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Bregman Divergence Bounds and Universality
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Abstract— A loss function measures the discrepancy between
the true values and their estimated fits, for a given instance
of data. In classification problems, a loss function is said to
be proper if a minimizer of the expected loss is the true
underlying probability. We show that for binary classification,
the divergence associated with smooth, proper, and convex
loss functions is upper bounded by the Kullback-Leibler (KL)
divergence, to within a normalization constant. This implies
that by minimizing the logarithmic loss associated with the KL
divergence, we minimize an upper bound to any choice of loss
from this set. As such the logarithmic loss is universal in the
sense of providing performance guarantees with respect to a
broad class of accuracy measures. Importantly, this notion of
universality is not problem-specific, enabling its use in diverse
applications, including predictive modeling, data clustering and
sample complexity analysis. Generalizations to arbitary finite
alphabets are also developed. The derived inequalities extend
several well-known f-divergence results.

Index Terms— Kullback-Leibler (KL) divergence, logarithmic
loss, Bregman divergences, Pinsker inequality.

I. INTRODUCTION

NE of the major roles of statistical analysis is making

predictions about future events and providing suitable
accuracy guarantees. For example, consider a weather fore-
caster that estimates the chances of rain on the following
day. Its performance may be evaluated by multiple statistical
measures. We may count the number of times it assessed the
chance of rain as greater than 50%, when there was eventually
no rain (and vice versa). This corresponds to the so-called
0-1 loss, with threshold parameter ¢+ = 1/2. Alternatively,
we may consider a variety of values for ¢, or even a completely
different measure. Indeed, there are many candidates, includ-
ing the quadratic loss, Bernoulli log-likelihood loss, boosting
loss, etc., [2]. Choosing a good measure is a well-studied
problem, mostly in the context of scoring rules in decision
theory [3]-[6].
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Assuming that the desired measure is known in advance,
the predictor may be designed accordingly—i.e., to minimize
that measure. However, in practice, different tasks may require
inferring different information from the provided estimates.
Moreover, designing a predictor with respect to one measure
may result in poor performance when evaluated by another.
For example, the minimizer of a 0-1 loss may result in
an unbounded loss, when measured with a Bernoulli log-
likelihood loss. In such cases, it would be desireable to design
a predictor according to a “universal” measure, i.e., one that
is suitable for a variety of purposes, and provide performance
guarantees for different uses [1].

In this paper, we show that for binary classification,
the Bernoulli log-likelihood loss (log-loss) is such a uni-
versal choice, dominating all alternative “analytically con-
venient” (i.e., smooth, proper, and convex) loss functions.
Specifically, we show that by minimizing the log-loss we
minimize the regret associated with all possible alternatives
from this set. Our result justifies the use of log-loss in many
applications.

As we develop, our universality result may be equivalently
viewed from a divergence analysis viewpoint. In particular,
we establish that the divergence associated with the log-loss—
i.e., Kullback Leibler (KL) divergence—upper bounds a set of
Bregman divergences that satisfy a condition on its Hessian.
Additionally, we show that any separable Bregman divergence
that is convex in its second argument is a member of this set.
This result provides a new set of Bregman divergence inequal-
ities. In this sense, our Bregman analysis is complementary to
the well-known f-divergence inequality results [7]-[10].

We further develop several applications for our results,
including universal forecasting, universal data clustering, and
universal sample complexity analysis for learning problems,
in addition to establishing the universality of the informa-
tion bottleneck principle. We emphasize that our universality
results are derived in a rather general setting, and not restricted
to a specific problem. As such, they may find a wide range of
additional applications.

The remainder of the paper is organized as follows.
Section II summarizes related work on loss function analysis,
universality and divergence inequalities. Section III provides
the needed notation, terminology, and definitions. Section IV
contains the main results for binary alphabets, and their gener-
alization to arbitrary finite alphabets is developed in Section V.
Additional numerical analysis and experimental validation is
provided in Section VI, and the implications of our results in
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three distinct applications is described in Section VII. Finally,
Section VIII contains some concluding remarks.

II. RELATED WORK

The Bernoulli log-likelihood loss function plays a funda-
mental role in information theory, machine learning, statistics
and many other disciplines. Its unique properties and broad
applications have been extensively studied over the years.

The Bernoulli log-likelihood loss function arises naturally
in the context of parameter estimation. Consider a set of
independent, identically distributed (i.i.d.) observations y™ =
(y1,...,yn) drawn from a distribution py(-;0) whose para-
meter 6 is unknown. Then the maximum likelihood estimate
of #in @ is

0 = argmax L(6;y"),
fcO

where

n
L(8;y™) = py~(y™:6) = [[ v (s 6).
i=1
Intuitively, it selects the parameters values that make the data
most probable. Equivalently, this estimate minimizes a loss
that is the (negative, normalized, natural) logarithm of the
likelihood function, viz.,

1 1 &
U(0;y") = ——log L(6;y") = —— _logpy (4i; ),
i=1

whose mean is
E[£6;Y)] = —E[logpy (Y;6)].

Hence, by minimizing this Bernoulli log-likelihood loss,
termed the log-loss, over a set of parameters we maximize
the likelihood of the given observations.

The log-loss also arises naturally in information theory. The
self-information loss function — logpy (y) defines the ideal
codeword length for describing the realization ¥ = y [11].
In this sense, minimizing the log-loss corresponds to minimiz-
ing the amount of information that are necessary to convey the
observed realizations. Further, the expected self-information is
simply Shannon’s entropy which reflects the average uncer-
tainty associated with sampling the random variable Y.

The logarithmic loss function is known to be “universal”
from several information-theoretic points of view. In [12],
Feder and Merhav consider the problem of universal sequential
prediction, where a future observation is to be estimated from
a given set of past observations. The notion of universality
comes from the assumption that the underlaying distribution
is unknown, or even nonexistent. In this case, it is shown that
if there exists a universal predictor (with a uniformly rapidly
decaying redundancy rates) that minimizes the logarithmic loss
function, then there exist universal predictors for any other loss
function.

More recently, No and Weissman [13] introduced log-loss
universality results in the context of lossy compression. They
show that for any fixed length lossy compression problem
under an arbitrary distortion criterion, there is an equivalent
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lossy compression problem under a log-loss criterion where
the optimum schemes coincide. This result implies that with-
out loss of generality, one may restrict attention to the log-
loss problem (under an appropriate reconstruction alphabet).
In addition, [13] considers the successive refinement problem,
showing that if the first decoder operates under log-loss, then
any discrete memoryless source is successively refinable under
an arbitrary distortion criterion for the second decoder.

It is important to emphasize that universality results of
the type discussed above are largely limited to relatively
narrowly-defined problems and specific optimization criteria.
By contrast, our development is aimed at a broader notion of
universality that is not restricted to a specific problem, and
considers a broader range of criteria.

An additional information-theoretic justification for the
wide use of the log-loss is introduced in [14]. This work
focuses on statistical inference with side information, showing
that for an alphabet size greater than two, the log-loss is
the only loss function that benefits from side information and
satisfies the data processing lemma. This result extends some
well-known properties of the log-loss with respect to the data
processing lemma, as later described.

Within decision theory, statistical learning and inference
problems, the log-loss also plays further key role in the context
of proper loss function, which produce estimates that are
unbiased with respect to the true underlaying distribution.
Proper loss functions have been extensively studied, compared,
and suggested for a variety of tasks [3]-[6], [15]. Among these,
the log-loss is special: it is the only proper loss that is local
[16], [17]. This means that the log-loss is the only proper loss
function that assigns an estimate for the probability of the
event Y = g that depends only on the outcome ¥ = yp.

