1 2 The antimicrobial activity and cellular pathways targeted by p-anisaldehyde and 3 epigallocatechin gallate in the opportunistic human pathogen Pseudomonas aeruginosa. 4 5 Yetunde Adewunmi¹, Sanchirmaa Namjilsuren¹, William D. Walker², Dahlia N. Amato², Douglas V. Amato², Olga V. Mavrodi^{1,3}, Derek L. Patton^{2*}, and Dmitri V. Mavrodi^{1*} 6 7 8 ¹ School of Biological, Environmental, and Earth Sciences, The University of Southern 9 Mississippi, Hattiesburg, MS, United States ² School of Polymer Science and Engineering, The University of Southern Mississippi, 10 11 Hattiesburg, MS, United States 12 ³ South MS Branch Experiment Station, Mississippi State University, Poplarville, MS, United 13 States 14 15 16 Keywords: Pseudomonas aeruginosa, p-anisaldehyde, epigallocatechin gallate, antimicrobial 17 activity, cellular targets 18

- 22 *Corresponding Authors: D. V. Mavrodi, E-mail: dmitri.mavrodi@usm.edu; D. L. Patton, E-mail:
- 23 derek.patton@usm.edu.

AEM Accepted Manuscript Posted Online 6 December 2019 Appl. Environ. Microbiol. doi:10.1128/AEM.02482-19

Copyright © 2019 American Society for Microbiology. All Rights Reserved.

19

20

ABSTRACT

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Plant-derived aldehydes are constituents of essential oils that possess broad-spectrum antimicrobial activity and kill microorganisms without promoting resistance. In our previous study, we incorporated p-anisaldehyde from star anise into a polymer network called PANDAs (Pro-Antimicrobial Networks via Degradable Acetals) and used it as a novel drug delivery platform. PANDAs released p-anisaldehyde upon a change in pH and humidity, and controlled growth of the multi-drug resistant pathogen Pseudomonas aeruginosa PAO1. In this study, we identified cellular pathways targeted by p-anisaldehyde, by generating 10,000 transposon mutants of PAO1 and screened them for hypersensitivity to p-anisaldehyde. To improve the antimicrobial efficacy of p-anisaldehyde, we combined it with epigallocatechin gallate (EGCG), a polyphenol from green tea, and demonstrated that it acts synergistically with p-anisaldehyde in killing P. aeruginosa. We then used RNA-seq to profile transcriptomic responses of P. aeruginosa to p-anisaldehyde, EGCG, and their combination. The exposure to p-anisaldehyde altered the expression of genes involved in the modification of cell envelope, membrane transport, drug efflux, energy metabolism, molybdenum cofactor biosynthesis, and stress response. We also demonstrated that the addition of EGCG reversed many p-anisaldehydecoping effects and induced oxidative stress. Our results provide an insight into the antimicrobial activity of p-anisaldehyde and its interactions with EGCG and may aid in the rational identification of new synergistically-acting combinations of plant metabolites. Our study also confirms the utility of the thiol-ene polymer platform for the sustained and effective delivery of hydrophobic and volatile antimicrobial compounds.

IMPORTANCE

Essential oils (EOs) are plant-derived products that have been long exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to the broad-range antimicrobial activity,

52

53

54

55

56

57

58

59

low toxicity to human commensal bacteria, and the capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, many aspects of their mode of action remain inconclusive. The overarching aim of this work was to address these gaps by studying molecular interactions between an antimicrobial plant aldehyde and the opportunistic human pathogen Pseudomonas aeruginosa. Results of this study identified microbial genes and associated pathways involved in response to antimicrobial phytoaldehydes and provided insights into molecular mechanisms governing the synergistic effects of individual constituents within essential oils.

INTRODUCTION

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that serves as an important model for opportunistic infections and biofilm research (1, 2). This organism is commonly found in soil, water, and plants, but can readily infect immunocompromised individuals causing septicemia and wound or urinary tract infections (3). It also responsible for pneumonia and causes increased morbidity and mortality in cystic fibrosis patients. Pseudomonas aeruginosa is resistant to multiple classes of antibiotics and belongs to a class of pathogens with increased virulence, persistence and transmissibility known as the ESKAPE group (also encompasses Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter species) (4). The Centers for Disease Control and Prevention (CDC) reports that, in the U.S. alone, P. aeruginosa is associated with 8% of all healthcare-acquired infections and over 400 deaths per year, which are often caused by multi-drug resistant (MDR) strains (5). These MDR variants are insensitive to nearly all the available β-lactams and aminoglycosides and are classified by the CDC as a serious threat that requires close monitoring and prevention activities (6). Therefore, there is a need for the development of antimicrobial agents, which do not promote antibiotic resistance and may help to mitigate the spread of MDR phenotypes in *P. aeruginosa* and other bacterial pathogens.

Plant essential oils (EOs) represent a rich source of alcohols, aldehydes, terpenes, ethers, ketones, and phenolic compounds with antimicrobial, antifungal, and antiparasitic activity (7). The antiseptic properties and low toxicity of EOs prompted their use in traditional food preservation and homeopathic medicine (8). However, despite the demonstrated biological activity, the wider acceptance of EOs and their constituents as antimicrobial agents is limited by the hydrophobicity, chemical instability, high concentrations needed to achieve sufficient antimicrobial effect, and undefined mode of action. In our previous work, we addressed some of these issues by incorporating the antimicrobial EO constituent p-anisaldehyde into a polymer network called Pro-Antimicrobial Networks via Degradable Acetals (PANDAs) (9, 10). The

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

resultant polymer material was designed to act as a pro-drug that releases p-anisaldehyde upon a change in pH and humidity. The incorporation into PANDAs increased the bioavailability and antimicrobial efficacy of p-anisaldehyde and related phytoaldehydes against P. aeruginosa. Escherichia coli, Burkholderia cenocepacia, S. aureus, and Candida albicans. We also demonstrated that the inactivation of the MexAB-OprM multidrug efflux pump sensitizes P. aeruginosa to the action of p-anisaldehyde (10).

MexAB-OprM is a member of the resistance-nodulation-cell-division (RND) superfamily of multidrug efflux pumps, which are recognized as essential contributors to the emergence of MDR phenotypes in pathogenic bacteria. These membrane transporters extrude a broad spectrum of antimicrobial compounds (11), intercellular signals, and virulence factors (12, 13), which makes them an attractive target for the development of anti-resistance drugs. Such drugs, known as efflux pump inhibitors (EPIs), interfere with the function, expression, or assembly of efflux pumps, and can significantly reduce or completely reverse resistance against otherwise ineffective antibiotics (14). Despite the development of a number of effective synthetic and semisynthetic EPIs, none of these compounds are currently used in the treatment of bacterial infections because of the instability, low selectivity, and cytotoxic side effects (15). Plants, like animals, are attacked by bacterial pathogens and have evolved defense mechanisms to counteract such infections. This fact has prompted numerous plant-based studies aimed at the isolation of natural EPIs with lower toxicity and better tolerability. These efforts produced a growing list of promising candidates, some of which were patented and are being evaluated against different pathogens (16, 17).

In this study, we used P. aeruginosa PAO1 as a model organism to identify cellular pathways targeted in bacterial pathogens by p-anisaldehyde and structurally related compounds. We first subjected PAO1 to transposon mutagenesis and screened the resultant library of mutants for susceptibility to sub-inhibitory concentrations of p-anisaldehyde and the new p-anisaldehyde-containing antimicrobial polymer. This new polymer network relies solely

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

132

133

134

135

136

137

on diffusion to control the release of the active p-anisaldehyde from a non-degradable thiol-ene thermoset matrix (Fig. 1). The synthesis of the polymer was performed using only commercially available polyfunctional alkenes and polyfunctional thiols, which have eliminated the need to prepare and purify hydrolytically unstable monomers required for release of p-anisaldehyde. The new approach minimized the susceptibility of the monomers to atmospheric conditions during the network cure process and improved the batch-to-batch variability. The resultant polymer material had antimicrobial efficacy nearly identical to that of the previously reported degradable systems (9, 10).

We also screened a panel of plant-derived EPIs for the ability to potentiate the antimicrobial activity of phytoaldehydes and demonstrated that epigallocatechin gallate (EGCG), a polyphenol from green tea, acts synergistically with p-anisaldehyde and significantly reduces its minimal inhibitory concentration against P. aeruginosa. Finally, we profiled the transcriptomes of P. aeruginosa grown in the presence of p-anisaldehyde, EGCG, and a combination of thereof to gain insight into the possible mode of action of these plant-derived antimicrobial compounds. Our results revealed that p-anisaldehyde alters the expression of genes involved in membrane transport, lipids biosynthesis, stress response, energy metabolism, and biosynthesis of the molybdenum cofactor. The addition of EGCG reversed many of the panisaldehyde-coping responses and induced oxidative stress, which may contribute to the synergistic antimicrobial effect against P. aeruginosa.

