured bound appeared

to be connected to a question of Landis, which will be discussed in Section
7.2.

We can rewrite the estimate for the BMO-norm of log |ϕλ| as a propa-
gation of smallness result. If for some constant c > 0, each cube Q, and each
a > 0

Hn{x ∈ Q : |ϕλ(x)| ≤ e−a sup
Q

|ϕλ|} ≤ Ce−ca/
√
λ|Q|

then ‖ log |ϕλ|‖BMO ≤ C
√
λ. The latter inequality is equivalent to the fol-

lowing estimate

sup
Q

|ϕλ| ≤ C

(
C
|Q|
|E|

)C
√
λ

sup
E

|ϕλ|,

for any subset E ⊂ Q with positive measure. Note that this inequality
resembles the classical inequality of Remez [79, 10] for polynomials.

Looking at the spherical harmonics u(x, y, z) = 
(x + iy)n one can see

that Laplace eigenfunctions can be e−c
√
λ small on a fixed open subset of

the manifold. Such localization cannot happen on the standard torus T
n.

Various strong results on the torus with the standard metric were obtained
[14], [13], [15] by Bourgain and Rudnick. In particular they proved a uniform
L2 restriction bounds on curves for 2-dimensional torus.

For negatively curved Riemannian manifolds we believe that it is possible
to prove better versions of the BMO estimate and better bounds for the
doubling index. We would like to mention an outstanding recent result by
Bourgain & Dyatlov [12] and Dyatlov & Jin [32].

Theorem 2.1 ([12], [32]). Under assumption that (M, g) is a closed
Riemannian surface with constant negative curvature the following inequality
holds for all Laplace eigenfunctions ϕλ on M . For any open subset E of M
there exists c = c(E,M, g) > 0 (independent of the eigenvalue λ) such that∫

E
ϕ2
λ ≥ c

∫
M

ϕ2
λ.

3. Zero sets of eigenfunctions on surfaces

3.1. Local structure of the zero set in dimension two. Let M
be a surface with a given Riemannian metric. Locally at small scales the
zero set of any eigenfunction on M looks like the zero set of a harmonic
function on the plane. If ϕλ(x) = 0 and the vanishing order of ϕ at x is
k (the number of derivatives of ϕ, which are zero at x), then in a small
geodesic ball centered at x the zero set Z(ϕλ) consists of k smooth curves
intersecting at the point x and forming equal angles π/k at the point of
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intersection. To the best of our knowledge it was first observed by Bers [9].
In higher dimensions it is also true that the first term in the Taylor series
of ϕλ is a harmonic function, however the local structure of the zero set in
this case can be quite complicated (even in the Euclidean space R3) and not
stable, see an example of a harmonic polynomial in [60].

3.2. Estimates of the length of the zero set from below. The
lower bound in the Yau conjecture on surfaces was proved [16] by Bruning
and also by Yau. The result follows from the density estimate of the zero
set and an observation on the diameter of connected components of the zero
set.

Observation. There exists a constant c = c(M) such that if ϕλ is
an eigenfunction and Ωj is a connected component of M \ Z(ϕλ) then

diam(Ωj) ≥ c(M)/
√
λ. To prove the observation, suppose that Ωj ⊂ Br

for some geodesic ball Br with radius r. Then by the monotonicity of the
first eigenvalue,

λ = λ1(Ωj) ≥ λ1(Br) > c1r
−2.

It implies that diam(Ωj) ≥ c2λ
−1/2.

The latter observation implies that if ϕλ(x) = 0, then

H1({ϕλ = 0} ∩B1/
√
λ(x)) ≥ c/

√
λ.

Combined with the fact that {ϕλ = 0} is C/
√
λ dense on M , the observation

implies the lower bound in Yau’s conjecture in dimension two.

3.3. Singular points. Donnelly and Fefferman obtained a number of
interesting results [31] on the zero sets for eigenfunctions on surfaces. They
also considered the singular set of eigenfunctions, defined as

S(ϕλ) = {x ∈ M : ϕλ(x) = 0,∇ϕλ(x) = 0}.
For eigenfunctions on surfaces the singular set is a discrete set of points
and the number of singular points of ϕλ is bounded by Cλ. Donnelly and
Fefferman proved a stronger statement:
If B is a geodesic ball onM of radius cλ−1/4, and for each point p ∈ B∩S(ϕλ)
let the vanishing order of ϕλ at p be k(p)+1 (vanishing order at any singular
point is at least two), then

(2)
∑
p

k(p) ≤ c
√
λ.

The estimate (2) is sharp in several ways: 1) one cannot enlarge the radius

cλ−1/4, 2) there exist spherical harmonics with vanishing order at one point

comparable to
√
λ and 3) there are also spherical harmonics with the total

number of singular points comparable to λ.
One of the tools used by Donnelly and Fefferman is a simple and powerful

two dimensional Carleman inequality. Let D be a domain on the complex
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plane and h be a smooth function on D. For any complex valued f ∈ C∞
0 (D)

the following inequality holds∫
D
|∂̄f |2eh ≥ 1

4

∫
D
Δh|f |2eh,

and if Δh ≥ 1 in D, then∫
D
|Δf |2eth ≥ ct2

∫
D
|f |2eth.

A remarkable idea [31] due to Donnelly and Fefferman explains how
two dimensional Carleman inequalities help to unite the information on the
behavior of the eigenfunctions (such as growth, vanishing order, doubling
index) near several points. This method is quite flexible in dimension two.
The original Carleman approach [19] concerns the two dimensional case, but
there are higher dimensional generalizations of Carleman inequalities ([5],
[26], [27]). They allow to study the behavior of a solution to elliptic PDE
near one point or near infinity, but higher dimensional Carleman inequalities
are less flexible. The conditions on Carleman weights in higher dimensions
are hard to apply in the situations where you have to work with the behavior
of the eigenfunctions near several points or curves.

In Section 7.4 we will formulate an old open question, which shows that
we don’t understand unique continuation properties for elliptic PDE well
enough in higher dimensions.

3.4. Estimate of the zero set from above by Donnelly and Fef-
ferman. The upper bound in the Yau conjecture for eigenfunctions on sur-
faces with smooth Riemannian metric is still an open problem. Donnelly and
Fefferman showed [31] that

(3) H1(Z(ϕλ)) ≤ Cλ3/4.

Once again they worked on the scale cλ−1/4 and used the bound C
√
λ for

the doubling index in any ball. They showed that H1(Z(ϕλ) ∩ B) ≤ Cλ1/4

for any geodesic ball B of radius cλ−1/4 by proving the following estimate
for solutions of elliptic inequalities.

Estimate for the length of nodal set in dimension two ([31]).
Let Q be the unit square and N > 1. Suppose that a function ϕ : 2Q → R

satisfies

|Δϕ| ≤ N |ϕ|
in 2Q and for any subcube q of Q the doubling index of ϕ in q is smaller
than N . Then

H1

(
x ∈ 1

100
Q : ϕ(x) = 0

)
≤ CN.