In turn, proper loss functions are closely related to Breg-
man divergences, with which there exists a one-to-one cor-
respondence [4]. For the log-loss, the associated Bregman
divergence is KL divergence, which is also an instance of an
f-divergence [18]. Significantly, for probability distributions,
the KL divergence is the only divergence measure that is a
member of both of these classes of divergences [19]. The
Bregman divergences are the only divergences that satisfy
a “mean-as-minimizer” property [20], while any divergence
that satisfy the data processing inequality is necessarily an
f-divergence (or a unique (one-to-one) mapping thereof) [21].
As a consequence, any divergence that satisfies both of these
important properties simultaneously is necessarily proportional
to the KL divergence [22, Corollary 6]. Additional properties
of KL divergence are also discussed in [22].

Finally, divergences inequalities have been studied exten-
sively. The most celebrated example is the Pinsker inequal-
ity [23], which expresses that KL divergence upper bounds
the squared total-variation distance. More recently, the detailed
studies of Reid and Williamson [10], Harremo&s and Vajda [9],
Sason and Verdi [8], and Sason [7] have extended this result
to a broader set of f-divergences inequalities. Moreover,
f-divergence inequalities for non-probability measures appear
in, e.g., by Stummer and Vajda [24]. In [25], Zhang demon-
strated an important Bregman inequality in the context of
statistical learning, showing that the KL divergence upper
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bounds the squared excess-risk associated with the 0-1 loss,
and thus controls this traditionally important performance
measure. Within this context, our work can be viewed as
extending such Bregman inequalities and their analysis.

III. NOTATION, TERMINOLOGY AND DEFINITIONS

Let Y € {0,1} be a Bernoulli random variable with
parameter p = py (1), which may be unknown. A loss function
l(y, y) quantifies the discrepancy between a realization Y =y
and its corresponding estimate 7. In this work we focus on
probabilistic estimates § = g € [0, 1] whereby g is an estimate
of p rather than y itself; as such, ¢ is a “soft” decision.

A loss function for such estimation takes the form

l(y,q) = 1{y = 0} lo(q) + 1{y = 1} li(q), (1)

with 1{-} denoting the Kronecker (indicator) function, where
lk(q) is a loss function associated with the event Y = k, for
k € {0,1}. In turn, the corresponding expected loss is

L(p,q) = E[(Y,q)] = (1 —p) lo(q) + pli(g), 2

where we note that L(p, ¢) depends only on p and the estimate
g. An example is the log-loss, for which

1
hog(y, q) = ylog P (1—y)log 3)

1—gq

Loss functions with additional properties are of particular
interest. A loss function is proper (or, equivalently, Fisher-
consistent or unbiased) if a minimizer of the expected loss is
the true underlying distribution of the random variable we are
to estimate; specifically,

p € argmin L(p,q), p€[0,1]. 4)

q€0,1]

A strictly proper loss function means that ¢ = p is the unique
minimizer, i.e.,

p=argminL(p,q), p€[0,1]. ®)
q€[0,1]
A proper loss function is fair if
lo(0) = 11(1) =0, (6)

in which case there is no loss incurred for accurate prediction.

Additionally, a proper loss function is regular if
lim gl1(q) = lim(1 - g) lo(q) = 0. Q)
g—0 g—1

Intuitively, (7) ensures that making mistakes on events that

cannot happen do not incur a penalty.

The minimum of the expected loss for proper loss functions,
which we denote using

G(p) £ L(p,p),

is referred to as the generalized entropy function [4], Bayes
risk [26] or Bayesian envelope [27]. As an example, the
Shannon entropy associated with the log-loss (3) is

—. ®)

1 1
Glog(p) éplc’gg + (1 —P) lOg 1
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The regret is defined as the difference between the expected
loss and its minimum, so for proper loss functions takes the
form

AL(p,q) = L(p,q) — G(p)- 9

Savage [28] shows that a loss function [(y, q) is proper and
regular if and only if G(-) is concave and for every p, q € [0, 1]
we have that

L(p,q) = G(q) + (p — q) G'(9)- (10)

This property allows us to draw an immediate connection
between regret and Bregman divergence. In particular, let
f: 8 — R be a continuously differentiable, strictly convex
function over some interval § < R. Then its associated
Bregman divergence takes the form

Dy(sl|t) = f(s) — f() — (s — ) f'(t) (11)

for any s,t € 8. We focus on closed intervals, in which
case the formal definition of Dy(s||¢t) at boundary points
requires more care; the details are summarized in Appendix A,
following [29].

In the special case 8§ = [0,1] using (10) in (9) and
comparing the result to (11) we obtain

i.e., the regret of a proper loss function is uniquely associ-
ated with a Bregman divergence. As an important example,
associated with the Shannon entropy (8) is the KL divergence

]_ —
Dk (pllg) %plogg +(1—p)log T—. (13)

Of particular interest are loss functions that are convex,
i.e., [ such that [(y,-) is convex. Such loss functions play
a special role in learning theory and optimization [2], [26].
For example, suppose! X% and Y is a set of d explanatory
variables (features) and a (target) variable, respectively. Then
given a set of n i.i.d. samples of X% and Y, the empirical risk
minimization (ERM) criterion seeks to minimize

1 mn
Egi(ynqﬁ),

where ¢; = ¢i(z%) denotes a functional of the ith sample
of X%, This minimization is much easier to carry out when
the loss function [ is convex, particularly when d is large.
In addition, the minimum of the expected loss L(p,-) for
a given p subject to constraints is typically much easier to
characterize and compute when [ is convex.

Conveniently, convex proper loss functions [(y,q) corre-
spond to Bregman divergences D_¢ such that D_g(p||-) is
convex [26]. This family of divergences are of special interest
in many applications [30], [31], and have an important role in
our results, as will become apparent.

Accordingly, our development emphasizes the following
class of analytically convenient loss functions.

IThe sequence notation a™ = (a1,.
exposition.

..,@m) is convenient in our
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TABLE I
EXAMPLES OF COMMONLY USED BINARY L0OSS FUNCTIONS

Loss function Ly, q) G(p) = L(p,p) D_c(plla) w(p)
Quadratic loss | y(1 — ¢)* + (1 — y)q° p(1-p) Dqu(plle) = (p— 9)° 2
o ylog L 1 ~
Logarithmic loss 4 X plog 5 Dy, (pllg) = plog ':‘ + (1 —p)log 1_—‘3 p(ll—p)
tA-vloeS | +(1-p)logti;
) 2y, 14 -

Boosting loss Yy g 4\/p(1 —p) Dgy,(pllg) = 2(:0\! 22+ (1-p),/ 1—3;) (p(l_;naxz

+2(1—y)y /1L
1-q —4y/p(1—p)

Definition I: A loss function [: {0,1} x [0, 1] — R, which
takes the form (1), is admissible if it satisfies the following
three properties:

P1.1) I(y,q) is strictly proper, fair, and regular, i.e., satisfies
(5)7).

P1.2) I(y,-) is convex for each y € {0, 1}.

P1.3) I(y,-) is in €3 for each y € {0, 1}, i.e., 3*I(y, q)/0¢"
exist and are continuous for k = 1,2, 3.

For convenience, we refer to loss functions that satisfy

property P1.3 as smooth.

As further terminology, for a proper, smooth loss function
l(y, q) with generalized entropy G(p),

w(p) = —G"(p) (14)

is referred to as its weight function, which we note is nonneg-
ative. As an example, that corresponding to the log-loss is

1
wkL(q) = ——- (15)
<.(9) q(1—q)
Using (14), we obtain, for example,
3]
6—qD—G(P||G‘) = (g —p)w(q), (16)

by differentiating (10), which emphasizes the one-to-one cor-
respondence between D_ and w for such loss functions; see
Appendix B for additional properties and characterizations.
Finally, representative examples of loss functions are pro-
vided in Table I, along with their generalized entropies, their
associated Bregman divergences, and their weight functions.

I'V. UNIVERSALITY PROPERTIES OF THE
LOGARITHMIC LOSS FUNCTION

Our main result is as follows, a proof of which is provided
in Appendix C.

