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We consider one-dimensional quasi-periodic Schrödinger operators with analytic

potentials. In the positive Lyapunov exponent regime, we prove large deviation

estimates, which lead to refined Hölder continuity of the Lyapunov exponents and

the integrated density of states, in both small Lyapunov exponent and large coupling

regimes. Our results cover all the Diophantine frequencies and some Liouville

frequencies.

1 Introduction and the Main Results

In this paper, we study the following one-dimensional discrete quasi-periodic operators

on �2(Z):

(H(x)ϕ)(n) = ϕ(n − 1) + ϕ(n + 1) + v(x + nω)ϕ(n), n ∈ Z, (1.1)

where x ∈ T := [0, 1] is called phase, ω ∈ T \ Q is called frequency, and the real-valued

analytic function v : T → R is called potential.

For an energy E ∈ R, the Schrödinger equation

ϕ(n − 1) + ϕ(n + 1) + v(x + nω)ϕ(n) = Eϕ(n) (1.2)
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2 R. Han and S. Zhang

can be rewritten in the form of the skew-product:

(
ϕ(n + 1)

ϕ(n)

)
= A(ω, E; x + nω)

(
ϕ(n)

ϕ(n − 1)

)
, (1.3)

where

A(ω, E; x) :=
(

E − v(x) −1

1 0

)
. (1.4)

The dynamical system (ω, A(ω, E; ·)) : T × C2 → T × C2, defined by

(ω, A(ω, E; ·))(x, v) = (x + ω, A(ω, E; x)v), (1.5)

is called Schrödinger cocycle.

Let A be defined as in (1.4) and let

Mn(ω, E; x) := A(ω, E; x + nω)A(ω, E; x + (n − 1)ω) · · · A(ω, E; x + ω) (1.6)

be the n-step transfer matrix, coming from n iterates of the Schrödinger cocycle (ω, A).

Then, in view of (1.3), one clearly has

(
ϕ(n + 1)

ϕ(n)

)
= Mn(ω, E; x)

(
ϕ(1)

ϕ(0)

)
. (1.7)

Let

un(ω, E; x) := 1

n
log ‖Mn(ω, E; x)‖, and Ln(ω, E) :=

∫
T

un(ω, E; x)dx. (1.8)

For any irrational ω ∈ [0, 1], the translation x �→ x+ω is ergodic. The Furstenberg–Kesten

theorem implies that the following limit exists for a.e. x:

lim
n→∞ un(ω, E; x) = lim

n→∞ Ln(ω, E) =: L(ω, E). (1.9)

The limit L(ω, E) is called the Lyapunov exponent. Let us point out that in the definition

of quasi-perodic cocycle, one could in general replace the one-dimensional rotation

number ω ∈ T by a higher dimensional vector ω ∈ Td, and could also replace A by

any m × m matrix-valued function, where m ∈ N. The definition (1.9) then yields the

maximal Lyapunov exponent L(ω, A).
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Deviation Estimates and Hölder Regularity 3

Note that for any fixed κ > 0, E, ω, the a.e. convergence in (1.9) implies

mes
{
x ∈ T : |un(ω, E; x) − Ln(ω, E)| > κ

} → 0 as n → ∞. (1.10)

Thus, the question lies in the convergence rate w.r.t. n and the dependence on ω, E, and v.

Such estimate is in general known as the Large Deviation Theorem/Principle (LDT/LDP)

in probability theory. In this paper, we shall focus on the LDT for the monodromy

matricies as introduced in (1.8). For the general LDT theory in probability theory, we

refer readers to [15, 30].

Another important quantity in the spectral theory of Schrödinger operators is

the integrated density of states (I.D.S.), denoted by N. It is also a function of the energy

E. The I.D.S. gives the asymptotic distribution of eigenvalues of H restricted to large

boxes. It is linked to L(E) = L(ω, E) via the Thouless formula, see for example, [12],

L(E) =
∫

log |E − E′|dN(E′).

The I.D.S. is in general continuous in E, but this does not directly imply the continuity of

the Lyapunov exponent. However, by virtue of the Hilbert transform, Hölder regularities

of N(E) and L(E) pass from one to the other. For a proof of this fact, see for example,

[19]. Therefore, we shall focus on the Lyapunov exponent in the rest of this paper.

Large deviation type estimates were introduced to study quasi-periodic

Schrödinger operators in the late 1990s in a series of papers by Bourgain, Goldstein,

and Schlag, [7, 19]. Their method has been well developed ever since and has shown to

be sufficiently robust in the super-critical regime to deal with the following questions

(not only restricted to the one-dimensional quasi-periodic Schrödinger case):

1. Regularity of the L(E) and N(E) in energy E (e.g., [4, 9, 19, 21, 27]),

2. Localization of the eigenfunctions (e.g., [7, 8, 23, 27]),

3. Eigenvalue separation and topological structure of the spectrum (e.g., [14,

22, 24]).

In this paper, we will focus on Problem 1. For more details about Problems 2 and 3, we

refer readers to [5, 15, 20, 26] and references therein.

Proving regularity of L(E) and N(E) (in E) is considered difficult for any type of

sequence of potentials, see [13]. Some weak regularity for general ergodic families was

first proved in [12]. For quasi-periodic Schrödinger operators, the 1st breakthrough was

made by Goldstein and Schlag in [19]. They developed a robust scheme, by combining
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4 R. Han and S. Zhang

LDT with Avalanche Principle (AP), see Theorem C.1, to study the regularity problem.

They proved Hölder regularity of L(E) and N(E) for typical frequencies in T, assuming

analyticity of the potential and positive Lyapunov exponents. Some weaker Hölder

regularity was also obtained in the same paper for Td with d > 1. Bourgain and

Jitomirskaya proved in [9] that L(ω, E) is jointly continuous in (ω, E) at any irrational

ω ∈ T for analytic potentials; this result was obtained by Bourgain for Td with d > 1

in [6]. More delicate estimates on sharp Hölder regularity for T were obtained by

Goldstein and Schlag in [21]. In a recent monograph by Duarte–Klein [15], this scheme

was extended systematically in depth and breadth, making it applicable to general

cocycles, provided appropriate LDT estimates are available in the given setting.

For a general quasi-periodic analytic cocyle (ω, A), where A is an analytic m × m

matrix-valued function, regularity of L(ω, A) is formulated in terms of the analytic norm

of A. Joint continuity of L(ω, A) in (ω, A), without a modulus of continuity, was obtained

in [3, 25] at any irrational ω ∈ T. The approaches of [3, 25] do not rely on LDT. Hölder

regularity of L(ω, A) was obtained by LDT in [15, 16] for Diophantine ω ∈ Td, under

the gapped Lyapunov exponent assumption (equivalent to positive (maximal) Lyapunov

exponent when m = 2).

In the subcritical regime with analytic potential, regularity results were proved

often by reducibility method, cf. [1, 2]. In the low-regularity potential regime, fewer

results were obtained with more restrictions on the potential and the frequency, see for

example, [1, 11, 27, 28, 29, 32].

In this paper we follow the scheme developed by Goldstein and Schlag [19],

namely by combining LDT and AP to obtain the Hölder continuity of L(E) and N(E):

|L(E) − L(E′)| + |N(E) − N(E′)| ≤ |E − E′|τ , |E − E′| 
 1. (1.11)

One of their key estimates for the one-dimensional case is

mes
{
x ∈ T : |un(ω, E; x) − Ln(ω, E)| > κL(ω, E)

} ≤ e−c(ω,v,κ)L2(ω,E)n, (1.12)

under the positive Lyapunov exponent condition L(ω, E) > γ > 0, for ω satisfying the

strong Diophantine condition (S.D.C.), see (1.14). However, due to the L2(ω, E) term in the

exponential estimate on the right-hand side of (1.12), the Hölder exponent τ in (1.11) will

tend to 0 as the lower bound γ approaches 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/doi/10.1093/im
rn/rnz319/5841515 by G

eorgia Institute of Technology user on 16 July 2020



Deviation Estimates and Hölder Regularity 5

In [5], the LDT estimate (1.12) was improved to be

mes
{
x ∈ T : |un(ω, E; x) − Ln(ω, E)| > κL(ω, E)

} ≤ e−c(ω,v,κ)L(ω,E)n, (1.13)

in the small Lyapunov exponent regime, under the same assumption on ω. (Note that

we use the same symbol c(ω, v, κ) in both (1.12) and (1.13), but they are not the same

constants.) The improvement implies that the local Hölder exponent is independent of

the lower bound γ .

As we mentioned above, both (1.12) and (1.13) were established for ω satisfying a

S.D.C., which we define later. Going beyond S.D.C. is considered difficult for establishing

LDT and Hölder continuity of the Lyapunov exponent in general. Our 1st result of this

paper extends the LDT estimates to more frequencies in the best possible regime, see

(1.17). Indeed, Hölder continuity fails for generic ω, see [2]. (See the paragraph below

Theorem 1.2 of [3], for v = λ cos with λ �= 0, Lyapunov exponent is discontinuous at

rational ω’s; thus, it is not Hölder for ω’s that are well approximated by rationals.) Thus,

the exponential decay (1.12) or (1.13) cannot hold for all frequencies.

In both (1.12) and (1.13), the dependence of c(ω, v, κ) on v are not written down

explicitly. In our paper, we incorporate a refined Riesz representation of subharmonic

functions of [21] into the proof of the LDT estimates. This leads to an explicit

dependence of c on v. It turns out that the constant depends on the potential v in a

“sup − sup” form, see (2.5). If v = λf , the “sup − sup” yields a magical cancellation of

λ. This leads to the 2nd result of our paper, see Corollary 1.3. Combining with AP, we

obtain, for the 1st time, a λ-independent Hölder exponent in the large coupling regime

for general non-trivial analytic potentials, see Theorem 1.10. Such kind of result was

previously only known for trigonometric polynomials.

In order to formulate our results, we introduce the following notations: for any

x ∈ R, let ‖x‖
T

:= infn∈Z |x − n|. For any ω ∈ [0, 1] \ Q, let [a1, a2, a3, ...] be its continued

fraction expansion. Let {ps/qs}∞s=1 be its continued fraction approximants, defined by

ps/qs = [a1, a2, ..., as]. It is well known that ‖qsω‖
T

≤ q−1
s+1. We say that ω satisfies an

S.D.C. (or ω is strongly Diophantine), if for some constants a > 1, c > 0, the following

holds for any n ≥ 1,

‖nω‖
T

≥ c

n(1 + log n)a . (1.14)

(We say that ω satisfies a Diophantine condition (D.C.) if ‖nω‖
T

≥ c
n−α for all n > 1 and

some a > 1, c > 0. Note that for any a > 1, a.e. ω satisfies a D.C. with some c = c(ω) > 0.)

Note that for any a > 1, a.e. ω satisfies S.D.C. for some c = c(ω) > 0. It is also clear from
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6 R. Han and S. Zhang

the definition of S.D.C. that for strong Diophantine ω,

qs+1 ≤ c−1qs(log qs)
a. (1.15)

Next we introduce an exponential growth exponent β defined as follows:

β(ω) := lim sup
s→+∞

log qs+1

qs
∈ [0, ∞]. (1.16)

It is then clear from (1.15) that S.D.C.� {ω : β(ω) = 0}. Those ω with β(ω) > 0 are usually

called Liouville numbers.

Since our potential v(x) is a real analytic function, it has a bounded extension

to a strip |Imz| < ρ with width denoted by ρ > 0. Let Nv = [−2 − ‖v‖∞, 2 + ‖v‖∞] be

the numerical range of the Schrödinger operator H. It is well known that σ(H) ⊂ Nv

and L(E) is a C∞ function outside of the spectrum. Hence, we will only consider E ∈ Nv

throughout the paper.