The proof of the latter statement is not simple. It is based on a two-
dimensional Carleman inequality with a carefully chosen weight adjusted to
the function ϕ and the idea of the Calderon–Zygmund decomposition.
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As the result Donnelly and Fefferman proved that on the scale 1√
λ
the

length of zero set can be estimated from above in terms of the doubling
index. It is remarkable that there is also a lower bound.

Estimate of the length of nodal lines in terms of the doubling
index ([80], [31], [76]).

cNϕλ
(B 1

4
√
λ

(x))− C ≤
√
λ · H1({ϕλ = 0} ∩B 1√

λ

(x)) ≤ CNϕλ
(B 2√

λ

(x)) + C.

(4)

Remark. The recent combinatorial argument [57] shows that there ex-
ists ε > 0 such that for any closed surface M the eigenfunctions ϕλ on M
satisfy

H1(Z(ϕλ)) ≤ Cλ3/4−ε

for some C = C(M). It demonstrates that there is a room for improve-
ment for estimate (3). A challenging problem is to prove the upper bound
conjectured by Yau even in dimension two.

3.5. Yau’s conjecture and distribution of doubling indices. Let
M be covered by ∼ λ geodesic discs Bi of radius C/

√
λ so that each point of

M is covered at most C1 times and ϕλ is zero at the center of each disc Bi.

Conjecture (Nazarov, Polterovich and Sodin). There is a numer-
ical constant C (independent of λ and of the covering) such that∑

N(Bi)

#Bi
≤ C.

In view of (4) the latter conjecture is equivalent to the Yau conjecture
in dimension 2.

Weak form of the conjecture. At least half of Bi have a bounded
doubling index.

Comment. The weak conjecture implies the quasi-symmetry conjec-
ture:

c <
H2(ϕλ > 0)

H2(ϕλ < 0)
< C.

3.6. Approach of Dong. A different method to study zeroes and sin-
gular sets of eigenfunctions on surfaces was suggested by Dong [28]. Let ϕλ

be a Laplace eigenfunction on 2-dimensional manifold M . Dong considered
the function q = |∇ϕλ|2+λϕ2

λ/2 and obtained an estimate for Δ ln q outside
of the singular set of ϕλ. For a harmonic function u on the Euclidean plane
we know that ∇u can be identified with an analytic function and ln |∇u|
is subharmonic. This simple fact has a remarkable power in complex and
harmonic analysis. Dong proved that

Δ ln q ≥ −λ+ 2min(K, 0)

on the set {q 
= 0}, where K is the Gaussian curvature of the surface. Using
the latter inequality Dong found different proofs for the estimate (2) of the
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sum of the vanishing orders at the singular points and for the Donnelly–
Fefferman bound (3) of the length of the nodal set.

3.7. Applications of quasiconformalmappings to eigenfunctions.
On the scale c/

√
λ the Laplace eigenfunction ϕλ behaves like a harmonic

function. For Riemannian surfaces one can justify the latter claim in a
rigourous way involving quasiconformal mappings. We will briefly discuss
the reduction, and the interested reader can read the details in [76] and
learn more about the quasiconformal mappings and their applications to
PDE in [6]. There are several steps in the reduction.

For Riemannian surfaces it is convenient to work in local conformal
coordinates: the equation for the eigenfunctions simplifies to

Δϕ+ λqϕ = 0,

where Δ is the standard Laplace operator on R
2 and q is a bounded function.

If we consider a disc of radius ε/
√
λ and rescale it to the unit disc, the

equation reduces to

Δϕ+ V ϕ = 0

in D = {|z| < 1} with ‖V ‖∞ < Cε2.

Claim. If ‖V ‖∞ is sufficiently small, then there is a positive solution f
to the equation

Δf + V f = 0

in D such that

1− C‖V ‖∞ ≤ f ≤ 1.

The ratio u = ϕ/f satisfies in D the equation in divergence form:

div(f2∇u) = 0.

The theory of quasiconformal mappings joins the game here. There is a
K-quasiconformal homeomorphism g from D to D with g(0) = 0 such that
h = g ◦ u is a harmonic function in D and K > 1 satisfies

K − 1

K + 1
≤ sup

D

1− f2

1 + f2
.

In particular K tends to 1 as f becomes close to 1 in D.
We do not know the change of variables g explicitly, moreover it depends

on the auxiliary function f , but g possesses good geometric properties with
quantitative estimates that depend only on K, which is under control. For
instance, Mori’s theorem states that g is 1/K-Hölder and

1

16
|z1 − z2|K ≤ |g(z1)− g(z2)| ≤ 16|z1 − z2|1/K .

Nadirashvili [71] suggested to apply quasiconformal mappings to get the
bounds for the length of zero sets of eigenfunctions. Nazarov, Polterovich,
Sodin [76] applied quasiconformal mappings and Astala’s area distortion
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theorem to asymmetry of sign of the eigenfunctions. They showed that if
ϕλ(x) = 0, then for any geodesic disc Br(x)

H2({ϕλ > 0} ∩Br(x))

H2({ϕλ < 0} ∩Br(x))
< C log λ log log λ.

Above we assume that λ > 10 to make log log λ well defined.
To prove the bound above it sufficient to consider the case r ≤ c/

√
λ

only, the case of bigger scales follows in a straightforward way using the fact
that the nodal set is C/

√
λ dense. Nazarov, Polterovich and Sodin used the

quasiconformal mappings and the doubling index bound C
√
λ to reduce the

question of quasi-symmetry for eigenfunctions in dimension 2 to a question
about harmonic functions on the plane.

Quasi-symmetry of sign of harmonic functions with controlled
growth. Let u be a harmonic functions in R

n with u(0) = 0. Suppose that

Nu(B) ≤ N . How large |{u>0}∩B|
|{u<0}∩B| can be?

Nazarov, Polterovich, Sodin answered this question in dimension 2 by
proving the sharp estimate

H2({u > 0} ∩B)

H2({u < 0} ∩B)
≤ C logN.

The extra factor of log log λ is the price payed for using quasiconformal
mappings.

4. Real-analytic Riemannian manifolds and the work of Donnelly
and Fefferman

Donnelly and Fefferman [29] proved the Yau conjecture in the case when
the metric is real-analytic. The work of Donnelly and Fefferman brought
many new ideas to the field. Some of the ideas use the real analyticity of the
metric, some of them work in the smooth setting. In this section we would
like to focus on how the assumption of real analyticity helps.

4.1. Real-analyticity in local coordinates. In local coordinates one
can think about ϕλ as of a solution to the elliptic equation

(5)
1√
|g|

div(
√
|g|(gij)∂jϕλ) + λϕλ = 0

in some domain D in R
n. In the case when the metric is real-analytic the

coefficients of the equation are real-analytic.
The following extremely useful idea is due to Donnelly and Fefferman.

The idea is using real-analyticity.

