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Abstract

We obtain partial improvement toward the pointwise convergence problem of Schrédinger solutions,
in the general setting of fractal measure. In particular, we show that, for n > 3, lim,_, e"? f(x)
= f(x) almost everywhere with respect to Lebesgue measure for all f € H*(R") provided that
s > (n+1)/2(n+2). The proof uses linear refined Strichartz estimates. We also prove a multilinear
refined Strichartz using decoupling and multilinear Kakeya.

2010 Mathematics Subject Classification: 42B37 (primary); 42B15 (secondary)

1. Introduction

The solution to the free Schrédinger equation

iu, — Au =20, (x,t) e R" x R

(1.1)
ulx,0) = f(x), xeR"
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is given by
¢4 f(x) = @) / ol ) fig) de.

In [6], Carleson proposed the problem of identifying the optimal s for which
lim,_,oe"® f(x) = f(x) almost everywhere whenever f € H*(R"), and proved
convergence for s > 1/4 when n = 1. Dahlberg and Kenig [7] then showed
that this result is sharp. The higher dimensional case has since been studied
by several authors. In particular, almost everywhere convergence holds if s >
1/2—1/(4n) whenn > 2 (n = 2 due to Lee [13] and n > 2 due to Bourgain [3]).
Recently Bourgain [4] gave counterexamples showing that convergence can fail
if s < n/2(n + 1). Since then, the first three authors [8] improved the sufficient
condition when n = 2 to the almost sharp s > 1/3.

In this article, we obtain the following partial improvement in higher
dimensions:

THEOREM 1.1. Let n > 3. For every f € H*(R") with s > (n+ 1)/2(n + 2),
lim,_ €2 f(x) = f(x) almost everywhere.

A natural refinement of Carleson’s problem was initiated by Sjogren and Sjolin
[17]: determine the size of divergence set, in particular, consider

o,(s) ;== sup dim {x e R : lime'® f(x) # f(x)},
feHs (R") t—0

where dim stands for the Hausdorff dimension. Note that when s > n/2
the solution is continuous and so «,(s) = 0. Various counterexamples were
constructed and in summary the previous results yield

n, s < ﬁ (Bourgain [4])
2 1 1
ot n_ (n+ )s’ n <s<n-|—
n—1 n—1 2(n+1) 8
a,(s) 2 (Luca—Rogers [16])
2 2 1
n+1-— M, " —3’3_ <s < n (Luca—Rogers [15])
n nooo.o
n—2s, 1 <s < 5 (Zubrini¢ [18]).
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Pointwise convergence and multilinear refined Strichartz 3

And the previous best known upper bounds are
n+1—<2+ 2 )s, l—i<s<1—;
2n — 1 ) 2(n+1)
(Luca—Rogers [14])

3 n
1— — 25, ]—-— < -
oo <"t Ty T 2+ 1) S T3
(Luca—Rogers [14])
n—12s, ’lgsgﬁ
4 2

(Barcel6—Bennett—Carbery—Rogers [1]).

The case n = 1 has been solved completely. In higher dimensions, we improve
Luca-Rogers’ result:

THEOREM 1.2. Letn > 3. Then

n X 9 < < 4 2
o, (S n + 2 + 1 S ( ) S n

REMARK 1.3. Theorem 1.2 also holds when n = 2 and that recovers the previous
results of Lee [13], Bourgain [3] and Lucéd—Rogers [14], by a different method. In
[8], the almost sharp result s > 1/3 is obtained in the setting of Lebesgue measure,
and the sharp Schrodinger maximal estimate in [8] implies directly the following
generalized improvement:

or(s) <3—-3s, 1/3<s<1/2. (1.3)

Note that Theorem 1.1 is a special case of Theorem 1.2. By standard arguments,
an upper bound for «,(s) can be obtained from appropriate maximal estimates
with respect to fractal measure (see for example [14]). More precisely,

DEFINITION 1.4. Let « € (0,n]. We say that u is «a-dimensional if it is a
probability measure supported in the unit ball B”(0, 1) and satisfies that

w(B(x,r)) <C,r®, Vr>0, Vx e R". (1.4)
LEMMA 1.5 (Luca—Rogers, [14, Lemma 7.1]). Let o > oy > n — 2s and suppose
that
sup |4 f| < Cull f s @y
O<t<l1 L'(dp)

whenever f € H*(R") and  is a-dimensional. Then a,(s) < oo.

