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ABSTRACT. We introduce the notion of a “graded topological space”: a topo-
logical space endowed with a sheaf of abelian groups which we think of as
a sheaf of gradings. Any object living on a graded topological space will be
graded by this sheaf of abelian groups. We work out the fundamentals of sheaf
theory and Poincaré—Verdier duality for such spaces.
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1. INTRODUCTION

Given a topological space X, we are interested in graded sheaves on X whose
grading varies over X. We formalize this notion by introducing a sheaf of gradings
A and then considering sheaves F on X such that for each open U of X the sections
of F over U are graded by A(U). In this short note we develop the basic theory of
such objects.

We are mainly motivated by questions in logarithmic geometry. However, as we
expect that the constructions presented here will be useful in other situations, we
chose to give this self-contained exposition of graded spaces. Our main goal is to
clarify the definition of A-graded objects and functors between categories of such
objects, as well as to show that standard results of sheaf theory continue to hold
in this generality.

Motivation. Our specific motivation is the wish to classify logarithmic connections
and D-modules by some analogue of the Riemann—Hilbert correspondence. In this
subsection we discuss in an example why one might expect to obtain graded sheaves
in this process. This also informs the level of generality that we have chosen for
the constructions in this article. We want to emphasize that the present subsection
is not necessary for understanding the remainder of this text and may be safely
skipped by the reader not interested in logarithmic connections.
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1326 CLEMENS KOPPENSTEINER

Consider the complex line X = Al with coordinate function z. A logarithmic
connection on X is a vector bundle with an action of the subbundle of the tangent

bundle generated by z%. So, for the trivial line bundle O we could require that

Za% acts on sections f € O by za% -f= z% + Af for any fixed A\ € C.

On X \ {0} this reduces to the usual connections 8% - f = g_sz + %, which only
depend on A mod Z. On the other hand, as logarithmic connections the above
connections are genuinely different for each A € C.

Classically, (integrable) connections are equivalent to locally constant sheaves.
As X = A' does not support any nontrivial locally constant sheaves, one modifies
X slightly by replacing the origin with a circle (i.e., one takes the real blowup at
the origin) [7]. This greatly increases the number of locally constant sheaves at our
disposal. However locally constant sheaves on this new space X,z can still only
record A mod Z as the monodromy around the circle. Thus one grades the sheaves
in order to record the residue of A modulo Z [6, 8].

In order for this construction to generalize the classical situation, one should
impose this grading only over the added circle, so that over X \ {0} one obtains
just a classical local system. In addition, to make this construction work when one
replaces vector bundles by coherent sheaves or D-modules, one needs to not only
consider sheaves of C-modules, but modules over more general sheaves of C-algebras
(which themselves are graded), so that one can record the possible appearance of
nilpotent sections. Thus one naturally arrives at the notion of ringed graded spaces
explored in Section 3.

Classically the Riemann—Hilbert correspondence matches the six functor for-
malisms of regular holonomic D-modules and (constructible) sheaves of C-modules.
Of particular importance are the duality functors that exist in both contexts. In
Section 5 we show that Poincaré—Verdier duality can be extended to graded sheaves,
while duality for logarithmic D-modules is introduced in [9]. In [8] we give an ex-
plicit computation of the dualizing functor for spaces of the form Xj,, and show
that it exactly matches the duality functor for logarithmic D-modules.

Standing assumptions. All topological spaces are assumed to be locally compact,
and hence in particular Hausdorff. By a ring we always mean a commutative ring
with unit. We write abelian groups additively with neutral element 0.

2. GRADED TOPOLOGICAL SPACES

Definition 2.1. A graded topological space is a pair (X, A), consisting of a topo-
logical space X and a sheaf of abelian groups A on X. A morphism of graded
topological spaces (X,Ax) — (Y, Ay) consists of a pair (f, f°), where f: X — Y
is a continuous map and f”: f~'Ay — Ay is a morphism of sheaves of abelian
groups. Such a morphism is called strict if f° is an isomorphism.

We will often denote a graded topological space (X, A) simply by X and simi-
larly a map (f, f°) by f. Any topological space X can be considered as a graded
topological space with A = 0.

For an abelian group A, a A-graded Z-module M is a Z-module with a decom-
position M = @, ., My for Z-modules M. If m € M is homogeneous of degree
A, we write deg(m) = A.

Definition 2.2. Let (X, A) be a graded topological space. A presheaf F on (X, A)
is an assignment of a A(U)-graded Z-module F(U) to each open subset U C X
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GRADED TOPOLOGICAL SPACES 1327

together with restriction maps (of Z-modules) p{} such that p{ (F(U)x) € F(V )y,
for each A € A(U). Sometimes we will call such an object a A-graded presheaf to
emphasize the distinction with ordinary presheaves.