131

RESULTS

Selection and characterization of mutants with hypersensitivity to p-anisaldehyde. The screening of the transposon mutant library yielded 39 clones that failed to grow in the presence of p-anisaldehyde. All hypersensitive mutants had F_1 values ≥ 9 and were at least 1.2 times more sensitive to p-anisaldehyde than the wild type PAO1 strain (Fig. 2A). Thirty-one mutants were sensitive to 1.7 mg mL⁻¹ of p-anisaldehyde (0.85× MIC of the wild type strain), six

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

mutants were sensitive to 1.5 mg mL⁻¹ (0.75× MIC), while two strains failed to grow at 1.2 mg mL⁻¹ (0.6× MIC). The mapping of transposon insertion sites by inverse PCR and DNA sequencing revealed that the sensitivity to p-anisaldehyde was caused by mutations in 27 genes, which represented 24 unique cellular pathways (Table 1). We further chose 24 mutants and tested them against the p-anisaldehyde-containing polymer. Our results revealed that 21 of the tested strains were significantly more sensitive to the antimicrobial polymeric discs, which manifested as a significant (P < 0.05) increase in the zone of inhibition compared to the wild type PAO1 (Fig. 2B). Approximately 40% of the affected genes function in the energy metabolism and generation of ATP or participate in the uptake of molybdenum and synthesis of the molybdenum cofactor (Table 1). Other identified genes are involved in signal transduction, nucleotide metabolism, or membrane transport of small molecules. Interestingly, among mutants with increased sensitivity to p-anisaldehyde-containing polymeric discs were two isolates that carried mutations in mexA, which encodes the periplasmic linker component of the efflux pump MexAB-OprM (Table 1).

Epigallocatechin gallate potentiates the activity of p-anisaldehyde in P. aeruginosa. Since the transposon screen suggested the possible importance of efflux pumps for the resistance to phytoaldehydes, we tested a panel of known plant-derived EPIs for the ability to sensitize P. aeruginosa to p-anisaldehyde. The testing involved measuring the MIC of p-anisaldehyde in the presence of non-inhibitory concentrations of selected EPIs. Results of that screen revealed that the addition of daidzein had no effect, while berberine, curcumin, and geraniol exhibited partial synergism and moderately decreased the MIC of p-anisaldehyde in the wild-type PAO1 (Table 2). In contrast, the green tea polyphenol epigallocatechin gallate (EGCG) significantly reduced the MIC of p-anisaldehyde and exhibited a strong synergistic effect similar to that of the proton motive force uncoupler carbonyl cyanide m-chlorophenylhydrazone

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

(CCCP). Broth microdilution checkerboard assay between EGCG and p-anisaldehyde confirmed that both compounds interact synergistically with the Σ FIC value of 0.5 (Fig. S1).

The effect of p-anisaldehyde on the transcriptome of P. aeruginosa PAO1. In order to gain further insight into the antimicrobial activity of p-anisaldehyde, we profiled and compared transcriptomes of P. aeruginosa treated with p-anisaldehyde, EGCG, and a combination of both compounds. The RNA-seq generated a total of 554 million filtered reads, which were mapped to the reference PAO1 genome. Statistical analysis using the cut off criteria of log2 fold change |log₂FC|≥1.5 and false discovery rate (FDR) adjusted p-value ≤ 0.05 revealed that the highest number of differentially expressed genes (DEGs) was associated with exposure to panisaldehyde, which affected the expression of 265 genes, or 5% of the entire genome (Fig. 3A). The treatment with EGCG and a combination of both compounds altered, respectively, the expression of 29 and 86 genes. We also performed the pairwise comparison between the panisaldehyde and combination treatments to understand molecular mechanisms responsible for the synergistic effect of epigallocatechin gallate. The information on the differentially expressed gene ID tags, predicted functions, log2 fold change (log2FC) values, and p-values adjusted for the false discovery rate (FDR) are summarized in Table S1.

P. aeruginosa responded to p-anisaldehyde by upregulating the expression of 128 genes, many of which function in energy metabolism, membrane transport, signal transduction, and stress response (Fig. 4). The overall highest levels of induction were observed in genes encoding components of multidrug efflux pumps (5.9-fold), the two-component response regulator PhoP (PA1179) (4-fold), and several conserved hypothetical proteins (4-fold) (Table S1). The 137 downregulated genes included those encoding various transporters, and components of energy metabolism pathways, type III secretion apparatus, and respiratory nitrate reductase. Interestingly, a significant proportion (32%) of DEGs that responded to panisaldehyde genes encoded conserved hypothetical proteins of unknown function. We also matched the genes that were differentially expressed in response to p-anisaldehyde to genetic

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

loci identified during the transposon screen. Results of this comparison revealed that the two datasets shared three genes, which encoded a cytochrome oxidase (PA1554), a predicted oxidoreductase (PA1880), and a two-component sensor (PA3271) (Fig. 3B).

The Blast2GO analysis of p-anisaldehyde DEGs identified the intrinsic component of the membrane, plasma membrane, and cell periphery as dominant gene ontology (GO) terms in the cellular component category. The most common GO terms in molecular function and biological processes categories were, respectively, the binding of an organic cyclic compound, and cellular metabolic processes (Fig. 4A). A similar pattern of GO terms was observed in the Blast2GO profiling of genes interrupted by insertions of the EZ-Tn5 <TET-1> transposon in panisaldehyde-sensitive mutants. Finally, the pathway enrichment analysis of upregulated DEGs revealed the overrepresentation (Fisher's exact test; FDR ≤ 0.05) of genes involved in the biosynthesis of lipids and response to chemicals and antibiotics. In contrast, the downregulated differentially expressed pathways were enriched, among others, in genes associated with ion transmembrane transport and translation (Fig. 4B).

EGCG modulates transcriptional changes caused by p-anisaldehyde in P. aeruginosa. In contrast to p-anisaldehyde, the exposure of PAO1 to subinhibitory levels of epigallocatechin gallate altered the expression of only 28 genes, one-third of which were classified as conserved hypothetical (Table S1). Among the upregulated DEGs with predicted functions were those encoding the efflux pump MuxABC-OpmB, transcriptional regulators (PA2525-PA2528 and PA2825) (3-fold), and components of the cell envelope and oxidative stress defense systems (PA0848, PA0849, PA4612, and PA4613) (2.5-fold). The six downregulated DEGs encoded a DNA mismatch repair protein (PA4946), an MFS transporter (PA2314) (2.4-fold), 1-phosphofructokinase (PA3561) (2.8-fold), and a FAD-binding subunit of glycolate oxidase (PA5354) (4.1-fold). The common GO terms in the cellular component category were linked with cell envelope, while the molecular function was associated with binding of heterocyclic compounds, oxidoreductase activity, transporter and peroxidase activity

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

(Fig. 5A). The dominant biological processes involved the response to chemical, regulation of cellular processes, and cellular detoxification. GO term enrichment analysis showed that most EGCG DEGs were involved in response to toxic substances and oxidative stress, while downregulated genes were associated with lipid biosynthesis, carbohydrate metabolism, and several other functions (Fig. 5B).

Interestingly, the treatment of *P. aeruginosa* with a combination of *p*-anisaldehyde and EGCG altered the expression of 86 genes. The majority of these genes (75 in total) were also present in p-anisaldehyde or EGCG datasets, and only 11 were uniquely associated with the mixed treatment (Fig. 3A). Three of these unique DEGs were downregulated and encoded a hypothetical protein (PA5406), a ribosomal protein (PA4433), and the cell division protein FtsE (PA0374) (Table S1). The unique upregulated genes encoded a hydrocarbon reductase (PA5236), an MFS transporter (PA5030), and a fosfomycin resistance protein (PA1129). The GO term enrichment analysis of the combination treatment revealed an overrepresentation of DEGs involved in the transmembrane transport, response to antibiotics and efflux, iron binding, and peptide biosynthesis (Fig. 6B).

The interaction between p-anisaldehyde and EGCG affects multiple categories of cellular pathways in P. aeruginosa. Our transcriptomic analysis revealed that p-anisaldehyde strongly induced genes encoding the efflux pumps MexCD-OprJ, MexEF-OprN, and MexKJ, as well as the putative transporter of the small multidrug resistance (SMR) family PA1541. Additionally, genes that encode regulators of the mexAB-oprM operon (i.e., the antirepressor gene armR (PA3719) and nalC (PA3721)) were differentially expressed in p-anisaldehydetreated cells. In contrast, the treatment with EGCG induced only one efflux pump, MuxABC, suggesting that this transporter plays a specific role in the efflux of epigallocatechin gallate. We further validated the RNA-seg data by RT-gPCR with oligonucleotide primers and probes targeting components of seven clinically relevant P. aeruginosa efflux pumps. The results of this experiment revealed a strong induction of mexC, mexE, and mexK in response to p-

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

anisaldehyde, which was in agreement with the results of RNA-seq (Fig. 7). Interestingly, although, mexC and mexE were also upregulated in the combination treatment, the addition of EGCG resulted in significantly lower levels of expression compared to the p-anisaldehyde-only treatment. Contrary to results of the transposon mutagenesis, we did not detect any measurable induction of genes encoding components of the MexAB-OprM efflux pump. We attribute this discrepancy to differences in the length of the exposure to p-anisaldehyde between the transposon screen and gene expression experiments.

