
Performance Modeling of Hyperledger

Sawtooth Blockchain
Benjamin Ampel

Management Information Systems
University of Arizona

Tucson, AZ
bampel@email.arizona.edu

Dr. Mark Patton
Management Information Systems

University of Arizona
Tucson, AZ

mpatton@email.arizona.edu

Dr Hsinchun Chen
Management Information Systems

University of Arizona
Tucson, AZ

hchen@email.arizona.edu

Abstract – With the rapid development of blockchain plat-

forms, it is important that different implementations are

tested and analyzed for comparative purposes. One such

implementation is Hyperledger Sawtooth, a new member

of the Hyperledger family. Sawtooth blockchain is a per-

missioned implementation developed in part by Intel.

While research has been done on Hyperledger Fabric, re-

search on Sawtooth is not well documented. Using the Hy-

perledger Caliper benchmarking tool, we aim to test the

performance of the blockchain and identify potential is-

sues.

Index – Blockchain, Hyperledger Sawtooth, Hyperledger

Caliper, Performance Modeling

I. INTRODUCTION

 A blockchain is an immutable ledger system with the goal

of decentralization. Each block is encrypted with a hash,

which is referred to by the following block in the sequence,

forming a chain. Since the release of the Bitcoin blockchain

in 2008, hundreds of different blockchains have been created

for a multitude of purposes. These include cryptocurrency,

supply chain management, decentralized applications, and

many others. To perform these tasks, blockchains use smart

contracts, which are programs that take an input and create an

output. The most common use for smart contracts is to vali-

date transactions before they are written into the blockchain.

 Bitcoin is known as a permissionless blockchain [1],

meaning that it is open to whomever wants to use it, and that

the nodes are implicitly not trusted. A consensus algorithm is

used to try to stop malicious actors from writing to the block-

chain and keeping every block legitimate. The throughput,

usually measured in transactions per second (tx/sec) of per-

missionless chains currently is much slower than standard

payment options, and transactions can be backed up for hours

during heavy usage time. This has led to the popularity of per-

missioned blockchains.

 Permissioned blockchains [2] aim to scale throughput by

making the consensus algorithm less computationally inten-

sive. This is done by trusting all nodes and adding a barrier of

entry to the blockchain. Only those with permission can inter-

act with the blockchain or see transaction history. Since the

consensus algorithm simply needs to determine the next

block, and not determine if the node is legitimate, throughput

can increase drastically. While research has been done on

many permissioned blockchains like Hyperledger Fabric, we

believe we are the first to do testing of the Sawtooth permis-

sioned blockchain.

II. HYPERLEDGER SAWTOOTH

 Hyperledger Sawtooth [3] is built to be an open source dis-

tributed ledger for the modern enterprise. Unlike many popu-

lar blockchains, Sawtooth is not built for cryptocurrency, but

instead for business supply chain management. The transac-

tion flow begins with the client placing all transactions into a

block, and then signing the batch and sending it to a validator.

The validator uses its transaction processor to ensure the in-

tegrity of the batch, and then commits it. Sawtooth executes

transactions in parallel, instead of in serial, when possible

through a REST API to improve performance. It also contains

the novel feature of being modular, which includes consensus

algorithms, rule sets, coding language, and smart contracts.

This allows it to efficiently change depending on the business

need. Programmers can use Python, JavaScript, Go, C++,

Java, and Rust to build and interact with the Sawtooth block-

chain.

 Currently, four different consensus algorithms are sup-

ported by Sawtooth. These are Dev_mode, PoET, PoET-Sim-

ulator, and RAFT. Dev_Mode is a random generator algo-

rithm used purely for developer testing. Proof of Elapsed

Time (PoET) [4] is built specifically for Sawtooth and does

not follow byzantine fault tolerance (BFT), allowing it to

reach higher throughput than other models. BFT is a type of

accepted failure systems in case of a malicious actor and can

define the amount of fault a system can tolerate. This is be-

cause PoET assumes that everyone that interacts with the

blockchain is a trusted member. PoET has each node ran-

domly generate a timer. The node that has the timer run out

first is made leader, and the leader appends a new block to the

end of the chain. The calculation process is done within a pri-

vate, Intel CPU environment that cannot be accessed by the

node to prevent tampering, known as Intel Software Guard

Extensions. This simple lottery system cuts down on compu-

tational processes to increase throughput and reduce latency.