Let F, G be two presheaves on (X,A). A morphism of A-graded presheaves
¢: F — G is an ordinary morphism of presheaves such that in addition ¢y (F(U)x)
C G(U)x for each open U and A € A(U). We write PSh(X, A) for the category of
presheaves on (X, A).

Let A € A(X) and F € PSh(X,A). We write F(\) for the presheaf with
DU, FN)u = (U, F)ugrjy- An element of Hompgh(x,a)(F,G())) is called a
morphism of degree \.

There exists an obvious forgetful functor PSh(X, A) — PSh(X). We will some-
times silently treat a graded presheaf as an ordinary presheaf on X via this functor.

For z € X one defines the stalk F, of a presheaf in the usual way. It is a
A, -graded Z-module.

Definition 2.3. For any 7 € PSh(X,A) and any A € A(X) we let Fy be the
ordinary presheaf given by

U )—>]:(U))\|U

Definition 2.4. Let (X,A) be a graded topological space. A (A-graded) sheaf
on (X,A) is a A-graded presheaf F such that for each open U of X and each
A € A(U) the (ordinary) presheaf (F|y)a is a sheaf. We denote by Sh(X, A) the
full subcategory of PSh(X, A) consisting of sheaves.

Remark 2.5. The underlying ungraded presheaf of a graded sheaf F need not nec-
essarily be a sheaf. For example, one might have two sections s; € F(Uy)a, and
s2 € F(Uz)a, such that s1|u,nv, = 0 = s2|u,nv, but Ailu,nu, # A2|v,nu,- In this
case, disregarding the grading one should be able to glue s; and s3. But as A\; and
Ao do not glue, one would not be able to assign a grading to the glued section.

As in the ungraded setting a morphism of sheaves is an isomorphism if and
only if it is on stalks; see [5, Proposition 2.2.2]. Similarly, by adding gradings to
the standard construction (see [5, Proposition 2.2.3]) one defines the sheafification
functor as follows.

Lemma 2.6. The forgetful functor Sh(X,A) — PSh(X,A) has a left adjoint,
called sheafification. If F is a presheaf, then the associated sheaf has the same
stalks as F.

Definition 2.7. For F,G € Sh(X, A) we set
HomA(]-",g) = @ Homgpx, 4)(F, G(A))-
AEA(X)
This enhances Sh(X, A) to a A(X)-graded category. We denote by Hom(F,G) the
A-graded sheaf
U — Hom™v (F,, G|,).

Definition 2.8. For F,G € Sh(X, A) denote by F ® G the A-graded sheaf associ-
ated to the presheaf

U~ FU)®zG(U).
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1328 CLEMENS KOPPENSTEINER

Let f: X — Y be a continuous map of topological spaces and let A be a sheaf
of abelian groups on Y. Then we get an obvious morphism of graded topological
spaces f: (X, f7'A) — (Y,A). The usual functors of sheaves f~! and f, induce
adjoint functors between Sh(X, f~*A) and Sh(Y, A).

Definition 2.9. Let f: (X,Ax) — (Y, Ay) be a morphism of graded topological
spaces. Define a functor

far': Sh(Y,Ay) = Sh(X, Ax)
by
DU, fo' F)x = (s e (U, f 71 F) : f'(degs) = \), A€ Ax(U).
Also define a functor
Jer«: Sh(X,Ax) = Sh(Y,Ay)
by
DV, forsF)u =TTV, oy, €A (V) = F AV (V).
One checks that these definitions indeed make sense, i.e., send graded sheaves

to graded sheaves. We note that if p: (X,Ax) — (pt,0), then pg . is the “de-
gree 0 global sections” functor. In particular we have pg, .Homgy, x4 ) (F,G) =

HOI’IlSh(XJ\X)(./_'.,g).

Remark 2.10. The pushforward functor will in general not keep finiteness properties
of the sheaf F. A good example to keep in mind is Y = R with A constructible
such that Alg- = 0 and Ay = Z. Then the graded pushforward along j: R* — R
sends the constant sheaf with fiber & to the sheaf with stalk at 0 equal to €P,,cz k
(and constant with fiber k otherwise).

Lemma 2.11. Let f: X — Y be a morphism of graded topological spaces. Then
for F € Sh(X,Ax) and G € Sh(Y, Ay) there exists a natural isomorphism

I_I()—mSh(Y,Ay)(gv fgr-,*]:) = fgr,*@Sh(X,Ax)(fg_rlgaf)'
In particular,
Homgn(y,ay)(G, farF) = Homgn(x a ) (for' G5 F)
and fg_rl is left adjoint to fer «.