In addition to efflux pumps, we observed that the presence of p-anisaldehyde modulated the expression of almost 30 other membrane transporter genes (Table S1). The GO term enrichment analysis of these DEGs revealed an overrepresentation of pathways associated with the transmembrane transport of ions and inorganic molecules (Fig. 4). Like in the case of efflux pumps, some of these genes were also differentially expressed between the p-anisaldehyde and p-anisaldehyde/EGCG treatments. The comparison of gene expression profiles also revealed five ABC transporter genes (agtA, agtB, ihpM, gltG, and yrbE) that were downregulated by p-anisaldehyde, but that effect was significantly reversed in cultures treated with a combination of p-anisaldehyde and EGCG (Fig. 8). The effect was especially pronounced in the case of yrbE (PA4455), which encodes an ABC transporter involved in resistance to acidified nitrite, EDTA, and several antibiotics (18). A similar response to p-anisaldehyde and EGCG was observed in genes encoding components of the potassium translocating ATPase KdpFABC. Conversely, the addition of EGCG significantly induced the cation diffusion facilitator (CDF) transporter gene yiiP, whose expression was unaffected by p-anisaldehyde.

Our analysis also revealed that p-anisaldehyde and EGCG differentially modulate the activity of several genes involved in the modification of the P. aeruginosa cell envelope. The exposure to p-anisaldehyde induced genes of the arnBCADTEF cluster, which functions to modify the lipid A component of the lipopolysaccharide thereby leading to increased resistance to cationic antimicrobial peptides (19). This induction was not observed in the EGCG-treated

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

cells, and the treatment with both compounds significantly reduced the expression of arnBCF (Fig. 8). Similar alterations were observed in the expression level of the oprH-phoPQ operon, which encodes an outer membrane protein H and a two-component signal transduction system that regulates the activity of the arnBCADTEF operon (20). Interestingly, oprH, which was induced by p-anisaldehyde but had a lower level of expression in the presence of EGCG, represents part of the Mg²⁺ stimulon and contributes to the resistance to polymyxin B and aminoglycosides (21).

p-Anisaldehyde and EGCG differentially affected expression of multiple cellular pathways associated with the stress response. The comparative analysis revealed that genes encoding several oxidative stress response enzymes, molecular chaperones, and a component of the DNA mismatch repair system were differentially expressed between the p-anisaldehyde, EGCG, and combination treatments. The EGCG and combination treatments upregulated genes encoding the KatB catalase (PA4613) (22) and its accessory ankyrin-like protein AnkB (PA4612) (23), the alkyl hydroperoxide-reducing protein AhpB (PA0848), the thioredoxin reductase TrxB2 (PA0849) (24), and two proteins, PA3237 and PA3287, that are upregulated in response to H₂O₂ (25, 26) (Fig. 8). In contrast, p-anisaldehyde upregulated the expression of molecular chaperones GroES and GroEL, but this effect was reversed by the presence of EGCG. In mutL, which functions to stabilize components of the mismatch repair machinery, the combination treatment completely negated the effect of individual p-anisaldehyde and EGCG treatments, which both strongly downregulated this gene.

Finally, our results revealed that the treatment with *p*-anisaldehyde and EGCG modulated the expression of the narK1K2GHJI operon (PA3872-PA3877), which encodes the respiratory nitrate reductase and nitrate transporter (Fig. 8). p-Anisaldehyde downregulated genes of the nitrate reductase pathway, but this repression was significantly weaker in the combination treatment. The exposure of P. aeruginosa to EGCG alone had little effect on the expression of this pathway.

DISCUSSION

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

In this study, we used a combination of transposon mutagenesis and RNA-seq to characterize cellular pathways targeted by p-anisaldehyde and epigallocatechin gallate in the multidrug-resistant human pathogen P. aeruginosa. p-anisaldehyde is a constituent of essential oils and a member of the phenylpropanoid family of metabolites, which are synthesized by plants as derivatives of the amino acid phenylalanine (27). Therefore, our findings provide insight into the biological activity of a larger group of structurally related compounds with antimicrobial, antifungal, and antibiofilm properties (28, 29). Although the antimicrobial activity of EOs is traditionally attributed to their ability to affect the integrity of cellular membranes (30), our results revealed that the response to p-anisaldehyde involves a broad range of cellular pathways. We observed that the exposure to p-anisaldehyde resulted in the downregulation of genes encoding cytochrome oxidases (cyoA, ccoN1), a phosphofructokinase (fruK), a pyruvate carboxylase (pycA), and the NADH:ubiquinone oxidoreductase NgrAEF. In the course of our transposon screen, we recovered several mutants with defects in genes involved in the transport of molybdenum and biosynthesis of the molybdenum cofactor. Molybdenum cofactor is an essential component of several important molybdoenzymes, including respiratory nitrate reductases (31). Our transcriptomic data revealed that exposure to p-anisaldehyde significantly downregulated the narK1K2GHJI operon that in P. aeruginosa encodes components of the inner membrane-bound nitrate reductase complex. This dissimilatory nitrate reductase catalyzes the respiratory reduction of nitrate to nitrite and helps generate ATP in the absence of oxygen (32). Interestingly, nitrate reduction decreases the trans fatty acid content and inhibits the formation of biofilms in P. aeruginosa (33). The biofilm lifestyle and alterations in the fatty acid profile are associated with the response to environmental stress and toxic substances (34). Hence, it is plausible that the repression of nitrate reductase represents a defense response to

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

p-anisaldehyde by favoring the formation of resistant biofilms and densely packed membranes with higher trans fatty acid content.

Other notable categories of defense response to p-anisaldehyde in P. aeruginosa included the upregulation of molecular chaperones and efflux transport. The treatment with panisaldehyde upregulated genes encoding heat-shock proteins (grpE, htpX, ibpA, hslU) and chaperons (dnaK, dnaJ, groES), which function to refold and destroy proteins damaged by extreme temperature, oxidative stress, disinfectants, heavy metals, and antibiotics (35-37). We further observed an upregulation of betAB genes (PA5372, PA5373) that encode enzymes involved in the conversion of choline to glycine betaine, a key microbial compatible solute. The intracellular accumulation of glycine betaine and related compounds confers tolerance to osmotic, thermal, oxidative, and denaturant forms of stress (38-40). Our transposon screen and RNA-seq also revealed that p-anisaldehyde upregulates multiple transporters, including efflux pumps of the RND superfamily, which expel antibiotics, metabolic inhibitors, detergents, biocides, quorum sensing signals, and some virulence factors (41, 42). We observed the induction of genes encoding the MexCD-OprJ, MexEF-OprN, and MexKJ efflux pumps, and recovered a transposon mutant with a defect in MexAB-OprM. A similar upregulation of mexB, mexC, mexE, and mexY genes was recently reported by Tetard et al. (43) in P. aeruginosa PA14 treated with cinnamaldehyde. Interestingly, the induction of efflux pump transporters and chaperones was also observed in P. putida exposed to toluene (44) thus suggesting that the response to p-anisaldehyde represents part of a broader strategy used by P. aeruginosa to cope with solvent stress.