Main idea. There is a complex neighborhood D∗ of D in C
n, which

depends on g and D, but does not depend on λ, such that any solution ϕλ

to (5) in D has a holomorphic extension onto D∗ with estimate

(6) sup
D∗

|ϕλ| ≤ eC
√
λ sup

D
|ϕλ|.
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If we fix a linear elliptic operator L = div(A∇·) with real-analitic coef-
ficients in a ball B ⊂ R

n with center at the origin, then any solution u of
Lu = 0 is real-analytic [67], [50], [78] and moreover the Cauchy estimates
for the derivatives of u hold:

|Dαu(0)| ≤ Cα! sup
B

|u|/R|α|,

where R depends on the real analytic coefficients of L. It implies that u
coincides with its Taylor series in some neighborhood of 0. One can plug
complex numbers in the Taylor series of u, which naturally defines the holo-
morhic extension of u in a complex ball B∗ ⊂ C

n (with smaller radius R
than of B) with the estimate:

sup
B∗

u ≤ CL sup
B

u.

However the coefficients of the equation for ϕλ grow with λ and it is
not clear apriori why the domain of holomorphic extension could be cho-
sen independent of λ. The original proof [29] of holomorphic extesnion by
Donnelly and Fefferman was further simplified with the help of the harmonic
extension, which allows to pass to an elliptic equation with fixed coefficients.
The idea of harmonic extension will be formulated in Section 6. The authors
learned this idea from F.-H. Lin.

4.2. Upper bound in Yau’s conjecture in the real-analytic case.
The interested reader may start with a simpler case of harmonic functions
in R

n and learn in [38] the idea how to apply the holomorphic extension
to upper bounds for nodal sets of harmonic functions. The common idea is
using the fact that the size of the zero set of holomorphic functions can be
estimated in terms of growth of the function.

Complex analysis lemma. Let f be a holomorphic function of one
variable in the disc {|z| < 2} such that f(0) = 1 and sup{|z|<2} |f | ≤ 2N for
some number N . Then

(7) Number of zeroes of f on R ∩ {|z| < 1} is smaller than CN .

The ideas in the proof of the upper bound in Yau’s conjecture (in the
real-analytic case) are the holomorphic extension (6) into a complex neigh-
borhood (which does not depend on λ) and estimate (7) on the number of
zeroes of a holomorphic function. The whole proof contains technical details.
We give a very brief sketch of the technical details. First, the doubling index
estimate (1) implies that for any geodesic ball B on the manifold there is a
constant C1, which depends on the radius of B and on the manifold, such
that

sup
B

|ϕλ| ≥ e−C1

√
λ sup

M
|ϕλ|.

So near each point on the manifold one can find a point where the value
is not too small. Second, consider any point x with value |ϕλ(x)| at least

e−C1

√
λ supM |ϕλ|. Assume supM |ϕλ| = 1. Looking at ϕλ in local coordinates
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near x one can use the holomorphic extension with estimate and the estimate
(7) to conclude that any segment (in local coordinates) passing through x

of length smaller than some constant c1 contains at most C2

√
λ zero points.

The final technical step is to obtain the estimate for n − 1 dimensional
Hausdorff measure of the zero set from the fact that zero set does not have
many intersections with the segments passing through the points, where |ϕλ|
is at least e−C1

√
λ.

The idea of the last step is formalized in the next claim.

Estimate of Hausdorff measure via intersections with lines. Fix
n + 1 points x1, x2, . . .xn+1 in R

n, such that x1, x2, . . .xn+1 do not lie on
one (n − 1)-dimensional plane. Suppose that S is a closed set inside of the
unit ball B = {|x| < 1}. If for any line L passing through at least one point
of x1, x2, . . .xn+1 the number of points in L∩S is smaller than a number N ,
then (n−1)-dimensional Hausdorff measure of S is smaller than CN , where
C = C(x1, ..., xn+1) depends on how degenerate the simplex {x1, ..., xn+1}
is, on the diameter of the ball B (which contains S) and on the distance
between B and the simplex.

Remark. If a compact set S in R
n has a property that any line L passing

through x1 contains at most 1 point of S, then it is not true that S has a
finite (n − 1)-dimensional Hausdorff measure. However the last statement
becomes true if the same property holds for n + 1 points x1, x2, . . .xn+1,
which do not lie on the same hyperplane.

Estimate for the number of balls of size 1√
λ
with large doubling

index. One can cover M by ∼ λn/2 balls Bj of radius 1√
λ
in such a way

that every point of M is covered at least once and at most C times.
Donnelly and Fefferman proved that for at least half of Bj the doubling

index of ϕλ in Bj is bounded by some constant C1, which does not depend
on λ. One can also replace the word “half” by 99/100 and the statement
above will remain true, but C1 will become larger. In other words for most
of balls of size 1√

λ
the doubling index of ϕλ is controlled.

Remark. The latter statement has beautiful corollaries: the lower bound
in Yau’s conjecture and the quasi-symmetry conjecture.

4.3. Lower bound in Yau’s conjecture in the real-analytic case.
The zero set of ϕλ is C√

λ
dense on M . One can cover n-dimensional closed

manifold M by ∼ λn/2 balls Bj of radius ∼ 1√
λ
in such a way that ϕλ is zero

at the centers of the balls Bj and every point of M is covered less than C
times.

Donnelly and Fefferman showed that at least half of Bj have the doubling
index smaller than C1. Furthermore they showed that if a ball Bj of radius
C√
λ
has a doubling index smaller than C1 and ϕλ is zero at the center of Bj ,
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then

Hn−1(Bj ∩ {ϕλ = 0}) ≥ c1

(
√
λ)n−1

and

C2 >
Hn(Bj ∩ {ϕλ > 0})
Hn(Bj ∩ {ϕλ < 0}) ≥ c2 > 0.

Since the total number of such Bj is comparable to (
√
λ)n, it yields the

lower bound in Yau’s conjecture and the quasi-symmetry conjecture in the
real-analytic case.

Remark on the lower bound in the real-analytic case. The proof
of the lower bound in Yau’s conjecture is more elaborate than of the upper
bound. The most interesting part is how to show that for at least half of balls
Bj of size C√

λ
the doubling index of ϕλ is bounded. The proof of the latter

fact is also using the holomorhpic extension (6) with the growth estimate

eC
√
λ. We do not dare to explain the complete plan of the proof, but we would

like to mention one useful statement, which helps to control oscillations of
holomorphic functions in terms of growth. It gives a hint why we should
believe that the doubling index for half of the balls is bounded.

Complex/Harmonic analysis lemma (Proposition 5.1 in [29]).
Fix ε > 0. Let f be a holomorphic function of one complex variable in
the disc {|z| < 2} such that f(x) is real for x ∈ [−2, 2], f(0) = 1 and
sup{|z|<2} |f | ≤ 2N for some integer number N > 1. Split the interval [−1, 1]

into N equal intervals Qν of length 1
N . Then there is a set E ⊂ [−1, 1] of

measure less than ε such that

| log f2(x)− log(
1

|Qν |

∫
Qν

f2)| ≤ Cε

for any x ∈ Qν \E. Here Cε depends only on ε.