RAFT [5] is an election-style algorithm where each node can

become a candidate each term if it does not hear back from a

leader after a certain amount of time. Candidates then request

votes from others, and if they get more than half of the votes,

they become leader and get to append a new block to the end

of the chain. The leader also has the job of replicating the new

log to all other nodes to maintain consistency. All nodes are

given a term number and will only accept logs from leaders

that have a term number greater than the current term that they

know.

III. HYPERLEDGER CALIPER

 Supported by the Linux Foundation [6], this is a tool that

is used as a performance benchmark framework for permis-

sioned blockchains. The tool allows for testing different

blockchains with similar environments for direct comparison.

The tool can track metrics such as throughput, latency, suc-

cess rate, and CPU / Memory resource consumption. This is

done by listening to transaction timestamps and then calculat-

ing the metrics based on those. Throughput is measured as

tx/sec and is how fast transactions are committed to the ledger

successfully. Latency is measured in seconds and is the

amount of time between transactions being sent and them be-

ing received. Success rate is how many of the transactions

were successfully committed against how many were sent.

The goal for this metric should be 100%. CPU / Memory re-

source consumption gives information on the minimum, max-

imum, and average usage of those metrics. CPU is measured

as a percentage, and memory is measured in megabytes.

 For Sawtooth, Caliper has a chaincode test called simple,

which we utilized for our research. The simple test keeps track

of account balances over time with a series of random trans-

actions. Chaincode [7] is a type of program that implements

the business logic of the blockchain. This simple chaincode

test can be preset with the number of transactions, the input

transaction speed, and the batch size you want to test. Caliper

runs the chaincode and outputs an HTML file with the results.

IV. RESULTS

 Throughout testing, throughput was able to reach a maxi-

mum of about 2300 tx/sec. This is much higher than any re-

searched permissionless blockchain, and also ahead of the

results found for Hyperledger Fabric. The other three Hy-

perledger projects have not yet been researched.

 Testing Environment: The tests are run on a VMWare

Workstation running Ubuntu 16.04, installed on a 500GB

NVMe SSD. The virtual machine has access to 16GB DDR4

RAM, a Ryzen 1600 6-core 3.2 GHz CPU, and an NVIDIA

GTX 2060 GPU. Every test consisted of sending 30,000 trans-

actions from two peers at a fixed rate, which are built within

docker containers. Sawtooth version 1.0 was tested.

 Observation 1: Impact of input transaction rate on

throughput. Changing input transaction rate, and holding

batch size constant, saw a linear increase from throughput un-

til about 1000 tx/sec, where performance would degrade, and

transactions would fail at a 100% rate due to queue timeout.

This is because Sawtooth uses an all-or-nothing approach to

batches. Either they all succeed in being committed, or all fail.

The only way to move past this point was to increase the batch

size during testing.

 Observation 2: Impact of batch size on throughput. Batch

size is equivalent to block size, as it is the number of transac-

tions that are in every block of the blockchain. Multiple tests

were run by changing both batch size and input transaction

rate to see if they remained linear with throughput over dif-

ferent sizes. In Figure 1, Batch size is shown to almost linearly

increase with throughput in the implementation. This holds

true until about 2300 tx/sec, where transactions begin to fail

due to a timeout. It is also important to note that if batch size

is placed much higher than send rate, transactions will fail,

regardless of the total number of transactions No combination

of batch size and input transaction rate could get a higher

throughput than 2300 tx/sec in the current model.

Figure 1: Effect of Batch Size on Throughput

 Observation 3: Impact of input transaction rate on

memory usage. The CPU usage and the memory usages also

spike exponentially to much higher levels than previously

seen as the input transaction rate is increased, which is shown

in Figure 2. This could become a potential bottleneck in trans-

action speed, as memory could continue to rise and cause is-

sues in transaction success rate and latency.

Figure 2: Effect of Input Transaction Rate on Memory

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

Th
ro

u
gh

p
u

t
(t

x/
se

c)

Batch Size (tx/block)

0

100

200

300

400

0 500 1000 1500 2000 2500

M
em

o
ry

 (
M

B
)

Input Transaction Rate (tx/sec)

 Observation 4: Impact of Throughput on Latency. While

there is a linear increase between batch size and throughput,

latency scales exponentially with increasing throughput, as

shown in Figure 3.