Downloaded from https://www.cambridge.org/core. IP address: 24.15.66.188, on 14 Jul 2020 at 23:18:18, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.11


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.11
https://www.cambridge.org/core

X. Du, L. Guth, X. Li and R. Zhang 4

In view of Lemma 1.5, it suffices to prove the following Schrodinger maximal
estimate with respect to fractal measure:

THEOREM 1.6. Letn >3 ands > (v + 1)/2(n +2) + (n — o) /2. Then

sup |e" f]

O<t<1

< Cull fll s wnys
L2(dp)

whenever f € H*(R") and  is a-dimensional.

Denote dug(x) := R*du(x/R). We write A £ B if A < C.R°B for any
¢ > 0. By a localization argument (see [13, Lemma 2.3]), Littlewood—Paley
decomposition and parabolic rescaling, Theorem 1.6 can be reduced to the
following:

THEOREM 1.7. Letn > 3, € (0, n] and ju be a-dimensional. Then

S ROV £, (1.5)
L2dpr)

sup e f]

0<r<R

whenever R > 1 and f has Fourier supportin A(1) := {£ e R" : |&| ~ 1}.

The key ingredient in our proof is linear refined Strichartz estimate. Linear and
bilinear refined Strichartz were derived in [8] to solve the pointwise convergence
problem in two dimensions. In [9], via polynomial partitioning developed in
[11, 12] and linear and bilinear refined Strichartz, some new weighted restriction
estimates were established, and as applications improved results were obtained
for the Falconer distance set problem and the spherical average decay rates of
the Fourier transform of fractal measures. In this article, we prove a multilinear
refined Strichartz (see Theorem 4.2) using decoupling and multilinear Kakeya.
The multilinear refined Strichartz may have its own interest. It is also interesting to
think about how to exploit this estimate to further improve the weighted restriction
and the Schrodinger maximal estimates in higher dimensions.

In Section 2, we recall wave packet decomposition briefly. We prove
Theorem 1.7 in Section 3 using linear refined Strichartz estimate. In Section 4 we
prove a multilinear refined Strichartz.

2. Wave packet decomposition

We use the same setup as in [8, 12], which we briefly recall. Let f be a
function with Fourier support in the unit ball B”(0, 1). We break up f into pieces
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Pointwise convergence and multilinear refined Strichartz 5

fo.» that are localized in both position and frequency. Cover B"(0, 1) by finitely
overlapping balls 6 of radius R~/ and cover R”" by finitely overlapping balls
of radius R"'/2, centered at v € R*9/27" Here § = &2 is a small parameter.
Using partition of unity, we have a decomposition

f=Y_ fou+RapDec(R)| f ]2,
O,v)eT

where fy , is Fourier supported in 6 and has physical support essentially in a ball
of radius R'/?*% around v. The functions f; , are approximately orthogonal. For
any set T’ of pairs (6, v), we have

Z f(i.v

@,v)eT”

2

~ 3 a3

2 (G.veT

For each pair (6, v), the restriction of e/'4 f, , to Bi™ is essentially supported on
a tube T, with radius R'/*™® and length R, with direction G(0) € S" determined
by 6 and location determined by v, more precisely,

Ty, :={(x,1) € BA" 1 |x + 2twy — v| < R},

Here wy € B"(0, 1) is the center of 6, and

(—2wy, 1)

Gl)= ——.
@ [(=2ws, 1

In our discussion of refined Strichartz estimates, we will use the concept of a
wave packet being tangent to an algebraic variety. Let m be a dimension in the
range | <m < n+ 1. We write Z(Py, ..., P,.1_n) for the set of common zeros
of the polynomials P, ..., P, _, on R"*!, The variety Z(Py, ..., P,yi_,) is a
transverse complete intersection if

VP](X) VANRREIVAN VP,H_]_m(X) 7& 0 forallx € Z(Py, ..., Pn+1—m)-

Suppose that Z is an algebraic variety. For any tile (6, v) € T, we say that Ty , is
ER™'2-tangent to Z if

Ty, C NerinZ N B, and

Angle(G(0), T.Z) < ER™'?