Theorem 1.1. Let ω ∈ R \ Q. There exist constants c(v, ρ), c̃(v, ρ) ∈ (0, 1) such that, if

0 ≤ β(ω) < c(v, ρ) inf
E∈[a,b]

L(ω, E), (1.17)

then there is N = N(ω, infE∈[a,b] L(ω, E), v, ρ) ∈ N such that for any n ≥ N the following

large deviation estimates hold uniformly in E ∈ [a, b],

(a) If 0 < L(ω, E) < 1, then

mes
{

x ∈ T :| un(ω, E; x) − Ln(ω, E) |> 1

20
L(ω, E)

}
≤ e−c̃(v,ρ)L(ω,E) n. (1.18)

(b) If L(ω, E) ≥ 1, then

mes
{

x ∈ T :| un(ω, E; x) − Ln(ω, E) |> 1

20
L(ω, E)

}
≤ e−c̃(v,ρ)L2(ω,E) n. (1.19)

Remark 1.2. The parameter 1/20 in Theorem 1.1 can be replaced by any 0 < κ < 1.

The new constants cκ(v, ρ), c̃κ (v, ρ) only differ from c(v, ρ), c̃(v, ρ) by a constant multiple

of κ2. However, in order to apply AP to obtain Hölder continuity, κ can be taken to

be at most 1/9 due to technical reasons (see (C10)). We do not intend to improve the

Hölder exponents in the paper by getting the best possible κ; thus, we take κ = 1/20 for

simplicity. See more discussions about the sharp Hölder exponents after Theorem 1.5.
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Deviation Estimates and Hölder Regularity 7

Corollary 1.3. Let ω ∈ R \ Q. Assume that v(x) in (1.1) is given by v(x) = λf (x), where

λ is a positive constant. There exist constants 0 < b = b(f , ρ) < 1, B = B(f , ρ) > 1, and

λ̃ = λ̃(f , ρ) > 0 with the following properties: for any irrational ω with 0 ≤ β(ω) < ∞,

suppose

λ > max(λ̃, eBβ(ω)),

then there is N(ω, λ, f , ρ) ∈ N such that for any n ≥ N(ω, λ, f , ρ), the following holds

mes
{

x ∈ T :| un(ω, E; x) − Ln(ω, E) |> 1

19
log λ

}
≤ e−n b log λ. (1.20)

Remark 1.4. The above exponential decay of the measure estimate w.r.t. log λ for large

coupling λ is known for the 1st time even for β(ω) = 0 or S.D.C. ω to the authors’

knowledge.

As mentioned previously in (1.11), a direct consequence of the above large

deviation estimates is the Hölder regularity of the Lyapunov exponents. With the refined

parameters in the LDT estimates (1.18)–(1.20), we have the following Hölder continuity

of the Lyapunov exponents.

Theorem 1.5. Let c = c(v, ρ), c̃ = c̃(v, ρ) be the constants in Theorem 1.1. There exists

a constant τ > 0 depending explicitly (and only) on c̃(v, ρ) that satisfies the following

property: if (ω0, E0) ∈ (R \ Q) × Nv is a point with L(ω0, E0) = γ > 0, and U × I is a

neighborhood of (ω0, E0) such that L(ω, E) ∈ [ 18
19γ , 20

19γ ], then for any ω ∈ U with

0 ≤ β(ω) <
1

2
c γ ,

there is η = η(ω, I, γ , v) such that the following holds for any E, E′ ∈ I and |E − E′| < η,

|L(ω, E) − L(ω, E′)| ≤ |E − E′|τ . (1.21)

Remark 1.6. By [9], L(ω, E) is jointly continuous in (ω, E) at (ω0, E0). Hence, the

neighborhood U × I always exists.

Remark 1.7. Theorem 1.5 shows that the exponent τ is independent of the lower

bound of the Lyapunov exponent γ . This generalizes the result in [5] for general analytic

potentials from ω satisfying S.D.C. to 0 ≤ β(ω) � γ .
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8 R. Han and S. Zhang

Remark 1.8. For trigonometric polynomial potentials, there are results on sharp

Hölder exponents that only depend on the degree of the polynomial: 1
2 -Hölder if v =

λ cos, λ �= 0, 1, [2, 4]; and ( 1
2k −ε)-Hölder if v is a small C∞ perturbation of a trigonometric

polynomial of degree k [21]. Our current approach does not lead to such kind of sharp

exponent for general analytic potentials, even for S.D.C. ω.

Remark 1.9. If v is of the form λf , with a general analytic f , in the small coupling

regime λ < λ0(f ), 1
2 -Hölder exponents were obtained in [2] using a reducibility method.

However, there is no such kind of result for the large coupling regime. (For general

analytic potential v = λf , if one applies the LDT (1.12) in [19] and check all the constants

explicitly, the Hölder exponent behaves like O((log λ)−1) for large λ even for S.D.C. ω, see

more explanation in [33].) Our Theorem 1.10 is the 1st one in this regime, by giving a

λ-independent Hölder exponent for general analytic f .

If v = λf , we have the following:

Theorem 1.10. Under the same condition of Corollary 1.3, let λ̃(f , ρ), b(f , ρ), B(f , ρ) be

the constants given there. There exists a constant τ̃ > 0 depending explicitly (and only)

on b (hence independent of λ) such that for any irrational ω with 0 ≤ β(ω) < ∞, if

λ > max(λ̃, eBβ(ω)), then there exists η̃ = η̃(ω, λ, f , ρ) > 0, such that for any E, E′ ∈ Nλf and

|E − E′| ≤ η̃, we have

|L(E) − L(E′)| ≤ |E − E′|τ̃ . (1.22)

The rest of the paper is organized as follows: in Section 2, we state all the

important technical lemmas. In Section 3, we prove the three large deviation estimates

using the lemmas in Section 2. Our Hölder continuity follows directly from LDT and a

standard argument combined with the AP. For the sake of completeness, we sketch the

proof in Section 5. Many details of this part are included in the Appendix for the reader’s

convenience.

2 Useful Lemmas

Let Nv = [−2 − ‖v‖∞, 2 + ‖v‖∞]; as we mentioned before, we will only consider E ∈ Nv

throughout the paper. Recall that un(ω, E; x) is defined as in (1.8).

This section contains lemmas that will be used in the proofs of Theorems 1.1

and 1.3. The proofs of these lemmas will be included in Section 4.
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Deviation Estimates and Hölder Regularity 9

Let

�v := log (3 + 2‖v‖L∞(T)). (2.1)

Simple computations yield that

sup
E∈Nv

∥∥un(ω, E; ·)∥∥L∞(T)
≤ �v (2.2)

holds uniformly in ω ∈ T and 1 ≤ n ∈ N.

Since in our model, v is assumed to have bounded analytic extension to Tρ :=
{z : |Imz| < ρ}, un has subharmonic extension on Tρ with a uniform upper bound

sup
E∈Nv

sup
n∈N

∥∥un(ω, E; ·)∥∥L∞(Tρ)
≤ log (3 + 2‖v‖L∞(Tρ)) < ∞.

2.1 Estimates of the Fourier coefficients ûn(ω, E; k)

The function un(ω, E; x) is 1-periodic on R and we denote its Fourier coefficients by

ûn(ω, E; k) =
∫
T

un(ω, E; x)e−2π ikxdx. (2.3)

The following estimate of the Fourier coefficient is well known and crucial to estab-

lishing our LDT, see for example, Bourgain’s monograph [5, Corollary 4.7]. For a version

of this estimate written precisely in the “sup − sup” form below, see [17, Lemma 2.8].

To obtain this “sup − sup” estimate, one needs to invoke a refined Riesz representation

theorem [21, Lemma 2.2]. See details in Section 4.1.

Lemma 2.1. There is a constant α(ρ) > 0 depending on ρ only, such that for any k �= 0,

|ûn(ω, E; k)| ≤ α(ρ)

|k|

(
sup

|Imz|<ρ

un(ω, E; z) − sup
|Imz|<ρ/2

un(ω, E; z)

)
. (2.4)

Corollary 2.2. Let

C(v, ρ) := α(ρ) sup
E∈Nv

(
sup

|Imz|<ρ

un(ω, E; z) − sup
|Imz|<ρ/2

un(ω, E; z)

)
< ∞. (2.5)

We then have that for any k �= 0 and E ∈ Nv,

|ûn(ω, E; k)| ≤ C(v, ρ)

|k| . (2.6)
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10 R. Han and S. Zhang

When v is given as λf , we can bound the above constant C(λf , ρ) by a constant

independent of λ. This turns out to be crucial to our proof of Corollary 1.3.

Lemma 2.3. Let C(v, ρ) be the constant defined in (2.5). Suppose that v = λf . Then

there is C0(f , ρ) > 0, independent of λ, such that for any λ > 0,

C(λf , ρ) ≤ C0( f , ρ). (2.7)

Besides the Fourier decay estimate in Lemma 2.1, we also prove a new estimate

as follows. This estimate improves that of Lemma 2.1 for small |k| when n is large. It

will play a crucial role in our proof of part (a) of Theorem 1.1.

Lemma 2.4. Let �v be the constant defined in (2.1). We have the following bounds of

the Fourier coefficients, for any k �= 0,

|ûn(ω, E; k)| ≤ �v

2n‖kω‖
T

.

2.2 ‖un(ω, E; ·)‖L∞(T) under small Lyapunov exponent condition

We present an upper bound of ‖un(ω, E; x)‖, see Lemma 2.6 below. This can be viewed as

a generalization of [5, Lemma 8.18], where a similar bound was proved for Diophantine

ω. Compared to a trivial bound ‖un(ω, E; x‖ ≤ �v, the new bound is much more effective

when the Lyapunov exponent is small.

Compared to [5, Lemma 8.18], our improvement lies in the fact that we can relax

the D.C. on ω. Indeed we give explicit dependence of the upper bound on the continued

fraction approximants of ω, through the log qs+1/qs term. This improvement enables us

to cover Liouville frequencies.

For R ∈ N, let u(R)
n be the average of un along a trajectory with length ∼ R,

defined as

u(R)
n (ω, E; x) :=

∑
|j|<R

R − |j|
R2 un(ω, E; x + jω). (2.8)

Lemma 2.5. Let C(v, ρ), C3 be the constants in (2.5) and (4.19). Assuming that 0 <

L(ω, E) < 1, we have the following upper bound of u(R)
n (ω, E; x),

‖u(R)
n (ω, E; ·)‖L∞(T) ≤ Ln(ω, E) + (2 + 8C(v, ρ) + 4πC3C(v, ρ))L(ω, E) + 120C(v, ρ)

log qs+1

qs
,

(2.9)
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Deviation Estimates and Hölder Regularity 11

which holds for

n ≥ 2�vL(ω, E)−2 sup
1≤|k|≤L(ω,E)−1

1

‖kω‖
T

, and R ≥ 144L(ω, E)−5.

Lemma 2.5 leads to the following

Lemma 2.6. Let C(v, ρ), C3 be the constants in (2.5) and (4.19). Assuming that 0 <

L(ω, E) < 1, we have the following upper bound of un(ω, E; x),

‖un(ω, E; ·)‖L∞(T) ≤ Ln(ω, E) + C1L(ω, E) + 120C(v, ρ)
log qs+1

qs
, (2.10)

which holds for n ≥ N0(ω, L(ω, E), v, ρ), where C1 explicitly depends on C(v, ρ), �v as

C1 := 2 + �v + 8C(v, ρ) + 4πC3C(v, ρ) (2.11)

and

N0(ω, L(ω, E), v, ρ) := L(ω, E)−2 max

(
2�v sup

1≤|k|≤L(ω,E)−1

1

‖kω‖
T

, 49L(ω, E)−4

)
. (2.12)

2.3 Two estimates of ‖un(ω, E; ·) − u(R)
n (ω, E; ·)‖L∞(T)

The following lemmas give upper bounds of ‖un − u(R)
n ‖L∞(T) under different conditions.