Remark. The statement above allows to control oscillations of holomor-
phic functions in terms of growth. It suggests that if a holomorphic function
grows slower than a polynomial of degree N , then it behaves nice on most
of the intervals of length 1/N . In particular if ε is small enough, then the
lemma used twice for N and 2N gives

1

|Qν |

∫
Qν

f2 ≤ C
1

|12Qν |

∫
1
2
Qν

f2

for at least half of Qν . In other words L2 doubling index for f is bounded
for a big portion of intervals of length 1/2N .

5. Norm estimates of eigenfunctions and their applications for
the lower bound in the Yau conjecture

5.1. Weyl’s law. A classical result on the spectrum of the Laplace
operator Δ on a compact Riemannian manifold M is the Weyl asymptotic
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law. Let N(λ′, λ′′) denote the number of eigenvalues μ of the operator of
−Δ such that λ′ ≤ μ < λ′′. Then

N(0, λ) = cnλ
n/2vol(M) +O(λ(n−1)/2),

where cn is the constant that depends only on the dimension. It implies that
N((k − 1)2, k2) is comparable to kn−1.

Motivated by the study of projections in spherical harmonics, Sogge [82]
considered projections Pk of L2(M) onto subspaces generated by eigenfunc-
tions with eigenvalues μ ∈ [(k − 1)2, k2). He obtained sharp inequalities of
the form

‖Pkf‖q ≤ kσ(p,q,n)‖f‖p,
where 1 ≤ p ≤ 2 and q = 2 or p′ = p/(p − 1). These inequalities imply Lp

norm estimates for eigenfunctions. In particular, if ϕλ is the eigenfunction
and p = 2(n+ 1)/(n− 1) then

(8) ‖ϕλ‖p ≤ Cλ1/(2p)‖ϕλ‖2.

5.2. Lower estimate of the zero set on the smooth case by Cold-
ing and Minicozzi. Inspired by the ideas of Donnelly and Fefferman, Cold-
ing and Minicozzi [25] proved a lower bound for the size of the nodal set by

finding many balls of size C/
√
λ with bounded doubling index. They covered

the manifold M by balls of radius C/
√
λ in such a way that ϕλ is zero at

the center of each ball and each point is covered by not more than C1 balls.
As in the real analytic case it is also true in the smooth case that one can
control the size of the zero set in balls, where the doubling index is smaller
than a fixed numerical constant D. Let’s call such balls good and denote
by B the collection of good balls. In each good ball B the eigenfunction ϕλ

cannot oscillate too fast since we control its growth properties, and one can
inscribe a ball of radius cD/

√
λ in B ∩{ϕλ > 0} and a ball of radius cD/

√
λ

in B ∩ {ϕλ < 0}. Every segment connecting these balls has a sign change of
ϕλ and that therefore

Hn−1(Z(ϕλ) ∩B) ≥ cλ−(n−1)/2.

The elegant idea [25] states that most of the L2-mass of the function is
concentrated in good balls:∑

B∈B

∫
B
|ϕλ|2 ≥ c1‖ϕλ‖22.

This is true because the sum over bad balls satisfies∑
B/∈B

∫
B
|ϕλ|2 ≤

C

D
‖ϕλ‖22.

Let G = ∪B∈BB. Since each point is covered at most C1 times we have∫
G
|ϕλ|2 ≥ c‖ϕλ‖22.
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Then the Hölder inequality gives

c‖ϕλ‖22 ≤
∫
G
|ϕλ|2 ≤

(∫
M

|ϕλ|2(n+1)/(n−1)

)(n−1)/(n+1)

|G|2/(n+1).

To estimate the number of good balls, Colding and Minicozzi applied the Lp

bound (8) of Sogge, it implies |G| ≥ c2λ
−(n−1)/4. G is a union of good balls

of radius C/
√
λ. Hence the number of the good balls is at least c3λ

(n+1)/4.
This leads to the following lower bound of the zero set

Hn−1(Z(ϕλ)) ≥ c4λ
−(n−3)/4.

5.3. Lower estimate of the zero set by Sogge and Zelditch. An-
other approach to the estimate of the size of the zero set from below was
suggested [84], [85] by Sogge and Zelditch. Their starting point is the corol-
lary of the Green formula applied to nodal domains

λ

∫
M

|ϕλ| = 2

∫
Z(ϕλ)

|∇ϕλ|.

It immediately implies that

Hn−1(Z(ϕλ)) ≥ λ
‖ϕλ‖1

‖∇ϕλ‖∞
.

Rescaling the equation Δϕλ + λϕλ = 0 from balls of radius c/
√
λ to unit

balls and applying standard elliptic estimates it is not difficult to prove that
‖∇ϕλ‖∞ ≤ C

√
λ‖ϕλ‖∞. Finally the inequality

‖ϕλ‖∞ ≤ Cλ(n−1)/4‖ϕλ‖1
implies the estimate Hn−1(Z(ϕλ)) ≥ cλ−(n−3)/4. The inequality between the
L1 and L∞ norms of eigenfunctions is non-trivial.

Remark. We would like to mention that the third proof of the lower
bound [25], [85] (mentioned in the previous subsection) was given [87] by
Steinerberger, who applied the heat flow to the eigenfunctions. His approach
is using L∞ bounds for eigenfunctions. The heat kernel approach in [87] was
further generalized to linear combinations of eigenfunctions [88] and it shows
that if f is a linear combination of eigenfunctions with eigenvalues in the
interval (λ, 10λ), then either the L∞ norm of f is large compared to L1 norm
or f has a large zero set.

Other works on the lower bounds include [65, 44].

6. From eigenfunctions to solutions of elliptic PDEs

6.1. Harmonic extension of eigenfunctions. Some of the questions
on the Laplace eigenfunctions can be reduced to questions on harmonic
functions on Riemannian manifolds. If ϕλ is an eigenfunction onM satisfying
Δϕλ + λϕλ = 0 then the function

u(x, t) = ϕλ(x)e
√
λt
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is defined on M × R and is harmonic with respect to the natural metric on
the product manifold. The zero set of the new function is the cylinder over
the zero set of the old function:

Zu = Zϕλ
× R.

The equation for u is now independent of λ, the growth of u in the variable
t carries the information on the eigenvalue. The idea of harmonic extension
allows to simplify several steps in the proof of the upper bound in [29],
including the holomorphic extension with estimate and the proof of the
doubling index estimate C

√
λ.

6.2. The frequency function. We start with a harmonic function h
in a subdomain Ω of the Euclidean space and for each ball B = Br(x) ⊂ Ω
define the following quantities

Hh(x, r) =
1

|∂B|

∫
∂B

h2, Fh(x, r) = r
d

dr
logH(x, r).