Proof. If Ax = f~'Ay, then this follows easily from the classical adjointness of
pullback and pushforward. Thus we can assume that the underlying map of topo-
logical spaces is the identity. In this case one checks that a morphism of ungraded
sheaves is contained in either Hom if it fulfills the same degree conditions on local
sections. O

The functor fg_rl is clearly exact, whence fj; . is left exact by Lemma 2.11.

Definition 2.12. Let f: X — Y be a morphism of graded spaces and F €
Sh(X,A). We define fg 1 F to be the subsheaf of f,, .F with sections

(U, fornF)u = {s € F(f_lU,.F)fb(H) : f+ supps — U is proper}.
We write I'o(X, F) for pg, 1 F with p: (X,A) — (pt, A(X)).

Clearly fg is left exact and fgr « = fer,y when f is proper.
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GRADED TOPOLOGICAL SPACES 1329

Remark 2.13. Let f: X — Y be a morphism of graded spaces and F € Sh(X, Ax).
Then in general I'(Y, fgr «F) is not equal to I'(X, ). For an extreme example
consider f: X — (pt,0), where the former is degree 0 sections, while the latter are
all (A(X)-graded) sections. The same remark applies to I'c and fg, 1.

For any subset i: Y — X we set Fly = ig}l]:, where we endow Y with the
grading i~ *A.

Lemma 2.14. Let f: X — Y be a morphism of graded spaces and let F €
Sh(X,Ax). Factor [ as
(X, Ax) 5 (X, f 1 y) L5 (v Ay).

Then for each y €Y there exists a canonical isomorphism of Ay-graded modules

(fgr,l}—)y =T (f_l(y)v (fl'f*l(y))gn* }—'fl(y))'

Here we endow f~'(y) with the sheaf of gradings f~'Ay,,.

Proof. One easily checks that the above morphism respects the gradings. The fact
that it is an isomorphism can then be checked in the usual way; see [5, Proposi-
tion 2.5.2] or [4, Theorem VII.1.4]. O

Lemma 2.15. The category of graded spaces admits pullbacks. Concretely, if
f: (Y1, Ay,) = (X, Ax) and g: (Ya,Ay,) — (X, Ax) are two morphisms of graded
spaces, then their pullback is isomorphic to (Z,Az) as follows: The underlying
topological space Z is the cartesian product Y1 X x Ya. Let f: Z =Yy and §g: Z —
Y1 be the projection maps. The sheaf of abelian groups Az is the pushout of
G T T A = G Ay, and fTH(G): [T 9T A = [T Ay,

(Y1 xx Y2, 7' Ay, B(gop)-1ax f'Ay,) —2— (vi, Ay,)

! !

(}/2’ AYz) z (X7 AX)

Proof. Follows directly from the universal properties. ]

Proposition 2.16. Consider a cartesian square

of graded spaces. Then there is a canonical isomorphism of functors
-1 ~ 7 ~—1
ggr o fgr,! — fgr,! o ggr .

Proof. Using Lemma 2.14, this can be shown as in the ungraded situation while
carefully keeping track of gradings using Lemma 2.15; see [5, Proposition 2.5.11].
|
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1330 CLEMENS KOPPENSTEINER

3. RINGED GRADED TOPOLOGICAL SPACES

Let (X,A) be a graded topological space. A sheaf of rings!' (resp., k-algebras)
on X is a A-graded sheaf R such that each R(U) is a A(U)-graded ring (resp., a
A(U)-graded k-algebra) and the restriction maps are ring homomorphisms (resp.,
k-algebra homomorphisms).

Definition 3.1. A graded ringed topological space is a triple (X, Ax,Rx), where
(X, Ax) is a graded topological space and Rx is a A x-graded sheaf of commutative
rings on X. A morphism of graded ringed topological spaces (X,Ax,Rx) —
(Y,Ay,Ry) is a triple (f, f°, f*) where (f, f’) is a morphism of graded topological
spaces and f*: fg;lRy — Rx is a morphism of Ax-graded sheaves of rings. Such
a morphism is called strict if f> and f* are isomorphisms.

Definition 3.2. Let (X,A,R) be a graded ringed topological space. We write
Sh(X, A, R) for the category of A-graded sheaves of R-modules, i.e., the category
whose objects are A-graded sheaves F such that each F(U) is a A(U)-graded R(U)-
module with compatible restriction maps and morphisms are required to respect
this additional structure.

Let F and G be two R-modules. Then Homgh(XyAﬁ) (F,G), F ®r G, and
Homgy, (x,a,)(F,G) are defined in the obvious way. We will often simply write

Homp, Hom%, and Homy, for the various Hom functors.