Lemma 2.7. Let �v be the constant defined in (2.1). For any n, R, ω, we have

∥∥∥un(ω, E; ·) − u(R)
n (ω, E; ·)

∥∥∥
L∞(T)

≤ 2�v
R

n
.

Recall the following uniform convergence in [9].

Lemma 2.8. [9, Corollary 3] Suppose v is analytic. Then

lim sup
n→∞

un(ω, E; x) ≤ L(ω, E) (2.13)

uniformly in x and E in a compact set.

A direct consequence is the following:
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12 R. Han and S. Zhang

Lemma 2.9. Suppose L(ω, E) > 0 for all E ∈ [a, b]. There exists Ñ0(ω, [a, b], v) such that

for any n > Ñ0(ω, [a, b], v), any x ∈ T and E ∈ [a, b], we have

un(ω, E; x) ≤
(

1 + 1

20

)
L(ω, E) (2.14)

and

Ln(ω, E) ≤
(

1 + 1

20

)
L(ω, E). (2.15)

A more delicate upper bound of the difference un − u(R)
n , when L(ω, E) is small,

is given as follows. This upper bound will be the key to Theorem 1.1, part (a). Let N0 be

as in (2.12) and Ñ0 be as in Lemma 2.9. Define

N1(ω, [a, b], L(ω, E), v, ρ) := max(N0(ω, L(ω, E), v, ρ), Ñ0(ω, [a, b], v) + 1). (2.16)

Using Lemmas 2.6 and 2.9, we obtain the following:

Lemma 2.10. Let C1, N1 be the constants in (2.11) and (2.16), and C(v, ρ), �v be

the constants in (2.5) and (2.1), respectively. Suppose 0 < L(ω, E) < 1. For R =
�(400

(
C1 + 2

))−1 n� + 1, we have that

∥∥∥un(ω, E; ·) − u(R)
n (ω, E; ·)

∥∥∥
L∞(T)

≤ 1

100
L(ω, E) + 1

5
C(v, ρ)

log qs+1

qs

holds for n ≥ N2(ω, [a, b], L(ω, E), v, ρ), where

N2(ω, [a, b], L(ω, E), v, ρ) := max (150�vN1L(ω, E)−1, 400(C1 + 2)N1 + 1). (2.17)

Remark 2.11. We point out that N1(ω, [a, b], L(ω, E), v, ρ) is a decreasing function in

the 3rd parameter L(ω, E), and so is N2(ω, [a, b], L(ω, E), v, ρ). This is clear from the

definitions (2.12), (2.16), and (2.17).
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Deviation Estimates and Hölder Regularity 13

3 Large Deviation Estimates.

For simplicity, from this point on, when there is no ambiguity, we will sometimes write

un(x) = un(ω, E; x), Ln = Ln(ω, E), and L = L(ω, E).

3.1 Preparation

Let ûn(k) and u(R)
n (x) be defined as in (2.3) and (2.8). Let

FR(k) :=
∑
|j|<R

R − |j|
R2 e2π ikjω. (3.1)

Let us recall the following estimates of FR(k) in [5, 9, 33], whose proofs are included in

the Appendix E.

0 ≤ FR(k) ≤ min

(
1,

2

1 + R2‖kω‖2
T

)
, (3.2)

∑
1≤|k|<q/4

1

1 + R2‖kω‖2
T

≤ 2π
q

R
, (3.3)

∑
|k|∈[�q/4, (�+1)q/4)

1

1 + R2‖kω‖2
T

≤ 2 + 4π
q

R
, ∀� ∈ N, (3.4)

in which p/q is any continued fraction approximant of ω.

Direct computation shows that

u(R)
n (x) = Ln +

∑
k∈Z,k �=0

ûn(k)FR(k)e2π ikx. (3.5)
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14 R. Han and S. Zhang

Let ps/qs, ps+1/qs+1 be any two consecutive continued fraction approximants of

ω. For 0 < δ ≤ 1, let us consider

un(x) − Ln = un(x) − u(R)
n (x) + u(R)

n (x) − Ln

= un(x) − u(R)
n (x) (=: U1(x))

+
∑

1≤|k|<δ−1

ûn(k)FR(k)e2π ikx (=: U2(x))

+
∑

δ−1≤|k|<qs/4

ûn(k)FR(k)e2π ikx (=: U3(x))

+
∑

qs/4≤|k|<qs+1/4

ûn(k)FR(k)e2π ikx (=: U4(x))

+
∑

qs+1/4≤|k|<K

ûn(k)FR(k)e2π ikx (=: U5(x))

+
∑

|k|≥K

ûn(k)FR(k)e2π ikx (=: U6(x)).

(3.6)

By Lemma 2.4, we have some refined estimates of U2(x) and U3(x):

Proposition 3.1. Let �v, C(v, ρ) be given as in (2.1) and (2.5). For any n ≥ 1 and

R ∈ [qs, qs+1), we have

‖U2(·)‖L∞(T) ≤ �v

δn
· sup

1≤k≤δ−1

1

‖kω‖
T

(3.7)

and

‖U3(·)‖L∞(T) ≤ 4πδC(v, ρ) (3.8)

Proof. By Lemma 2.4 and (3.2), we have

‖U2(·)‖L∞(T) ≤
∑

1≤|k|<δ−1

|ûn(k)| ≤ �v

2n

∑
1≤|k|<δ−1

1

‖kω‖
T

≤ �v

δn
sup

1≤k≤δ−1

1

‖kω‖
T

. (3.9)

By Lemma 2.1, (3.2), (3.3), and qs ≤ R, we obtain

‖U3(·)‖L∞(T) ≤ 2
∑

δ−1≤|k|<qs/4

|ûn(k)| 1

1 + R2‖kω‖2
T

≤ 2
∑

δ−1≤|k|<qs/4

C(v, ρ)

δ−1

1

1 + R2‖kω‖2
T

≤ 2C(v, ρ) · δ ·
∑

1≤|k|<qs/4

1

1 + R2‖kω‖2
T

≤ 4πC(v, ρ) · δ · qs

R
≤ 4πδC(v, ρ),

(3.10)

as desired. �
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Deviation Estimates and Hölder Regularity 15

We have some general estimates for U4(x) + U5(x) and U6(x).

Proposition 3.2. Let C(v, ρ) be given as in (2.5). For any n ≥ 1, and qs ≤ R < qs+1 ≤ K,

we have

‖U4(·) + U5(·)‖L∞(T) ≤ 120C(v, ρ)

(
log qs+1

qs
+ log K

R

)
, (3.11)

and

‖U6(·)‖2
L2(T)

≤ C2(v, ρ)
2

K
. (3.12)

This part has been proved in [33], but we sketch the proof below for the reader’s

convenience.

Proof. By Lemma 2.1, (3.2), (3.4), and the choice of R ∈ [qs, qs+1), we have

‖U4(·)‖L∞(T) ≤ 2
∑

qs/4≤|k|<qs+1/4

|ûn(k)| 1

1 + R2‖kω‖2
T

≤ 2
�qs+1/qs�+1∑

�=1

∑
|k|∈[�qs/4,(�+1)qs/4)

|ûn(k)| 1

1 + R2‖kω‖2
T

≤ 8C(v, ρ)

�qs+1/qs�+1∑
�=1

∑
|k|∈[�qs/4,(�+1)qs/4)

1

�qs
· 1

1 + R2‖kω‖2
T

≤ 8C(v, ρ)

�qs+1/qs�+1∑
�=1

1

�qs

(
2 + 4π

qs

R

)

≤ 16C(v, ρ) (1 + 2π)
log qs+1

qs
.

(3.13)

In view of U5, we have by Lemma 2.1 and (3.4) that

‖U5(·)‖L∞(T) ≤ 2
∑

qs+1/4≤|k|≤K

|ûn(k)| 1

1 + R2‖kω‖2
T

≤ 8C(v, ρ)

�4K/qs+1�+1∑
�=1

∑
|k|∈[�qs+1/4,(�+1)qs+1/4)

1

�qs+1
· 1

1 + R2‖kω‖2
T

≤ 16C(v, ρ) (1 + 2π)
log K

R
.

(3.14)

Combining (3.13) with (3.14), and using that 16(1 + 2π) < 120, we prove (3.11).
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16 R. Han and S. Zhang

For U6, we have that by Lemma 2.1,

‖U6(·)‖2
L2(T)

≤
∑

|k|>K

|ûn(k)|2 ≤ C2(v, ρ)
∑

|k|>K

1

k2 ≤ C2(v, ρ)
2

K
, (3.15)

as claimed. �

3.2 Proof of Theorem 1.1

Let

L(ω, [a, b]) = inf
E∈[a,b]

L(ω, E), and L̃(ω, [a, b]) = min(L(ω, [a, b]), 1). (3.16)

For simplicity, we will sometimes omit the dependence on ω and [a, b] and write L and

L̃ instead.

Recall our notations: N2 as in (2.17), and �v, C(v, ρ), C1 as in (2.1), (2.5), and (2.11).

We choose c and c̃ in the statement of the theorem as follows:

c(v, ρ) = (
36000C(v, ρ)

)−1, c̃(v, ρ) = (
2 × 107(C1 + 2)C(v, ρ)

)−1. (3.17)

By our condition,

β(ω) = lim sup
k→∞

log qk+1

qk
≤ c(v, ρ)L(ω).

Hence, there exists s0 = s0(ω, [a, b], v, ρ) such that for any k ≥ s0,

log qk+1

qk
≤ 2c(v, ρ)L(ω, [a, b]). (3.18)

Let n ≥ N, with N defined as follows:

N(ω, L, v, ρ) := max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i). 400(C1 + 2)qs0
,

(ii). N2(ω, [a, b], L, v, ρ),

(iii). 1.6 × 105π�vC(v, ρ)L̃
−2

sup
1≤k≤800πC(v,ρ)L̃

−1
1

‖kω‖T ,

(iv). 2 × 107(C1 + 2)C(v, ρ)L̃
−1

log
(
2 × 104C2(v, ρ)L̃

−2 + e
)

.

(3.19)

This gives four lower bounds of n.
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Deviation Estimates and Hölder Regularity 17

Remark 3.3. By Remark 2.11, N2 is decreasing in L. It is also clear that both (iii) and

(iv) are decreasing in L. Hence, N is non-increasing in L.

3.2.1 Parameters for part (a)

In this case, L < 1; hence,

L̃ = L. (3.20)

In our decomposition of un(x) − Ln in (3.6), we choose the following parameters:

δ = L

800πC(v, ρ)
, R =

[
n

400(C1 + 2)

]
+ 1,

K =
[
exp

(
RL

1.2 × 104C(v, ρ)

)]
, s = max

{
s ∈ N : qs ≤ R

}
.

(3.21)

It is clear from the choice of s that qs ≤ R < qs+1. Let us also note that with δ defined

above, the lower bound (iii) in (3.19) becomes

200�v

δL
sup

1≤k≤δ−1

1

‖kω‖
T

. (3.22)

Indeed, by (i) of (3.19), we have

R >
(
400(C1 + 2)

)−1 n ≥ qs0
.