It was known to Agmon [2] and Almgen [4] that Fh(x, r) is an increasing
function of r and thus the function t → logHh(x, e

t) is convex; Fh is called
the frequency function of h. Garofalo and Lin [36] showed that a similar
almost monotonicity inequality holds for solutions of second order elliptic
PDEs in divergence form with Lipschitz coefficients, which has many appli-
cations to nodal sets on smooth manifolds. We omit the accurate definition
of the frequency in that setting, but we would like to describe the relation
of this term to the doubling index defined in 2.5. The doubling index and
frequency are almost synonyms: one of them deals with the growth of L2

norm another one with L∞ norm. The definition of the frequency and the
monotonicity property lead to the following inequalities

Fh(x, r) ≤ log2
Hh(x, 2r)

Hh(x, r)
≤ Fh(x, 2r)

for any ball B = B(x, r) such that B(x, 2r) ⊂ Ω. At the same time the
standard elliptic estimates imply that one can compare L2 and L∞ norms
of harmonic functions if we are allowed to enlarge the radius of the ball:

Hh(x, r) ≤ max
Br(x)

|h| ≤ CHh(x, 3r/2).

This explains the connection between the frequency and the doubling index
of solutions of second order elliptic equations,

cFh(x, r/3) ≤ Nh(Br(x)) ≤ CFh(x, 3r).

6.3. Applications to eigenfunctions. We consider the lift u(x, t) of
the eigenfunction ϕλ as a solution of the second order elliptic PDE in diver-
gence form. The dependence of u on t encodes the growth properties:

max
M×[−2r,2r]

|u| = e
√
λr max

M×[−r,r]
|u|.
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It is not difficult to deduce from the almost monotonicity property of the
frequency function/doubling index that the frequency and the doubling in-

dex of u in any ball in M×[−1, 1] are bounded by C
√
λ. This approach gives

a new proof of the doubling index estimate C
√
λ of eigenfunctions. For har-

monic functions on Riemannian manifolds the frequency controls the order
of vanishing and also the size of the zero set, see [38], [42], [55].

7. Propagation of smallness

Harmonic functions on Riemannian manifold share some properties of
holomorphic functions when the metric is smooth but not necessarily real-
analytic. An important illustration is the (weak) unique continuation princi-
ple for such functions proved by Cordes [26] and Aronszajn [5]. If a harmonic
function defined on some domain Ω is zero on an open subset of Ω then it
is zero on the whole domain. The statement is true for solutions of ellip-
tic equations in divergence form with Lipschitz coefficients, but it fails [66]
for Holder continuous coefficients in dimension larger than 2. We need two
quantitative versions of this principle which we refer to as propagation of
smallness.

7.1. Three ball theorem. The first quantitative version of the state-
ment is the Hadamard three-circle theorem for holomorphic functions on the
complex plane. Let f be holomorphic in some neighborhood of the origin,
define M(r) = max|z|=r |f(z)|, then

M(r1) ≤ M(r0)
αM(r2)

1−α, where r0 < r1 < r2, r1 = rα0 r
1−α
2 .

For a function h harmonic in Euclidean metric the same statement be-
comes true [38], [2], [4] if one replaces M(r) by the L2-average Hh(x, r) =
|∂Br(x)|−1

∫
∂Br(x)

|h|2. It is equivalent to the convexity property discussed

in section 6.2. Further, comparison of L2 and L∞ norms yields the following
inequality

sup
|x|≤r1

|h(x)| ≤ C sup
|x|≤r0

|h(x)|α sup
|x|≤r2

|h(x)|1−α, α = α(r0/r1, r2/r1) ∈ (0, 1).

(9)

This result was generalized to solutions of elliptic equations with non-ana-
lytic coefficients by Landis [52]. It holds for solution u to elliptic equations
in divergence form div(A∇u) = 0 with Lipschitz coefficients.

7.2. Question of Landis. Landis asked whether the inequality (9)
remains true when the smallest ball {|x| ≤ r0} is replaced by a wild set of
positive measure. Suppose that u is a solution of the equation div(A∇u) = 0
in some ball 2B such that |u| is bounded by one in 2B and let E be a
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measurable subset of B with positive measure. Assume also that u is small
on E, supE |u| ≤ ε. The question of Landis is whether the inequality

sup
B

|u| ≤ Cεα

holds with some C > 0 and α ∈ (0, 1) that depend on the equation and on
the volume |E| > 0, but not on u or the geometry of E. For the case of real
analytic coefficients the affirmative answer was given by Nadirashvili [75].
For the case of smooth coefficients partial advances towards the question
of Landis were obtained by Nadirashvili [70] and by Vessella [89]. In the
real-analytic case it can be obtained with the help of holomorphic extension
with estimate. For any holomorphic function f (of one complex variable)
log |f | is subharmonic, which is a powerful unique continuation property. It
allows to get the affirmative answer to the question of Landis problem in
the real-analytic case.

The positive answer to the question of Landis was recently obtained for
elliptic equations of the form div(A∇u) = 0 with Lipschitz coefficients. The
proof is based on a simple version of multiscale iteration, see the lecture notes
[59] for the mini-course at PCMI 2018 and also [58] for further discussion of
the classical problems on unique continuation. The recent proof also yields
the bound for the BMO-norm of log |u| in terms of the doubling index of u.
As the corollary one can obtain the estimate of the BMO-norm of log |ϕλ|
for eigenfunctions that was discussed in Section 2.6.

7.3. Quantitative Cauchy uniqueness theorem. The Cauchy
uniqueness property for second order elliptic PDEs with Lipschitz coeffi-
cients states that if div(A∇u) = 0 in some domain Ω, u ∈ C1(Ω̄) and the
solution u and its normal derivative un vanish on a relatively open part Γ
of ∂Ω then u = 0 in Ω. We are looking for a quantitative version of this
statement, which is called conditional stability of the Cauchy problem. For
the history of the question that goes back to Hadamard we refer the reader
to the survey [3].

We formulate the quantitative result from [3] in simple geometric sit-
uation. Suppose that u is a solution of an elliptic equation div(A∇u) = 0
in the half-ball B+

2r = {x = (x1, ..., xn) : |x| < 2r, xn > 0} and is C1

smooth up to the boundary. Let Γ be the flat part of the boundary of B+
2r,

Γ = {x : |x| < r, xn = 0}. We assume supB+
2r
|u| ≤ 1. If the Cauchy data of

u is small on Γ, then the solution is small on each smaller half-ball. Namely,
if supΓ(|u|+ |∇u|) ≤ ε then

sup
B+

r

|u| ≤ Cεα,

for some C > 0, α ∈ (0, 1) that depend on the coefficients of the equation
and on r but not on u.
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7.4. Old open question on the Cauchy uniqueness problem.
Here we mention the second question that Nadirashvili suggested [74] to
focus on to solve the Yau conjecture.

Assume u is a harmonic function in the unit ball B ⊂ R
3 and u is C∞-

smooth in the closed ball B. Let S ⊂ ∂B be any closed set with positive
area. Is it true that ∇u = 0 on S implies ∇u ≡ 0?

For the less smooth class of functions C1+ε(B1) there is a striking coun-
terexample [11], [91]. The attempts to construct C2-smooth counterexam-
ples were not successful.

8. Zeroes and singular sets of solutions of elliptic PDEs with
smooth coefficients

8.1. Structure of the zero set and the estimate of Hardt and
Simon. Recall that the singular set S(ϕ) of a function ϕ is the set {x :
ϕ(x) = 0,∇ϕ(x) = 0} and the critical set is defined by {x : ∇ϕ(x) = 0}.
The structure of the zero sets and critical sets of eigenfunctions and more
general solutions of elliptic PDEs is a delicate subject especially when the
metric or the coefficients of the equations are not real-analytic.