Lemma 3.3. Let R — S be a morphism of A-graded sheaves of commutative rings.
Let F and H be S-modules and let G be an R-module. Then there is a canonical
isomorphism

Homgy,(x a,5)(F @r G, H) = Homgy,x A, ) (G, Homgpx a,s)(F, H)).

Proof. Asin the ungraded setting, it suffices to check the isomorphism on presheaves
defining the above sheaves; see [5, Proposition 2.2.9]. There it follows from the cor-
responding adjunction for graded modules. O

Lemma 3.4. Let f: (X,Ax) — (Y, Ay) be a morphism of graded topological spaces
and let R be a Ay -graded sheaf of rings on Y. Then for any R-modules F and G
there exists a canonical isomorphism

[ F@yan [2'G = [ (FORG).
Proof. As in the ungraded setting, see [5, Proposition 2.3.5]. (]

Clearly, Sh(X,A) = Sh(X,A,Z). If f: X — Y is a morphism of graded ringed
topological spaces, then f, . as defined in Definition 2.9 enhances to a functor

fgr,* : Sh(X, Ax, Rx) — Sh(Yv, Ay, Ry),
and similarly we have a functor

fgr,!: Sh()(7 Ax,Rx) — Sh(Yv7 Ay,Ry).

Remark 3.5. Here we have to be careful to make sure that Ry acts with the
correct degrees: If t € Ry (V) and m € fg . F(V),, then m comes from a section
in F(f~'V) (). Via the morphism fg'Ry — Rx, rm comes from a section

1Recall that by “ring” we always mean a commutative ring with unit.
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GRADED TOPOLOGICAL SPACES 1331

rm € }'(f’1V)fb(M)+fb()\). A priori there might be many u' € Ay (V) which map
to f°(1) + f°(N). The section rm € fq .F(V) has to be in degree u + \.

Again a good example to keep in mind is as in Remark 2.10, where one endows
R with the constructible sheaf of rings with stalks C on R* and C[t] at 0 with
degt =1 and t|g- = 1. Let F be the constant sheaf with stalk k on R* and let j be
the inclusion R* < R. If m € jg, «F (V) (with 0 € V open), then tm comes from
a section t|g-m|r- = mlg- € F(V \ 0)o. The sheaf jq, .F contains Z-many copies
of this section. We have to define tm to be the one in fg F(V);.

Definition 3.6. Let f: X — Y be a morphism of graded ringed topological spaces.
Define a functor

fi:: Sh(Y, Ay, Ry) — Sh(Y,Ax, Rx), F s [l F ® 1z, Rx.

Lemma 3.7. Let f: X — Y be a morphism of graded ringed topological spaces.
Then for F € Sh(X,Ax,Rx) and G € Sh(Y, Ay, Ry) there exists a natural iso-

morphism
Homg (G, fosF) = forHomp (f5G, F).
In particular,
Homp, (G, for«F) = Homr, (fg G, F)
and fg, is left adjoint to fgr ..
Proof. If Rx = fg}lRy, then the statement is proven in the same way as Lemma

2.11. So we can assume that (X, Ax) = (Y, Ay). In this case the statement is just
tensor-Hom adjunction (Lemma 3.3). O

AS fgr,« 18 left exact, Lemma 3.7 implies that fg, is right exact.

Definition 3.8. For an R-module F and a locally closed subset Y C X we write
Fy for the sheaf satisfying the following conditions:

fy|y = ]:‘Y and ]:Y|X\Y =0.

The sheaf Fy is constructed in the usual way; see [5, p. 93]. If F is a A-graded
R-module, then so is Fy. The following lemma is standard.

Lemma 3.9. Let Y C X be a locally closed subset. The functor F — Fy is exact.
Further, if U C X is open, then we have an exact sequence in Sh(X, A, R)

0—)fU—>f—>fx\U—>0.

4. DERIVED CATEGORIES

In this section (X, A, R) will always be a ringed graded space.
As in the nongraded case one defines the kernel and cokernel of a morphism of
R-modules and obtains the following lemma (see [5, Proposition 2.2.4]).

Lemma 4.1. The category Sh(X, A, R) is abelian.

We write D*(X, A, R) for the corresponding derived categories, where x is one
of 0, +, —, b.

Lemma 4.2. Every R-module F € Sh(X,A,R) admits a surjection P — F for
some flat R-module P.
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1332 CLEMENS KOPPENSTEINER

Proof. For each open U C X and each homogeneous section s € F(U), set
P(U,s) = Ry(—A). Then P(U,s) has a map to F sending 1 to s. Thus P =
@Dy, P(U,s) maps onto F. Further P is flat since for each € X the stalk P, is
a sum of shifts of free R -modules. O

4.1. The derived category via model structures. Let Ch(X,A,R) be the
category of complexes of R-modules.

Proposition 4.3. The category Ch(X,A,R) can be endowed with a symmetric
monoidal model structure such that the weak equivalences are the quasi-equivalences
of complexes and the monoidal product is given by the tensor product of complezes.
In particular (D(X, AR), ®H7‘€7'R,RHO_mR) s a closed monoidal category.