By our definition of s, see (3.21), we clearly have s ≥ s0. This, by (3.18), implies

log qs+1

qs
≤ 2c(v, ρ)L. (3.23)

An upper bound of qs+1 could be derived from (3.23). Indeed,

qs+1 ≤ exp
(
2c(v, ρ)Lqs

) ≤ exp
(
2c(v, ρ)LR

) ≤ exp
(

LR

1.8 × 104C(v, ρ)

)
. (3.24)

By (iv) of (3.19),

n ≥2 × 107(C1 + 2)C(v, ρ)L−1;

hence, we have

exp
(

LR

1.8 × 104C(v, ρ)

)
≥ exp

(
Ln

7.2 × 106(C1 + 2)C(v, ρ)

)
≥ exp

(
2 × 107

7.2 × 106

)
> 16.
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18 R. Han and S. Zhang

Using the fact that x < x
3
2 − 1, for x > 3, we have

exp
(

LR

1.8 × 104C(v, ρ)

)
< exp

(
LR

1.2 × 104C(v, ρ)

)
− 1 ≤ K. (3.25)

Combining (3.24) with (3.25), we arrive at

qs+1 ≤ K. (3.26)

3.2.2 Proof of part (a)

By (ii) of (3.19) and Remark 2.11, we have

n ≥ N ≥ N2(ω, [a, b], L(ω), v, ρ) ≥ N2(ω, [a, b], L(ω, E), v, ρ).

Hence, by Lemma 2.10, and (3.23), we have,

‖U1(·)‖L∞(T) ≤ 1

100
L + 1

5
C(v, ρ)

log qs+1

qs
≤ 1

100
L + 2

5
C(v, ρ)c(v, ρ)L =

(
1

100
+ 1

9 × 104

)
L.

(3.27)

By Proposition 3.1 and our choice of δ, we have

‖U2(·) + U3(·)‖L∞(T) ≤ �v

δn
sup

1≤k≤δ−1

1

‖kω‖
T

+ 4πδC(v, ρ) ≤ 1

100
L, (3.28)

in which we used (iii) of (3.19), see also (3.22),

n ≥ N ≥ 200�v

δL
sup

1≤k≤δ−1

1

‖kω‖
T

≥ 200�v

δL
sup

1≤k≤δ−1

1

‖kω‖
T

.

Note that (3.26) verifies the condition qs+1 ≤ K of Proposition 3.2. Hence,

Proposition 3.2 implies that,

‖U4(·) + U5(·)‖L∞(T) ≤ 120C(v, ρ)

(
log qs+1

qs
+ log K

R

)
≤ 120C(v, ρ)

log qs+1

qs
+ 1

100
L.

Taking (3.23) into account, we have

‖U4(·) + U5(·)‖L∞(T) ≤ 240C(v, ρ)c(v, ρ)L + 1

100
L = 1

60
L. (3.29)
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Deviation Estimates and Hölder Regularity 19

Combining (3.27), (3.28), and (3.29) with our choice of c(v, ρ), see (3.17), we have

∥∥∥∥∥∥
5∑

j=1

Uj(·)
∥∥∥∥∥∥

L∞(T)

≤ 1

25
L. (3.30)

By (3.12) and (3.25),

‖U6(·)‖2
L2(T)

≤ C2(v, ρ)
2

K
≤ 2C2(v, ρ) exp

(
− RL

1.8 × 104C(v, ρ)

)
< 2C2(v, ρ) exp

(
− nL

107(C1 + 2)C(v, ρ)

)
.

(3.31)

Combining (3.6) and (3.30) with (3.31), and using Markov’s inequality, we obtain

mes
{

x ∈ T :
∣∣un(x) − Ln

∣∣ >
1

20
L
}

≤ mes
{

x ∈ T :
∣∣U6(x)

∣∣ >
1

100
L
}

≤ 2 × 104C2(v, ρ)L−2 exp
(

− nL

107(C1 + 2)C(v, ρ)

)
≤ exp

(
− nL

2 × 107(C1 + 2)C(v, ρ)

)
= exp (−c̃(v, ρ)nL),

in which we used (iv) of (3.19),

n ≥2 × 107(C1 + 2)C(v, ρ)L−1 log(2 × 104C2(v, ρ)L−2).

This proves part (a) of Theorem 1.1.

3.2.3 Parameters for part (b)

In our decomposition of un(x) − Ln in (3.6), we choose parameters as follows:

δ = 1

800πC(v, ρ)
, R =

[
nL

400�v

]
+ 1,

K =
[
exp

(
RL

1.2 × 104C(v, ρ)

)]
, s = max{s ∈ N : qs ≤ R}.

(3.32)

It is clear that qs ≤ R < qs+1.
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20 R. Han and S. Zhang

Use the fact that C1 > �v, see (2.11), and L̃ ≤ 1, (3.19) implies

n ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i′). 400(�v + 1)qs0
.

(iii′). 200�v
δ

sup1≤k≤δ−1
1

‖kω‖T ,

(iv′). 2 × 107�vC(v, ρ) log (2 × 104C2(v, ρ) + e).

(3.33)

Note that (i’) implies that

R > (400�v)−1nL ≥ (400�v)−1n ≥ qs0
. (3.34)

By our definition of s, we have s ≥ s0. This, by (3.18), implies

qs+1 ≤ exp
(
2c(v, ρ)Lqs

) ≤ exp
(
2c(v, ρ)Lqs

)
≤ exp (2c(v, ρ)LR) ≤ exp

(
LR

1.8 × 104C(v, ρ)

)
.

(3.35)

By (iv’) of (3.33),

n ≥ 2 × 107�vC(v, ρ) log (2 × 104C2(v, ρ) + e) ≥ 2 × 107�vC(v, ρ);

hence,

exp
(

RL

1.8 × 104C(v, ρ)

)
≥ exp

(
nL2

7.2 × 106�vC(v, ρ)

)
≥ exp

(
n

7.2 × 106�vC(v, ρ)

)
> 16.

Thus, similar to (3.25), using the fact x < x
3
2 − 1, for x > 3, we have

exp
(

RL

1.8 × 104C(v, ρ)

)
≤ exp

(
RL

1.2 × 104C(v, ρ)

)
− 1 ≤ K. (3.36)

Combining (3.35) with (3.36), we obtain, similar to (3.26), that

qs+1 ≤ K. (3.37)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/doi/10.1093/im
rn/rnz319/5841515 by G

eorgia Institute of Technology user on 16 July 2020
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3.2.4 Proof of part (b)

We use the trivial upper bound in Lemma 2.7 for U1,

‖U1(·)‖L∞(T) ≤ 2�v
R

n
≤ 1

200
L + 2�v

n
≤ 1

100
L, (3.38)

in which we used, see (i’) of (3.33), that

n ≥ 400(�v + 1)qs0
≥ 400�vL−1.

Proposition 3.1 yields that

‖U2(·) + U3(·)‖L∞(T) ≤ �v

δn
sup

1≤k≤δ−1

1

‖kω‖
T

+ 4πC(v, ρ)δ

≤ 1

200
L + 1

200
L = 1

100
L,

(3.39)

in which we used (iii’) of (3.33),

n ≥ 200�v

δ
sup

1≤k≤δ−1

1

‖kω‖
T

≥ 200�v

δL
sup

1≤k≤δ−1

1

‖kω‖
T

. (3.40)

Note that we have verified the condition qs+1 ≤ K in (3.37); Proposition 3.11

implies that

‖U4(·) + U5(·)‖L∞(T) ≤ 120C(v, ρ)

(
log qs+1

qs
+ log K

R

)
≤ 120C(v, ρ)

log qs+1

qs
+ 1

100
L.

By (3.23), we then have

‖U4(·) + U5(·)‖L∞(T) ≤ 240C(v, ρ)c(v, ρ)L + 1

100
L = 1

60
L. (3.41)

In view of U6, (3.12) and (3.36) yield that

‖U6(·)‖2
L2(T)

≤ C2(v, ρ)
2

K
≤ 2C2(v, ρ) exp

(
− RL

1.8 × 104C(v, ρ)

)

≤ 2C2(v, ρ) exp
(

− nL2

107�vC(v, ρ)

)
.

(3.42)
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22 R. Han and S. Zhang

Combining (3.38),(3.39), and (3.41) with (3.42), we get that by Markov’s inequality,

mes
{

x ∈ T :
∣∣un(x) − Ln

∣∣ >
1

20
L
}

≤ mes
{

x ∈ T :
∣∣U6(x)

∣∣ >
1

100
L
}

≤ 2 × 104C2(v, ρ)L−2 exp
(

− nL2

107�vC(v, ρ)

)

≤ exp
(

− nL2

2 × 107�vC(v, ρ)

)
,

in which we used (iv’) of (3.33). Using that C1 > �v, we obtain

−
(
2 × 107�vC(v, ρ)

)−1
< −

(
2 × 107(C1 + 2)C(v, ρ)

)−1 = −c̃(v, ρ).

Hence,

mes
{

x ∈ T :
∣∣un(x) − Ln

∣∣ >
1

20
L
}

≤ exp
(
−c̃(v, ρ)nL2

)
,

as claimed.

3.3 Proof of Corollary 1.3

In general, a large uniform norm of v does not guarantee a positive Lyapunov exponent.

However, if the potential function v is of the form λf , then the following well-known

result by Sorets–Spencer [31] gives a lower bound of the Lyapunov exponent in the large

coupling regime.

Theorem 3.4. For any non-constant real analytic potential f with an analytic exten-

sion on {|�z| < ρ}, there exist constants λ0 = λ0(f ) > 0 and h0 = h0(f ) depending only

on f , such that for all E, ω, and λ > λ0, the Lyapunov exponent L(ω, E) ≥ log λ + h0.

Let λ0 = λ0(f ) be given as in Theorem 3.4. For λ > λ1(f ) := max (e−19h0 , 3, λ0),

we have

L(ω, E) > log λ + h0 >
18

19
log λ > 1, (3.43)

holds uniformly in ω and E. (λ0 is in general large however for some concrete examples,

e.g., f = cos, λ0 = 2, cf. [9].) Let �v = �λf be defined as in (2.1); we have

L(ω, E) ≤ �λf = log (3 + 2λ‖f ‖L∞(T)) ≤ 20

19
log λ, (3.44)

provided that λ ≥ λ2(‖f ‖L∞(T)).
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Let C(λf , ρ), c(λf , ρ) and c̃(λf , ρ) be defined as in (2.5) and (3.17). With the help of

Lemma 2.3, we can make the dependence of the three constants on λ more explicit.

First, Lemma 2.3 yields that there exists C0 = C0(f , ρ) such that

C(λf , ρ) ≤ C0(f , ρ), (3.45)

for any λ ≥ 0.

Second, plugging (3.44) and (3.45) into our definition of C1, see (2.11), we have,

C1 + 2 = 4 + �λf + (8 + 4πC3)C(λf , ρ) ≤ 4 + 20

19
log λ + (8 + 4πC3)C0 ≤ 2 log λ, (3.46)

provided that λ ≥ λ3(f , ρ) := max (λ2, exp
(19

18 (4 + (8 + 4πC3)C0

)
). Thus, putting (3.45) and

(3.46) together, we have that for λ ≥ λ3,

c̃(λf , ρ) = (
2 × 107(C1 + 2)C(v, ρ)

)−1 ≥ (
4 × 107C0 log λ

)−1. (3.47)

Third, note that (3.45) also yields

c(λf , ρ) = (36000C(λf , ρ))−1 ≥ (36000C0)−1. (3.48)

Let us take

λ̃(f , ρ) := max (λ1, λ3),

and λ > λ̃. We are in the place to apply Theorem 1.1. Let us note that by (3.43), we

always have L(ω, E) > 1; hence, we will only apply part (b). One condition of the theorem

is 0 ≤ β(ω) < c(λf , ρ)L(ω, E). In view of (3.48) and L(ω, E) > 18
19 log λ, this condition will

always be satisfied if

β(ω) < (36000C0)−1 18

19
log λ = (38000C0)−1 log λ =: B−1 log λ. (3.49)

Therefore, for λ > max (λ̃, exp (Bβ(ω))), part (b) of Theorem (1.1) implies

mes
{

x ∈ T :| un(ω, E; x) − Ln(ω, E) |> 1

20
L(ω, E)

}
≤ exp

(
−c̃(λf , ρ)L2(ω, E)n

)
. (3.50)
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24 R. Han and S. Zhang

Using upper and lower bounds of L(ω, E) in (3.44) and (3.43), we obtain from (3.50) that

mes
{

x ∈ T :| un(ω, E; x) − Ln(ω, E) |> 1

19
log λ

}
≤ mes

{
x ∈ T :| un(ω, E; x) − Ln(ω, E) |> 1

20
L(ω, E)

}
≤ exp

(
−c̃(λf , ρ)L2(ω, E)n

)
≤ exp

(
−c̃(λf , ρ)

182(log λ)2

192 n
)

≤ exp
(

−n
log λ

5 × 107C0

)
=: exp (−nb log λ),

(3.51)

in which we used (3.47) in the last inequality.

