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Abstract

We show that a Riemannian 3-manifold with nonnegative scalar curvature is flat
if it contains an area-minimizing cylinder. This scalar-curvature analogue of the
classical splitting theorem of J. Cheeger and D. Gromoll (1971) was conjectured
by D. Fischer-Colbrie and R. Schoen (1980) and by M. Cai and G. Galloway
(2000). © 2018 the Authors. Communications on Pure and Applied Mathemat-
ics is published by the Courant Institute of Mathematical Sciences and Wiley
Periodicals, Inc.

1 Introduction
Let .M; g/ be a connected, orientable, complete Riemannian 3-manifold with

nonnegative scalar curvature. D. Fischer-Colbrie and R. Schoen show in [10] that
a connected, orientable, complete stable minimal immersion into .M; g/ is con-
formal to a plane, a sphere, a torus, or a cylinder. They conjecture that .M; g/ is
flat if the immersion is conformal to the cylinder; cf. remark 4 in [10]. M. Cai
and G. Galloway point out a counterexample obtained from flattening standard
R � S2 near R � fgreat circleg in their concluding remark in [7]. They ask if the
conjecture holds under the additional assumption that the immersion be “suitably”
area-minimizing. In this paper, we prove the following result:

THEOREM 1.1. Let .M; g/ be a connected, orientable, complete Riemannian 3-
manifold with nonnegative scalar curvature. Assume that .M; g/ contains a prop-
erly embedded surface S � M that is both homeomorphic to the cylinder and
absolutely area-minimizing. Then .M; g/ is flat. In fact, a cover of .M; g/ is iso-
metric to standard S1 �R2 upon scaling.

Note that this result is in satisfying analogy with the classical splitting theorem
of J. Cheeger and D. Gromoll [9] in dimension 3, where scalar curvature takes the
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place of Ricci curvature and where area-minimizing cylinders stand in for length-
minimizing geodesic lines.1

Theorem 1.1 follows from the work of M. Anderson and L. Rodríguez [2] when
we impose the much stronger assumption of bounded, nonnegative Ricci curvature.
The strategy of M. Anderson and L. Rodríguez [2] was refined by G. Liu [13] to
classify complete, noncompact Riemannian 3-manifolds with nonnegative Ricci
curvature. These ideas have been developed by the first- and second-named authors
to establish the following scalar-curvature rigidity result for asymptotically flat 3-
manifolds, which had been conjectured by R. Schoen.

THEOREM 1.2 ([8]). The only asymptotically flat Riemannian 3-manifold with
nonnegative scalar curvature that admits a noncompact, area-minimizing bound-
ary is flat R3.

Our proof of Theorem 1.1 in this paper is a further development of these ideas.
We now discuss challenges in the proof that are not present in the previously dis-
cussed works.

The goal is to construct a foliation of .M; g/ by area-minimizing cylinders. The
leaves of this foliation arise as limits of solutions of certain Plateau problems for
least area. A major challenge we face here that has no substantial analogue in the
proof of Theorem 1.2 is the a priori possible appearance of stable minimal planes
or spheres (rather than cylinders or tori) in these limits. This scenario is addressed
in Figure 3.2 below. The ambient scalar curvature may well be positive along such
surfaces, as the examples in remark 3 of [10] show.

We need an approach that is sensitive to the topology of solutions of the Plateau
problems in the construction. At the same time, we have to make sure that these
solutions pass to limits in a reasonable way. Recall from, e.g., [21] that stable
minimal surfaces in Riemannian 3-manifolds satisfy local curvature estimates that
are independent of area bounds. In particular, sequences of such surfaces admit
subsequential limits as pointed immersions. If each surface in the sequence is
an area-minimizing boundary, then so is the limit. (If a small ambient ball inter-
sects such a surface in two components, then these sheets have opposite orienta-
tion and are almost parallel. This scenario can be ruled out by a cut-and-paste
argument.) However, limits of general area-minimizing surfaces can exhibit much
greater complexity—think of condensing closed geodesics on the torus and com-
pare with Remark A.1 below.

As such, the use of solutions of Plateau problems in the class of all (oriented)
competitors risks the loss of local area bounds in the limit. On the other hand, the
use of solutions in the class of boundaries risks the appearance of planes or spheres
in the limit. These threats taken together force us to select the various classes of
surfaces considered in the proof of Theorem 1.1 with great care.

1 As the example of the doubled Schwarzschild manifold shows, the classical splitting theorem
fails when we relax the assumption of nonnegative Ricci curvature to nonnegative scalar curvature.
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We review the notions of area-minimizing surfaces that are used in this paper in
Appendix A.