Proof. The proof of this proposition is along the lines of that for [2, Proposi-
tion 2.18]. Thus we let G be the set of sheaves Ry (A), where U runs over all
open subsets of X and A € A(U). Then G is a flat family of generators in the sense
of [1, Section 3.1]. By [1, Remark 2.12] we can complete G to a descent structure
(G, H), which is automatically flat by [1, Proposition 3.7]. Thus the corresponding
G-model structure on Ch(X,A,R) yields a symmetric monoidal model category
[1, Proposition 3.2]. The theorem then follows from [3, Theorem 4.3.2]. O

4.2. Acyclic sheaves. In this section we introduce several properties of sheaves
and show that they imply acyclicity for various functors.

First, as usual one calls a sheaf Z € Sh(X, A, R) injective if Homg (—, Z) is an
exact functor.

Lemma 4.4. The category Sh(X, A, R) has enough injectives.

Proof. As in the ungraded situation one reduces to the case of X being a single
point; see [5, Proposition 2.4.3]. There the statement follows from the corresponding
statement for graded modules, which is classical (see for example [10, Tag 04JD]).

|

Lemma 4.5. Let T be an injective object of Sh(X, A, R). Then Z{\) is injective for
all x € A(X) and Z|y is injective in Sh(U, Ay, R|u) for all open subsets U C X.
In particular Hom% (—, Z) and Homp (—, ) are exact functors.

Proof. The first statement follows from Homg (F, Z()\)) = Homg (F(-X), I). If G
is an R|y-module, then

HomR|U(gv I|U) = HomR((jgr,*g)U; I);

where j: U — X is the inclusion. As js . and —y are exact, the second statement
follows. 0

Definition 4.6. A sheaf F € Sh(X,A) is called flabby if for any open subset
U C X and any A € A(U) the sheaf (F|y)y is flabby as an ordinary sheaf. In
other words, for any open V C U C X we require that the restriction morphism
F(U)x — F(V)y), is surjective.

Unless A is flabby, a flabby graded sheaf will not necessarily be flabby as an
ordinary (pre-)sheaf.

Lemma 4.7. Let T be injective. Then for every F € Sh(X,A,R) the sheaf
Homy (F, I) is flabby. In particular every injective R-module is flabby.
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Proof. Let U C X be open. Consider the short exact sequence

0= Fu = F = Fx\w —0.
Applying the exact functor Hom%(—, 7) we get a surjection
(X, Hompg (F, T)) = Hom& (F, Z) — Hom} (Fys, Z).
We now have

Homp (Fy, I) = €D Homr(Fu, Z(N))
AEA(X)

B Homg, (Fly, I, (Aly))
AEA(X)

D P  Homg, (Fly, Iy (V).

AEA(U) pe(py)—1(N)

The statement follows. O

Lemma 4.8. Let 0 > F — G — H — 0 be an exact sequence in Sh(X, Ax) with
F flabby, and let f: (X,Ax) — (Y,Ay) be a morphism of graded spaces. Then
0 = forsF = fesxG = fasH — 0 s exact. In particular 0 — T'(X,F) —
I(X,G) = T(X,H) = 0 is a short exact sequence of A(X)-graded R(X)-modules.

Proof. Tt suffices to show that for every A € f’(Ay) the sequence
0= fulFx) = fu(Gr) = fu(HA) = 0

is exact. By definition, F) is flabby as an ordinary sheaf, so this assertion is
classical; see [5, Proposition 2.4.7]. O

Definition 4.9. A sheaf F € Sh(X, A) is called soft if for any open subset U C X
and A € A(U) the sheaf (F|y ), is soft as an ordinary sheaf, i.e., for every compact
subset i: K < U the restriction I'(U, (F|y)a) = (K, i1 (F|v)x) is surjective.

Every flabby sheaf (and hence every injective sheaf) is soft.

Lemma 4.10. Let 0 - F — G — H — 0 be an exact sequence in Sh(X,Ax)
with F soft, and let f: (X,Ax) — (Y, Ay) be a morphism of graded spaces. Then
0= forgF = far1G = far)H — 0 is exact.