4 The Proofs of the Lemmas

4.1 Proof of Lemma 2.1

We need the following result.

Lemma 4.1. [21, Lemma 2.2] Let u : � → R be a subharmonic function on a domain

� ⊂ C. Suppose that ∂� consists of finitely many piecewise C1 curves. There exists a

positive measure μ on � such that for any �1 � � (i.e., �1 is a compactly contained

sub-region of �)

u(z) =
∫

�1

log |z − ζ | dμ(ζ ) + h(z), (4.1)

where h is harmonic on �1 and μ is unique with this property. Moreover, μ and h satisfy

the bounds

μ(�1) ≤ C(�, �1)
(

sup
�

u − sup
�1

u
)

(4.2)

∥∥∥h − sup
�1

u
∥∥∥

L∞(�2)
≤ C(�, �1, �2)

(
sup

�

u − sup
�1

u
)

(4.3)

for any �2 � �1.

Note that un(z) is a bounded subharmonic function on � := {z : |Rez| <

1, |Imz| < ρ}. We consider the following nested domains �0 � �2 � �1 � �,
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where

�1 =
{

z : |Rez| ≤ 5

6
, |Imz| <

ρ

2

}
�2 =

{
z : |Rez| ≤ 4

5
, |Imz| <

ρ

4

}
�0 =

{
z : |Rez| ≤ 3

4
, |Imz| = 0

}
=

[
−3

4
,

3

4

]
.

(4.4)

Now we apply Lemma 4.1 to u(z) = un(z) on �. We have then a positive measure μ and

a harmonic function h on �1 satisfying (4.1), (4.2), and (4.3).

Since h − sup�1
u is a harmonic function, by the Poission integral formula and

(4.3), we have

max
(‖∂xh‖L∞(�0), ‖∂2

x h‖L∞(�0)

) ≤ C(�, �1, �2, �0)(sup
�

u − sup
�1

u). (4.5)

We only need the bound for ∂xh here, we will use the one for ∂2
x h in Section 4.3.

Combining (4.1) with the technique in [7], one can then show that for some

absolute constant C2 > 0, the following holds for any k �= 0:

∣∣ûn(k)
∣∣ ≤ C2

|k|

⎛⎝μ(�1) + ‖∂xh‖L∞(�0) +
∥∥∥∥∥h − sup

�1

un

∥∥∥∥∥
L∞(�0)

⎞⎠ . (4.6)

Clearly, (2.4) and (2.5) follow directly from (4.2)–(4.6) by setting

α(ρ) := C2 max (C(�, �1), C(�, �1, �2), C(�, �1, �2, �0)). (4.7)

This finishes the proof of Lemma 2.1. We will include the proof of (4.6) in Appendix A.

4.2 Proof of Lemma 2.3

On one hand, for any E ∈ N , trivially we have

sup
|Imz|<ρ

‖Aj(E, z)‖ ≤ 2λ‖f ‖ρ + 2 ≤ 3λ‖f ‖ρ , provided λ > 2‖f ‖−1
ρ

and

sup
|Imz|<ρ

un(z) ≤ log
(
3λ‖f ‖ρ

)
.

On the other hand, since f is non-constant analytic on |Imz| < ρ, for δ = ρ/2, there exists

ε0 = ε0(f ) > 0 such that

inf
E1

sup
y∈(δ/2,δ)

inf
x

|f (x + iy) − E1| > ε0.
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26 R. Han and S. Zhang

This implies that for any λ, E, there is y0 ∈ (δ/2, δ) such that ∀x

∣∣ f (x + iy0) − E/λ
∣∣ > ε0.

The computation contained in [7, Appendix] shows that for λ > 2ε−1
0 ,

‖Mn(iy0, E)‖ ≥
n∏

j=1

(
|λf (jω + iy0) − E| − 1

)
≥

(
λε0 − 1

)n ≥
(1

2
λε0

)n
. (4.8)

Therefore,

sup
|Imz|<ρ/2

un(z) ≥ un(iy0) = 1

n
log ‖Mn(iy0, E)‖ ≥ log

(
1

2
λε0

)
.

Clearly, we have that for λ > max{2‖f ‖−1
ρ , 3ε−1

0 },

sup
|Imz|<ρ

un(z) − sup
|Imz|<ρ/2

un(z) ≤ log
(
3λ‖f ‖ρ

) − log
(

1

2
λε0

)
= log

(
6‖f ‖ρ

ε0

)
.

Therefore, by (2.5),

C(λf , ρ) ≤ α(ρ) log
(

6‖f ‖ρ

ε0

)
=: C0(f , ρ) independent of λ,

as desired.

4.3 Proof of Lemma 2.4

We have that by (2.2),

‖un(· + ω) − un(·)‖L∞(T)

= 1

n

∥∥log ‖Mn(· + ω)‖ − log ‖Mn(·)‖∥∥L∞(T)

≤ 1

n

∥∥log ‖M1(· + nω)‖ + log ‖Mn−1(· + ω)‖ + log ‖M1(·)‖ − log ‖Mn−1(· + ω)‖∥∥L∞(T)

≤ 2�v

n
.

(4.9)
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This implies

∣∣∣ûn(k)e2π ikω − ûn(k)

∣∣∣ =
∣∣∣∣∫

T
un(x + ω)e−2π ikx dx −

∫
T

u(x)e−2π ix kx

∣∣∣∣
≤ ∥∥un(· + ω) − un(·)∥∥L∞(T)

≤ 2�v

n
;

(4.10)

(4.10) implies

2|ûn(k)| sin (π‖kω‖
T
) ≤ 2�v

n
;

hence, by sin (πx) ≥ 2x for 0 ≤ x ≤ 1
2 , we get that for k �= 0,

|ûn(k)| ≤ �v

2n‖kω‖
T

,

as stated.

Before we move on, let us mention a simple consequence of (4.9):

‖un(· + ω) − un(·)‖L∞(T) ≤ 2�v|j|
n

; (4.11)

this estimate will be used in several parts of the argument.

4.4 Proof of Lemma 2.5

Let R ≥ R0(L) and n ≥ N3(v, ω, L), where

R0 := 144L−5, (4.12)

and

N3 := 2�vL−2 sup
1≤|k|≤L−1

1

‖kω‖
T

. (4.13)

Lemma 4.1 implies that un has a Riesz representation with a positive measure

μ and a harmonic function h. Let us take

δ = (LR)−1, (4.14)

and

un,δ(x) =
∫

�1

log (|x − w| + δ) μ(dw) + h(x). (4.15)
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28 R. Han and S. Zhang

We then have, pointwisely,

un(x) ≤ un,δ(x). (4.16)

It is clear from our definitions of R0 and δ that,

δ ≤ L4

144
<

1

144
. (4.17)

4.4.1 Fourier coefficients decay for un,δ

The following two inequalities (4.18) and (4.19) are (2.4) and (2.3) of [7] (see also (8.12) of

[5]). We include their proofs in Appendix B.

Lemma 4.2. Let C(v, ρ) be defined as in (2.5). There exists an absolute constant C3

such that for any k ∈ Z, we have

|ûn,δ(k)| ≤ |ûn(k)| + 3δ log δ−1, (4.18)

and for any k �= 0,

|ûn,δ(k)| ≤ C3C(v, ρ) min
(

1

|k| ,
1

k2δ

)
(4.19)

holds for k �= 0.

Note that (4.18) together with Lemma 2.4 leads to the following corollary.

Corollary 4.3. For k �= 0, we have

|ûn,δ(k)| ≤ �v

2n‖kω‖
T

+ 3δ log δ−1. (4.20)

4.4.2 Proof of Lemma 2.5

Let s ∈ N be such that qs ≤ R < qs+1. Recall that our definition of u(R), see (2.8). (4.16)

clearly yields

0 ≤ u(R)
n (x) ≤ u(R)

n,δ (x).

Let FR(k) be as in (3.1), invoking (3.5); we have

0 ≤ u(R)
n (x) ≤ u(R)

n,δ (x) = ûn,δ(0) +
∑
k �=0

ûn,δ(k)FR(k). (4.21)
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We now split the Fourier series in (4.21) into low/high-frequency parts,

u(R)
n,δ (x) = ûn,δ(0) +

∑
1≤|k|≤qs+1/4

ûn,δ(k)FR(k) +
∑

|k|>qs+1/4

ûn,δ(k)FR(k)

=: ûn,δ(0) + S1 + S2.

(4.22)

Using the (k2δ)−1 bound of |ûn,δ(k)| in (4.19) and |FR(k)| ≤ 1 in (3.2), we have

|S2| ≤
∑

|k|>qs+1/4

|ûn,δ(k)| ≤
∑

|k|>qs+1/4

C(v, ρ)

k2δ
≤ 8C(v, ρ)

qs+1δ
≤ 8C(v, ρ)

δR
= 8C(v, ρ)L, (4.23)

in which we used R < qs+1 and our choice of δ, see (4.14).

We further decompose S1 into

|S1| ≤
⎛⎝ ∑

1≤|k|≤L−1

+
∑

L−1<|k|<qs/4

+
∑

qs/4≤|k|≤qs+1/4

⎞⎠ |ûn,δ(k)|FR(k)

=: S1,1 + S1,2 + S1,3.

(4.24)

By (4.20) and |FR(k)| ≤ 1, see (3.2), we have

S1,1 ≤
∑

1≤|k|≤L−1

(
�v

2n‖kω‖
T

+ 3δ log δ−1
)

≤ 2

L

(
�v

2n
sup

1≤|k|≤L−1

1

‖kω‖
T

+ 3

RL
log (RL)

)
.

Using a trivial estimate log x ≤ √
x that holds for any x > 0, we obtain

S1,1 ≤
(

�v

nL
sup

1≤|k|≤L−1

1

‖kω‖
T

+ 6√
RL3

)
≤ L; (4.25)

in the last step we used R ≥ R0 = 144L−5 and n ≥ N3, see (4.12) and (4.13).

Using the |k|−1 bound of |ûn,δ(k)| in (4.19), and non-trivial bound of |FR(k)| in

(3.2), we have

S1,2 ≤ 2C3C(v, ρ)L
∑

L−1<|k|<qs/4

1

1 + R2‖kω‖2
T

≤ 2C3C(v, ρ)L
∑

1≤|k|<qs/4

1

1 + R2‖kω‖2
T

.
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Applying (3.3), we obtain

S1,2 ≤ 4πC3C(v, ρ)L
qs

R
≤ 4πC3C(v, ρ)L, (4.26)

in which we used qs ≤ R.

The estimate of S1,3 is similar to that of S1,2, except that we use (3.4) instead of

(3.3). Indeed, by (4.19), (3.2), and (3.4), we have

S1,3 ≤
[qs+1/qs]+1∑

�=1

∑
|k|∈[�qs/4,(�+1)qs/4)

|ûn,δ(k)FR(k)|

≤
[qs+1/qs]+1∑

�=1

∑
|k|∈[�qs/4,(�+1)qs/4)

2|ûn,δ(k)|
1 + R2‖kω‖2

T

≤
[qs+1/qs]+1∑

�=1

8C(v, ρ)

�qs

(
2 + 4π

qs

R

)

≤ 120C(v, ρ)
log qs+1

qs
.