for any nonsingular point z € Nyggi2(Ty,,) N 2372“ nZz.
Let
T,(E) := {6, v) | Ty, is ER™"/*-tangent to Z},

Downloaded from https://www.cambridge.org/core. IP address: 24.15.66.188, on 14 Jul 2020 at 23:18:18, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.11


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.11
https://www.cambridge.org/core

X. Du, L. Guth, X. Li and R. Zhang 6

A S

Figure 1. ~ o many cubes in a horizontal slab.

and we say that f is concentrated in wave packets from T (E) if

> Il fowll2 < RapDec(R)| £ 2

0.v)¢Tz(E)

Since the radius of Ty, is R'/?>*%, R® is the smallest interesting value of E.

3. Linear refined Strichartz and proof of Theorem 1.7

In this section, we prove Theorem 1.7 using linear refined Strichartz estimates
developed in [8].

THEOREM 3.1 (Linear refined Strichartz in dimension n + 1). Let p,.; =
2(n 4+ 2)/n. Suppose that f : R" — C has frequency supported in B"(0, 1).
Suppose that Q,, Q, ... are lattice R'*-cubes in By'', so that

”eimf”L”ru-](Q,.) is essentially constant in j.

Suppose that these cubes are arranged in horizontal slabs of the form R x - -- x
R x {to, to + R'/*}, and that each such slab contains ~ o cubes Q; (see Figure 1).
Let Y denote | J; Q. Then for any € > 0,

e fllme gy < CeR 0™ £ 2. 3.

Theorem 3.1 was proved in [8] in dimension 2, using Bourgain—-Demeter /-
decoupling theorem [5] and induction on scales. The proof of Theorem 3.1 in
higher dimensions is similar and we will present the proof in Section 4.

It follows from the Strichartz inequality that [le? f || oo vy S | f || z2- We get
an improvement when o is large. The condition that ¢ is large forces the solution
e f to be spread out in space.
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Pointwise convergence and multilinear refined Strichartz 7

This linear refined Strichartz estimate is sharp. To see this, consider the
following example. Suppose that ¢’2 f is a sum of o wave packets supported
on disjoint R'? x --- x RY? x R-tubes. We can take Y to be the union of these
tubes. By scaling, we can suppose that |e’2 f| ~ 1 on these o tubes and negligibly
small elsewhere, and then a direct calculation shows that ||e/4 f||pras ¥ ~
™2 1l Lowir ey ~ o~V || £]1,2. So Theorem 3.1 roughly says that if €4 f
is ‘as spread out as’ o disjoint wave packets, then its L”*' norm cannot be much
bigger than the L”+' norm of ¢ disjoint wave packets.

Now we prove Theorem 1.7 using linear refined Strichartz estimate:

Proof of Theorem 1.7. Let n > 3,a € (0,n] and u be a-dimensional. We will
show that
S ROV £, (3.2
L2(dpr)
holds for all R > 1 and all f with Fourier supportin A(1) := {£ e R" : |§] ~ 1}.
Without loss of generality we assume that || f||, = 1. Let H be a dyadic number
and denote

sup [ f]

O<t<R

Ay = {x € By : sup " f(x)| ~ H}.
0<t<R

Note that we have a trivial bound H < 1 by Holder’s inequality. We also can

assume that R~ < H for a large constant C, since the contributions from those

Ay with H < R are negligible. Therefore there are only ~ log R many relevant

H and we have

sup |¢"“ f|

0<t<R

172
S H <f duR(x)> , for some dyadic H. (3.3)
L2(dpp) An

By viewing |e''? f(x)| essentially as constant on unit balls, we can cover Ay by
projection of a set X described as follows: X is a union of unit balls in B} x [0, R]
satisfying that each vertical thin tube of dimensions 1 x --- x 1 x R contains at
most one unit ball in X, and

le"4 f(x)| ~ H onX.