Subsequent to the paper of M. Cai and G. Galloway [7], there have been many
further works establishing scalar curvature rigidity results in the presence of com-
pact area-minimizing surfaces, including [1, 4–6, 11, 14–16, 18, 19]. We anticipate
that the techniques developed here will lead to alternative proofs of these results.
We plan to explore this possibility in forthcoming work.

Finally, we mention that parts of the strategy of M. Anderson and L. Rodríguez
[2] depend on the assumption of nonnegative Ricci curvature in a subtle but es-
sential way. In particular, we do not see how to carry over the crucial area esti-
mate [2, eq. (1.5)] to the nonnegative scalar curvature setting.

2 Tools
The following result is due to R. Schoen and S.-T. Yau [22, sec. 5], except for

the conclusion that the induced metric '�g on S is flat when S is a torus, which
was proven by D. Fischer-Colbrie and R. Schoen [10, theorem 3].

LEMMA 2.1. Let .M; g/ be a Riemannian 3-manifold. Let 'W S ! M be an ori-
entable, complete, two-sided stable minimal immersion of a closed surface S such
that R ı ' � 0, where R is the scalar curvature of .M; g/. Then S is topologically
either a sphere or a torus. In the case where S is a torus, the immersion is totally
geodesic and R ı ' D 0; moreover, the induced metric '�g on S is flat.

The following result due to D. Fischer-Colbrie and R. Schoen is part of theo-
rem 3 in [10].

LEMMA 2.2. Let .M; g/ be a Riemannian 3-manifold. Let 'W S ! M be an
orientable, complete, noncompact, two-sided stable minimal immersion such that
R ı ' � 0 where R is the scalar curvature of .M; g/. Then S with the induced
metric '�g is conformal to either the plane or the cylinder.

We refer to [3,17,20,23] as well as appendix C of [8] for discussions and proofs
of the following refinement of Lemma 2.2.

LEMMA 2.3. Let .M; g/ be a Riemannian 3-manifold. Let 'W S ! M be an
orientable, complete, noncompact, two-sided stable minimal immersion such that
R ı ' � 0, where R is the scalar curvature of .M; g/. If S is a cylinder, then the
immersion is totally geodesic, the induced metric '�g is flat, and R ı ' D 0.

The following rigidity result is due to M. Cai and G. Galloway [7, theorem 2].

LEMMA 2.4. Let .M; g/ be a connected, complete Riemannian 3-manifold with
possibly empty weakly mean-convex boundary. We also assume that .M; g/ has
nonnegative scalar curvature. If .M; g/ contains a two-sided torus that has least
area in its isotopy class, then .M; g/ is flat.
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3 Proofs
We need the following lifting property for absolutely area-minimizing surfaces.

LEMMA 3.1. Let .M; g/ be an orientable, complete Riemannian 3-manifold and
let S � M be a properly embedded, orientable, absolutely area-minimizing sur-
face without boundary. There is a covering p W zM ! M with p�.�1. zM// D

i�.�1.S// where i W S ! M is the inclusion map. The inclusion map lifts to a
proper embedding zi W S ! zM and zi� W �1.S/! �1. zM/ is surjective. Moreover,
zS D zi.S/ � zM is absolutely area-minimizing in . zM; zg/ where zg D p�g.

PROOF. The asserted existence of covering and lift are standard, see Proposi-
tions 1.36 and 1.33 in [12]. To see that zS is area-minimizing, note that p is injective
along zS and that every (properly embedded) competing surface for zS projects to a
properly immersed, competing surface for S . Using cut-and-paste arguments with
small changes in area, we obtain a properly embedded competitor downstairs. �

PROOF OF THEOREM 1.1. Let S �M be a properly embedded cylinder that is
absolutely area-minimizing in .M; g/.

In view of Lemma 3.1, we may assume that the inclusion map i W S ! M

induces a surjection i�W �1.S/! �1.M/. It follows from Lemma 2.3 that S �M
is intrinsically flat. By scaling .M; g/ if necessary, we may assume that S �M is
isometric to standard S1 �R.

If S � M is separating, then M n S has two components. We cut M along
S and make a choice of component to obtain a connected, complete Riemannian
3-manifold whose boundary is connected. If S �M doesn’t separate, then M n S
is connected. We cut M along S to obtain a connected, complete Riemannian 3-
manifold whose boundary has exactly two components, of which we choose one.
Either way, we denote the new Riemannian 3-manifold by . �M; yg/ and the chosen
component of its boundary by†. Note that† � �M is isometric to S and absolutely
area-minimizing in . �M; yg/. We denote the closed curve on † that corresponds to
S1 � f0g by 
 . We write †h for the portion of † corresponding to S1 � Œ�h; h�.