Theorem 1: Given a loss function [(y,q) satisfying
Definition 1 with corresponding generalized entropy func-
tion G, then for every p,q € [0, 1],

1

Dxuw(pllg) = mD—G(PIIQ), (17a)

where

C(G) > —% G" (%) (17b)

is a positive normalization constant (that does not depend on
p or q).

Note that a further consequence of Theorem 1 expresses
that KL divergence is a “dominating” Bregman divergence in
the sense that given another Bregman divergence D(p||g) such
that [cf. (17a)]

~ 1
D > =
vlo) > 7 =
holds for any Bregman divergence D_¢ for some C(@), then
the theorem asserts that there exists Ckr, such that

Dxw(pllg) > Oi D).
KL

In essence, the dominating Bregman divergences form an
equivalence class, of which KL divergence is a member.

We emphasize the necessity of scaling constants in
Theorem 1. Indeed, the class of loss functions satisfying
Definition 1 is closed under (nonnegative) scaling, i.e., if
l(y,q) (with a corresponding G) satisfies Definition 1, then
so does vl(y, g)—with a corresponding vG—for any v > 0.
A typical approach to placing loss functions on a common
scale is to define a universal scaling by setting, for instance,

1 ,(1\
5¢(3) =1

as appears, e.g., in [2], [10]. Theorem 1 avoids imposing such
a normalization, and instead absorbs such scaling into the
constant C'(G) to obtain the desired invariance. As an example,
for the quadratic loss G”(1/2) = —2, so any C(G) > 1
suffices in this case, whence

Dxw(pllg) > (p— q)*. (18)

The practical implications of Theorem 1 are quite imme-
diate. Assume that the performance measure according to

D_q(pllq)
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which a learning algorithm is to be measured is unknown
a priori to the application (as is the case, e.g., in the weather
forecasting example of Section I). In such cases, minimizing
the log-loss provides an upper bound on any possible choice
of measure that is associated with an “analytically convenient”
loss function. As such, the log-loss is a universal choice for
classification problems with respect to this class of measures.

More generally, as discussed in Section II, designing suit-
able loss functions is an active research field with many appli-
cations. Via Theorem 1, one obtains universality guarantees
for any (current or future) loss function that is proper, convex,
and smooth. We emphasize that this class of loss functions is
quite rich. For instance, it is straightforward to verify that
the loss functions satisfying Definition 1 form a convex set:
any convex combination of such loss functions also satisfies
Definition 1.

The local behavior of proper, convex, and smooth loss
functions can be derived from Theorem 1. In particular,
we have the following corollary.

Corollary 2: Given a loss function [(y,q) satisfying
Definition 1, whose corresponding generalized entropy func-
tion is G, we have, for every p,p+dp € [0, 1] and some finite
C(G) >0,

1 dp? 9
- < —
@ D_c(plp+dp) = —- J(p) +o(dp”),  (19)
where

1
J(p) & 19b
(p) > (19b)

(1-p)
denotes the Fisher information of a Bernoulli distributed
random variable with parameter p.

Proof: With p, p+dp € [0, 1], the Taylor series expansion
of the KL divergence around p is

dp2 2
Dy (pllp +dp) = 7J(p) +o(dp”),

where J(p) is as given in (19b). Substituting (20) into (17a)
yields the desired inequality.

Corollary 2 establishes that when ¢ is sufficiently close to
p, the divergence associated with the set of smooth, proper
and convex binary loss functions is effectively upper bounded
by the Fisher information that locally characterizes KL diver-
gence. As such, we conclude that the rate of convergence of
any D_c(p||g) to zero as ¢ — p is upper bounded by the
rate of Dxkr,(p||g). This reveals that the price paid for the
universality of the log-loss is its slower rate of convergence.
Such behavior will be demonstrated empirically in Section VI.

(20)

V. EXTENDED BREGMAN DIVERGENCE INEQUALITIES

To extend our result to arbitrary finite alphabets, we consider
the corresponding broader class of Bregman divergences.
In particular, for a continuously differentiable, strictly convex
function f: 8 — R be a over some convex set § ¢ R™, its
associated Bregman divergence takes the form

Dy(s™[[t™) = f(s™) — F(E™) — (s — ™, VF(E™)) (21

for any s™, t™ € § when 8 is open, where V f(t™) is the
gradient of f at t™.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

We focus on the set § = [0,1]™, and let p™, g™ € 8.
We emphasize that this is an extension beyond the unit
simplex. Let

Hy(p™) £ V(™)

denote the m x m Hessian matrix of f. For example, the
divergence associated with

(22)

f@™) =Y pilogp

i=1

(23)
is the generalized KL divergence
N m p m m
DxL(p™1g™) £ ) pilog P Sopi+d @, (24)
i=1 o=t i=1

the corresponding Hessian for which is

m
Hyw(p™) £ V? (Z pi lngi) )
i=1
which we note is a diagonal matrix whose :th diagonal element
is 1/p;. In the special case wherein p™ and ¢™ are probability

measures (i.e., restricted to the unit simplex), we have

m
Dy (p™[lg™) = Dxr(#™(|g™) 23" pilog i‘ql
i=1 '
which generalizes the definition in Table L.
We focus on the following class of Bregman divergences.
Definition 2: For some integer K, a Bregman divergence
generator f: [0,1]™ — R is K-admissible if it satisfies the
following properties:

P2.1) f is a strictly convex function that is well-defined
on its boundaries, in the sense of generalizing the
requirements of Appendix A.

P2.2) f € CK, ie, 8*f(p™)/Op:1---Opy exist and are
continuous for k=1,..., K.

Our first generalization is the following theorem, whose
proof is provided in Appendix D.

Theorem 3: Given a positive integer m, let f: [0,1]™ — R
satisfy Definition 2 for K = 2, and let D;(p™|q™)
and H(p™) denote the associated Bregman divergence and
Hessian matrix, respectively. If there exists a (finite) positive
constant C( f) such that?

C(f)HxuL(p™) — Hs(p™) =0, all p™ € [0,1]™, (25a)
then for every p™, ¢™ € [0,1]™,
1
c(f)

We emphasize that, in contrast to Theorem 1, the inequal-
ity (25b) applies to any Bregman divergence satisfying
Definition 2, and in particular does not require Dy(p™||-)
to be convex for any p™ € [0,1]™. However, at the same

time, we stress that Theorem 3 is restricted to the class of
divergences satisfying (25a).

Dxr(®™q™) = Ds(p™Ig™). (25b)

ZWe use A > 0 to denote that a matrix A is positive definite.
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As an example application, when?
f@™) =@mTQrm,

with positive definite matrix parameter (), the corresponding
the Bregman divergence

Dy = 30"~ ™ Q" ~ g™

is the well-known Mahalanobis distance,
associated Hessian is

Hy(p™) = Q.

For this divergence we have the following corollary, whose
proof is provided in Appendix E.

Corollary 4: 1f Dy is a Mahalanobis distance, whereby f
takes the form (26) with @@ - 0, then (25b) holds for

C(Q) > Amax(Q),

where Apax(Q@) is the largest eigenvalue of Q.

Our second generalization of Theorem 1 focuses on the class
of separable Bregman divergences, a member of which takes
the form

(26)

and and the

(27)

Dy(p™llg™) £ Y dy(pilla:)

i=1

(28a)
with
dg(pilla:) = 9(pi) — 9(@:) — (i — @) 9’ (4:),

for p™,¢™ € (0,1)™, where g: [0,1] — R denote a con-
tinuously differentiable, strictly convex function with addi-
tional constraints discussed analogous to those discussed
in Appendix A, and via which (28a) is extended to p™,
g™ e [0,1]™.