Next we decompose B x [0, R] into R'/?-cubes Q; and consider those Q;’s
which intersect X. Let ), , , denote the collection of those Qs such that

e (; contains ~ A unit balls in X;
i ||eitAf||LPn+l(Qj> ~Ys

e the horizontal R'/?-slab containing Q; contains ~ o R'/>-cubes satisfying the
above two conditions.
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Define Y3, » 1= UQ]_GM .. @j- Note that we can assume
I<AS R, RC<y<R° 1<0<R"”,

where C is a large constant. Therefore there are only ~ (log R)* many relevant
dyadic (A, y, o) and by (3.3) we have

1/2
SH (f dMR(X)) , (3.4)
Lz(dllR) ApgNProj(Y)

where Y =Y, ,, , for some (%, y, o). Denote ¥ := U;V:] Q;, then

sup |e" f]

0<t<R

N < R'0. (3.5)
Since |e/"2 f(x)| is essentially constant on unit balls, we have
1/pn+l .
H </ dMR(X)) N ||€”Af(x)||LVn+I(Y,dxdr)- (3.6)
ApNProj(Y)

Now it follows from (3.4) and (3.6) that

1/(n+2)
itA
< e fllprmn (/ dMR(X)) ,
AnOProj(Y)

and by Theorem 3.1, (3.5) and the assumption that u is «-dimensional, this is
further controlled by

sup [e"" f]

0<r<R

L2(dpg)

é o~V @+D (N RY/2y1/(n+2) < o =102 (o RU2 R/ 1/(4D) — pla+D/20042),

as desired. L]

4. Multilinear refined Strichartz estimate

DEFINITION 4.1. We say functions f; : R* — C, i = 1,2,...,k, have
frequencies k-transversely supported in B”(0, 1), if for any points &; € suppﬁ -
B"(0, 1),

IGEDA---NGE)| =2 c>0,

where c is an absolute constant, and G(§) := (—2&, 1)/|(—2&, 1)| € S".

THEOREM 4.2 (k-linear refined Strichartz in dimension n + 1). Let p,,, =
2m+2)/nand?2 <k <n+ 1. Suppose that f; :R" - C,i =1,2,...,k, have
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[frequencies k-transversely supported in B"(0, 1). Suppose that Qy, Q,, ..., Oy
are lattice R'*-cubes in By'', so that

" fillLous1 (o)) is essentially constant in j,  foreachi =1,2,... k.

Let Y denote U?]:l Q;. Then for any € > 0,

k

1_[ |eilAfl‘|1/k

i=1

k
< CEREN—(k—l)/k(n-kz) l_[ Il f; ”;/k‘ .1

LPn+1(Y) i=l

Theorem 4.2 was proved in [8] for the case k = 2 in dimension 2. We will
first present the proof of the linear refined Strichartz in Section 4.1. And then in
Section 4.2 we prove Theorem 4.2, by combining the proof of the linear case with
a geometric estimate derived from Multilinear Kakeya.

4.1. Proof of Theorem 3.1. The proof uses the Bourgain-Demeter [?
decoupling theorem, together with induction on the radius and parabolic rescaling.
First we recall the decoupling result of Bourgain and Demeter in [5].

THEOREM 4.3 (Bourgain—Demeter). Let m > 2 and p,, := 2(m + 1)/(m — 1).
Suppose that the R™'-neighborhood of the unit paraboloid in R™ is divided into
R™=Y72 disjoint rectangular boxes t, each with dimensions R™'/? x - - - x R™'/? x
R~ Suppose I?, is supported in vt and F =) __ F,. Then

1/2
2
LF | om ey (Z ||Ff||L,,m(Rm)) :
T

To set up the argument, we decompose f as follows. We break the unit ball
B"(0, 1) in frequency space into small balls T of radius R~'/4, and divide the
physical space ball B into balls B of radius R**. For each pair (z, B), we let
fo. , be the function formed by cutting off f on the ball B (with a Schwartz tail)
in physical space and the ball  in Fourier space. We note that e* f_,, restricted
to Bit!, is essentially supported on an R¥/* x - - - x R¥* x R-box, which we denote
by O, 5. The box 0. p is in the direction given by (—2c¢(7), 1) and intersects t = 0
at a disk centered at (c(B), 0), where ¢(t) and c(B) are the centers of T and B,
respectively. For a fixed 7, the different boxes O, 5 tile Bi*'. In particular, for
each 7, a given cube Q; lies in exactly one box O, 5. Therefore, the decoupling
theorem tells us that

1/2
itA it A 2
e Fllrer o) (Z le” fmnu,lﬂ(g)) . 4.2)
[m]
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The second ingredient is induction on the radius. Using parabolic rescaling and
induction on the radius, we get a version of our main inequality for each function
fa. It goes as follows:

Suppose that S, S5, ... are R"?x---x RY?x R**-tubes in O (running parallel
to the long axis of O0), and that

e £ lLrms1(s;) 1 essentially constant in j.