Fix a unit speed geodesic cW Œ0; "/! �M with c.0/ 2 
 and Pc.0/ ? Tc.0/†. As
in the proof of Theorem 1.2 in appendix J of [8], we find a family of smooth Rie-
mannian metrics fyg.r; t/gr;t2.0;"/ on �M with the following properties (illustrated
in Figure 3.1):

(i) yg.r; t/! yg in C 3 as t; r & 0;
(ii) yg.r; t/! yg smoothly as t & 0 for r 2 .0; "/ fixed;

(iii) yg.r; t/ D yg on fx 2 �M W distyg.x; c.2r// � 3rg;
(iv) yg.r; t/ < yg as quadratic forms in fx 2 �M W distyg.x; c.2r// < 3rg;
(v) yg.r; t/ has positive scalar curvature in fx 2 �M W r < distyg.x; c.2r// <

3rg;
(vi) �M is weakly mean-convex with respect to yg.r; t/.
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c.2r/
r3r

2r

†h Š S1 � Œ�h; h�

†h.r; t/

yg.r; t/ D yg Ryg � 0
Ryg.r;t/ > 0




FIGURE 3.1. The scalar curvature of yg.r; t/ is positive in the shaded region.

Fix h > 1. Let Bh denote a precompact open set with smooth boundary in �M
and such that fx 2 �M W distyg.x;†h/ < 2hg � Bh. We modify the metric yg.r; t/
near the boundary of Bh to yg.r; t; h/ so Bh is weakly mean-convex with respect to
yg.r; t; h/ and

.1 � ı/yg.r; t/ � yg.r; t; h/ � .1C ı/yg.r; t/

where ı 2 .0; 1/ is chosen to satisfy (3.1) below. Among all compact, oriented sur-
faces inBh with boundary @†h that bound an open subset of �M , there is one whose
area with respect to yg.r; t; h/ is least. Choose one such area-minimizing surface
and denote it by†h.r; t/. We claim†h.r; t/ intersects fx 2 �M W distyg.x; c.2r// <
3rg. For if not, we have that yg D yg.r; t/ along †h.r; t/ and we may compute, as
in [8, eq. (12)], that

0 < areayg.†h/ � areayg.r;t/.†h/ � areayg.†h.r; t// � areayg.r;t/.†h/

D areayg.r;t/.†h.r; t// � areayg.r;t/.†h/

�
1

1 � ı
areayg.r;t;h/.†h.r; t// � areayg.r;t/.†h/

�
1

1 � ı
areayg.r;t;h/.†h/ � areayg.r;t/.†h/

�
1C ı

1 � ı
areayg.r;t/.†h/ � areayg.r;t/.†h/

D
2ı

1 � ı
areayg.r;t/.†h/:

This is a contradiction if we choose ı D ı.r; t; h/ > 0 with

2ı

1 � ı
<

areayg.†h/ � areayg.r;t/.†h/
areayg.r;t/.†h/

:(3.1)
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A comparison with small geodesic spheres gives local area bounds for the sur-
faces †h.r; t/ that are independent of all parameters; cf. Remark A.1. Using stan-
dard results in geometric measure theory, we may pass these surfaces to a subse-
quential limit as h!1 to obtain a properly embedded surface †.r; t/. Note that
†.r; t/ is a boundary in �M . It follows from the construction that this boundary is
homologically* area-minimizing2 with respect to g.r; t/.

When r; t > 0 are sufficiently small, the surface †.r; t/ contains a closed curve

.r; t/ that intersects fx 2 �M : distyg.x; c.2r// � 3rg and which is close to 
 .
Indeed, there is a small ball with center at c.0/ 2 
 where a piece of†.r; t/ appears
as a graph above Tc.0/†. The geometric Harnack principle allows us to continue
this piece of †.r; t/ into a ribbon as we traverse 
 . The ribbon must close up as
we travel around 
 , as otherwise there would be two nearby sheets—a scenario
that contradicts the area-minimizing property of †.r; t/. The component y†.r; t/
of †.r; t/ that contains this curve 
.r; t/ converges to † as r; t & 0. Observe that�†.r; t/ is a boundary in �M that is homologically* area-minimizing with respect to
yg.r; t/; cf. lemma 33.4 in [24].