(4.27)

Note that by (4.18) with k = 0, we have

ûn,δ(0) ≤ Ln + 1

RL
log (RL).

Trivial estimate log x ≤ √
x for x > 0 implies

ûn,δ(0) ≤ Ln + 1√
RL

≤ Ln + L2

12
< Ln + L, (4.28)

in which we used R ≥ R0 ≥ 144L−5 and 0 < L < 1.

Combining (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), and (4.27) with (4.28), we

arrive at

0 ≤ u(R)
n (x) ≤ Ln + (2 + 8C(v, ρ) + 4πC3C(v, ρ))L + 120C(v, ρ)

log qs+1

qs

holds uniformly in x.
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4.5 Proof of Lemma 2.6

We apply Lemma 2.5 to R = �3Ln�. The conditions R ≥ R0 and n ≥ N3, see (4.12) and

(4.13), can be reduced to

n ≥ N0(ω, L, v, ρ) := L−2 max

(
2�v sup

1≤|k|≤L−1

1

‖kω‖
T

, 49L−4

)
. (4.29)

Indeed, due to 0 < L < 1, we have

R ≥ 3Ln − 1 ≥ 147L−5 − 1 > 144L−5.

Now for n ≥ N0, Lemma 2.5 implies

0 ≤ un(x) ≤ |un(x) − u(R)
n (x)| + u(R)

n (x) (4.30)

≤ |un(x) − u(R)
n (x)| + Ln + (2 + 8C(v, ρ) + 4πC3C(v, ρ))L + 120C(v, ρ)

log qs+1

qs
.

By (4.9), we have

∣∣un(x) − u(R)
n (x)

∣∣ ≤
∑
|j|<R

R − |j|
R2 · 2�v|j|

n
= (R2 − 1)�v

3Rn
< �vL. (4.31)

Hence, combining (4.30) with (4.31), we get

0 ≤ un(x) ≤ Ln + (2 + �v + 8C(v, ρ) + 4πC3C(v, ρ))L + 120C(v, ρ)
log qs+1

qs

holds uniformly in x.

4.6 Proof of Lemma 2.10

Let

N2 = max (150�vN1L−1, 400(C1 + 2)N1 + 1)

be as in (2.17). Let n ≥ N2 and R = �(400(C1 + 2))−1n� + 1.
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By (4.11), we have

∥∥∥un(·) − u(R)
n (·)

∥∥∥
L∞(T)

≤
∑
|j|<R

R − |j|
R2

∥∥un(·) − un(· + jω)
∥∥

L∞(T)

≤
∑
|j|<R

|j|(R − |j|)
nR2

∥∥∥uj(· + nω) + uj(·)
∥∥∥

L∞(T)

≤
∑
|j|<R

2|j|(R − |j|)
nR2

∥∥∥uj(·)
∥∥∥

L∞(T)
.

(4.32)

By our choice of R and n ≥ N2 ≥ 400(C1 + 2)N1 + 1, we have

R ≥ n

400(C1 + 2)
> N1. (4.33)

We could split the sum in (4.32) into

∥∥∥un(·) − u(R)
n (·)

∥∥∥
L∞(T)

≤
∑

|j|<N1

2|j|(R − |j|)
nR2

∥∥∥uj(·)
∥∥∥

L∞(T)
+

∑
N1≤|j|<R

2|j|(R − |j|)
nR2

∥∥∥uj(·)
∥∥∥

L∞(T)
.

(4.34)

We will use trivial upper bound ‖uj(·)‖L∞(T) ≤ �v, see (2.2), in the 1st summation of

(4.34). Note that j ≥ N1 ≥ N0; hence, we can apply Lemma 2.6 to uj in the 2nd sum. We

have

∥∥∥un(·) − u(R)
n (·)

∥∥∥
L∞(T)

≤
∑

|j|<N1

2�v|j|(R − |j|)
nR2 +

∑
N1≤|j|<R

2|j|(R − |j|)
nR2

(
Lj + C1L + 120C(v, ρ)

log qs+1

qs

)
.

(4.35)

For j ≥ N1 ≥ Ñ0 + 1, Lemma 2.9 implies Lj ≤ 21L/20 < 2L; hence,

∥∥∥un(·) − u(R)
n (·)

∥∥∥
L∞(T)

≤
∑

|j|<N1

2�v|j|(R − |j|)
nR2 +

∑
N1≤|j|<R

2|j|(R − |j|)
nR2

(
(C1 + 1)L + 120C(v, ρ)

log qs+1

qs

)
.

(4.36)

Use that ∑
|j|<N1

2|j|(R − |j|)
R2 = N1

2(N1 − 1)(3R − 2N1 + 1)

3R2 ≤ 3

4
N1,
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and

∑
N1≤|j|<R

2|j|(R − |j|)
R2 = (R + 1 − N1)

2
(
R(R − 1) + (R + 1)N1 − 2N2

1

)
3R2

≤ R
2(R2 − R)

3R2 = 2

3
(R − 1). (4.36)

We could control (4.36) by

∥∥∥un(·) − u(R)
n (·)

∥∥∥
L∞(T)

≤ 3�vN1

4n
+ 2(R − 1)

3n

(
(C1 + 2)L + 120C(v, ρ)

log qs+1

qs

)
. (4.37)

For the 1st term in (4.37), note that n ≥ N2 ≥ 150�vN1L−1 implies

3�vN1

4n
≤ 1

200
L. (4.38)

For the 2nd term, we plug in R = �400−1(C1 + 2)−1n� + 1, then we have

2
(
C1 + 2

)
(R − 1)

3n
L <

1

200
L, and

2(R − 1)

3n
· 120C(v, ρ)

log qs+1

qs
≤ 4C(v, ρ)

15(C1 + 2)

log qs+1

qs
≤ 1

5
C(v, ρ)

log qs+1

qs
.

(4.39)

Incorporating the estimates in (4.38) and (4.39) into (4.37), we have

∥∥∥un(·) − u(R)
n (·)

∥∥∥
L∞(T)

≤ 1

100
L + 1

5
C(v, ρ)

log qs+1

qs
,

as stated.

5 Refined Hölder Continuity

Hölder regularity of L(E) follows from combing LDT with AP. This scheme was developed

by Goldstein and Schlag in [19], and has shown to be not restricted to quasi-periodic

cocycles, see for example, [8] for skew-shift. This scheme was extended to general

cocycles in any dimension, in a recent monograph [15]. Recently, it was also used to

study the one-dimensional Anderson model in [10]. We sketch the proof below in our

setting, making the indenpendence of the Hölder exponent explicit.
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5.1 Proof of Theorem 1.5

Fix (ω0, E0) ∈ (R \Q)×Nv with L(ω0, E0) = γ > 0. As we explained in Remark 1.6 that the

neighborhood U × I as in Theorem 1.5 always exists. For any (ω, E) ∈ U × I:

18

19
γ ≤ L(ω, E) ≤ 20

19
γ . (5.1)

Let c(v, ρ) and c̃ = c̃(v, ρ) be the constants in Theorem 1.1. Define a subset Ũ of

U as follows:

Ũ := {ω ∈ R \ Q : 0 ≤ β(ω) < c(v, ρ)γ /2} ∩ U. (5.2)

In particular, Ũ contains all the Diophantine numbers in U; thus, mes(U \ Ũ) = 0.

We are going to apply Theorem 1.1 on interval [a, b] = I. Note that for any ω ∈ Ũ,

by (5.1), we have

0 ≤ β(ω) <
1

2
c(v, ρ)γ < c(v, ρ) inf

E∈I
L(ω, E). (5.3)

Hence, the condition of Theorem 1.1 is verified. Let N = N(ω, infE∈I L(ω, E), v, ρ) be as

in (3.19), which is the constant in Theorem 1.1. Let Ñ = N(ω, 18
19γ , v, ρ) be the constant

defined in (3.19) with L = 18
19γ . Then by (5.1) and Remark 3.3, we have Ñ ≥ N. Let

�n(ω, E) :=
{

x ∈ T :| un(ω, E; x) − Ln(ω, E) |> 1

20
L(ω, E)

}
.

Theorem 1.1 implies that for n ≥ Ñ ≥ N and any (ω, E) ∈ Ũ × I, we have

mes
(
�n(ω, E)

) ≤ e−c̃nL(ω,E) ≤ e−c̃nγ /2, (5.4)

in which we used L(ω, E) ≥ 18
19γ > 1

2γ , see (5.1).

In the rest of the section, we will fix ω ∈ Ũ and denote L(E) = L(ω, E),

Ln(E) = Ln(ω, E) for simplicity whenever it is clear. Apply Lemma 2.9 to the interval

I. Let Ñ0(ω, I, v) be given as in Lemma 2.9. Then for any n > Ñ0 and E ∈ I, we have

L(E) ≤ Ln(E) <

(
1 + 1

20

)
L(E). (5.5)

Combining (5.5) with the fact that L2n(E) ≤ Ln(E), we have for all n > Ñ0 and E ∈ I,

0 ≤ Ln(E) − L2n(E) <
1

20
L(E). (5.6)
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Deviation Estimates and Hölder Regularity 35

After combining the large deviation estimate (5.4), the initial scale estimate (5.6), and

the AP (Theorem C.1), we obtain the following convergence rate of Ln(E) to L(E).

Proposition 5.1. There exists N4 ∈ N explicitly depends on Ñ, Ñ0, �v, c̃(v, ρ), and γ . For

any n > N4 and (ω, E) ∈ Ũ × I,

| L(E) + Ln(E) − 2L2n(E) |< e−c̃(v,ρ)nγ /5. (5.7)

Proposition 5.1 can be derived from an induction method developed by Goldstein

and Schlag in [19] (see also in [5, 33]). For sake of completeness, we include the proof in

Appendix C.

Another key ingredient for the proof of Theorem 1.5 is the following control on

∂ELn(ω, E) with respect to γ .

Proposition 5.2. There exists N5 ∈ N explicitly depends on Ñ0, �v, c̃(v, ρ) and γ . For

any n > N5 and (ω, E) ∈ Ũ × I,

|∂ELn(E)| ≤ 2e2nγ . (5.8)

Proposition 5.2 is essentially contained in [5]; we include the proof in

Appendix D with these specific parameters.

Now we are in the place to complete the proof of Theorem 1.5 by using (5.7) and

(5.8). For short hand we will write c̃(c, ρ) as c̃, and denote

c̃0 := c̃ + 20. (5.9)

Let N6 = max{N4, N5} and

η := min
(
e−2γ N6c̃0/5, 8−4c̃0/c̃

)
< 1. (5.10)

Now for any E, E′ ∈ I such that |E − E′| < η, let

n =
⌊
−5 log |E − E′|

γ c̃0

⌋
. (5.11)

Using the 1st term in (5.10), it is easy to check that

−5 log |E − E′|
γ c̃0

≥ n ≥ −5 log |E − E′|
2γ c̃0

≥ N6 = max (N4, N5). (5.12)
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36 R. Han and S. Zhang

Now we can apply Propositions 5.1 and 5.2 to the above n, E, E′ to obtain

|L(E) − L(E′)| ≤ |L(E) + Ln(E) − 2L2n(E)| + |L(E′) + Ln(E′) − 2L2n(E′)|
+ |Ln(E) − Ln(E′)| + 2|L2n(E) − L2n(E′)|

≤ 2e−c̃nγ /5 + 4e2nγ |E − E′| + 2e4nγ |E − E′|
≤ 2e−c̃nγ /5 + 6e4nγ |E − E′|. (5.13)

In view of the upper and lower bound of n in (5.12), we have

enγ < |E − E′|−5/c̃0 , (5.14)

and

e−nγ < |E − E′|5/(2c̃0). (5.15)

By (5.13), (5.14), and (5.15), we have that for all ω ∈ Ũ, E, E′ ∈ I and |E − E′| < η < 1,

|L(E) − L(E′)| ≤ 2|E − E′|c̃/(2c̃0) + 6|E − E′|1−20/c̃0

= 2|E − E′|c̃/(2c̃0) + 6|E − E′|c̃/c̃0

≤ 8|E − E′|c̃/(2c̃0).