Such divergences hold a special role in divergence analysis,
as discussed in, e.g., [22], [32]. Note that in this case,
the Bregman generator function takes the form

(28b)

fen(®™) = a(pi),

(29)
i=1
via which we obtain the Hessian as
Hs(p™) =1{i = j} ¢"(ps)-
As an example,
g(p) =plogp (30)
matches (23), and when used in (28b) yields
JKL(pi”Q'i) éps log? —pi +qi, 31
]

so that (28a) specializes to the generalized KL divergence (24).
Our main result is the following theorem, a proof of which
is provided in Appendix F.
Theorem 5: Given a positive integer m, let Dy(p™||q™) be
a separable Bregman divergence satisfying Definition 2 for

3Here, and elsewhere as needed, we construe a sequence a’™ as a column
vector.
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K = 3 and for which Dg4(p™||-) is convex for every p™ €
[0,1]™. Then for every p™,¢™ € [0,1]™,
1

DxvL(p™||a™) = =—~Dgy(p™|ld™)

CQ©) (322)

when C(G) satisfies

C(g) > 4"(1).

We remark that when ¢”(1) is unbounded, Corollary 5 does
not yield a useful bound. By contrast, Theorem 1 is guaranteed
to produce a bound, since G''(1/2) is always finite.

It is important to emphasize that while Theorem 1 restricts
attention to divergences defined both over binary alphabets and
only on the unit simplex—i.e., in the notation of this section,

(32b)

m:2a P11 =D, p2:1_p1 pe[oal]':

by contrast the divergences in Theorem 5 are defined for any
positive integer m and, in addition, over the entire hypercube
p™,q™ € [0,1]™. As such, we emphasize that Theorem 1 is
not a special case of Theorem 5. In particular, because (17a)
must hold for a domain that extends beyond the unit simplex,
the smallest C(g) for which it is satisfied when m = 2 must
generally be bigger than the smallest C'(G) for which (17a)
holds.*

As a simple application of Theorem 5, choosing g(p) = p?
generates the quadratic divergence

Dy(pllg) = (pi — @:)?,
i=1

which is a special case of the Mahalanobis distance. In this
case, since g”’(1) = 2, Theorem 5 requires C(g) > 2, yielding
1 m
» mj| m 2
Dxr(p™lg™) = 5;(% - @) (33)
Consistent with the preceding discussion, inf{C(g): C(g) >
2} = 2 corresponding to (33), is larger than the corresponding
mf{C(G): C(G) > 1} =1 in the bound (18).
Additionally, it is worth noting that (33) resembles the well-
known Pinsker inequality [11], viz.,

1T m ]‘ 1T m
Dt (™ (14™) > 5D7v (™ llg™), (34)

where

Drv(p™lg™) £ |pi — ail

i=1

(35)

is the total-variation distance (or Csiszar divergence [11]),
which is not a Bregman divergence, but rather an f-divergence.
It is straightforward to verify that (34) is tighter than (33) when
p™ and ¢'™ are restricted to the unit simplex. Nevertheless,
this simple example serves to illustrate that Theorem 3 and
Theorem 5 may be viewed as Bregman divergences extensions
to some well-known f-divergence results, as discussed in

Section II.

4That said, if desired, via similar analysis, together with the use of Lagrange
multipliers, one can obtain a version of Theorem 5 restricted to the unit
simplex, for which smaller constants will generally be obtained.
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Fig. 1. Divergence bound behavior under mean constraint. Depicted is the
minimum of D (p?||g*)/C(f) with respect to ¢® € PY with E 43 [Y] fixed,
forY € Y={—1,0,1}, p® = (1/4,1/2,1/4), and different choices for f,
as described in text.

VI. NUMERICAL ANALYSIS AND EXPERIMENTS

To complement the results of Section V, we use numerical
analysis to examine the dependence of

on p™ and g™, for some choices of f such that Theorem 3
applies, and with C(f) chosen according to (25a).
To begin, we consider a random variable ¥ € Y with

|Y| = m, and restrict ¢" to lie in a subset 8§ of the unit
simplex P?. For a given p™ € P9, with
7(8) = argmin Dy(p™[lg™) (36)
{qmeSCPY}
and, in turn,
KL (8) £ af, (8), (37

where fxr is as given in (29), the minimum KL diver-
gence upper bounds the minimum of any Bregman divergence
according to

Dxr(P™ |9k (8)) = = Dr(P" gk (8))

> O(f)DI(PmHQ}n(S))

where to obtain the first inequality we have used Theorem 3
with C'(f) satisfying (25a), and to obtain the second inequality
we have used (36).

In the first experiment, we set

8={qm € P?: Epm [L(Y)] = n},

for some h: Y — R and p, ie., we constrain g™ to lie
in a hyperplane restricted to the unit simplex PY. More
specifically, we choose Y = {—1,0,1}, h(y) = vy, and
3 = (1/4,1/2,1/4) to illustrate our results. The results of
our experiment, which compares the minima in (38) as a
function of p, are depicted in Fig. 1. The top (blue) curve

c (f )
(38)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

is (with a minor abuse of notation) Dxr(p3|g&r (1)), and
the progressively lower (red, purple, and black) curves are
(with a similar abuse of notation) D (p®||q}(u))/C(f) with
f corresponding to the quadratic divergence, the separable
Mahalanobis distance with parameters ()5, and the nonsepara-
ble Mahalanobis distance with parameters Q)ys, respectively.
The specific values of these parameters are

300 3 1/2 1/2
Q=10 2 0| and Que=[1/2 2 1/2|. (39)
00 1 1/2 1/2 1

Note that since E,z [Y] = 0 for our choice of p?, all
the minimum divergences are zero at u = Eg [Y] = 0,
and thus ¢7(0) = p? for all Bregman generators f. However,
when p # 0 the Opllle.ll'lg qf(,u) must differ from p3, and
Fig. 1 quantifies these differences as a function of the bias p.
Consistent with the analysis of Section V, KL divergence
upper bounds normalized measures of all these differences.

In the second experiment we show that the bounds (38)
hold for a broader range of problems. To model a statistical,
computational, or even algorithmic constraint that prevents g™
from converging to some given p™ € P9, we impose that
q™ € 8 where

§={q™ € P?: D(p™|q™) > €} (40)

for some D and € > 0. In Fig. 2, we compare the terms in (38)
for different choices for f, and two different (non-Bregman)
examples of D in (40). In particular, the upper plots corre-
sponds to choosing for D in (40) the total-variation distance
Dy as defined in (35). For constrast, the lower plots cor-
responds choosing for D in (40) the (Neyman) chi-square
divergence, i.e.,

D™ [lg™) = Z("“ :

i=1

(41)

The plots on the left compare Dy, (p™| qig,(8) with (37)
to D¢(p™|lg¥*(8)/C(f) with (36), for f corresponding to
the quadratic and separable Mahalanobis distances (where the
latter has parameters ()5 as specified in (39)). Consistent with
(38). Dxw(p™|4}%(8)) upper bounds Dy(p™||g}'(8)) for
both the quadratic divergence and the separable Mahalanobis
distance. Moreover, we see that larger values of e result in a
greater bias, as we would expect.

The plots on the right compare Dxy,(p™ ||gxr(8)) with (37)
to the middle term in (38), i.e., Ds(p™||qf.(8))/C(f), for f
corresponding to the quadratic distance. The results demon-
strate that ¢ff; (8) can, indeed, be an effective approximation
to ¢7*(8) with respect to minimizing Dy (p™|-).