Suppose that these tubes are arranged into R*/*-slabs running parallel to the short
axes of O and that each such slab contains ~ o tubes §;. Let Y denote U j S;.
Then

€™ fallrmn vay S R 205" 2| foll 2. 4.3)

To apply this inequality, we need to identify a good choice of Y5. We do this
by some dyadic pigeonholing. For each O, we apply the following algorithm to
regroup tubes in O:

(1) We sort those R'? x --- x RY? x R3*-tubes S contained in the box O
according to the order of magnitude of ||e"? fo || rs1(s), Which we denote
A. For each dyadic number A, we use S, to stand for the collection of tubes
S C O Wlth ||6”Afg ||Ll’n+|(5) ~ )\.

(2) For each A, we sort the tubes S € S; by looking at the number of such tubes in
an R*¥*-slab. For any dyadic number 1, we let S; , be the set of tubes S € S;
so that the number of tubes of S, in the R¥*-slab containing S is ~ 7.

We let Yg ; , be the union of the tubes in S, ,. Then we represent

eitAf _ Z (Z eitAfD . XYDM) .
A \ O

Since there are < log R choices for each of A, 1, we can choose A, 1 so that

”eitAf“L”nJrl(Qj) S (lOg R)2 ZeilAfD . XYD.)”] (44)
O LPnt1(Q)

holds for a fraction & 1 of all cubes Q; in Y. We need this uniform choice of
(A, ), which is independent of Q;, because later we will sum over all Q; and
arrive at [le''? foll Lo (vo,,)-

We fix A and 7 for the rest of the proof. Let Y5 stand for the abbreviation of
Yo, ;- We note that Y obeys the hypotheses for our inductive estimate (4.3), with
op being the value of n that we have fixed.
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Pointwise convergence and multilinear refined Strichartz 11

The following geometric estimate will play a crucial role in our proof. Each
set Y contains < op tubes in each slab parallel to the short axes of O. Since the
angle between the short axes of O and the x-axes is bounded away from /2, it
follows that Y5 contains < og cubes Q; in any R'/>-horizontal row. Therefore,

O]
|mm¥h9§WL (4.5)

Next we sort the boxes O according to the dyadic size of || fo|| 2. We can restrict
matters to < log R choices of this dyadic size, and so we can choose a set of O’s,
B, so that || fo||.2 is essentially constant for O € B and

e fllimaoy < | D€ fo - Xy, (4.6)

OeB Ll’lH—l(Q/-)

for a fraction ~ 1 of cubes Q; in Y.

Finally we sort the cubes Q; C Y according to the number of Yy that contain
them. We let Y’ C Y be a set of cubes Q; which obey (4.6) and which each lie
in ~ p of the sets {Yn}ocp. Because (4.6) holds for a large fraction of cubes, and
because there are only dyadically many choices of u, |Y’| & |Y|. By the equation
(4.5), we see that

o o
Yo NY|< Yo NY| S —|Y |~ ||,
o o
Therefore, the multiplicity u is bounded by
og
wES—IB|. @7
o

We now are ready to combine all our ingredients and finish our proof. By
decoupling, we have for each Q; C Y/,

||eitAf||Lpn+1(Qj) é ZeifAfD . XYD
OeB LPnt1(Q))
12
< itA 2
~ Z ”e fD ||L1’n+1(Qj) . (48)
DeB:Q;CYa

Since the number of Y5 containing Q; is ~ w, we can apply Holder to get

1/pn+1

itA 1 2 itA Pn+1
Ze“ fEl : XYD é 22 [rt2) Z ||e” fD‘ L/’:H(Qj)

OeB LPnt1(Q)) DeB:Q;CYn
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Figure 2. Tubes in a given slab in the 0.