Proof. Tt suffices to show that for every A € f°(Ay) the sequence
0= filFx) = filGr) = fi(HA) =0

is exact. By definition, F) is soft as an ordinary sheaf, so this assertion is classical;
see [5, Proposition 2.5.8]. O

4.3. Identities for derived functors. As in the ungraded setting, one sees that
if f: X — Y is a morphism of graded topological spaces and F € Sh(X,Ax) is
flabby (resp., soft), then so is fgr«F (resp., fg F). If f: X =Y and g: Y — Z
are two morphisms of graded topological spaces, then Rfg, « (resp., Rfg 1) can be
computed via flabby (soft) resolutions. Thus R(g o f)gr« = Rggr« 0 Rfgr . and
R(g o f)ar, = Rggr) 0 Rfgr 1. From the following lemma it then follows that also

L(go f)g = Lfg oLgg,
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1334 CLEMENS KOPPENSTEINER

Lemma 4.11. Let f: X — Y be a morphism of graded ringed topological spaces.
Then for F € DY (X,Ax,Rx) and G € D™ (Y,Ay,Ry) there exists natural iso-
morphisms

RHomzp, (9, R fer «F) = Rfgr Homp  (Lf5,G, F)
and
RHomg, (G, Rfe «F) = RHomg, (L g*rg,}‘).
In particular,
Homp (y,ay Ry) (G5 Rfgr«F) = Homp (x a5 =y ) (Lfar G, F)

and LLfg, is left adjoint to R fgy ..

Proof. By tensor-hom adjunction (Proposition 4.3) we can reduce to Rx = fg_rlRy.
By adjunction the functor fg .: Sh(X, AX,fg_rlRy) — Sh(Y,Ay,Ra, ) sends in-
jective modules to injective modules. Thus both sides are computed via the same
derived functor. O

Lemma 4.12. Let j: (U, Aly) < (X, A) be an open subset with complement
i: (Z,Al,) = (X,A).
Then for any F € DT (X, A) there exists a distinguished triangle
Rjgr1jgr F — F = Rigyyig F.

Proof. Since the restrictions preserve softness, it suffices to show that for any soft
sheaf F we have a short exact sequence

0 = Jar g F = F = e F — 0.
This follows from Lemma 3.9. O

Proposition 4.13 (Projection formula). Let f: (X,Ax,Rx) — (Y, Ay, Ry) be a
morphism of graded ringed spaces. Let FEDT(X,Ax,Rx) and GeDV (Y, Ay, Ry)
and assume that G has a finite flat resolution. Then there exists a canonical iso-
morphism

(ngrv!f) ®]I7‘?,y g :—> ngr7!(‘F ®]I7‘?,X Lfg*rg)

Proof. Let us first assume that Rx = f;'Ry.

Assume further that G is a flat Ry-module and Ax = f~'Ay. Then one shows
that fer 1 F Qr, G = far ) (F @y fgjlg) with a direct adaptation of the proof in
the ungraded case; see [4, VII.2.4] or [5, Proposition 2.5.13]. On the other hand,
if X =Y, then it is a simple matter to check that the gradings on the two sides
match.

Further, still assuming that G is flat, [5, Lemma 2.5.12] (whose proof again
upgrades to the graded setting) implies that both derived functors are computed
by a soft resolution of F, and hence agree. Resolving a general G by flat sheaves,
the derived statement follows in the case that Rx = fgjl’Ry.

The general case then follows from

R fer ) (F O LfgG) = Rfer)(F O Rx @i, fir' G)
= ngr,!(f ®]'I;g;17gy fg—rlg) D

Licensed to Institute for Advanced Study. Prepared on Fri Jul 17 13:52:49 EDT 2020 for download from IP 192.16.204.140.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GRADED TOPOLOGICAL SPACES 1335

Similarly one upgrades Proposition 2.16 to a derived statement (compare [5,
Proposition 2.6.7]):

Proposition 4.14. Consider a cartesian square
72y
Jf lf
Vo 4o X
of graded spaces. Then there exists a canonical isomorphism
o' O Rfgry = Rfgrr 0 Gyt

Remark 4.15. This base change isomorphism does not upgrade to a base change
isomorphism for ringed graded spaces. This is simply because base change doesn’t
even hold for general morphisms of ungraded ringed spaces (e.g., complex (analytic)
varieties).

5. POINCARE-VERDIER DUALITY

Throughout this section we will assume that all rings are noetherian.
Recall that a topological space X has cohomological dimension at most n if
HF(T.(X,F)) =0 for all F € Sh(X) and all k > n.

Definition 5.1. A graded topological space (X, A) has cohomological dimension
at most n if the underlying topological space has cohomological dimension at most
n.