In the third experiment we demonstrate the application of
our bounds to weather forecasting as discussed in Section I.
Recall that weather forecasters typically assign probabilistic
estimates to future meteorological events. The estimates are
designed to minimize a performance measure, according to
which the weather forecaster is evaluated. However, weather
estimates serve a wide audience, within which different recip-
ients may be interested in different and often conflicting
measures. For example, by minimizing the quadratic loss,
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Fig. 2. Divergence bound behavior under a divergence constraint. On the left is depicted the minimum of D (p®||g®)/C(f) over ¢° for p® = (1/4,1/2,1/4)

subject to D(p®||g®) > e. In the plots on the right, the minimizing ¢°

is replaced with that minimizing KL divergence. The upper and lower plots correspond

to D being total-variation and chi-square divergences, respectively. The different choices for f are as in Fig. 1.

a forecaster may reasonably assign zero probability of occur-
rence to very rare events, but this would result in an unbounded
logarithmic loss.

To demonstrate the value of using log-loss minimization to
control a large set of commonly used performance measures,
we analyze weather data collected by the Australian Bureau of
Meteorology [33]. This publicly available dataset contains the
observed weather and its corresponding forecasts in multiple
weather stations in Australia. In our experiment we focus on
the predicted chances of rain (where a rainfall is defined as
over 2mm of rain) compared with the true event of rain. Our
dataset contains n = 33134 pairs {(z1,y1),---,(Tn,yn)} of
forecasts and corresponding weather observations that were
collected during the period Apr. 28-30, 2016. For reference,
in this period, a fraction

1 n
= 5 =0.09
n-

i=1

of the observations correspond to an event of rain. We evaluate
the accuracy of the Australian weather forecasts by the three
commonly used proper loss measures: logarithmic, quadratic,
and 0-1 losses, with the latter defined via

Uy, ) =yL{g <t} + (1 -y)L{qg >t}

and where we choose as its parameter £ = 0.35, following the
Bureau’s guidelines. The first row of Table II summarizes our
results.

Note that the unbounded logarithmic loss is a consequence
of the fact that there are several instances in which the fore-
caster predicted zero chance of rain but it ultimately rained.
In correspondence with them, Australia’s National Meteoro-
logical Service confirmed that their forecasts are typically
internally evaluated by both a quadratic loss and a 0-1 loss
with parameter £ = 0.35. In addition, they perform more

TABLE II
WEATHER FORECAST EXPERIMENT

Weather Forecaster 0-1 loss 2 tic Logarithmic
loss loss
Australian
Forecaster 0.0898 0.0676 00
Modified
Forecaster 0.0901 0.0675 0.234

sophisticated evaluation analysis which is not in the scope of
this work.

Next, we consider a method for revising the existing fore-
casts based on our log-loss universality results. Since the
available forecasts are generated by a prediction algorithm
whose features unavailable to us, our revised forecasts can
only be based on the existing forecasts. Accordingly, we make
use of a simple logistic regression in which the target is the
observed data and the single feature is the corresponding origi-
nal forecast. Specifically, given an original weather forecast of
z € [0,1], we generate the following updated weather forecast
according to

1

905 (%) = T —Fmz> (42)

where the regression parameters 3y and [3; are fit to training
data {(Z1,%1),---,(Za,¥a)} according to

- N m
argmin — Ilug(yi,qﬁ B (Ii))-
Bo,B1 ”; o

Authonized licensed use limited to: MIT Libranes. Downloaded on July 17,2020 at 19:04:24 UTC from IEEE Xplore. Restrictions apply.



1666

To avoid over-fitting, the training data was from Jan. 2016,
and thus different from the test data . The accuracy of the
resulting updated forecasts are presented in the second row of
Table II.

Note that the updated forecasts now incur a bounded log-
loss, and that this robustness is achieved without significantly
affecting accuracy with respect to the other loss functions.
Evidently, even such simple post-processing improves log-
loss performance while controlling a large set of alternative
measures, consistent with the results of Theorem 1 (and of
those in [25] for the 0-1 loss).

VII. EXAMPLE APPLICATIONS

The Bernoulli log-likelihood loss function is widely used in
a variety of scientific fields. Several key examples, in addition
to those discussed above, include logistic regression in sta-
tistical analysis [34], the info-max criterion in machine learn-
ing [35], independent component analysis in signal processing
[36], [37], splitting criteria in classification trees [38], DNA
sequence alignment [39], and many others. In this section
we demonstrate the potential applicability of our universality
results in the context of three key examples.

A. Universal Clustering With Bregman Divergences

Data clustering is an unsupervised learning procedure that
has been extensively studied across a variety of disciplines
over many decades. Most clustering methods assign each data
sample to one of a pre-specified number of partitions, with
each partition defined by a cluster representative, and where
the quality of clustering is measured by the proximity of
samples to their assigned cluster representatives, as measured
by a pre-defined distance function.

Several popular algorithms for data clustering have been
developed over the years. This includes the well-known
k-means algorithm [40] which minimizes the quadratic
distance. Another widely used example is the Linde-Buzo-
Gray (LBG) algorithm [41], [42] based on the Itakura-Saito
distance [43]. More recently, Dhillion et al. [44] proposed
an information-theoretic approach to clustering probability
distributions based on KL divergence.

All of these clustering methods are based on an Expectation-
Maximization (EM) framework for minimizing the aggregate
distance, and share the same optimality property: the centroid
(representative) of each cluster is the mean of the data points
that are assigned to it. Moreover, all of these algorithms use
a Bregman divergence as their measure of distance, as do
some promising emerging methods. For example, a new class
of clustering methods has been shown to offer significant
improvement in various domains by utilizing so-called total
Bregman divergence, a rotation-invariant version of classical
Bregman divergence [45]-[49].

The connection between clustering and the Bregman diver-
gence is developed in Banerjee ef al. [20]. In particular, a key
result is that a random variable X satisfies

E[X]

= argzmiﬂE [Ds(X|12)] (43)
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if and only if Dy is a Bregman divergence. It follows that
any clustering algorithm that satisfies the “mean-as-minimizer”
property centroid property minimizes a Bregman divergence,
and thus we need look no further than among the Bregman
divergences in selecting a candidate distance measure for
EM-based data clustering.

Even with this restriction, it is frequently not clear how
to choose an appropriate Bregman divergence for a given
clustering task. Banerjee ef al. [20] show that there is a unique
correspondence between exponential families and Bregman
divergences. As such, if the data are from an exponential
family, with different parameters for different clusters, then the
natural distance for clustering is the corresponding Bregman
divergence. As an example, for Gaussian distributions with
differing means, the quadratic distance used by k-means is
the natural distance. However, in practice, information about
the generative model for the data is rarely known.

As an alternative, our results suggest a “universal” approach
to clustering that provides performance guarantees with respect
to any Bregman divergence that might turn out to be rele-
vant. Specifically, suppose we are given samples =" to be
partitioned into k clusters with corresponding representatives

¥ = (u1,...,px). Then the optimum solution for measure
Df is
Kf —argm_mz Z Dy (x5,
7=1iea] (u)

where®

Fi,k
7 ()

2{ie{1,....n}: Dy(willny) < Dy(willmy), all ' # j}-

Similarly, for measure Dk, we use the (slightly simpler)
notation It (u*) = i]f”" (u*), and pf; = pk .

Using Theorem 3 (for f and C(f) satisfying the conditions
of the theorem), we can then bound performance with respect
to Dy according to [cf. (38)]

k
> Y Dualailluy™)

I=lied¥t(ug,)

_C(f)Z Y. Dille™

Jj= lee:rKL(,u kL)

_C(f)z 2

7=Lies!(uk)

Dy(xillp]), (44

(JU'{ L Ju‘k)

Via (44), we conclude that by applying a clustering algo-
rithm that minimizes KL divergence, we provide performance
guarantees for any (reasonable) choice of clustering method.
As such, our analysis provides further justification for the pop-
ularity of the KL divergence in distributional clustering [50]

where pf =

SWhen a sample is equidistant to multiple representatives, we pick one
arbitrarily.
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and specifically in the context of natural language processing
and text classification [51]-[53].