Individual EO constituents are often less potent than antibiotics, which presents practical problems for their use as antimicrobials or food preservatives. A possible way to overcome this obstacle involves the exploitation of synergistic effects between different EO constituents. Although a number of synergistic combinations of compounds were identified by trial and error (7), the molecular mechanisms behind such interactions remain poorly understood. The results

362

363

364

365

366

367

368

343

344

345

346

between p-anisaldehyde and EGCG. The RNA-seq profiling revealed that the two compounds target very different sets of cellular pathways in P. aeruginosa. Interestingly, we included EGCG in our experiments as a potential efflux pump inhibitor (45, 46), and then observed the induction of the efflux pump MuxABC-OpmB. Although the expression of other efflux pump genes was not affected (or even somewhat repressed in cultures treated with a combination of p-anisaldehyde and EGCG), we suggest that the EPI properties of epigallocatechin gallate should be investigated further. The analysis of genes differentially expressed in the presence of EGCG also revealed components of several pathways (katB, ahpB, trxB2, PA2826, PA3237, PA3287) that are associated in P. aeruginosa with the response to oxidative stress and exposure to H₂O₂ (25). These findings provide an insight into the antimicrobial mode of action of epigallocatechin gallate and agree with reports of the intercellular release of H₂O₂ in E. coli O157:H7 treated with subinhibitory levels of EGCG (47), and results of Liu et al. (48), who profiled the transcriptomic response of *P. fluorescens* to EGCG. Surprisingly, apart from the oxidative stress genes, our RNA-seq data did not significantly overlap with the P. fluorescens dataset, which had over 400 genes whose expression was altered in response to EGCG. We attribute these discrepancies to differences in the biology of the two *Pseudomonas* species, higher concentrations of EGCG used by Liu et al. (48), and more stringent fold change cutoff (|log₂FC|≥1.5 vs. |log₂FC|≥1) to identify the differentially expressed P. aeruginosa genes.

of this study may help to address this gap in knowledge by probing synergistic interactions

Collectively, our results suggest that p-anisaldehyde affects P. aeruginosa by first interfering with the integrity of its cell envelope, which then allows it to accumulate intracellularly and adversely affect proteins, by causing their misfolding and aggregation. In contrast, epigallocatechin gallate poisons bacteria by inducing oxidative stress, which may explain its ability to complement and potentiate the antimicrobial action of p-anisaldehyde. The synergistic antimicrobial effect is further enhanced by the capacity of EGCG to partially or completely reverse the upregulation of many genes by p-anisaldehyde, including those encoding various

370

371

372

373

374

375

376

377

378

379

380

381

382

384

385

386

387

388

389

390

391

392

393

394

transporters and key multidrug efflux pumps. Interestingly, the treatment with a combination of p-anisaldehyde and EGCG also significantly repressed a gene (PA0374) encoding FtsE, which is membrane protein located in the septal ring. This may represent yet another facet of the synergism because studies in E. coli and several other species demonstrated that ftsE mutants grow poorly and exhibit division defects (49). In gram-negative bacteria, the failure to complete cell division is associated with increased sensitivity to antibiotics, detergents, and defensins (50).

In conclusion, this study provides an insight into the antimicrobial activity of panisaldehyde and its synergistic interactions with epigallocatechin gallate. Our results may aid in the rational identification of new synergistically-acting combinations of plant metabolites and their exploitation for the control of pathogenic microorganisms. Our study also confirms the utility of the thiol-ene polymer platform for the sustained and effective delivery of hydrophobic and volatile antimicrobial compounds.

383 **MATERIALS AND METHODS**

> Bacterial strain, growth conditions and compounds. All experiments conducted in this study were performed with the reference strain Pseudomonas aeruginosa PAO1. The organism was routinely cultured at 37°C in Difco Luria-Bertani (LB) medium (Becton Dickinson, Franklin Lakes, NJ), while Mueller-Hilton II (MH) broth and agar (Becton Dickinson) were used for all antimicrobial assays. The selection of transposon mutants was performed by amending the growth medium with tetracycline (Tc) (Thermo Scientific, Waltham, MA) at the concentration of 100 µg mL⁻¹. p-Anisaldehyde (pA), epigallocatechin gallate (EGCG), geraniol, daidzein, berberine, curcumin, 2-hydroxy-2-methylpropionate (Darocur 1173), carbonyl cyanide mchlorophenylhydrazone (CCCP), 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT), and pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) were obtained from Thermo Scientific in the highest purity available and used without further purification. The stock solution of p-

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

anisaldehyde (12 mg mL⁻¹) was prepared by ultrasonicating the compound for 5 min in MH broth amended with 0.75% DMSO. The stocks of CCCP (5 mg mL⁻¹), EGCG (20 mg mL⁻¹), geraniol (25 mg mL⁻¹), daidzein (30 mg mL⁻¹), berberine (35 mg mL⁻¹), and curcumin (25 mg mL⁻¹) were prepared by dissolving the chemicals in dimethyl sulfoxide (DMSO) (Alfa Aesar, Haverhill, MA).

Construction of the transposon mutant library. The transposon mutagenesis was conducted by electroporating P. aeruginosa with transposomes, which are stable complexes formed between the EZ-Tn5 <TET-1> transposon and the EZ-Tn5 Transposase (both from Lucigen, Middleton, WI). Briefly, cells from an overnight culture of PAO1 were collected and washed twice in 0.3 M sucrose. One hundred microliters of electrocompetent bacteria, equivalent to 10¹⁰ viable cells, were mixed with 0.7 μL of the EZ-Tn5™ <TET-1> transposomes in a 1-mm gap width electroporation cuvette. The mixture was electroporated with an Electroporator 2510 (Eppendorf, Hauppauge, NY) at 2.5 kV, 10 μF, and 600 Ω. The transformed cells were immediately suspended in LB broth, incubated with shaking at 37°C for 1.5 h, spread plated onto LB-Tc₁₀₀, and incubated at 37°C until the appearance of individual colonies. The tetracycline-resistant colonies were transferred individually into 96-well microtiter plates prefilled with LB broth amended with 7% DMSO and stored at -80°C. A total of 10,000 transposonbearing mutants were collected, which is estimated to cover approximately 83% of the PAO1 genome using the formula: $m = 1 - e^{-L/G}$, where G is equal to the number of genes in the PAO1 genome (5,572 protein-coding genes) and for a given size library (L) (51).

Screening of the transposon library for the sensitivity to p-anisaldehyde. The transposon mutants of PAO1 were screened for hypersensitivity to p-anisaldehyde by replicating the library with a 96-prong replicator (VP Scientific, San Diego, CA) into microplates pre-filled with MH broth supplemented with 0.6× MIC (1.2 mg mL⁻¹), 0.75× MIC (1.5 mg mL⁻¹), and 0.85× MIC (1.7 mg mL⁻¹) of p-anisaldehyde. The inoculated plates were incubated at 37°C for 24 h, and bacterial growth was recorded by measuring optical density at 600 nm (OD₆₀₀)

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

using a Synergy 2 reader (BioTek Instruments, Winooski, VT). The sensitivity of individual mutants was determined by defining their factor of inhibition (F1) values, which are calculated as the reciprocal of the OD₆₀₀ ratio between the treated and untreated conditions (51). All mutants with F_1 values of ≥ 9 were considered as hyper susceptible to p-anisaldehyde. The screening was performed twice in duplicates for each tested concentration of p-anisaldehyde.

Mapping transposon insertion sites in hypersensitive mutants. Genomic DNA was extracted from overnight cultures of the sensitive mutants grown in LB broth using a DNeasy UltraClean Microbial Kit (Qiagen, Germantown, MD), and 250 ng of the DNA was digested with the restriction endonuclease SacII (New England Biolabs, MA, USA). The endonuclease reaction was incubated for 3 hours at 37°C, and the enzyme was inactivated at 65°C for 20 min. The digested DNA was self-ligated with T4 DNA ligase (New England Biolabs) by incubating it overnight at 16°C. The ligation products served as a template for inverse PCR with the Q5 High-Fidelity DNA Polymerase (New England Biolabs), and transposon-specific primers (Table 3). Cycling conditions included 98°C for 30 s, followed by 34 cycles of 98°C for 10 s, 72°C for 2 min and 72°C for 2 min, and a final extension at 72°C for 5 min. The PCR amplicons were purified using a GeneJET PCR Purification Kit (Thermo Scientific) and sequenced at Eurofins MWG Operon (Huntsville, AL). Areas flanking the EZ-Tn5 <TET-1> integration sites were mapped to the P. aeruginosa PAO1 genome using the BLASTn web tool of the Pseudomonas database (52).

Synthesis of p-anisaldehyde-releasing polymeric discs. A stock resin solution was prepared by adding 2 g of TTT (8.04 mmol, 24.12 mmol ene), 2.95 g of PETMP (6.03 mmol, 24.12 mmol SH), and 118 mg Darocur 1173 (0.72 mmol, 3 mol percent relative to SH) to a scintillation vial and mixing thoroughly. Two-gram portions of the resin were then mixed with 800 mg p-anisaldehyde (28.6 wt %) to form the active resin. Eighty-microliter aliquots of resin were dispensed onto glass slides spaced with Teflon spacers (0.75 mm in thickness) and cured using an OmniCure S1000-1B light source (Lumen Dynamics, Mississauga, Ontario, Canada) with a

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

100 W mercury lamp (λmax = 365 nm, 320-500 nm filter) for 20 s at an intensity of 200 mW cm⁻ ². Control disks were prepared in the same fashion from the stock resin. Network conversion was confirmed via kinetic data collected through real-time FTIR (RT-FTIR) spectroscopy to monitor the disappearance of thiol and alkene functional groups. RT-FTIR spectra were recorded using a Nicolet 8700 FTIR spectrometer (Thermo Scientific) equipped with a KBr beam splitter and MCT/A detector using an OmniCure S1000 320-500 nm filtered ultraviolet light source. Each sample was exposed to a UV light with an intensity of 200 mW cm⁻². Series scans were collected with a data spacing of 2 scans per second with a resolution of 4 cm⁻¹. Thiol conversion was monitored via integration of the SH peak between 2500 and 2620 cm⁻¹ and alkene conversion was monitored via the peak between 3050 and 3125 cm⁻¹.