Now we raise to the p,;th power and sum over Q; C Y’ to get

”enAﬂ i’;rjr] oy MZ/n Z ||eime|

OeB

Pn+1
LPn+1(Yg)®

Since |Y'| £ |Y|, and since each cube Q; C Y makes an equal contribution to
||€”Af||LIJn+1 (¥), We see that ||e”Af||Ll’n+l ) ~ ||eltAf||LI’)l+l 00 and so

itA Pn+1 2/n itA
”e S Lpn+1(y)%/’b z :”e fD|

OeB

Pn+1
LPn+1 (Yg)'

By a parabolic rescaling, Figure 2 becomes Figure 3.
Henceforth, applying our inductive hypothesis (4.3) at scale R'/? to the right-
hand side, we see that

[ f oy < 120" D N fallfa (4.9)
OeB
Plugging in our bound for w in (4.7), this is bounded by
S B Y falls
OeB
Now since || fo 2 is essentially constant among all O € B, the last expression is

Pnt1/2

-2 2 -2,
~ o> sl <o IfI

OeB
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N

Figure 3. Cubes in a given slab in an R'/>-cube.

Taking the p,th root, we obtain our desired bound:

' —1/(n+2
e fllzoniory S 072N f e

~
~

This closes the induction on radius and completes the proof.

4.2. Proof of Theorem 4.2. One key ingredient in our proof is Bennett—
Carbery—Tao multilinear Kakeya estimates:

THEOREM 4.4 (see [2] and [10]). Suppose that S; C Sm=1j=1,..., k. Suppose
that l; , are lines in R™ and that the direction of l; , lies in S;. Suppose that for
any vectors v; € S,

[vg A - A 2> .

Let T; , be the characteristic function of the 1-neighborhood of I ,. Let Q denote
any cube of side length S. Then for any € > 0 and any S > 1, there holds

k N; )
/ 1_[ Z T,/',a < CgPOIy(v_l)SE HN;/(k_l)-

s j=1 \a=1 j=1

1/(k=1)

Now we begin the proof of Theorem 4.2. By Holder,

k

k
l_[|€itAfi|l/k < 1_[ HeitAf‘i
i=1

LPn+1(Y) i=1

1/k
LPnt1(Y)"
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For each i, we process ||e'"® f; || .r+1(v) following the proof of Theorem 3.1. We
decompose f; =Y fi.o, and we follow the proof of Theorem 3.1 up to equation
(4.9). Therefore, for each i, we see that

1/pn+1
i1A 2/n =2 n
[ Fill vy S | 1 02" Y W fillgs” . (4.10)
OeB;
We claim that the following geometric estimate holds:
k
1/(k—1
thﬂwngrlmﬂB|ﬂ). @.11)
i=1
Starting with (4.10) and inserting this estimate, we see that
k k 1/ pny1-1/k
A 1/k /n —2/n Pn
1—[ g n+1(Y) é 1_[ /’Ll tEJ Z ”f .
i=1 i=1 OeB;
k 1/pns1-1/k
é —2(k— 1)/kn|]B |2/n Z ”f O ||Pu+l
i=1 OeB;

N

k
N~ k=D/k(n+2) l_[ ”fz ||1/k
LZ ’

i=1

where the last inequality follows from the assumption that || f; 0,2 is essentially
constant among all O € B;. It remains to prove the claim (4.11). See Figure 4
to get some intuition about how two transversal families of tubes intersect. For
the higher order of linearity, we need to invoke multilinear Kakeya estimates —
Theorem 4.4.

Recall that Y C Y, |Y| < |Y’|, the number of R'/>-cubes in Y is N, and for
each QinY’,

#HOeB: QC Yo}~ w.

Therefore,
1/(k— 1)
Nl—[ k=D < ZH #HOeB, : QCYD})
Qev’ i=1

Cover B by balls B of radius R**. Observe that if an R'/?>-cube Q inside B is
contained in some Y, then B is contained in 100. Define

B, :={0€eB, : B e 100},
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Pointwise convergence and multilinear refined Strichartz 15

Figure 4. At most O(o,no,0) cubes created by two transversal families of
rectangular boxes.

then

k k
N[]w™ s Y > Jl#oeBs:0evy)™ "
i=1

B:R3/4-balls Q€Y:QCB i=1

Note that for each B, we have k transverse collections of RY/2 x - - - x R/2 x R3/4-
tubes passing through it, and the number of such tubes in the ith collection is
< |B; 3| - 0i.0. It follows from the multilinear Kakeya estimate that

k
Z H(#{D eB;p:0¢€ YD})I/(k*D <

QeY’:QCB i=1 i

(|Bi,3| : Ui,u)l/(kil)-

k
=1

Therefore,

k k
N l_[ M}/(k_l) é Z l_[ (l]Bi,Bl : Gi,D)l/(kil).
i=1

B:R3/4-balls =1
By the definition of B; 5 and multilinear Kakeya again,

Z ﬁ B; 5|/ " = ﬁ B, |/ *D.
i=1

B:R3/4-balls i=1

Combining these together, we get the desired estimate (4.11).