B. The Universality of the Information Bottleneck

The information bottleneck [54] is a conceptual machine
learning framework for extracting an informative but compact
representation of an explanatory variable® X with respect
to inferences about a target Y, generalizing the notion of a
minimal sufficient statistic from classical parametric statistics.
Given the joint distribution px y, the method selects the
compressed representation for X that preserves the maximum
amount of information about Y. As such, Y effectively reg-
ulates the compression of X, so as to maintain a level of
explanatory relevance with respect to Y. Specifically, with
T denoting the compressed representation, the information
bottleneck problem is

max [(T;Y) subjectto I(X;T)<I,

Prx

(45)

where T' «~ X + Y form a Markov chain, and thus
the minimization is over all possible (generally randomized)
mappings of X to T. Here, I is a constant parameter that
sets the level of compression to be attained. As I is varied,
the tradeoff between I (X; T') (corresponding to the representa-
tion complexity) and I(T";Y') (corresponding to the predictive
power) is a continuous, concave function.

Information bottleneck analysis is a powerful tool in a
variety of machine learning domains and related areas; see,
e.g., [55]-[59]. It is also applicable in a variety of other
fields, including neuroscience [60] and optimal control [61].
Recently, there have been demonstrations of its ability to
analyze the performance of deep neural networks [62]-[64].

It is useful to recognize that the information bottleneck
problem (45) is an instance of a remote-source rate-distortion
problem [11]. In particular, let Y be a remote source that is
unavailable to the encoder, and let X be a random variable
that is dependent of Y through a (known) mapping px|y,
which is available to the encoder. The remote source coding
problem is to achieve the highest possible compression rate
for X given a prescribed maximum tolerable reconstruction
error of Y from the compressed representation T'. In this
setting, the reconstruction error is measured by a predefined
distortion (loss) function, where the choice of log-loss leads
to the standard information bottleneck problem [65].

While the choice of log-loss is typically justified by several
properties of KL divergence [22], the results of this paper can
be applied to show that its use provides valuable universality
guarantees for the remote source coding problem.

To develop this view, first note that

I(T;Y) =I(X;Y) — Epy 1 [Dxn(pyx (1X)lpy i (-1T))] ,

which follows from straightforward algebra. In this form,
we recognize py|x as the full predictive model and py |7
as the compressed predictive one. Since pxy is given,
we maximize I(T;Y) (as (45) dictates) by minimizing

SNote that X can equivalently represent a collection of variables.
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Epx.r [Dxu(pyix (-1 X)|pyir(-|T))]. In the more general
souce coding problem, we instead seek to minimize

Epx.r [Py (py x C1X) Py (-1T))] »

with f chosen as desired.
When the appropriate choice of f is not clear, via Theorem 3
we have

Epx.z [Dy(pyix (1X)llpyr(-1T))]

< C(f) Epy » [Dxu(pyx (-1X)|pyz(-IT))]
47)

for any Bregman divergence D; that satisfies Definition 2
and (25a) for some C(f) > 0. Therefore, by minimizing
Epx.r [Dxu(py|x (-1 X)|pyr(-|T))] we effectively minimize
(46) for any divergence that might reasonably be of interest.

Finally, it is worth noting that in classification problems,
separable divergence measures are popular. In this case, then,
via Theorem 5 we obtain a universality bound of the form
(47) for any separable Bregman divergence Dy that is convex
in its second argument.

(46)

C. Universal PAC-Bayes Bounds

Probably approximately correct (PAC)-Bayes theory blends
Bayesian and frequentist approaches to the analysis of machine
learning. The PAC-Bayes formulation assumes a probability
distribution on events occurring in nature and a prior on
the class of candidate hypotheses (estimators) that express
a learner’s preference for some hypotheses over others.
PAC-Bayes generalization bounds [66]-[68] govern the per-
formance (loss) when stochastically selecting hypotheses from
a posterior distribution. We begin this section with a sum-
mary of those aspects of PAC-Bayes theory needed for our
development.

Let X be an explanatory variable’ (feature) and Y an
independent variable (target). Assume that X and Y follow
a joint probability distribution pxy. Let H be a class of
hypotheses (estimators) for Y, where each estimator g € H is
some functional of X. As an example, in logistic regression,
each hypothesis is an estimator of the form (42) for some
constants Gy and ;.

Next, we view g as a realization of a random variable @) that
is independent of X and Y and governed by (prior) distribution
pDQ on H, and let [(y, g(z)) be the loss between the realization
y and the estimate g(x), for a given estimator ¢ and loss
function [, such that l4(y, g(z)) € [0, Lmax] for some constant
Lax > 0 and all z, y, and q. We select g € H based on i.i.d.
training samples

Tn £ {(Ilayl): veey (Iﬂayﬂ)}

from px y so as to minimize the generalization loss
Lq=Epx, [UY,q(X))].

In particular, the selection is based on the training loss
R 1
L2~ llysq(xi)).
i=1

TWhile the development generalizes naturally to collections of explanatory
variables, to simplify the exposition we focus on a single such variable.
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An example of a standard generalization bound of this type
is the following, in which H is assumed to be countable.

Theorem 6 (PAC bound [68]): Given training data T, from
px,y. with probability at least 1 — 4,

2)\ R
q <

for all g € H and all A > 1/2.

In the PAC-Bayes extensions of Theorem 6, we allow H to
be continuous (uncountable). Moreover, in addition to pOQ we
let po another distribution over H, and define

ALmax

oy L
O ?
5590

Lyq 2 Epey [Lpo(X,Y)], (48)
and
1 n
s Z_j o (i 30), (49)
where
Ly (z,y) £ Ep, Iy, Q(x))] - (50)

While tighter PAC-Bayes bounds have been developed—
see, e.g., [67], [69]-[72]—the original is the following, which
can be derived as a corollary of results by Catoni [69].

Theorem 7 (PAC-Bayes bound [66]): Given training data
Trn from px y, with probability at least 1 — 4,

27 o AL max 1
Lp, < (ﬁ) (LPQ+T (DKL (pqllpd)+log 3))

for all pg on H and all A > 1/2.

Evidently, the bounds in both Theorem 6 and Theorem 7 are
specific to the choice of loss function [. For scenarios where
such a choice is not clear, a “universal” PAC-Bayes bound
based on log-loss, which we now develop, is useful.

A complication in the development is PAC-Bayes bounds
apply only to bounded loss functions as they focus on
worst-case performance [68], and thus log-loss is inadmissi-
ble. Different approaches have been introduced to overcome
this limitation. In [68], McAllester suggests modifying an
unbounded loss by applying an “outlier threshold” Lax
to replace l(y,q(x)) with min{l(y,q(z)), Lmax}. Which is
always bounded.. This approach introduces analytical difficul-
ties as the new loss is typically neither continuous nor convex.

An alternative approach, which we follow and whose use
is more widespread, assumes that the underlying distribution
for the data is bounded away from zero [73]-[76]. Equiva-
lently, the model py|x is not deterministic (singular), and the
hypothesis class is chosen accordingly. Specifically, for some
A > 0 we have py|x(y|z),q(z) € [A,1 — A] for every z, y,
and q.

Via the latter methodology, the loss function is bounded
on the domain of interest, and we obtain the following
universal PAC-Bayes inequality, a proof of which is provided
in Appendix G.

Theorem 8: Let Il(y,q) be a loss function that satisfies
Definition 1, and G its corresponding generalized entropy
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function. If p(y|z),q(x) € [A,1 — A] for some A > 0 and
every r, y, and ¢ € JH, then with probability at least 1 — 4,

2AC(G) (410 . ALmax 1
Lpg = 55 —71 (L}pg R— (DKL(PQHPuq) + log 3)),
(51
for all pg on H and all A > 1/2. In (51), Linax = —logA,

C(G) > —%G” (%)

is a normalization constant that depends only on G, and f;;,"g
is of the form (49), where f;pQ (z,y) is specialized to [cf. (50)]

LIOE(.E y) pQ [Ilog(y: Q(I))] 1

with ljo¢ as defined in (3).