Evaluating the sensitivity of transposon mutants to the of p-anisaldehydereleasing polymeric discs. The antimicrobial activity of polymeric discs against the wild type PAO1 strain and select hypersensitive mutants was determined via a zone of inhibition (ZOI) assay. Briefly, overnight bacterial cultures were adjusted to OD600 of 0.1, and then further diluted 1:5 with fresh MH broth. Aliquots (200 µL) of diluted bacterial suspensions were mixed with 4 mL of lukewarm molten soft agar and overlaid on MH agar, after which an 80-mm³ panisaldehyde polymeric disc was placed at the center of each inoculated plate. Plates were incubated for 24 h at 37°C, and the ZOI was measured in mm. In order to compare the sensitivity of mutants, the average ZOI of each mutant was normalized to that of the WT strain, which represented the level of sensitivity of 100%. All treatments were replicated three times, and each mutant was tested twice.

Screening plant-derived EPIs for synergistic interactions with p-anisaldehyde. Several plant-derived EPIs were evaluated for the synergistic antimicrobial activity with panisaldehyde using a modified broth microdilution technique (53). This was done by determining the MIC of p-anisaldehyde against P. aeruginosa PAO1 in the presence of non-inhibitory concentrations of EGCG (150 µg mL⁻¹), daidzein (1 mg mL⁻¹), curcumin (400 µg mL⁻¹), berberine

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

(400 µg mL⁻¹), or geraniol (600 µg mL⁻¹). The positive control was treated with the uncoupler of proton motive force carbonyl cyanide m-chlorophenylhydrazone (25 µg mL⁻¹), whereas the negative control was treated with p-anisaldehyde, and bacteria cultured in the unamended MH medium served as growth control. The assay was conducted in 96-well microtiter plates, which were incubated at 37 °C for 24 hours before measuring OD600 to determine the nature of interactions (OD600 < 0.05 was considered negative for bacterial growth). Each experiment was repeated three times, with three replicates per treatment.

Confirmation of synergistic interactions between EGCG and p-anisaldehyde. The synergistic interaction between EGCG and p-anisaldehyde was verified using a broth microdilution checkerboard technique. Stock concentrations of both compounds were diluted to MIC, 0.5× MIC, 0.25× MIC, and 0.125× MIC, which corresponds to 300, 150, 75 and 37.5 µg mL⁻¹ for EGCG, and 2, 1, 0.5 and 0.25 mg mL⁻¹ of p-anisaldehyde. Next, 25-µL aliquots of both compounds were combined in a checkerboard manner with 50 µL of bacterial suspension adjusted to 10⁵ CFU mL⁻¹. Bacteria grown in the MH broth without EGCG and p-anisaldehyde served as a control. Microtiter plates were incubated at 37°C for 24 h, and OD600 was measured to determine the fractional inhibitory concentration (FIC) (10), with FIC \leq 0.5 and FIC \geq 4 indicating, respectively, synergism and antagonism. Each treatment included three replicates, and the entire experiment was repeated three times. In all assays, the final concentration of DMSO was maintained below 1%, the level at which this organic solvent does not interfere with the growth of P. aeruginosa PAO1 (54).

Extraction and processing of RNA. Overnight broth culture of WT P. aeruginosa PAO1 was diluted to an OD₆₀₀ 0.01, after which 100-µL aliquots of the bacterial suspension were dispensed into wells of a microtiter plate and incubated statically at 37°C. At an OD₆₀₀ of 0.6, each microtiter plate well received 100 μL of MH broth amended with 1.5% DMSO and $\frac{1}{2}$ MIC concentrations of p-anisaldehyde (1 mg mL⁻¹), EGCG (150 µg mL⁻¹), or a combination of both compounds. The experiment included three biological replicates of each treatment plus a

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

control, which was cultured in MH broth amended with the same amount of DMSO. After 1 h of exposure to antimicrobials at 37°C, 0.4 mL of culture containing approximately 2.5 × 108 cells were fixed by mixing with two volumes of RNAprotect Bacteria Reagent (Qiagen), and total RNA was extracted using RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions. Total RNA was treated with RNase-free DNase I (Ambion, Austin, TX) and purified with RNA Clean and Concentrator-25 columns (Zymo Research, Irvine, CA). The concentration of RNA was measured using a NanoDrop OneC spectrophotometer (Thermo Scientific) and a QuantiFlour RNA System (Promega, Madison, WI), while its integrity was determined using an Agilent 2100 Bioanalyzer and an RNA 6000 Nano Kit (both from Agilent Technologies, Santa Clara, CA). Samples of total RNA (RIN > 9; $A_{260}/_{280}$ ratio ~2.0) were shipped to the Center for Genome and Research and Biocomputing (Oregon State University, Corvallis, OR), where they were treated with a Ribo-Zero rRNA Removal Kit (Bacteria) (Illumina, San Diego, CA), and the efficacy of ribodepletion was confirmed using a Bioanalyzer RNA 6000 Pico Kit (Agilent Technologies). The stranded RNA-Seq libraries were prepared, quantified by qPCR, and sequenced on a HiSeq 3000 instrument (Illumina) in 150 bp single-end mode.

Bioinformatic analysis of transcriptomic data. The analysis of RNA-seq data was performed using the KBase suite of expression analysis tools (55). Briefly, the raw reads in fastg format were filtered and processed with Trimmomatic (56), and the quality of filtered data was assessed with FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The processed reads were then aligned to the reference PAO1 genome (GenBank accession number NC 002516.2, downloaded from http://www.pseudomonas.com) with HISAT2-v2.10 (57), and full-length transcripts were assembled with StringTie v1.3.3b (58). The differential expression analysis of the assembled transcripts was carried out with DESeg2 v1.20.0 (59), and genes demonstrating greater than a 1.5-fold (log2) difference in expression and an adjusted p value ≤ 0.05 between control and experimental treatments were used in downstream analysis.

The functional annotation and pathway enrichment analyses were performed with the Blast2GO suite (60). RT-qPCR analysis of genes encoding components of RND efflux pumps. The response of P. aeruginosa efflux pump genes to p-anisaldehyde, EGCG, and a combination of

both compounds was validated by the quantitative reverse transcription PCR (RT-qPCR). Briefly, 1 µg of total RNA was converted to cDNA using the iScript Reverse Transcription Supermix (Bio-Rad, Hercules, CA, USA), and used in the RT-qPCR assay performed with the Luminaris Probe qPCR Master Mix (Thermo Scientific) and oligonucleotide primers and probes targeting mexA, mexC, mexE, mexX, mexK, muxB, and PA1541 (61) (Table 3). Samples of RNA untreated with reverse transcriptase served as a negative control to confirm the absence of contaminating genomic DNA. The analysis was performed with a CFX96 Real-Time PCR Detection System and CFX Maestro software (Bio-Rad). The expression of selected efflux pump genes was normalized to that of the housekeeping gene rpoD.

Data availability. The RNA-seq data used in this study have been deposited in the NCBI Sequence Read Archive (SRA) database under the accession number PRJNA579575.

538 539

540

541

542

543

544

545

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

ACKNOWLEDGEMENTS

This work was supported by the NSF Gulf Coast Advance Fellowship. Y.A. and W.D.A acknowledge support from the NSF Research Traineeship "Interface" program (DGE-1449999). The synthesis of polymeric materials in this work was supported by NSF SusCheM Award CHE-1710589. We also acknowledge the Mississippi INBRE, funded by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of NIH under grant P20GM103476.