Figure 3: Effect of Input Transaction Rate on Latency

V. RELATED WORK

 Performance modelling of Hyperledger Fabric has been

done before [8] with interesting results that were like the re-

sults found in our research on Sawtooth. Caliper has also been

used in research for Hyperledger Fabric and has proven suc-

cessful to test various parameters and the performance of their

implementation.

 One study from Sukhwani et al [9] found that in testing

Fabric, Caliper was an effective tool. The authors were able

to leverage the simple chaincode to suit their needs. This

study found the same results in increased latency as block size

was increased, latency could exponentially increase. Their so-

lution was to attempt to add multiple endorsers.

 Another study from Baliga et al [10] found that latency

could skyrocket at certain transaction rates, and especially if

multiple chaincodes were used instead of just one. Multiple

chaincodes deployed on the same channel also worked about

as well as a single chaincode for input transaction rate until

about 900 tx/sec, where the latency of the model then sharply

increased from about 1 second to 28 seconds. They also found

around this area that throughput rapid dropped off from 700

tx/sec to about 250 tx/sec when trying to increase input trans-

action rate past 900 tx/sec. Finally, they ran tests with 4, 8,

12, and 16 peers in their model, and found that with more

peers, latency increases, and throughput decreases, with a

more pronounced effect at higher input transaction rates.

VI. CONCLUSION & FUTURE WORK

 In this paper, we presented a study to model the perfor-

mance of the permissioned Hyperledger Sawtooth block-

chain. Various parameters were tested, including transaction

send rate, batch size, throughput, CPU / memory usage, and

latency. With the benchmarking tool, Hyperledger Caliper,

we provided information on the performance of our model

that can be used as a framework for future discussion. Bottle-

necks were identified in latency, CPU, and memory. Sawtooth

is a relatively new blockchain, under active development, and

will add different methods to improve modifiability and effi-

ciency of the blockchain. This research not only creates a

jumping block towards more in-depth Sawtooth testing, but

also shows how the Caliper tool can be used for other imple-

mentations than just Hyperledger Fabric. In the future, we aim

to test potential solutions to the bottlenecks using different

consensus algorithms, different endorsers, differing data-

bases, and more powerful hardware.

VII. ACKNOWLEDGMENT

 This paper is written with the support of the National Sci-

ence Foundation under grant number DGE-1303362.

References

1. M. Cash and M. Bassiouni, "Two-Tier Permission-ed and Permis-

sion-Less Blockchain for Secure Data Sharing," 2018 IEEE Inter-

national Conference on Smart Cloud (SmartCloud), New York,

NY, 2018, pp. 138-144.

2. X. Min, Q. Li, L. Liu and L. Cui, "A Permissioned Blockchain

Framework for Supporting Instant Transaction and Dynamic

Block Size," 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin,

2016, pp. 90-96.

3. Hyperledger Sawtooth, [online] Available: https://www.hy-

perledger.org/projects/sawtooth.

4. PoET Specification, [online] Available: https://sawtooth.hy-

perledger.org/docs/core/releases/latest/architecture/poet.html.

5. C. Saraf and S. Sabadra, "Blockchain platforms: A compendium,"

2018 IEEE International Conference on Innovative Research and

Development (ICIRD), Bangkok, 2018, pp. 1-6.

6. Hyperldger Caliper Documentation, [online] Available:

https://github.com/hyperledger/caliper

7. Hyperledger Fabric Chaincode, [online] Available: https://hy-

perledger-fabric.readthedocs.io/en/release-1.3/chaincode.html.

8. P. Thakkar, S. Nathan and B. Viswanathan, "Performance Bench-

marking and Optimizing Hyperledger Fabric Blockchain Plat-

form," 2018 IEEE 26th International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS), Milwaukee, WI, 2018, pp. 264-276.

9. H. Sukhwani, N. Wang, K. S. Trivedi and A. Rindos, "Perfor-

mance Modeling of Hyperledger Fabric (Permissioned Block-

chain Network)," 2018 IEEE 17th International Symposium on

Network Computing and Applications (NCA), Cambridge, MA,

2018, pp. 1-8.

10. A. Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat and S.

Chatterjee, "Performance Characterization of Hyperledger Fab-

ric," 2018 Crypto Valley Conference on Blockchain Technology

(CVCBT), Zug, 2018, pp. 65-74

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 500 1000 1500 2000 2500

Tr
an

sa
ct

io
n

 L
at

en
cy

 (
Se

c)

Input Transaction Rate (tx/sec)

https://github.com/hyperledger/caliper
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html