Theorem 8 establishes that even when we do not know
a priori the loss function with respect to which are to be
measured, it is often possible to bound the generalization loss.
Such universal generalization bounds have potentially wide
range of applications.

VIII. Di1sCcUSSION AND CONCLUSIONS

In this work we introduce a fundamental inequality for two-
class classification problems. We show that the KL divergence,
associated with the Bernoulli log-likelihood loss, upper bounds
any divergence measure that corresponds to a smooth, proper
and convex binary loss function. This property makes the
log-loss a universal choice, in the sense that it controls any
“analytically convenient" alternative one may be interested in.
This result has implications in a wide range of applications.
There are many examples beyond those we have explicitly
described. For instance, in binary classification trees [38],
the split criterion in each node is typically chosen between
the Gini impurity (which corresponds to quadratic loss) and
information-gain (which corresponds to log-loss). The best
choice for a splitting mechanism is a long standing open
question with many statistical and computational implications;
see, e.g., [77]. Our results indicate that by minimizing the
information-gain we implicitly obtain guarantees for the Gini
impurity (but not vice-versa). This provides a new and poten-
tially useful perspective on the question.

Finally, by viewing our bounds from a Bregman divergence
perspective, we extend the well-studied f-divergence inequal-
ities by providing complementary Bregman inequalities. Col-
lectively, these results contribute to our growing understanding
understanding of the fundamental role that KL divergence
plays in these two important classes of divergences.

APPENDIX A
BREGMAN DIVERGENCE CHARACTERIZATION

Following [29], a Bregman divergence generator is a con-
tinuous, strictly convex (finite) function f: 8§ — R on some
appropriately chosen open interval § = (a,b) such that [a, b]
covers (at least) the union of the ranges of s and ¢, as appears
in (11)—e.g., 8 = [0,1] in the binary classification problem
of Section IV. Due to condition P2.2, we further restrict our
attention to continuously differentiable f.
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We continuously extend f to f: [a,b] — R U {+occ} via

!_1_1:1:!11 f(s) s=a
f(s) = 4 £(s) s € (a,b)

lin})f(s) s=b,

which can be infinite only for s € {a,b}. Moreover, we
continuously extend the derivative f’(s): (a,b) — R to

f'ia, b — RU{—00,+0c0} via
lim f'(s) s=a
fls)={ f(s) s € (a,b)
lin}, f'(s) s=b.
Using these extensions, for 8§ = [a, b], we let
Dy(slit) = d(s, 1),
2

where ¢: [a,b]> — R U {+oc} is following lower semi-
continuous nonnegative function. First,

bi(s,t) = f(s) — f(t) — (s =) f'(t), s€Ela,
Next, for s € (a,b),

b, t € (a,b).

&f (s: a)
R {f(s) — sf'(a) + lim [tf'(a) - £()] f'(a) > —o0
00 fl(a) = —o0
and
&f (s: b)
s {f(S) —sf'(b) +lim [tf'(b) - f(&)] F'(B) < +o0
% F(b) =
where we note the limits exist but may be infinite. Finally,
0 ) (s,t) = (a,a)
lim [£(s) — sf'(b)]
) +1lim [¢7/() - (1)) (D)= (@)
(s, t) = = _
f( ) 4 ll_]:"[tl} [f(s)_sf’(a)] o
+lim [t(a) — f(1)] &= 0
0 (s,t) = (b, b).
APPENDIX B

WEIGHT FUNCTIONS OF SMOOTH PROPER LOSSES

As a complementary view of weight functions, we note
that when a smooth loss function is proper, its expected loss
satisfies

a
gt P9

whence

=pli(p) + (1 —p)ly(p) =0,

q=p

L) _ @) _ 0

1-p p ’
where the last equality in (52) is obtained by matching terms
in the forms (2) and (10), and using (14). Shuford et al. [78]
establish that the converse is also true: a smooth loss function
is proper only if (52) holds for some nonnegative w(p) that
satisfies fEI_E w(p)dp < oo, for all € > 0.

(52)
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APPENDIX C
PROOF OF THEOREM 1

First, due to the convexity of the loss (with respect to g),
we have

8

£y L(p,q) = —w(t;‘)(q p) = w(q) + (¢ — p)w'(g) >0

(33)

for every fixed p € [0,1] and ¢ € (0, 1). Specializing (53) to
the cases p =0 and p = 1 then yields

w'(q) _ 1
S W(Q) —q e
for all g € (0,1). In turn, (54) implies
B 1/2 1 1/2 w;(q) 1/2 1
/ 1 s s ), i
M1 (9 1
ﬁ/zqdqgfzw(q) //21—qd%
ie.,
w(l/2) _ (1/2)
B g SP@ <o ac@12) 6%
W(lﬂ) (1/2)
2% w(q) < 21 —q)’ €[1/2,1). (55b)

Similar results appear in, e.g., [26, Theorem 29]. We empha-
size that we have not assumed that w(-) is integrable on (0, 1),
so as to accommodate loss functions such that ly(-) and/or [; (-)
are unbounded at 0 and 1, respectively [2].

Next, we show there exists a constant C' such that

R(p, Q’) C Dxuw(pllq) —

is nonnegative for all p,q < [0, 1]. For any p € [0, 1], since
R(p,p) = 0 it suffices to show that R(p, -) has a minimum at
p for a suitable choice of C. From

D_c(pllq) (56)

(%R(p, q9)=(—p) (ﬁ - W(Q)) ) (57)

we see that ¢ = p is a unique stationary point. Moreover, this
stationary point is a minimum when

a2
ﬁR(P, q)

q=p

_ [C (q% - (11_;52) —w(q) — (¢—p) uf(e)]

c a=p
= g5 v >0, (58)
for all p € (0,1).
Now for every g € (0,1/2), we have
C C 1 1
g v@> g w02 g (0~ gu(3)).
(59a)
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where the first inequality follows since g > 0, and the last
inequality follows from (55a). Similarly, for g € [1/2,1) we
have

Al > o~ () 1 (3w (3) )
(59b)

where the first inequality follows since g < 1, and the last
inequality follows from (55b). Hence, choosing

1 /(1 1, /(1
O>§“’(é)—‘éa (2)

ensures the right-hand side of (the relevant variant of) (59) is
positive for all g € (0, 1), and thus (58) holds for all p € (0,1).
Hence, we conclude that R(p,q) > 0 for all p,q € (0,1).

Next consider the case p € {0,1} and ¢ € (0,1). If choose
C according to (60), then (58) holds for all p € (0,1). In
this case, (57) must be strictly positive for all ¢ € (0,1)
when p = 0, so R(0,-) is monotonically increasing, and
thus its minimum is attained at 0. Likewise (57) must be
strictly negative for all ¢ € (0,1) when p = 1, so R(1,-)
is monotonically decreasing, and thus its minimum is attained
at 1. In turn, since R(0,0) = R(1,1) = 0, it follows that
R(p,q) = 0 also holds for p € {0,1} and ¢ € (0,1).