Bers [9] studied the local behavior of solutions of linear elliptic PDE by
looking at the first term in the Taylor expansion of the solution. In particular
the work of Bers implies that for Laplace eigenfuncitons on surfaces the
nodal set is a union of curves with equiangular intersections. Caffarelli and
Friedman [17] showed that in dimension n the singular sets of some linear
and semilinear elliptic equations have Hausdorff dimension at most n − 2.
Hardt and Simon [42] proved upper bounds for Hausdorff measure of nodal
sets in terms of growth. Their results imply that if u is a solution to a
second order elliptic equation in divergence form with Lipschitz coefficients
in a fixed ball 2B then

Hn−1(Z(u) ∩B) ≤ CNCN ,

where

N = Nu(B) = log
sup2B |u|
supB |u|

is the doubling index.

8.2. Harmonic counterpart of the estimate from above in Yau’s
conjecture. The estimate of Hardt and Simon was recently improved in
[55], where it was shown that for solutions of second order elliptic equations
in divergence form div(A∇u) = 0 with smooth coefficients there exists a =
a(n) such that

Hn−1(Z(u) ∩B) ≤ CNa(n), N = Nu(B),

where C depends on the coefficients of the equation in 2B, but not on u. The
polynomial upper bound in the Yau conjecture follows from this inequality
and the lifting trick.
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The upper bound in Yau’s conjecture

Hn−1(Z(ϕλ)) ≤ C
√
λ

would follow from the linear estimate on the size of the zero set in terms of
the doubling index:

Hn−1(Z(u) ∩B) ≤ CN.

8.3. Estimates of the singular set. The quantitative estimates of the
singular and critical sets of solutions of elliptic PDEs is an interesting and
developing topic. For harmonic funcitons the critical set is of codimension
two and has locally finite (n−2)-dimensional Hausdorff measure. The proofs
[41], [45], [46] show that the measure of the singular set can be estimated
in terms of the doubling index for the gradient. The explicit bound

Hn−2(S(u) ∩B) ≤ CN2
, N = Nu(B)

was recently obtained [68] by Naber and Valtorta. The method to study
stratification properties of the singular sets involves the notion of the ef-
fective singular set and is also explained in [23] by Cheeger, Naber and
Valtorta.

Examples of singular sets of harmonic functions in dimension three sug-
gest much stronger bound Hn−2(S(u) ∩ B) ≤ CN2, which was conjectured
by F.-H. Lin. It is not known whether this estimate holds even for harmonic
functions in R

3.

9. On the proof of the polynomial upper bound

Let Q0 be a cube in R
n. Consider a solution u to an elliptic equation in

divergence form div(A∇u) = 0 with Lipschitz coefficients A in a cube 3Q0.
By Nu(Q0) we denote the doubling index of u in a cube Q0:

Nu(Q0) = log2
sup2Q0

|u|
supQ0

|u| .

The proof [55] of the polynomial upper bound

(10) Hn−1(Zu ∩Q0) ≤ CNCn
u (Q0),

is a multiscale iteration argument in its essence. Typically such arguments
are cumbersome, but we hide all iterations in one notation (F (N)) so that
the reader does not see iterations at all.

Assume that any subcube of Q0 has a doubling index not greater than
a number N and we would like to find the smallest upper bound F (N) such
that

(11) Hn−1(Zu ∩Q) ≤ F (N)sn−1(Q)

for any subcube Q of Q0, where s(Q) is the side length of Q. Hardt and
Simon proved in (11) that F (N) ≤ CNCN , in particular F (N) is finite.
While our goal is to show that F (N) ≤ CNC .
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Assume that a cube Q has side length 1. If N is small we can use the
bound by Hardt and Simon. When N is large we can chop the unit cube Q
into Kn equal smaller cubes qi of size 1/K, and we may hope that many of
qi will have a doubling index smaller than the doubling index of Q and in
fact it happens and helps.

Lemma on the distribution of doubling index. If K and N are
sufficiently large, then there are at least Kn − 1

2K
n−1 good cubes qi such

that N(qi) ≤ N/2 and for any subcube q̃ of good qi the doubling index of q̃
is also smaller than N/2.

Consider the size of the zero set inside of each cube qi. For good cubes
we have a good bound F (N/2) 1

Kn−1 and for the cubes, which are not good,

we only have a bound F (N) 1
Kn−1 . But the number of bad cubes (which are

not good) is smaller than 1
2K

n−1. The latter lemma implies the recursive
inequality:

F (N) ≤ 2KF (N/2),

which yields the polynomial upper bound.

Remark. For the applications of the lemma on the distribution of dou-
bling index it is important that the constant 1

2 in lemma is smaller than 1.

If there was 1 instead of 1
2 we would not be able to obtain any upper bound

on Hausdorff measure.
The proof of lemma on the distribution of doubling indices is using tech-

niques of quantitative unique continuation. There are two main statements
in the proof: the simplex lemma and the hyperplane lemma. For the sake of
simplicity we formulate them for ordinary harmonic functions in R

3.

Simplex lemma. Suppose 4 points x1, x2, x3, x4 in R3 form a non-
degenerate simplex S with sides at least 1. Define the width of S as the
minimal distance between pairs of parallel planes in R

3 such that S is be-

tween two planes. Let a > 0 and assume that width(S)
diam(S) ≥ a. There exist

positive constants c = c(a), C = C(a), k = k(a) such that the following
holds. If u is a harmonic function in R3 such that Nu(B1(xi)) ≥ N for
i = 1, 2, 3, 4, then for the barycenter x0 of S the doubling index of u in
Bk diam(S)(x0) is at least N(1 + c)− C.

Hyperplane lemma. Let u be a harmonic function in R
3, let A > 100

be an integer andN ≥ 2. Consider a finite lattice of points LA : {(i, j, 0) : i =
−A, . . . A, j = −A, . . . A}. If N and A are sufficiently large and B1(x) ≥ N
for each x ∈ LA, then N(BA(0)) ≥ 2N − C.

The proof of the simplex lemma is using the monotonicity property of the
frequency and the proof of the hyperplane lemma relies on the quantitative
Cauchy uniqueness property.

10. Lower bound in Yau’s conjecture

10.1. Reduction to Nadirashvili’s conjecture. The proof of the
lower bound in the Yau conjecture is using the fact that the zero set of ϕλ is
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C/
√
λ dense. The manifold M can be covered by ∼ λn/2 balls Bj of radius

∼ 1√
λ
in such a way that ϕλ is zero at the centers of the balls Bj and every

point of M is covered less than C times. Donnelly and Fefferman proved that
in the real analytic case at least half of Bj have a bounded doubling index,
but we don’t know whether it holds in the smooth case and we follow another
way suggested by Nadirashvili. We prove that in each ball Bj (with zero at
its center) the zero set of ϕλ has (n− 1)-dimensional Hausdorff measure at

least cλ−(n−1)/2. Since each ball is covered at most C times and the total
number of balls is comparable to λn/2 the lower bound in Yau’s conjecture
follows.