546

547

REFERENCES

- 548 McDougald D, Klebensberg J, Tolker-Nielsen T, Webb JS, Conibear T, Rice SA, Kirov SM,
- 549 Matz C, Kjelleberg S. 2008. Pseudomonas aeruginosa: a model for biofilm formation, p
- 550 215–253. In Rehm BHA (ed), Pseudomonas: model organism, pathogen, cell factory.
- 551 Wiley-VCH, Weinheim, Germany.
- 552 Moradali MF, Ghods S, Rehm BH. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for
- 553 adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39.
- 554 https://doi.org/10.3389/fcimb.2017.00039.
- 555 Bassetti M, Vena A, Croxatto A, Righi E, Guery B. 2018. How to manage *Pseudomonas*
- 556 aeruginosa infections. Drugs Context 7:212527. https://doi.org/10.7573/dic.212527.
- 557 Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg
- 558 B, Bartlett J. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious
- 559 Diseases Society of America. Clin Infect Dis 48:1-12. https://doi.org/10.1086/595011.
- 560 Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant Pseudomonas aeruginosa:
- 561 clinical impact and complex regulation of chromosomally encoded resistance mechanisms.
- 562 Clin Microbiol Rev 22:582-610. https://doi.org/10.1128/CMR.00040-09.
- 563 Ventola CL. 2015. The antibiotic resistance crisis. Part 1: Causes and Threats. P T 40:277-
- 564 283
- 565 Hyldgaard M, Mygind T, Meyer RL. 2012. Essential oils in food preservation: mode of
- 566 action, synergies, and interactions with food matrix components. Front Microbiol 3:12.
- 567 https://doi.org/10.3389/fmicb.2012.00012.
- 568 Raut JS, Karuppayil SM. 2014. A status review on the medicinal properties of essential oils.
- 569 Ind Crop Prod 62: 250–264. https://doi.org/10.1016/j.indcrop.2014.05.055.
- 570 Amato DN, Amato DV, Mavrodi OV, Martin WB, Swilley SN, Parsons KH, Mavrodi DV,
- 571 Patton DL. 2017. Pro-Antimicrobial Networks via Degradable Acetals (PANDAs) using thiol-
- 572 ene photopolymerization. ACS Macro Lett 6:171-175.
- 573 https://doi.org/10.1021/acsmacrolett.7b00009.

- 574 10. Amato DN, Amato DV, Adewunmi Y, Mavrodi OV, Parsons KH, Swilley SN, Braasch DA,
- 575 Walker WD, Mavrodi DV, Patton DL. 2018. Using aldehyde synergism to direct the design
- 576 of degradable pro-antimicrobial networks. ACS Appl Bio Mater 1:1983-1991.
- 577 https://doi.org/10.1021/acsabm.8b00500.
- 578 11. Delmar JA, Su CC, Yu EW. 2014. Bacterial multidrug efflux transporters. Annu Rev
- 579 Biophys 43:93-117. https://doi.org/10.1146/annurev-biophys-051013-022855.
- 580 12. Piddock LJ. 2006. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev
- 581 Microbiol 4:629–636. https://doi.org/10.1038/nrmicro1464.
- 582 13. Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. 2016. Multidrug efflux pumps
- 583 at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol
- 584 7:1483. https://doi.org/10.3389/fmicb.2016.01483.
- 585 14. Schweizer HP. 2012. Understanding efflux in Gram-negative bacteria: opportunities for
- 586 drug discovery. Expert Opin Drug Discov 7:633-642.
- 587 https://doi.org/10.1517/17460441.2012.688949.
- 588 15. Spengler G, Kincses A, Gajdacs M, Amaral L. 2017. New roads leading to old destinations:
- 589 efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 22:468.
- 590 https://doi.org/10.3390/molecules22030468.
- 591 16. Cheesman MJ, Ilanko A, Blonk B, Cock IE. 2017. Developing new antimicrobial therapies:
- 592 Are synergistic combinations of plant extracts/compounds with conventional antibiotics the
- 593 solution? Pharmacogn Rev 11:57–72. https://doi.org/10.4103/phrev.phrev_21_17.
- 17. Prasch S, Bucar F. 2015. Plant derived inhibitors of bacterial efflux pumps: an update. 594
- 595 Phytochem Rev 14:961-974. https://doi.org/10.1007/s11101-015-9436-y.
- 596 18. McDaniel C, Su S, Panmanee W, Lau GW, Browne T, Cox K, Paul AT, Ko SH, Mortensen
- 597 JE, Lam JS, Muruve DA, Hassett DJ. 2016. A putative ABC transporter permease is
- 598 necessary for resistance to acidified nitrite and EDTA in Pseudomonas aeruginosa under

- 599 aerobic and anaerobic planktonic and biofilm conditions. Front Microbiol 7:291.
- 600 https://doi.org/10.3389/fmicb.2016.00291.
- 601 19. King JD, Kocíncová D, Westman EL, Lam JS. 2009. Lipopolysaccharide biosynthesis in
- 602 Pseudomonas aeruginosa. Innate Immunity 15:261-312.
- 603 https://doi.org/10.1177/1753425909106436.
- 604 20. Francis VI, Stevenson EC, Porter SL. 2017. Two-component systems required for virulence
- 605 in Pseudomonas aeruginosa. FEMS Microbiol Lett 364(11).
- 606 https://doi.org/10.1093/femsle/fnx104.
- 607 21. Edrington TC, Kintz E, Goldberg JB, Tamm LK. 2011. Structural basis for the interaction of
- 608 lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa.
- 609 J Biol Chem 286:39211-39223. http://doi.org/10.1074/jbc.M111.280933.
- 610 22. Brown SM, Howell ML, Vasil ML, Anderson AJ, Hassett DJ. 1995. Cloning and
- 611 characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen
- 612 peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration
- 613 that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol 177:6536-6544.
- 614 http://doi.org/10.1128/jb.177.22.6536-6544.1995.
- 615 23. Howell ML, Alsabbagh E, Ma JF, Ochsner UA, Klotz MG, Beveridge TJ, Blumenthal KM,
- 616 Niederhoffer EC, Morris RE, Needham D, Dean GE, Wani MA, Hassett DJ. 2000. AnkB, a
- 617 periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal
- 618 catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol 182:4545–4556.
- 619 http://doi.org/10.1128/JB.182.16.4545-4556.2000.
- 620 24. Salunkhe P, Topfer T, Buer J, Tummler B. 2005. Genome-wide transcriptional profiling of
- 621 the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol
- 622 187:2565–2572. http://doi.org/10.1128/JB.187.8.2565-2572.2005.

- 623 25. Aharoni N, Mamane H, Biran D, Lakretz A, Ron EZ. 2018. Gene expression in
- 624 Pseudomonas aeruginosa exposed to hydroxyl-radicals. Chemosphere 199:243–250.
- 625 https://doi.org/10.1016/j.chemosphere.2018.02.012.
- 626 26. Palma M, DeLuca D, Worgall S, Quadri LE. 2004. Transcriptome analysis of the response
- 627 of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 186:248-252.
- 628 https://doi.org/10.1128/JB.186.1.248-252.2004.
- 629 27. Vogt T. 2010. Phenylpropanoid biosynthesis. Mol Plant 3:2-20.
- 630 https://doi.org/10.1093/mp/ssp106.
- 631 28. Raut JS, Shinde RB, Chauhan NM, Karuppayil SM. 2014. Phenylpropanoids of plant origin
- 632 as inhibitors of biofilm formation by Candida albicans. J Microbiol Biotechnol 24:1216-
- 633 1225. http://dx.doi.org/10.4014/jmb.1402.02056.
- 634 29. Ilijeva R, Buchbauer G. 2016. Biological properties of some volatile phenylpropanoids. Nat
- 635 Prod Commun 11:1619–1629. https://doi.org/10.1177/1934578X1601101041.
- 636 30. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. 2013. Effect of essential oils
- 637 on pathogenic bacteria. Pharmaceuticals 6:1451–1474. https://doi.org/10.3390/ph6121451.
- 638 31. Leimkühler S, Leimkühler L, Iobbi-Nivol C. 2016. Bacterial molybdoenzymes: old enzymes
- 639 for new purposes. FEMS Microbiol Rev 43:1–18. https://doi.org/10.1093/femsre/fuv043.
- 640 32. Van Alst NE, Sherrill LA, Iglewski BH, Haidaris CG. 2009. Compensatory periplasmic
- 641 nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in
- 642 the absence of membrane nitrate reductase. Can J Microbiol 55:1133–1144.
- 643 https://doi.org/10.1139/W09-065.
- 644 33. Pederick VG, Eijkelkamp BA, Ween MP, Begg SL, Paton JC, McDevitt CA. 2014.
- 645 Acquisition and role of molybdate in Pseudomonas aeruginosa. Appl Environ Microbiol
- 646 80:6843-6852. https://doi.org/10.1128/AEM.02465-14.
- 647 34. Heipieper HJ, Meinhardt F, Segura A. 2003. The cis-trans isomerase of unsaturated fatty
- 648 acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological

- 649 function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1-7.
- 650 https://doi.org/10.1016/S0378-1097(03)00792-4.
- 651 35. Cardoso K, Gandra RF, Wisniewski ES, Osaku CA, Kadowaki MK, Felipach-Neto V, Haus
- 652 LF, De Cá R, Simão Rde C. 2010. DnaK and GroEL are induced in response to antibiotic
- 653 and heat shock in Acinetobacter baumannii. J Med Microbiol 59:1061-1068.
- 654 https://doi.org/10.1099/jmm.0.020339-0.
- 655 36. Laport MS, Dos Santos LL, Lemos JA, do Carmo F. Bastos M, Burne RA, Giambiagi-
- 656 deMarval M. 2006. Organization of heat shock dnaK and groE operons of the nosocomial
- 657 pathogen Enterococcus faecium. Res Microbiol 157:162–168.
- 658 https://doi.org/10.1016/j.resmic.2005.06.010.
- 659 37. Yamaguchi Y, Tomoyasu T, Takaya A, Morioka M, Yamamoto T. 2003. Effects of disruption
- 660 of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones. BMC Microbiol
- 661 3:16. https://doi.org/10.1186/1471-2180-3-16.
- 662 38. Wargo MJ. 2013. Homeostasis and catabolism of choline and glycine betaine: lessons from
- 663 Pseudomonas aeruginosa. Appl Environ Microbiol 79:2112–2120.
- 664 https://doi.org/10.1128/AEM.03565-12.
- 665 39. Caldas T, Demont-Caulet N, Ghazi A, Richarme G. 1999. Thermoprotection by glycine
- 666 betaine and choline. Microbiology 145:2543–2548. https://doi.org/10.1128/AEM.03565-12.
- 667 40. Randall K, Lever M, Peddie BA, Chambers ST. 1996. Natural and synthetic betaines
- 668 counter the effects of high NaCl and urea concentrations. Biochim Biophys Acta 1291:189-
- 669 194. https://doi.org/10.1016/S0304-4165(96)00057-8.
- 670 41. Kvist M, Hancock V, Klemm P. 2008. Inactivation of efflux pumps abolishes bacterial biofilm
- 671 formation. Appl Environ Microbiol 74:7376-7382. https://doi.org/10.1128/AEM.01310-08.
- 672 42. Schaible B, Taylor CT, Schaffer K. 2012. Hypoxia increases antibiotic resistance in
- 673 Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps.
- 674 Antimicrob Agents Chemother 56:2114–2118. https://doi.org/10.1128/AAC.05574-11.

- 675 43. Tetard A, Zedet A, Girard C, Plesiat P, Llanes C. 2019. Cinnamaldehyde induces
- 676 expression of efflux pumps and multidrug resistance in Pseudomonas aeruginosa.
- 677 Antimicrob Agents Chemother 63: pii: e01081-19. https://doi.org/10.1128/AAC.01081-19.
- 678 44. Dominguez-Cuevas P, Gonzalez-Pastor JE, Marques S, Ramos JL, de Lorenzo V. 2006.
- 679 Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas
- 680 putida KT2440 cells exposed to toluene. J Biol Chem 281: 11981-11991.
- 681 https://doi.org/10.1074/jbc.M509848200.
- 682 45. Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. 2004. Epigallocatechin-
- 683 gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from
- 684 bacterial cells. Antimicrob Agents Chemother 48:1968-1973.
- 685 https://doi.org/10.1128/AAC.48.6.1968-1973.2004.
- 686 46. Stavri M, Piddock LJ, Gibbons S. 2007. Bacterial efflux pump inhibitors from natural
- 687 sources. J Antimicrob Chemother 59:1247-1260. https://doi.org/10.1093/jac/dkl460.
- 688 47. Cui Y, Oh YJ, Lim J, Youn M, Lee I, Pak HK, Park W, Jo W, Park S. 2012. AFM study of
- 689 the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate
- 690 (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiol 29:80-87.
- 691 https://doi.org/10.1016/j.fm.2011.08.019.
- 692 48. Liu X, Shen B, Du P, Wang N, Wang J, Li J, Sun A. 2017. Transcriptomic analysis of the
- 693 response of Pseudomonas fluorescens to epigallocatechin gallate by RNA-seq. PLoS One
- 694 12:e0177938. https://doi.org/10.1371/journal.pone.0177938.
- 695 49. Arends SJ, Kustusch RJ, Weiss DS. 2009. ATP-binding site lesions in FtsE impair cell
- 696 division. J Bacteriol 191:3772-3784. https://doi.org/10.1128/JB.00179-09.
- 697 50. Yakhnina AA, McManus HR, Bernhardt TG. 2015. The cell wall amidase AmiB is essential
- 698 for Pseudomonas aeruginosa cell division, drug resistance, and viability. Mol Microbiol
- 699 97:957–973. https://doi.org/10.1111/mmi.13077.

- 700 51. Campen RL, Ackerley DF, Cook GM, O'Toole RF. 2015. Development of a Mycobacterium
- 701 smegmatis transposon mutant array for characterising the mechanism of action of
- 702 tuberculosis drugs: Findings with isoniazid and its structural analogues. Tuberculosis
- 703 95:432-439. https://doi.org/10.1016/j.tube.2015.03.012.
- 704 52. Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock RE, Brinkman FS.
- 705 2008. Pseudomonas Genome Database: facilitating user-friendly, comprehensive
- 706 comparisons of microbial genomes. Nucleic Acids Res 37(Database issue):D483-488.
- 707 https://doi.org/10.1093/nar/gkn861.
- 708 53. Amato DN, Amato DV, Mavrodi OV, Braasch DA, Walley SE, Douglas JR, Mavrodi DV,
- 709 Patton DL. 2016. Destruction of opportunistic pathogens via polymer nanoparticle-mediated
- 710 release of plant-based antimicrobial payloads. Adv Healthc Mater 5:1094-1103.
- 711 https://doi.org/10.1002/adhm.201500974.
- 712 54. Guo Q, Wu Q, Bai D, Liu Y, Chen L, Jin S, Wu Y, Duan K. 2016. Potential use of dimethyl
- 713 sulfoxide in treatment of infections caused by Pseudomonas aeruginosa. Antimicrob
- 714 Agents Chemother 60:7159–7169. https://doi.org/10.1128/AAC.01357-16.
- 715 55. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D,
- 716 Perez F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan SY,
- 717 Kamimura RT, Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D, Weston
- 718 DJ, Allen BH, Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia JM, Chia
- 719 JM, Colasanti R, Conrad N, Davis JJ, Davison BH, DeJongh M, Devoid S, Dietrich E,
- 720 Dubchak I, Edirisinghe JN, Fang G, Faria JP, Frybarger PM, Gerlach W, Gerstein M,
- 721 Greiner A, Gurtowski J, Haun HL, He F, Jain R, et al. 2018. KBase: The United States
- 722 Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 36:566-569.
- 723 https://doi.org/10.1038/nbt.4163.

- 724 56. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina 725 sequence data. Bioinformatics 30:2114-2120. 726 https://doi.org/10.1093/bioinformatics/btu170.
- 727 57. Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory 728 requirements. Nat Methods 12:357-360. https://doi.org/10.1038/nmeth.3317.
- 729 58. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie 730 enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 731 33:290-295. https://doi.org/10.1038/nbt.3122.
- 732 59. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for 733 RNA-seg data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-734 0550-8.
- 735 60. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon 736 M, Dopazo J, Conesa A. 2008. High-throughput functional annotation and data mining with 737 the Blast2GO suite. Nucleic Acids Res 36:3420-3435. https://doi.org/10.1093/nar/gkn176.
- 738 61. Quale J, Bratu S, Gupta J, Landman D. 2006. Interplay of efflux system, ampC, and oprD 739 expression in carbapenem resistance of *Pseudomonas aeruginosa* clinical isolates. 740 Antimicrob Agents Chemother 50:1633-1641. https://doi.org/10.1128/AAC.50.5.1633-
- 741 1641.2006.

744

745

746

747

748

Figure legends

value ≤ 0.05) (B).

773

774

775

751	Figure 1. Synthesis of the <i>p</i> -anisaldehyde-releasing antimicrobial polymer.
752	
753	Figure 2. The sensitivity of transposon mutants to p -anisaldehyde. (A) The distribution of F_1
754	values of EZ-Tn5 <tet-1> mutants. Red dots indicate strains with $F_1 \ge 9$ that were selected for</tet-1>
755	further analysis. (B) The inhibition of growth caused by <i>p</i> -anisaldehyde polymeric discs in
756	selected transposon mutants ($F_1 \ge 9$) and the wild type PAO1 strain. Asterisks indicate mutants
757	that were more sensitive to <i>p</i> -anisaldehyde than the parental strain (one-tailed <i>t</i> -test at <i>P</i> <0.05).
758	
759	Figure 3. Venn diagram comparing the number of differentially expressed genes between <i>P</i> .
760	aeruginosa exposed to p-anisaldehyde, EGCG, and the combination of both compounds (A).
761	The comparison of genes implicated in the response to <i>p</i> -anisaldehyde in transposon mutants
762	and cultures profiled by RNA-seq (B).
763	
764	Figure 4. Gene ontology (GO) classification of differentially expressed genes (DEGs) in
765	response to <i>p</i> -anisaldehyde. Functional annotation of DEGs and transposon mutagenesis
766	genes (A), and the GO term enrichment analysis using Fisher's exact test (False Discovery
767	Rate adjusted p -value ≤ 0.05) (B).
768	
769	Figure 5. Gene ontology (GO) classification of <i>P. aeruginosa</i> genes that were differentially
770	expressed in response to epigallocatechin gallate (A), and the GO term enrichment analysis of
771	these differentially expressed genes using Fisher's exact test (False Discovery Rate adjusted p-
772	value ≤ 0.05) (B).