(5.16)

Using the 2nd term in (5.10), we have

8 ≤ η−c̃/(4c̃0) < |E − E′|−c̃/(4c̃0).

Plugging it into (5.16), we obtain

|L(E) − L(E′)| ≤ |E − E′|c̃/(4c̃0) =: |E − E′|τ . (5.17)

This proves Theorem 1.5.

5.2 Proof of Theorem 1.10

Let λ̃, b, B and N = N(ω, λ, f , ρ) be given as in Corollary 1.3. Assume that λ >

max{λ̃, eBβ(ω)}; Corollary 1.3 implies that for any n ≥ N, we have

mes
{

x ∈ T :| un(ω, E; x) − Ln(ω, E) | >
1

19
log λ

}
≤ e−n b log λ. (5.18)
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In view of (3.43) and (3.44), we have that for n ≥ N,

18

19
log λ ≤ Ln(E) ≤ 20

19
log λ, 0 ≤ Ln(E) − L2n(E) ≤ 2

19
log λ. (5.19)

By (5.18), (5.19), and the same reasoning for Proposition 5.1, we have the

following:

Proposition 5.3. Assume that β(ω) < ∞ and λ > max{λ̃, eBβ(ω)}. There exists N7 ∈ N

depending explicitly on λ and b such that for any n > N7 and E ∈ Nλf ,

| L(E) + Ln(E) − 2L2n(E) |< e− 1
3 n b log λ. (5.20)

By the trivial bound sup
n∈N

sup
x∈T

sup
E∈Nλf

un(x) ≤ �v ≤ 2 log λ, we have for any n, x and

E ∈ Nλf ,

∣∣∣∂E log ‖Mn(ω, E; x)‖
∣∣∣ ≤ ‖∂EMn(ω, E; x)‖ ≤

n∑
j=1

‖Mn−j(x + jω; E)‖ ·‖Mj−1(ω, E; x)‖ ≤ ne2n log λ,

which implies

|∂ELn(ω, E)| ≤ e2n log λ. (5.21)

Clearly, by (5.20) and (5.21) and the same argument from (5.10) to (5.17), we can

prove (1.22). More precisely, for all E, E′ ∈ Nλf satisfying

|E − E′| < η̃ := min{e−2(12+b)N7(log λ)/3, 5−4(12+b)/b}, (5.22)

set n = �3 log |E−E′|−1

log λ(12+b)
�. Then we have

|L(E) − L(E′)| < 2e− 1
3 n b log λ + 3e4n log λ|E − E′|

≤ 5|E − E′| b
2(12+b)

≤ |E − E′| b
4(12+b) =: |E − E′|τ̃ . (5.23)

This completes the proof of Theorem 1.10.
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38 R. Han and S. Zhang

A Proof of (4.6)

The proof is essentially contained in [7, Section II]; we include a proof here for

completeness.

Proof of (4.6). Let us pick a bump function η(x) defined as follows:

η(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
(
x + 3

4

)3, −3
4 ≤ x < −1

2 ,

1 − 32
(
x + 1

4

)3, −1
2 ≤ x < −1

4 ,

1, −1
4 ≤ x < 1

4 ,

1 − 32
(
x − 1

4

)3, 1
4 ≤ x < 1

2 ,

32
(
x − 3

4

)3, 1
2 ≤ x < 3

4 .

(A.1)

Then it is easy to see that

suppη ⊂
[
−3

4
,

3

4

]
,

∑
s∈Z

η(x + s) = 1, and

0 ≤ η(x) ≤ 1, |η′(x)| ≤ 6, |η′′(x)| ≤ 48 for all x ∈ R.

(A.2)

Let w(x) := ∫
�1

log |x − ζ | dμ(ζ ) and t := sup�1
un(z). Since un(x) is 1-periodic on

R, we have

ûn(k) = ̂(un − t)(k)

=
∫ 1

2

− 1
2

(un(x) − t)e−2π ikx dx

=
∫
R

(un(x) − t)η(x)e−2π ikx dx

= i

2πk

∫
R

∂x

(
(w(x) + h(x) − t)η(x)

)
e−2π ikx dx

= i

2πk

∫
R

∂x(wη)e−2π ikx dx + i

2πk

∫
R

∂x

(
(h − t)η

)
e−2π ikx dx

= i

2πk

∫
R

η(x)∂xw(x)e−2π ikx dx (A.3)

+ i

2πk

∫
R

w(x)∂xη(x)e−2π ikx dx (A.4)

+ i

2πk

∫
R

η(x)∂xh(x)e−2π ikx dx (A.5)

+ i

2πk

∫
R

(h(x) − t)∂xη(x)e−2π ikx dx. (A.6)
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Deviation Estimates and Hölder Regularity 39

Clearly, (A.5) and (A.6) can be bounded by

|(A.5)| + |(A.6)| ≤ 1

2π |k|
(
‖∂xh‖L∞(�0) + 6‖h − sup

�1

un‖L∞(�0)

)
. (A.7)

It is enough to estimate (A.3) and (A.4) by (4.1). The bound for (A.4) is trivial since

∣∣ ∫
R

w(x)∂xη(x)e−2π ikx dx
∣∣ ≤ 6

∫
�1

∫ 1

−1

∣∣∣ log |x − ζ |
∣∣∣dx dμ(ζ )

≤ 6
∫

�1

dμ(ζ ) sup
ζ∈�1

∫ 1

−1

∣∣∣ log |x − ζ |
∣∣∣dx

≤ 6μ(�1)

∫ 2

−2

∣∣∣ log |x|
∣∣∣dx

= (24 log 2)μ(�1).

The bound for (A.4) follows from the direct computation in [10]:∣∣∣∣∫
R

η(x)∂xw(x)e−2π ikx dx

∣∣∣∣ =
∣∣∣∣∫

�1

∫
R

x − Reζ

|x − ζ |2 e−2π ikxη(x)dx dμ(ζ )

∣∣∣∣
≤

∫
�1

∣∣∣∣∫
R

x − Reζ

|x − ζ |2 e−2π ikxη(x)dx

∣∣∣∣ dμ(ζ )

≤ μ(�1) sup
ζ∈�1

∣∣∣∣∫
R

x − Reζ

|x − ζ |2 e−2π ikxη(x)dx

∣∣∣∣ ≤ C4μ(�1),

where C4 > 0 is some absolute constant given as in [10] such that

sup
ζ∈�1

∣∣∣∣∫
R

x − Reζ

|x − ζ |2 e−2π ikxη(x)dx

∣∣∣∣ ≤ C4.

This finishes the proof. �

B Proof of Lemma 4.2

Let η(x) be the bump function defined as in (A.1). Then

∣∣ûn,δ(k) − ûn(k)
∣∣ =

∣∣∣∣∫
R

∫
�1

log
( |x − w| + δ

|x − w|
)

e−2π ikxη(x) μ(dw) dx

∣∣∣∣
≤

∫
�1

∣∣∣∣∫
R

log
( |x − w| + δ

|x − w|
)

e−2π ikxη(x) dx

∣∣∣∣ μ(dw)

≤ μ(�1) sup
w∈�1

∣∣∣∣∫
R

log
( |x − w| + δ

|x − w|
)

e−2π ikxη(x) dx

∣∣∣∣ .

(B.1)
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By Lemma 4.1, we already have control of μ(�1); thus, it suffices to estimate the

following term for w = w1 + iw2 ∈ �1:

∣∣∣∣∫
R

log
( |x − w| + δ

|x − w|
)

e−2π ikxη(x) dx

∣∣∣∣
=

∣∣∣∣∣∣
∫ 3/4+w1

−3/4+w1

log

⎛⎝1 + δ√
x2 + w2

2

⎞⎠e−2π ikxη(x + w1) dx

∣∣∣∣∣∣ ,

(B.2)

in which we used supp(η) ⊂ [−3/4, 3/4]. Next use the fact that |η(x)| ≤ 1 for any x ∈ R

and the integrand is monotone decreasing in x; we have

∣∣∣∣∣∣
∫ 3/4+w1

−3/4+w1

log

⎛⎝1 + δ√
x2 + w2

2

⎞⎠e−2π ikxη(x + w1) dx

∣∣∣∣∣∣
≤

∫ 3/4

−3/4
log

⎛⎝1 + δ√
x2 + w2

2

⎞⎠ dx

≤ 2
∫ 3/4

0
log

(
1 + δ

x

)
dx

= 2δ log δ−1 + 3

2
log

(
1 + 4δ

3

)
+ 2δ log

(
3

4
+ δ

)
.

Use that δ < 1
144 , see (4.17), and that the following holds:

3

2
log

(
1 + 4δ

3

)
+ 2δ log

(
3

4
+ δ

)
< δ log δ−1, for 0 < δ < 0.15;

we obtain that

∣∣∣∣∣∣
∫ 3/4+w1

−3/4+w1

log

⎛⎝1 + δ√
x2 + w2

2

⎞⎠e−2π ikxη(x + w1) dx

∣∣∣∣∣∣ ≤ 3δ log δ−1; (B.3)

(4.18) follows from combining (B.1) and (B.2) with (B.3).

The proof of (4.19) follows from a similar idea to that of (2.1); the difference is

that we need to do integration by parts twice in order to get (k2δ)−1 Fourier decay. Let

us mention that one needs the control of ‖∂2
x h‖L∞(�0), which is provided in (4.5), as well

as |η′′(x)| ≤ 48 as in (A.2).
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C Proof of Proposition 5.1

Theorem C1 (AP, [23]). Let B1, · · · , Bm be a sequence of unimodular 2 × 2-matrices.

Suppose that

min
1≤j≤m

‖Bj‖ ≥ μ > m and (C.1)

max
1≤j<m

[log ‖Bj+1‖ + log ‖Bj‖ − log ‖Bj+1Bj‖] <
1

2
log μ. (C.2)

Then

| log ‖Bm · · · B1‖ +
m−1∑
j=2

log ‖Bj‖ −
m−1∑
j=1

log ‖Bj+1Bj‖ |< CA
m

μ
, (C.3)

where CA is an absolute constant.

For any n ≥ N(ω, 18
19γ , v, ρ) and E ∈ I, set

�n(j) =
{

x ∈ T :| un

(
x + (j − 1)nω

)
− Ln(E) |> 1

20
L(E)

}
�2n(j) =

{
x ∈ T :| u2n

(
x + (j − 1)nω

)
− L2n(E) |> 1

20
L(E)

}
� = ∪m

j=1 �n(j)
⋃

∪m−1
j=1 �2n(j);

(5.4) implies that mes�n(j) ≤ e− 1
2 c̃(v,ρ)nγ , mes�2n(j) ≤ e−c̃(v,ρ)nγ . Take m =

[n−1 exp(1
4 c̃(v, ρ)nγ )] and n1 = mn, then (2n)−1 exp(1

4 c̃(v, ρ)nγ ) < m < n1 < e
1
4 c̃(v,ρ)nγ .

Therefore,

mes� < 2me− 1
2 c̃(v,ρ)nγ < 2e− 1

4 c̃(v,ρ)nγ (C.4)

provided exp(1
4 c̃(v, ρ)nγ ) > 2n.