Nadirashvili proposed a conjecture about harmonic functions in order to
attack the lower bound in Yau’s conjecture.

Conjecture of Nadirashvili (proved in [56]). There exists a constant
c > 0 such that for any harmonic function u in a unit ball B in R

3 with zero
at the center of B the area of zero set of u in B is larger than c.

In dimension two a similar question is not difficult. Zero set of any non-
zero harmonic function in a unit disc is a union of analytic curves and due
to the maximum principle each zero curve is not allowed to have loops and
therefore there is a zero curve, which connects the center of of the disc with
the boundary of the disc and has a length bigger than the radius of the disc.

In dimensions three and higher the conjecture is true, but the recent
proof given in [56] is complicated and works for solutions of more general
elliptic equations. The proof does not use real-analyticity. No simple proof
is known for the case of harmonic functions in R

3.
To prove the lower bound in Yau’s conjecture we need the rescaled ver-

sion of Nadirashvili’s conjecture for elliptic equations.

Theorem. If u is a solution of a second order uniformly elliptic equation
div(A∇u) = 0 with Lipschitz coefficients in the unit ball B1(0) ⊂ R

n and
u(0) = 0 then

Hn−1(Z(u) ∩Br(0)) ≥ crn−1, r ∈ (0, 1),

where c depends on the coefficients of elliptic equation but does not depend
on the solution u.

Combining the last theorem with the lifting trick one can show that in
each ball Bj (with zero of ϕλ at its center and of radius ∼ 1√

λ
) the zero set

of ϕλ has (n− 1)-dimensional Hausdorff measure at least cλ−(n−1)/2.

10.2. On the proof of Nadirashvili’s conjecture. The proof is not
simple and quite long. We would like to explain in this section the logic of
the proof and the key points. We took a liberty to add the notion of stable
growth to the proof, which simplifies understanding. In the original text [56]
the words “stable growth” were not used.

Everywhere in this section u is assumed to be a harmonic function in
R
3. We would like to start with a very non-sharp claim.
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Claim 1. Let B1 be a unit ball in R
3. If u(0) = 0 and Nu(B1) ≤ N ,

then

H2(Zu ∩B1) ≥
c

N2
.

The claim is not difficult to prove. It is true that one can inscribe a ball
b+ of radius c1

N in {u > 0} ∩ B1 and a ball b− of radius c1
N in {u < 0} ∩ B1

(see [57] for details). Every segment connecting b+ and b− has a zero point.
That implies H2(Zu ∩B1) ≥ c

N2 .
The bound above becomes worse as N → ∞. Our goal is to obtain a

uniform lower bound, which does not depend on N .
We will say that u has a stable growth in a ball B if

Nu(B) ≤ 1000Nu(
1

4
B).

The number 1000 is a fixed sufficiently large constant.
We will say that u has a stable growth of orderN in a ball B ifNu(

1
4B) ≥

N and Nu(B) ≤ 1000N .

Remark. Note that by almost monotinicty of the doubling index the
opposite estimate holds

Nu(
1

4
B) ≤ CNu(B).

Here is the key lemma used in the proof of uniform lower bound.

Key lemma (simplified version of Proposition 6.1 in [56]). There
is a sufficiently large number N0 such that the following holds. Let B =
Br(x) be a ball of radius r in R

3. If N > N0 and a harmonic function u has

a stable growth of order N in B, then there exist c[
√
N ]n−12c logN/ log logN

disjoint balls Bj in B of radius r/
√
N such that u is zero at the centers

of Bj .

Remark. The fact that in the key lemma the constant 2c logN/ log logN

is larger than 1 gives us a hint (but not immediate proof) that the bigger
the doubling index, the better lower bounds should be. In fact it is true that
the bigger Nu(

1
4B), the bigger H2(Zu ∩B) should be.

Just like the proof of the polynomial upper bound, the proof of Nadi-
rashvili’s conjecture is also a multiscale argument in its nature, and again
we will hide all multiscale iterations in one notation. We define

F (N) = inf
∗

H2(Zu ∩Br(x))

r2
,

where the infimum is taken over all harmonic functions in R3 and over all
balls Br(x) such that

(i) for any ball b ⊂ B1 the doubling index of u in b is not greater
than N ,

(ii) Br(x) ⊂ B1,
(iii) u(x) = 0.
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The rescaled version of Claim 1 gives an estimate F (N) ≥ c/N2 and our
goal is to show that F (N) ≥ c > 0.

Logic of the proof of uniform lower bound using the key lemma.
Fix N and consider u and a ball B = Br(x) such that the conditions (i),
(ii), (iii) hold and F (N) is almost achieved on u:

H2(Zu ∩B)

r2
≤ 2F (N).

If Nu(
1
4B) ≤ N0, we can use Claim 1 to conclude

F (N) ≥ H2(Zu ∩B)

2r2
≥ c2.

When Nu(
1
4B) is sufficiently large we will show that H2(Zu∩B)

2r2
> 2F (N) and

therefore will arrive to contradiction.
If u has a stable growth in B, namely Nu(B) ≤ 1000Nu(

1
4B), then we

could denote Nu(
1
4B) by Ñ and the key lemma would imply that there exist

c[
√

Ñ ]n−12c log Ñ/ log log Ñ disjoint balls Bj in B of radius r/
√
Ñ such that u

is zero at the centers of Bj . For each of Bj we know

H2(Bj ∩ Zu) ≥ F (N)

(
r√
Ñ

)2

.

Since the balls Bj are disjoint and in B we get

H2(B ∩ Zu)

r2
≥

∑ H2(Bj ∩ Zu)

r2
≥ cF (N)2c log Ñ/ log log Ñ > 2F (N).

The contradiction is obtained. However there is an obstacle to directly apply
the key lemma because it is not necessarily true that u has a stable growth
in B.

But there is a smaller ball in B with stable growth of u.

Lemma on stable growth (follows from Lemmas 4.1, 4.2 in [56]).

If Nu(
1
4B) is sufficently large, then there is a ball B̃ ⊂ B and a number

Ñ ≥ c3Nu(
1
4B) such the radii of B and B̃ are related by

r(B̃) =
c4r(B)

log2 Ñ

and u has a stable growth of order Ñ
log2 Ñ

in B̃.

Remark. The proof of the lemma on stable growth is using the mono-
tonicity property of the frequency and the following fact on monotonic func-
tions.

Fact. If β(r) is any increasing function on [0, 1] with β(0) > 2, then
there is a number N ≥ 2 and an interval I ⊂ [0, 1] of length c

log2 N
such that

N ≤ β(r) ≤ 2N for r ∈ I.
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Combining the lemma on stable growth and the key lemma we come to
the same conclusion that

H2(B ∩ Zu)

r2
≥ c5F (N)2c log Ñ/ log log Ñ/ log4 Ñ > 2F (N).

We finished the attempt to explain how the key lemma implies Nadi-
rashvili’s conjecture.