We claim that �†.r; t/ is neither a plane nor a sphere if r; t > 0 are small enough.
Suppose otherwise. In this case, 
.r; t/ bounds an embedded disk in �M . Con-
sequently, so does 
 . In particular, inclusion induces the trivial map �1.†/ !
�1. �M/. By Lemma 3.2 below, every connected, closed surface in �M is separat-
ing. If �†.r; t/ is a sphere, it bounds a possibly unbounded region in �M . This
contradicts its homologically* area-minimizing property. Assume that �†.r; t/ is a
plane (see Figure 3.2). Let �.r; t/ � �†.r; t/ be the disk bounded by 
.r; t/. Since�†.r; t/ converges to † as r; t & 0, we have that areag.�.r; t//!1 as r; t & 0.
Choose 0 < r2 � r1 and 0 < t2 � t1 such that �†.r1; t1/ and �†.r2; t2/ are planes.
Note that �.r2; t2/, �.r1; t1/, and a small neck connecting 
.r1; t1/ and 
.r2; t2/
bound an open set. This contradicts the homologically* area-minimizing property
of �†.r1; t1/.

�.r2; t2/
�.r1; t1/ 
.r1; t1/


.r2; t2/



y†.r1; t1/

y†.r2; t2/

†

FIGURE 3.2. The possibility that y†.r; t/ is a plane for r; t > 0 small
enough can be ruled out by comparing the areas of the disks �.r; t/ or
by incompressibility of †.

2 This nonstandard area-minimizing property is discussed in Appendix A. Its full strength is
needed in the cut-and-paste argument used to rule out planes and spheres below.
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We see from (v), Lemma 2.1, Lemma 2.2, and Lemma 2.3 that, for r; t > 0

small enough, �†.r; t/ either intersects fx 2 �M W distyg.x; c.2r// � rg, or �†.r; t/
intersects fx 2 �M W distyg.x; c.2r// D 3rg but not fx 2 �M W distyg.x; c.2r// < 3rg.
Fix r > 0 small and pass to a geometric subsequential limit as t & 0. We obtain
a properly embedded boundary †.r/ � �M that has a connected component �†.r/
that intersects fx 2 �M W distyg.x; c.2r// � 3rg and that is disjoint from †. As
before, we see that �†.r/ is a properly embedded boundary in �M that is homolog-
ically* area-minimizing with respect to yg. Clearly, �†.r/ is disjoint from † and
contains a closed embedded curve 
.r/ close to 
 . The argument of the preceding
paragraph shows that when r > 0 is small enough, the surface �†.r/ is diffeomor-
phic to either a torus or a cylinder.

If �†.r/ is a torus, then . �M; yg/ is isometric to either standard S1�R� Œ0;1/ or
standard S1 �R� Œ0; a� for some a > 0 by Lemma 2.4. We may thus assume that�†.r/ is cylindrical for all r > 0 small. By Lemma 2.3, �†.r/ � �M is intrinsically
flat, totally geodesic, and the ambient Ricci tensor evaluated in the normal direction
vanishes along �†.r/. Note that �†.r/ converges to † as r & 0. We now argue
exactly as in the proof of [8, theorem 1.6] to show that the ambient Riemann tensor
vanishes along †.

We may repeat the above argument starting with any of the surfaces �†.r/ for
r > 0 sufficiently small, using that they are homologically* area-minimizing in
. �M; yg/.3 A continuity argument then gives that . �M; yg/ is either standard S1�R�
Œ0;1/ or standard S1 �R � Œ0; a� for some a > 0. �

LEMMA 3.2. The assumptions and notation used here are as in the proof of The-
orem 1.1 above. If the inclusion † � �M induces a trivial map �1.†/! �1. �M/,
then every connected, closed surface in �M is separating.

PROOF. It follows from the hypothesis and the construction of �M from M n S

that M is simply connected. (Here we are using that the map �1.S/ ! �1.M/

induced by the inclusion S � M is surjective.) Standard intersection theory gives
that every connected, closed embedded surfaceN �M separatesM . Indeed, if we
assume that N �M is not separating, there is a closed embedded curve in M that
intersects N transversely and exactly once. Such a curve cannot be homotopically
trivial. Assume now that yN � �M is a connected and closed surface disjoint from
the boundary of �M . It corresponds to a connected and closed surface N �M that
is disjoint from S . Using that N separates M and the construction of �M from M ,
we conclude that yN separates. �

A variation of this proof of Theorem 1.1 gives the following result.

3 The advantage of the absolutely area-minimizing property in the above proof is that it lifts to
covers. We only used this at the very beginning, when we applied Lemma 3.1.
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THEOREM 3.3. Let.M; g/beaconnected, orientable, completeRiemannian3-man-
ifold with nonnegative scalar curvature. Assume that .M; g/ contains a properly
embedded, incompressible4 surface S � M that is homeomorphic to the cylinder
and homologically area-minimizing. Then .M; g/ is flat. In fact, a cover of .M; g/
is isometric to standard S1 �R2 upon scaling.