Lemma 5.2. A graded space (X, A) has cohomological dimension at most n if and
only if for any eract sequence
0—=Fo—=F1—= = Fpy1—0
in Sh(X, A), if F1,...,Fn are soft, then so is Fpy1.
Proof. The statement is classical if A = 0 [4, Proposition I11.9.9]. The graded

statement follows from this by considering the sequences F, » for A € A. |

Recall our standing assumption that all topological spaces we consider are locally
compact. The main result of this section is the following duality theorem.

Theorem 5.3. Let f: X — Y be a morphism of graded ringed spaces. As-
sume that X has finite cohomological dimension. Then there exists a functor
fér: D (Y,Ay,Ry) — DT(X,Ax,Rx) right adjoint to Rfg: . Moreover there
ezists natural isomorphisms

R HOIDRY (]ngr,!]:u g) =R HOIHRX (]:’ férg)
and

RI—IO—mRy (ngrv!‘F’ g) = fgry*RI—IO—rIPR,X (‘Fa férg)

The proof of Theorem 5.3 is roughly the same as in the ungraded setting. We
will highlight the major steps.

Lemma 5.4. Let F: Sh(X,A,R) — R(X)-mod” be an additive functor that
sends colimits to limits. Then F' is representable.
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1336 CLEMENS KOPPENSTEINER

Proof. We define a presheaf F of A-graded R-modules by F(U)x = F(Ry(—A\)) for
each open subset U C X and A € A(U). Then F is a sheaf. Indeed, if {U,} is an
open covering of an open subset U of X and A\ € A(U) we have an exact sequence

P Ru.cvs Mo, nw,) = B Ru (Alp,) = Ru(A) = 0.
a, «

Applying F', we obtain

0= F(Ry(\) = [[F(Ru. (M) = [T F(Ruanvs Mo, nw,))s
a o,
which is just the sheaf condition for F.

We can write any sheaf G € Sh(X, A, R) functorially as a colimit of sheaves of
the form Ry (\). Namely, we form the category whose objects are pairs (U, s) with
U C X open and s a homogeneous element of G(U) and with a single morphism
(U,s) = (U, ") if and only if U C U’ and s = §'|y. For each such pair we have a
map Ry (— degs) — G defined by the section s.

It follows from the assumption on F' that we have a natural isomorphism
Hom(G, F) = F(G). O

Lemma 5.5. Let f: X — Y be a morphism of ringed graded topological spaces
and assume that X has finite cohomological dimension. Then for any flat and soft
Rx-module M on X and any Ry -module G the functor

F — Homg, (for!(F Qry M), G)
is representable.

Proof. By Lemma 5.4, it suffices to show that the functor F +— fg 1(F @z, M)
commutes with colimits. As in the ungraded case the functor commutes with direct
sums, so it suffices to show that it is exact. For this it in turn suffices to show that
F @r, M is soft.

By the construction of Lemma 4.2, F has a resolution

s FE F S F S F—0

such that each F? is a direct product of sheaves of the form Ry (A) for U C X open
and A € Ax(U). Tt follows that F! @z, M is a direct sum of shifts of restrictions
of M and hence is soft. As M is flat, we obtain an exact sequence

..._>]-'_2®RXM—>]:_1®RXM—>]'—O®RXM_>}—®RXM_>O’

where each F* @, M is soft. Thus Lemma 5.2 implies that F ®%, M is soft as
well. a

Lemma 5.6. If X has finite cohomological dimension, then the sheaf R has a finite
resolution by soft and flat modules.

Proof. This is proven exactly as in the ungraded situation; see [4, Proposition
VI.1.3]. Note that this is where the assumption that R is noetherian is used (via
[4, Lemma VI.1.4]) O

Proof of Theorem 5.3. By Lemma 5.5, for any flat and soft R x-module M and any
Ry-module G there exists an R x-module fén m(G) and a canonical isomorphism

HomRy (fgr,!(]: ORx M)> g) = Home (]:7 fér,./\/l (g))
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for any Rx-module F. As the functor fer1(— ®r, M) is exact by the proof of
Lemma 5.5, if G is injective, so is fér)M(g). From here one bootstraps up to the
derived statement in the usual manner by taking M to be a finite soft and flat reso-
lution of Rx; see [4, Theorem VII.3.1] or [5, Theorem 3.1.5 and Proposition 3.1.10]
for details. O

If f: X Y and g: Y — Z are two morphisms of ringed graded topological
spaces, then R(g o f)gr1 = Rggr1 © Rfgr 1 and hence R(g o f)iz;]r &~ Rfér o Rgfgr.

Let k be a commutative ring. Recall that a dualizing complex for k is a complex
of k-modules wy, € D?(k‘) of finite injective dimension such that the canonical map
k — RHomy (wk, wy) is an isomorphism [10, Tag 0A7B]. From now on we assume
that &k has a dualizing complex wy, which we fix [10, Tag 0BFR]. For example if k
is a field, one can take wy = k.