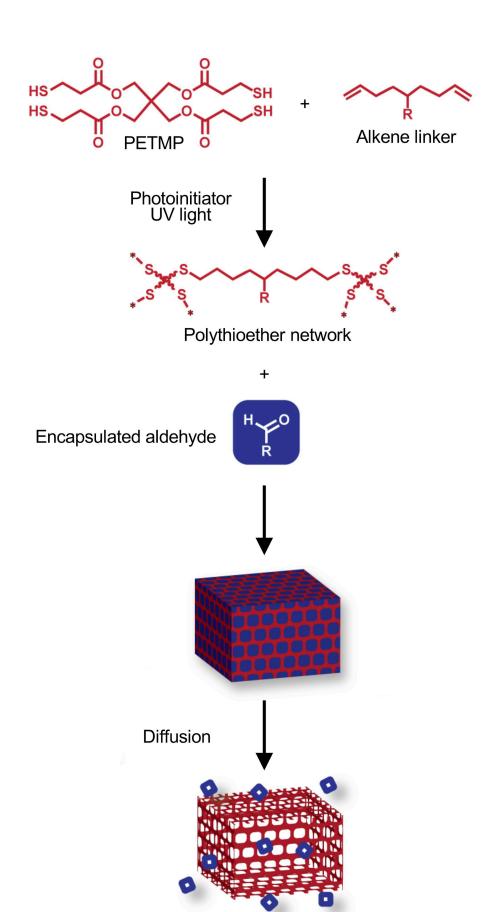
Figure 6. Gene ontology (GO) classification of P. aeruginosa genes that were differentially expressed in response to a combination of *p*-anisaldehyde with epigallocatechin gallate (A), and 776 the GO term enrichment analysis of differentially-expressed genes using Fisher's exact test 777 (False Discovery Rate adjusted p-value ≤ 0.05) (B). 778 779 Figure 7. Relative expression of RND-type efflux pump genes in response to p-anisaldehyde, 780 EGCG, and a combination of both compounds. Bars with different letters indicate significant 781 differences in gene expression as determined by Tukey-Kramer HSD test ($P \le 0.05$). 782 783 Figure 8. Changes in the P. aeruginosa transcriptome in response to p-anisaldehyde, EGCG, 784 and the combination of both compounds. 785 786 787 788

TABLE 1 Genes disrupted by EZ-Tn5<TET-1> in transposon mutants with increased sensitivity to *p*-anisaldehyde.

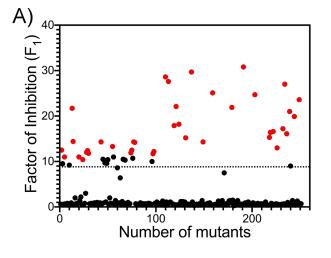
Functional category	PA number	Gene	Predicted function	Number of mutants
Membrane transport	PA1777	oprF	Outer membrane porin F	1
	PA3000	aroP1	Aromatic amino acid permease	1
	PA3336		Major facilitator superfamily (MFS) transporter	1
	PA5068	tatA	Sec-independent protein translocase	2
Signal transduction	PA0928	gacS	Two-component sensor kinase	1
	PA3271		Two-component sensor kinase	1
	PA4856	retS	Hybrid sensor histidine kinase/response regulator	1
Energy metabolism	PA1554	ccoN1	Cbb3-type cytochrome c oxidase subunit I	1
	PA4465		Nucleotide-binding protein	1
	PA0337	ptsP	Phosphoenolpyruvate-protein phosphotransferase	2
	PA1880		Probable oxidoreductase	2
	PA2993		FAD:protein FMN transferase	1
	PA2994	nqrF	Na(+)-translocating NADH-quinone reductase subunit F	3
	PA2995	nqrE	Na(+)-translocating NADH-quinone reductase subunit E	1
	PA2999	nqrA	Na(+)-translocating NADH-quinone reductase subunit A	3
Transport of molybdenum	PA1861	modC	Molybdenum import ATP-binding protein	3
and synthesis of Mo co-	PA1862	modB	Molybdenum transport system permease	1
factor	PA3028	moeA2	Molybdopterin molybdenum transferase	2
	PA3029	moaB2	Molybdenum cofactor biosynthesis protein B	1
	PA4663	moeB	Molybdopterin biosynthesis MoeB protein	1
Response to antibiotics	PA0425	mexA	MexAB-OprM efflux system, periplasmic linker component	2
	PA5485	ampDh2	N-acetylmuramoyl-L-alanine amidase	1
Nucleotide metabolism	PA0590	араН	Bis(5'-nucleosyl)-tetraphosphatase	1

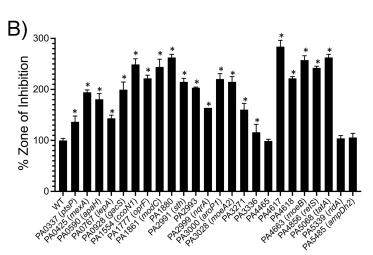
and modification	PA2991	sth	Soluble pyridine nucleotide transhydrogenase	1
	PA5339	ridA	2-aminoacrylate deaminase	1
	PA4617		rRNA large subunit methyltransferase G	1
Unknown	PA4618		Hypothetical protein	2

Applied and Environmental Microbiology


TABLE 2 The effect of plant-derived EPIs on the MIC of *p*-anisaldehyde in *P. aeruginosa* PAO1.

EPI	Concentration, µg mL ⁻¹	MIC of <i>p</i> -anisaldehyde, mg mL ⁻¹	Type of interaction
None	N/A	2.0	N/A
CCCP	25	0.6	Synergism
EGCG	150	0.8	Synergism
Daidzein	400	2.0	Indifference
Berberine	400	1.5	Partial synergism
Curcumin	400	1.5	Partial synergism
Geraniol	400	1.5	Partial synergism


TABLE 3 Oligonucleotide primers and qPCR probes used in this study.


Primer or probe	Sequence	Reference
TET-1FP-3	5'-GCATCTCGGGCACGTTGGGTCCT-3'	Lucigen
TET-1RP-4	5'-CGAGGATGACGATGAGCGCATTGTTAG-3'	Lucigen
rpoD-F	5'-GGGCTGTCTCGAATACGTTGA-3'	61
rpoD-R	5'-ACCTGCCGGAGGATATTTCC-3'	61
rpoD-P	5'-[FAM]-TGCGGATGATGTCTTCCACCTGTTCC-[BHQ1]-3'	61
mexA-F	5'-AACCCGAACAACGAGCTG-3'	61
mexA-R	5'-ATGGCCTTCTGCTTGACG-3'	61
mexA-P	5'-[FAM]-CATGTTCGTTCACGCGCAGTTG-[BHQ1]-3'	61
mexC-F	5'-GGAAGAGCGACAGGAGGC-3'	61
mexC-R	5'-CTGCACCGTCAGGCCCTC-3'	61
mexC-P	5'-[FAM]-CCGAAATGGTGTTGCCGGTG-[BHQ1]-3'	61
mexE-F	5'-TACTGGTCCTGAGCGCCT-3'	61
mexE-R	5'-TCAGCGGTTGTTCGATGA-3'	61
mexE-P	5'-[FAM]-CGGAAACCACCCAAGGCATG-[BHQ1]-3'	61
mexX-F	5'-GGCTTGGTGGAAGACGTG-3'	61
mexX-R	5'-GGCTGATGATCCAGTCGC-3'	61
mexX-P	5'-[FAM]-CCGACACCCTGCAGGGCC-[BHQ1]-3'	61
mexK-F	5'-GAGTTCGGCACCACCTA-3'	This study
mexK-R	5'-CAGGCGGTCGGCATAGTC-3'	This study
mexK-P	5'-[FAM]-CAAGGGCTTCGACTACGCGGTG-[BHQ1]-3'	This study
muxB-F	5'-ATGGTGGCGATCCTGCTC-3'	This study

PA1541-P	5'-[FAM]-CCCTGGCGGTCAAGCGTGTC-[BHQ1]-3'	This study
PA1541-R	5'-GTGATCAGGACGATGCCAATG-3'	This study
PA1541-F	5'-TGATCGGCCTGTCCTATTTCTTC-3'	This study
muxB-P	5'-[FAM]-GATCGCCTACCGCTTCCTGCCG-[BHQ1]-3'	This study
muxB-R	5'-GATGGTCGGGTAGTCCACTTC-3'	This study