Downloaded from https://www.cambridge.org/core. IP address: 24.15.66.188, on 14 Jul 2020 at 23:18:18, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2018.11


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2018.11
https://www.cambridge.org/core

X. Du, L. Guth, X. Li and R. Zhang 16

4.3. Refined Strichartz estimates in variety case. We remark that, by the
same technique as in [8], Theorem 3.1 and 4.2 can be generalized to variety case
as follows. We skip the rigorous proof and refer interested readers to [8, Section
7].

THEOREM 4.5 (Linear refined Strichartz for m-variety in dimension n + 1). Let
m be a dimension in the range 2 < m < n+ 1. Let p,, = 2(m + 1)/(m — 1).
Suppose that Z = Z(P,, ..., P,,1_n) is a transverse complete intersection where
Deg P < Dz = R%x. Here 84, < & is a small parameter. Suppose that f €
L*(R") is Fourier supported in B"(0, 1) and concentrated in wave packets from
T, (E). Suppose that Q1, Q,, ... are lattice R'*-cubes in By, so that

||ei’Af||me(Ql.) is essentially constant in j.

Suppose that these cubes are arranged in horizontal slabs of the form R x --- x
R x {to, to + R'/?}, and that each such slab contains ~ o cubes Q. Let Y denote

U, Qj- Then

||eilAf||Ll7ln(Y) g EO(I)R_(n+l_m)/2(m+l)0_1/(m+1)||f||L2. (412)

THEOREM 4.6 (k-linear refined Strichartz for m-variety in dimension n + 1). Let
m be a dimension in the range 2 < m < n+ 1. Let p,, = 2(m + 1)/(m — 1).
Suppose that f; : R" — C, i = 1,2,...,k, have frequencies k-transversely
supported in B"(0, 1), where 2 < k < m. Suppose that the functions f; are
concentrated in wave packets from Tz(E), where Z = Z(Py, ..., Pyy1_n) is a
transverse complete intersection with Deg P; < D; = R%e. Here Saeg L b isa
small parameter. Suppose that Q\, Q», ..., Qy are lattice R*-cubes in B, so
that

e fillom g, is essentially constant in j, foreachi =1,2,..., k.

Let Y denote U;V:l Q;. Then

k k
l_[ |eit4 £, 11k < EOM) R=(nt1=m)/2m+1) ny—(k=1)/k(m+1) l_[ ”f_”l/k (4.13)
i ~ i . .

12
i=1 Lpm(Y) i=l

To get some intuition, we consider a special case of Theorem 4.5, in which
the variety Z is naturally replaced by an m-plane V, and E = 1. In the planar
case, all wave packets are contained in the &~ R!/>-neighborhood of V, and the
absolute value |e/'“ f(x)| is essentially constant along (n + 1 — m)-planes which
are parallel to V', where V'’ is a subspace transverse (roughly normal) to V.
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Note that "2 f(x)|y is a Fourier extension operator in dimension m. Denote
e f(x)|y by e"*h(y) for some function 4 Fourier supported in B"~'(0, 1),
where (y, r) denote coordinate variables for V. Hence the conclusion in Theorem
4.5 can be rephrased in terms of /. Indeed, observe that

[ A m 17 2 [ A m
”elt f(‘x)”il’m(Y) ~ R(n+ ™/ ”err h(y)”ipm(ym/)y

and

A5 ~ Rflllei’Aflliz(B;+1)

1 l—m)/2 | irAg 2 1—m)/2 2
~ RTRUEITR AR, L~ RO,

Therefore the estimate (4.12) is equivalent to
le” 2 hllLomvavy S o VA 2. (4.14)

This is exactly the conclusion of Theorem 3.1 in dimension m. Similarly the m-
plane case of Theorem 4.6 is essentially Theorem 4.2 in dimension m.
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