Definition 5.7. Let (X, A, R) be a ringed graded topological space of finite co-
homological dimension such that R is a graded sheaf of k-algebras. Let p: X —
(pt, 0, k) be the canonical map. We call wx = pfgrwk the dualizing complex of X
and Dx = RHom(—, wx) the dualizing functor.

Remark 5.8. Consider a ringed graded space X = (X, A, Rx) and let X =
(X,0,kx) be the underlying topological space. Let m: X — X be the canon-
ical map. Then for any A-graded sheaf F on X and any A € A(X) one has
Tar s (F(A)) = et (F(A)) = Fa. Suppose we know the dualizing complex wx.
Then,

(wx)a = g RHomp (Rx(N), mhwx)
~ RHom,,  (Rx,—x, wx)-

Thus, knowing duality for X, it is often not too hard to determine the dualizing
complex for X.

Corollary 5.9. Let f: X — Y be a morphism of graded ringed spaces and assume
that X has finite cohomological dimension. Then:
(i) RfyRHomp (F,G)=RHomg (LfsF, f3,G) for any F,GED(Y, Ay, Ry).
(i) ngm* oDx =Dy o R.fgr,!-
(111) fg'r [¢] ]D)y = ]D)X 9 Lfgr

Proof. As in the classical case, (i) follows from Theorem 5.3, tensor-hom adjunction
and the projection formula (Proposition 4.13); see [5, Proposition 3.1.13]. Assertion
(ii) is immediate from Theorem 5.3 with G = wy, while (iii) follows from (i) in the
same manner. (]

REFERENCES

[1] Denis-Charles Cisinski and Frédéric Déglise, Local and stable homological algebra in
Grothendieck abelian categories, Homology Homotopy Appl. 11 (2009), no. 1, 219-260.
MR2529161

[2] Ivo Dell’Ambrogio and Greg Stevenson, On the derived category of a graded commuta-
tive Noetherian ring, J. Algebra 373 (2013), 356-376, DOI 10.1016/j.jalgebra.2012.09.038.
MR2995031

[3] Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American
Mathematical Society, Providence, RI, 1999. MR1650134

[4] Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986.
MR&842190

Licensed to Institute for Advanced Study. Prepared on Fri Jul 17 13:52:49 EDT 2020 for download from IP 192.16.204.140.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://stacks.math.columbia.edu/tag/0A7B
http://stacks.math.columbia.edu/tag/0BFR
https://www.ams.org/mathscinet-getitem?mr=2529161
https://www.ams.org/mathscinet-getitem?mr=2995031
https://www.ams.org/mathscinet-getitem?mr=1650134
https://www.ams.org/mathscinet-getitem?mr=842190

1338 CLEMENS KOPPENSTEINER

[5] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-
Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the
1990 original. MR1299726

[6] Arthur Ogus, On the logarithmic Riemann-Hilbert correspondence, Doc. Math. Extra Vol.
(2003), 655-724. Kazuya Kato’s fiftieth birthday. MR2046612

[7] Kazuya Kato and Chikara Nakayama, Log Betti cohomology, log étale cohomology, and log
de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999), no. 2, 161-186, DOI
10.2996/kmj/1138044041. MR1700591

[8] Clemens Koppensteiner, The de Rham functor for logarithmic d-modules, arXiv e-prints, 4
2019.

[9] Clemens Koppensteiner and Mattia Talpo, Holonomic and perverse logarithmic D-modules,
Adv. Math. 346 (2019), 510-545, DOI 10.1016/j.aim.2019.02.016. MR3911632

[10] The Stacks Project Authors, Stacks project, http://stacks.math.columbia.edu.

INSTITUTE FOR ADVANCED STUDY, 1 EINSTEIN DRIVE, PRINCETON, NEW JERSEY 08540

Current address: Mathematical Institute, University of Oxford, Andrew Wiles Building, Ox-
ford, OX2 6GG, United Kingdom

Email address: clemens.koppensteiner@maths.ox.ac.uk

Licensed to Institute for Advanced Study. Prepared on Fri Jul 17 13:52:49 EDT 2020 for download from IP 192.16.204.140.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


https://www.ams.org/mathscinet-getitem?mr=1299726
https://www.ams.org/mathscinet-getitem?mr=2046612
https://www.ams.org/mathscinet-getitem?mr=1700591
https://www.ams.org/mathscinet-getitem?mr=3911632
http://stacks.math.columbia.edu

	1. Introduction
	2. Graded topological spaces
	3. Ringed graded topological spaces
	4. Derived categories
	5. Poincaré–Verdier duality
	References