PROOF. We follow the proof of Theorem 1.1 above, except for the following
changes:

(a) We do not pass to a covering.
(b) We work with surfaces †h.r; t/ with @†h.r; t/ D @†h that have least area

with respect to yg.r; t; h/ and which together with †h bound an open set
in Bh.

(c) To argue that �†.r; t/ is neither a plane nor a sphere, we use that† is incom-
pressible.5 �

Remark 3.4. We do not know if Theorem 3.3 holds if we drop the assumption that
S is incompressible.

Appendix A Notions of Area-Minimizing Surfaces
Let .M; g/ be an orientable Riemannian manifold, possibly with boundary.
Let † �M be an oriented, properly embedded hypersurface.
Recall that† �M is absolutely area-minimizing in .M; g/ if for every U �M

open with compact closure, we have that

area.U \†/ � area.U \ z†/

whenever z† � M is an oriented, properly embedded hypersurface with @z† D @†
(matching orientations) and

z† n U D † n U:

Recall that † � M is homologically area-minimizing in .M; g/ if for every
U �M open with compact closure, we have that

area.U \†/ � area.U \ z†/

whenever z† �M is an oriented, properly embedded hypersurface such that

z† D †C @�1 C � � � C @�N

in the sense of Stokes’ theorem for �1; : : : ; �N � M compact top-dimensional
submanifolds with �i � U .

4 More precisely, we require that every loop 
 � S that bounds an embedded disk � � M is
contractible in S .

5 It is not clear that the comparison surfaces we use in the cut-and-paste argument in the proof of
Theorem 1.1 above are homologous to the original surface. A priori, they may differ by an unbounded
open set.
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Remark A.1. There is a standard a priori area bound for homologically area-mini-
mizing boundaries; cf. [24, §37.2]. The properties of such boundaries are preserved
under convergence. There is no such a priori bound for general area-minimizing
surfaces. Indeed, every stack of finitely many parallel planes Rn � f´ig with
standard orientation and where ´1; : : : ; ´m 2 R is absolutely area-minimizing in
RnC1.

Finally, we discuss a nonstandard notion that plays a pivotal role in the proof of
Theorem 1.1.

We say that † � M is homologically* area-minimizing in .M; g/ if for every
U �M open with compact closure, we have that

area.U \†/ � area.U \ z†/

whenever z† �M is an oriented, properly embedded hypersurface such that
z† D †C @�1 C � � � C @�N

in the sense of Stokes’ theorem, where �1; : : : ; �N � M are properly embedded
top-dimensional submanifolds with @�i � U . The point is that we do not require
that �i � U or even that �i be bounded here.

Example A.2. Consider the embedded curves


1 D f.e
i� ; 0/W 0 � � � �=2g; 
2 D f.e

i� ; 0/W �=2 � � � 2�g;

in the standard cylinder S1 � R. 
1 is absolutely length-minimizing; 
2 is not.
Both 
1 and 
2 are homologically length-minimizing. 
1 is homologically* length-
minimizing; 
2 is not.

We conclude by describing how this nonstandard area-minimizing property is
tailored to a delicate aspect in the proof of Theorem 1.1. As we have just discussed,
we cannot expect local area bounds for sequences of absolutely area-minimizing
surfaces. For this reason, we want to fix the homology class of the surfaces we work

y†.r1; t1/

y†.r2; t2/

†

FIGURE A.1. This figure shows a hypothetical scenario if we had not
passed to the cover (using Lemma 3.1). We want to compare the areas
of y†.r1; t1/ and �†.r2; t2/ in a bounded set, using their respective mini-
mizing properties. However, due to the presence of a neck, the surfaces
are neither homologically nor homologically* related.
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y†.r1; t1/

y†.r2; t2/

†

:::
:::

FIGURE A.2. A depiction of the situation in Figure A.1 after passing
to the appropriate cover (using Lemma 3.1). Now, compact pieces of�†.r1; t1/ and �†.r2; t2/ are homologically* but not homologically com-
parable. This is because they differ by an open set (shaded grey) which
is necessarily unbounded.

with, or at least keep it in check. If we work with homological area-minimizers, it
is not clear how to rule out minimizing planes or spheres in the proof of Theorem
1.1 by cut-and-paste arguments. Figure A.1 shows a scenario where the planes we
worry about are not homologically related. To deal with this scenario, we pass
to the cover using Lemma 3.1 at the beginning of the proof. The situation after
passing to the cover is shown in Figure A.2. Now, the surfaces whose areas we
want to compare bound a noncompact region. They are homologically* related,
but not homologically related.
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