On the proof of the key lemma. In this section we present a plan of
the proof. We omit some technical details and assume that r = 2.

Step 1. Iterations of the lemma on distribution of doubling index are
used to show that if a harmonic function u has the doubling index in the
cube Q smaller than some large number N and we partition Q into K3 equal
subcubes with K ≤ N , then the number of Qj such that

(12) N(Qj) ≥ N/2c1 logK/ log logK

is smaller than K2−c2 , where c1, c2 are small positive numerical constants.
Step 2. Assume that B is a ball of radius 2, max 1

4
B |u| = 1 and

|u(0, 0, 1)| = max 1
2
B |u|. The stable growth assumption implies

max
1
2
B

|u| ≥ 2N and max
2B

|u| ≤ 2CN .

We consider cubes forming a lattice with sides parallel to x, y, z axes and
with side length 1/

√
N . Let us denote by Qj those cubes from the lattice,

which intersect B. The total number of Qj is comparable to (
√
N)3.

To prove the key lemma it is enough to show that there are at least
N2c logN/ log logN cubes Qj that contain a zero point.

It follows from the step 1 that most of Qj (all except probably N1−c5

cubes) satisfy

(13) Nu(Qj) ≤ N/W,

where W = 2c3 logN/ log logN . We call Qj good if (13) holds.

Claim 2. If Qj and Qk are adjacent and good, then

max
1
2
Qj

|u| ≤ max
1
2
Qk

|u|2CN/W .

We split cubes Qj into groups so that the centers of the cubes in each
group lie on a line parallel to z-axis. We call such groups of cubes tunnels.
Each tunnel has at most C

√
N cubes.

Observation. By step 1 most of the tunnels have only good cubes.
Now, consider tunnels that contain only good cubes and at least one cube

Qj with distance to the maximum point (0, 0, 1) smaller than 1/ log2N .
It follows from Step 1 that the total number of such tunnels is at least
c5N/ log4N .

The proof of the key lemma is completed by the next proposition.
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Proposition. Assume that a tunnel T contains only good cubes and at
least one cube with distance to the maximum point (0, 0, 1) smaller than
1/ log2N . Then T contains at least c6W cubes Qj with zeroes of u.

Step 3 (Proof of proposition).
Since T is parallel to z axis it contains at least one cube Qa in 1

4B and
therefore there is at least one cube in T with maxQa |u| ≤ 1. We also know
that T contains at least one cube Qb with distance to the maximum point
(0, 0, 1) smaller than 1/ log2N and it appears that

max
1
2
Qb

|u| ≥ 2c4N .

The proof of the latter statement is using the assumption of stable
growth. We split the latter statement into several claims, but omit some
of the details.

Claim 3. If ρ ∈ ( 1
log100 N

, 1/8), then

Nu(Bρ(0, 0, 1)) ≤ CρN.

Claim 3 says that the doubling index with the center at the maximum
becomes smaller when we decrease the radius. The next claim gives a lower
bound on the maximum in small balls near the maximum.

Claim 4. Assume that ρ ∈ ( 1
log100 N

, 1/8) and the distance from a point

x to the maximum point (0, 0, 1) is smaller than ρ. If a positive number
s ≤ ρ/2, then

Nu(Bs(x)) ≤ CρN

and

max
Bs(x)

|u| ≥ |u(0, 0, 1)|2−CρN log( ρ
s
).

Claim 5. If a distance from a cube Qb to the maximum point (0, 0, 1)
is smaller than 1/ log2N , then

max
1
2
Qb

|u| ≥ |u(0, 0, 1)|2−CN/ logN

and therefore max 1
2
Qb

|u| ≥ 2c4N .

Now we are ready to finish the proof of the proposition. We start going
along T fromQa with max 1

2
Qa

|u| ≤ 1 to the cubeQb with max 1
2
Qb

|u| ≥ 2c4N

and watch how the maximum over cubes changes. The total multiplicative
increment is at least 2c4N . We consider twice smaller cubes because further
we will apply the Harnack inequality.

If we have two adjacent cubes Qj and Qk where u does not have any
zeroes, then the Harnack inequality guarantees that

max
1
2
Qj

|u| ≤ Cmax
1
2
Qk

|u|.

The total number of cubes in T is smaller than C
√
N and therefore the

total multiplicative increment over pairs of adjacent cubes with no zeroes is
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smaller CC
√
N , which is a way smaller than 2c4N . In particular the Harnack

inequality guarantess that there is at least one cube in T with a zero of u.
So the major part of the multiplicative increment comes from the pairs of
cubes, where at least one of the cubes has a zero point.

All cubes in T are good and by Claim 2 for any adjacent cubes in T

max
1
2
Qj

|u| ≤ max
1
2
Qk

|u|2CN/W .

In particular, we cannot realize the increment 2c4N passing only one pair
of adjacent cubes, even if there is a zero there. Moreover Claim 2 guarentees
that the total number of cubes in T with zeroes of u is at least c6W .

11. In between real-analytic and smooth cases

Between February 13 and February 17, 2017 there was a workshop [1]
at the Institute for Advanced Study on Emerging Topics: Nodal sets of
Eigenfunctions. The first author was giving a talk on the joint result with
the second author and N. Nadirashvili:

Theorem. If Ω is a bounded domain in R
n with a smooth boundary

and ϕλ is any Laplace eigenfunction of Ω with Dirichlet boundary conditions,
then Hn−1(Zϕλ

) ≤ CΩ

√
λ log(λ+ e).

During the talk Fedor Nazarov removed a half of the proof, which ap-
peared to be unnecessary, simplified the argument and improved the bound
to the optimal one:

Hn−1(Zϕλ
) ≤ CΩ

√
λ.

The opposite inequality

Hn−1(Zϕλ
) ≥ cΩ

√
λ,

is also true (if we include the boundary of Ω in the nodal set Zϕλ
) and now it

has two different proofs: one is due to Donnelly and Fefferman and another
proof involves the solution of Nadirashvili’s conjecture.
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partielles à deux variables indépendantes. Ark. Mat., Astr. Fys., 26(17):9, 1939.
MR 0000334

[20] Sagun Chanillo and B. Muckenhoupt. Nodal geometry on Riemannian manifolds. J.
Differential Geom., 34(1):85–91, 1991. MR 1114453

[21] Isaac Chavel. Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied
Mathematics. Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton
Randol, With an appendix by Jozef Dodziuk. MR 0768584

[22] Isaac Chavel. Riemannian geometry, volume 98 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, second edition, 2006. A mod-
ern introduction. MR 2229062

[23] Jeff Cheeger, Aaron Naber, and Daniele Valtorta. Critical sets of elliptic equations.
Comm. Pure Appl. Math., 68(2):173–209, 2015. MR 3298662

[24] Shiu Yuen Cheng. Eigenfunctions and nodal sets. Comment. Math. Helv., 51(1):43–
55, 1976. MR 0397805

[25] Tobias H. Colding and William P. Minicozzi, II. Lower bounds for nodal sets of
eigenfunctions. Comm. Math. Phys., 306(3):777–784, 2011. MR 2825508
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