It remains to consider the case p € [0,1] and ¢ € {0, 1}.
When p = g € {0,1} we have R(p,q) > 0 since R(0,0) =
R(1,1) = 0. Finally, when p # q € {0, 1} we have Dxr.(p||q)
is unbounded, so (17a) holds trivially. [ |

(60)

APPENDIX D
PROOF OF THEOREM 3

It suffices to show that
R(p™,q™) £ C(f) Dk (p™(lg™) — Ds(p™(I™)
is nonnegative for all p™, g™ € [0, 1]™. Using (21) in the form

Ds(p™lld™)=f@™) ~ f(@™) = %(Pk —ax)f(d™),
k=1

(61)
we have
ad af(p™
5o-R™ ") = (C(f) g — 2L )
8 T
- (O(f) log ¢; - fa(‘; )) (62)
and, in turn,
3?:;3?5 ’ DPi 3}?53?5

= [O(f)HKL(pm) - Hf(pm)]g,j 1 (63)

where [-]; ; denotes the ¢, jth element of its matrix argument.
Hence, it follows that R(-, ¢™) is strictly convex if there exists
a constant C(f) such that (25a) is satisfied. Moreover, from
(62) we have that p™ = ¢'" is a stationary point, so provided
(25a) is statisfied, this stationary point is a minimum. Finally,
since R(p™,p™) = 0, it follows that R(p™,¢™) = 0 for all
p™,qm € [0,1]™. u
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APPENDIX E
PrROOF OF COROLLARY 4

First, let
V(p™) £ C(Q) Hxn(p™) —Q, p™ €[0,1]™,
with
M(V) =2 An(V) 2 Agin(V)

denoting its eigenvalues, and note that according to (25a)
it suffices to show that when C(Q) satisfies (27), we have
V(p™) = 0, for which the condition Amin(V) > 0 is
equivalent.

Next, let V = V' (1™), whose eigenvalues we denote via

)\1(1‘?) >z )‘m(v) = ’\min(v)a

and note that for every z™ € R™,
m Iz
(Im)TVIm _ C(Q) Z It (Im)TQ:Em
im1 Pt

>CQY 2 @™)TQa"

i=1
= (ﬂ:m)Tf;’Im.
Hence,
Amin(V) = min ™) TV ™
) {zm: E.:I?=1}( )
> min _ (2™)TVz™ = Apuin(V),

{zm: X, zi=1}
where the equalities follow from the Rayleigh quotient
theorem [79, '[heorem 4.2.2]. }
Finally, \;(V) = C(Q)—X\;(Q) since® V = C(Q) I -Q, so
)\min(v) = )\min(i?) = O(Q) - )\ma.x (Q)

Accordingly, setting C(Q) > Amax(Q) yields V (p™) = 0 for
all p™ € [0, 1]™. m

APPENDIX F
PROOF OF THEOREM 5

First, note that

7]
Bgde@lla) = (a- pr)g"(q) (64a)
2
g
Since d4(p,-) is convex for every p € [0,1], (64b) is
nonnegative for every p € [0,1] and ¢ € (0,1). Choosing
p = 0 we obtain

dy(plle) = (¢ —p)g" (q) + ¢"(q)- (64b)

9" (q)
g"(q)’

[/

1
- q € (01 1)
q

Hence, we have

1 1
—/ ldqéf g,,(Q) dg,
g 4 g 9"(q)

8We use [ to denote the identity matrix.
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whence

g'(q) .

Next, following an approach similar to that in the proof of
Theorem 1, we define

(65)

R(p™,q™) £ r(pi, a) (66a)
i=1
with
r(p,q) £ CdkwL(pllq) — dg(plla), (66b)

and show that when C' is chosen as prescribed, (66a) is
nonnegative for p™,¢™ € [0,1]™. Note that it is sufficient
to show that for such C, (66b) is nonnegative for every
p,q €[0,1].
Accordingly, we fix p and analyze r(p, ¢) with respect to g.
Via (64) (including its specialization to (30)) we obtain
a C
507?90 =(a-p) (— - g”(e)) (67a)
q q
2

0 p
a—lﬁT(Pu q)=C )

1

—-4"(¢) —(g—p)g"(9).  (67b)

First, consider the case p € (0,1). Since r(p,p) = 0, if

r(p,q) = 0 then a global minimum of r(p, -) must occur at p.

Proceeding, from (67a), we see that the unique stationary point

is ¢ = p. Moreover, this stationary point is a minimum when
32

a—qg'-'"(P, q)

O "
=——g(p)
p
a=p
is positive, from which we obtain the requirement

C
— —4g"(g) >0, forall qge(0,1). (68)
q

Choosing C' > ¢"'(1) we obtain
g"(1)

c-w>L2 W=,
where the last inequality follows from (65). Hence, r(p,q) = 0
for p,q € (0,1).

Next, consider the case p € {0,1}. Again, with the choice
C > g¢"(1), (68) holds for all ¢, and thus (67a) is positive for
g € (0,1) when p = 0, so (0, -) is an increasing function.
Since r(0,0) = 0, then, we conclude r(0,¢) > 0. Likewise,
thus (67a) is negative for ¢ € (0,1) when p =1, so r(1,-) is
a decreasing function. Since r(1,1) = 0, then, we conclude
r(1,q) = 0. Hence, 7(p,q) > 0 for p € {0,1} and ¢q € (0,1).

It remains only to consider the case ¢ € {0,1}, for any
p €[0,1]. When p = ¢, we have r(p,q) = r(q,q) = 0. When
p # g = 0, (31) is unbounded so 7(p,0) > 0. For the case
g = 1, straightforward calculation yields

a A ’
a—p'-'"(p, 1) = a(p) —a(1), with a(p) = Clogp — g'(p). (69)
But

d@=%—f@,
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which matches the left-hand side of (68), and thus is positive
for all p € (0,1) when C > ¢"(1), in which case a(-) is an
increasing function. As a result, (69) is negative for p € (0,1),
and thus r(-,1) is a decreasing function. Since, in addition,
r(1,1) = 0, we conclude r(p, 1) > 0. Hence, r(p,q) = 0 for
pe[0,1] and q € {0, 1}. [

APPENDIX G
PROOF OF THEOREM 8

The following lemma will be useful.

Lemma 9: If I(y,q) is a loss function that satisfies
Definition 1, with corresponding generalized entropy func-
tion G, then

G(p) — CGiog(p) <0, forall p,q € [0,1],

when
1 ., (1
O>—§G (2), (70)
where Giog(p) is the Shannon entropy as defined in (8).
Proof: With
R(p) = G(p) — CGiog(p)
we have
gR(p) — C'(p) — Clog ~—P (71a)
P
92 . C C
o ) =GP+ w(p), (71b)

1-p pl-p

where to obtain the second equality in (71b) we have
used (14). In turn, using (59) from the proof of Theorem 1,
we likewise conclude that choosing C according to (70)
ensures that

m-ﬂ!(p))[),

in which case R(p) is strictly convex. In addition, we have

G(p) = L(p,p) = (1 —p) lo(p) + pl1(p),

where the first and second qualities follow from (10) and
(2), respectively, and thus using (7) we have G(p) = 0 for
p € {0,1}. Since Giog(p) = 0 for {0,1} as a special case,
it follows that R(p) = 0 for p € {0, 1}. Hence, R(p) < 0.

Proceeding to the proof of Theorem 8, from (12) with (9)
we obtain D_¢(p||lg) = L(p, g) — G(p), which when used in
conjunction with (17a) of Theorem 1 yields

L(p, q) < C Liog(p, q) + G(p) — C Giog(p)
S CLng(p': q):

(72)
(73)

where in (72)

Llog(p; Q') L£E [Jlog(yu Q)] )

and where to obtain (73) we have used Lemma 9.
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Next, we have

Lpg =Epxy [Epg 1Y, Q(X))]]

= Epxpo [Epvixcix [V, QX)) (74)
< Eppg [CEpy xcix) lhog(V, QX)) (79)
= CLyE, (76)

where to obtain (75) we have used an instance of (73) to bound
the inner expectation in (74).
Moreover, since py|x (y|z),q(z) € [A,1 — A] we have

Log(Y,Q(X)) € [0, —log A] (77)

with probability one.

Finally, using (76) followed by Theorem 7 specialized to the
log-loss, together with (77), we obtain that with probability
1-4,

Ly, < CLI®

Soi-1 (Lp§ + Dxw(pqllpg) +log 5)) ;

for any A > 1/2 and Lmax = —log A. [ |

ALmax (
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