For any x �∈ �,∣∣∣un

(
x + (j − 1)nω

)
− Ln(E)

∣∣∣ <
1

20
L(E) <

1

20
Ln(E), j = 1, · · · , m, (C.5)

|u2n

(
x + (j − 1)nω

)
− L2n(E)| <

1

20
L(E) <

1

20
L2n(E), j = 1, · · · , m − 1. (C.6)

Thus,

19

20
Ln(E) < un(x + (j − 1)nω) <

21

20
Ln(E), (C.7)

19

20
L2n(E) < u2n(x + (j − 1)nω) <

21

20
L2n(E). (C.8)
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Denote Bj = Mn(x + (j − 1)nω), then

un(x + (j − 1)nω) = 1

n
log ‖Mn(x + (j − 1)nω)‖ = 1

n
log ‖Bj‖,

u2n(x + (j − 1)nω) = 1

2n
log ‖M2n(x + (j − 1)nω)‖ = 1

2n
log ‖Bj+1Bj‖.

Notice that c̃(v, ρ) < 1; by (C.7) and the choice of m,

‖Bj‖ > e
19
20 nLn(E) > e

19
20 nL(E) := μ > e

18
20 nγ > e

1
4 c̃(v,ρ)nγ > m, j = 1, · · · , m. (C.9)

By (5.6), (C.5), and (C.6),

∣∣∣log ‖Bj+1‖ + log ‖Bj‖ − log ‖Bj+1Bj‖
∣∣∣ (C.10)

< | log ‖Bj+1‖ − nLn(E) | + | log ‖Bj‖ − nLn(E) |
+ | 2nLn(E) − 2nL2n(E) | + | 2nL2n(E) − log ‖Bj+1Bj‖ |

<
n

20
L(E) + n

20
L(E) + 2n

20
L(E) + 2n

20
L(E)

= 6

20
nL(E) = 6

20
· 20

19
log μ <

1

2
log μ. (C.10)

Now (C.1) and (C.2) required by AP are fulfilled. Apply Theorem C1 to Bj, j = 1, · · · , m;

we have

| log ‖Bm · · · B1‖ +
m−1∑
j=2

log ‖Bj‖ −
m−1∑
j=1

log ‖Bj+1Bj‖ |< CA
m

μ
.

Recall n1 = mn; clearly

∣∣∣ 1

n1
log ‖Mn1

(x + (j − 1)nω)‖ + 1

m

m−1∑
j=2

1

n
log ‖Mn(x + (j − 1)nω)‖

− 2

m

m−1∑
j=1

1

2n
log ‖M2n(x + (j − 1)nω)‖

∣∣∣ < CA
m

n1μ
<

CA

μ
. (C.11)

Denote the sum of the left side of (C.11) by F(x); we have got the above bound of |F(x)|
outside the set �. For those x ∈ �, we use the upper bound (2.2) such that

sup
�

|F(x)| < 4�v. (C.12)
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Integrate F(x) over T, by (C.4) and (C.9); for n > max{Ñ0(ω, I, v), N(ω, γ /2, v, ρ)},
and E ∈ I, we have∣∣∣∣Ln1

(E) + m − 2

m
Ln(E) − 2(m − 1)

m
L2n(E)

∣∣∣∣ =
∣∣∣∣∫

T

F(x)dx

∣∣∣∣
<

CA

μ
+ 4�v · mes�

<
1

20
e− 1

5 c̃(v,ρ)nγ ,

(C.13)

provided

n >
10

7c̃(v, ρ)γ
log(40CA) + 20

c̃(v, ρ)γ
log(320�v).

By (C.13), (5.5), and (5.6) and the choice of m,

| Ln1
(E) + Ln(E) − 2L2n(E) | <

2

m
| Ln(E) − L2n(E) | + 1

20
e− 1

5 c̃(v,ρ)nγ

<
1

10
e− 1

5 c̃(v,ρ)nγ (C.14)

provided

c̃(v, ρ)nγ > 20 log(80nγ ).

Take ñ = 2n1 = 2mn; the above argument also shows that

| L2n1
(E) + Ln(E) − 2L2n(E) |< 1

10
e− 1

5 c̃(v,ρ)nγ . (C.15)

Therefore,

| L2n1
(E) − Ln1

(E) |< 2

10
e− 1

5 c̃(v,ρ)nγ <
1

40
γ <

1

20
L(E), (C.16)

provided n > 5(c̃(v, ρ)γ )−1 log(8γ −1).

Let n0 = n and for s = 0, 1, · · · , let

ns+1 = ns[n
−1
s e

1
4 c̃(v,ρ)nsγ ]. (C.17)

Inductively, we can prove that:

Proposition C.2 (Iteration of Ln(E)).

1s

| Lns+1
(E) + Lns

(E) − 2L2ns
(E) |< 1

10
e− 1

5 c̃(v,ρ)nsγ ,

| L2ns+1
(E) + Lns

(E) − 2L2ns
(E) |< 1

10
e− 1

5 c̃(v,ρ)nsγ . (C.18)

2s

| L2ns+1
(E) − Lns+1

(E) |< 2

10
e− 1

5 c̃(v,ρ)nsγ <
1

40
γ <

1

20
L(E) (C.19)
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3s

| Lns+1
(E) − Lns

(E) |< 1

2
e− 1

5 c̃(v,ρ)ns−1γ , n0 = n. (C.20)

Once we have 1s−1, 2s−1, we prove 1s first as (C.14) and (C.15). Then 2s directly

follows from 1s as (C.16). By 1s and 2s−1, we get 3s as follows:

| Lns+1
(E) − Lns

(E) < | Lns+1
(E) + Lns

(E) − 2L2ns
(E) | +2 | Lns

(E) − L2ns
(E) |

<
1

10
e− 1

5 c̃(v,ρ)nsγ + 4

10
e− 1

5 c̃(v,ρ)ns−1γ

<
1

2
e− 1

5 c̃(v,ρ)ns−1γ . �
When the iteration is established for all s ≥ 1, it is easy to check ns−1 > sn by

(C.17); we have then

| L(E) − Ln1
(E) | ≤

∞∑
s=1

| Lns+1
(E) − Lns

(E) |

≤ 1

2

∞∑
s=1

e− 1
5 c̃(v,ρ)ns−1γ

≤ 1

2

e− 1
5 c̃(v,ρ)nγ

1 − e− 1
5 c̃(v,ρ)nγ

≤ 9

10
e− 1

5 c̃(v,ρ)nγ , (C.21)

provided e− 1
5 c̃(v,ρ)nγ < 4

9 .

By (C.14), we have

| L(E) + Ln(E) − 2L2n(E) |< e− 1
5 c̃(v,ρ)nγ (C.22)

D Proof Proposition 5.2

It is enough to show that for n large

sup
x∈T

∣∣∣∂E log ‖Mn(ω, E; x)‖
∣∣∣ ≤ 2ne2nγ . (D.1)

Lemma 2.9 and (5.1) imply that for n > Ñ0, for any x ∈ T and E ∈ I,

un(ω, E; x) ≤ 2γ , (D.2)

that is, ‖Mj(ω, E; x)‖ ≤ e2nγ for j > Ñ0. For j ≤ Ñ0, we use the trivial bound

‖Mj(ω, E; x)‖ ≤ ej�v ≤ eÑ0�v := C5. (D3)
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Direct computation shows that for any x ∈ T, and n > 2C5Ñ0 > 2Ñ0,∣∣∣∂E log ‖Mn(ω, E; x)‖
∣∣∣ ≤ ‖∂EMn(ω, E; x)‖

≤
n∑

j=1

‖Mn−j(x + jω; E)‖ · ‖Mj−1(ω, E; x)‖

=
Ñ0∑
j=1

+
n−Ñ0∑

j=Ñ0+1

+
n∑

j=n−Ñ0+1

≤
Ñ0∑
j=1

C5e2(n−j)γ +
n−Ñ0∑

j=Ñ0+1

e2(n−j)γ · e2(j−1)γ +
n∑

j=n−Ñ0+1

C5e2(j−1)γ

≤ 2ne2nγ .

E Proofs of (3.2),(3.3), and (3.4)

Proof of (3.2). First, trivially we have FR(k) ≤ 1. Direct computation shows

0 ≤ FR(k) = sin2 (πRkω)

R2 sin2 (πkω)
= sin2 (πR‖kω‖

T
)

R2 sin2 (π‖kω‖
T
)

≤ sin2 (πR‖kω‖
T
)

4R2‖kω‖2 ,

in which we used sin (πx) ≥ 2x for 0 ≤ x ≤ 1/2.

Distinguishing the cases R‖kω‖
T

≥ 1 and R‖kω‖
T

< 1, one can easily prove the

stated bound. �

Proofs of (3.3) and (3.4):

Since p
q is a continued fraction approximant of ω, we have |ω − p

q | < 1
q2 . This

implies that for any 0 �= |k| <
q
2 ,

∣∣∣kω − kp
q

∣∣∣ < k
q2 < 1

2q , and hence

‖kω‖
T

≥ ‖kp/q‖
T

−
∣∣∣∣kω − kp

q

∣∣∣∣ ≥ 1

2q
. (E.1)

If we take j1 �= j2 ∈ (0, q
4 ] ∈ Z, then clearly |j1 ± j2| < 1

2q . Thus, by (E.1),∣∣∣‖j1ω‖
T

− ‖j2ω‖
T

∣∣∣ ≥ min (‖(j1 + j2)ω‖
T

, ‖(j1 + j2)ω‖
T
) ≥ 1

2q . This implies that {‖kω‖
T
}[ q

4 ]
k=1

are 1
2q departed, and by (E.1) the smallest one is ≥ 1

2q . If we rearrange them in the

increasing order and label them as ‖k1ω‖
T

< ‖k2ω‖
T

< · · · < ‖k[q/4]ω‖
T

, then ‖ksω‖
T

≥ s
2q .

Hence,∑
1≤|k|< q

4

1

1 + R2‖kω‖2
T

= 2
∑

1≤k<
q
4

1

1 + R2‖kω‖2
T

≤ 2
[q/4]∑
s=1

1

1 + R2( s
2q )

2 ≤ 4q

R

∫ ∞

0

dx

1 + x2 = 2π
q

R
;

this proved (3.3).
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For � ≥ 1, let I� := [q
4�, q

4 (� + 1)) ∩ Z, � ≥ 1. We divide I� into two disjoint sets,

S1 = {k ∈ I�, |kω − [kω]| < 0.5}, S2 = {k ∈ I�, |kω − [kω]| > 0.5}. Then for j1 �= j2 ∈ I�
belonging to the same subset (either S1 or S2), we have

∣∣∣‖j1ω‖
T

− ‖j2ω‖
T

∣∣∣ = ‖(j1 − j2)ω‖
T

.

Since clearly |j1−j2| <
q
4 , by (E.1), we have ‖(j1−j2)ω‖

T
≥ 1

2q . This implies that {‖kω‖
T
}k∈S1

are 1
2q apart from each other, and the same holds for S2. Thus, we could arrange the

terms {‖kω‖
T
}k∈S1 (orS2) in the increasing order and label them as ‖k1ω‖

T
< ‖k2ω‖

T
<

· · · ‖k[q/4]ω‖
T

, and we have ‖ksω‖
T

≥ s−1
2q . Hence,

∑
|k|∈[ q

4 l, q
4 (l+1))

1

1 + R2‖kω‖2
T

= 2
∑
k∈I�

1

1 + R2‖kω‖2
T

= 2

⎛⎝∑
k∈S1

+
∑
k∈S2

⎞⎠ 1

1 + R2‖kω‖2
T

≤ 2
[q/4]∑
s=1

1

1 + R2( s−1
2q )

2 ≤ 2 + 2
4q

R

∫ ∞

0

dx

1 + x2 = 2 + 4π
q

R
;

this proves (3.4).
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