Journal of Mathematical Imaging and Vision
https://doi.org/10.1007/s10851-020-00959-4

®

Check for
updates

Shape Analysis of Surfaces Using General Elastic Metrics

Zhe Su’ - Martin Bauer’ - Stephen C. Preston? - Hamid Laga3* - Eric Klassen

Received: 15 October 2019 / Accepted: 9 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

1

In this article, we introduce a family of elastic metrics on the space of parametrized surfaces in 3D space using a corresponding
family of metrics on the space of vector-valued one-forms. We provide a numerical framework for the computation of geodesics
with respect to these metrics. The family of metrics is invariant under rigid motions and reparametrizations; hence, it induces
a metric on the “shape space” of surfaces. This new class of metrics generalizes a previously studied family of elastic
metrics and includes in particular the Square Root Normal Field (SRNF) metric, which has been proven successful in various
applications. We demonstrate our framework by showing several examples of geodesics and compare our results with earlier

results obtained from the SRNF framework.
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1 Introduction

Shape analysis of surfaces in R3 has been motivated by
many applications in bioinformatics, computer graphics and
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medical imaging, see, e.g., [2,14,16,19,22,32]. In most appli-
cations, the actual parametrization of the surfaces under
consideration is unknown and one is only able to observe
the “shape” of the object, i.e., a priori the point correspon-
dences between the surfaces are unknown and should be an
output of the performed analysis. Furthermore, we will often
identify surfaces that only differ by a rigid motion. Thus, we
define the shape space of surfaces as the quotient space of all
parametrized surfaces modulo the group of reparametriza-
tions and/or the group of rigid motions. One goal in shape
analysis is to quantify the differences and find the optimal
deformations between the given objects; see Fig. 1 for two
examples of optimal deformations between distinct surfaces.

The main challenge in the context of shape analysis of
surfaces consists in the registration problem, i.e., finding the
(optimal) point correspondences between distinct surfaces,
which can then be used as the basis for the resulting statistical
analysis. In the previous work, the correspondence problem
has often been solved in a preprocessing step, which is then
followed by an independent statistical analysis of the result-
ing parametrized surfaces. This approach can yield several
undesirable consequences on the statistical analysis, see, e.g.,
[29].

The goal of elastic shape analysis is to formulate this
problem in a unified framework: Using a reparametrization
invariant metric on the space of all parametrized surfaces,
one then studies the induced Riemannian metric on the quo-
tient space. Using this approach, the point correspondences
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Fig.1 Geodesics between shapes in the space of unparametrized surfaces Imm(S 2 R3) / Diff L (S 2y with respect to the split metric (4) for a choice

of coefficients (1, 1, 0.1, 0)

and the resulting statistical analysis can be performed in a
consistent way.

In the past years, several metrics and frameworks have
been proposed as potential approaches to this goal, see, e.g.,
[4,18,24,25,29,33]. In particular, a class of elastic metrics has
been proposed in [17], which is defined as a weighted sum of
three components that measure the differences in shearing,
stretching and bending of the surface. This family of metrics
is actually a subfamily of the general class of reparametriza-
tion invariant Sobolev metrics, as studied in [4-6]. Itis also a
natural generalization of the family of elastic G**-metrics on
the space of curves [26], which has been proven efficient and
successful in numerous shape analysis applications [10,28—
31,34-36].

To obtain a numerically efficient representation, Srivas-
tava et al. [28] introduced the so-called Square Root Velocity
Function (SRVF) for comparing curves. In this framework,
the space of curves endowed with the elastic metric for a
particular choice of coefficients is isometric to an L>-space,
which makes the computation of geodesics extremely easy
and efficient. Motivated by this progress, Jermyn et al. [18]
introduced the Square Root Normal Field (SRNF) represen-
tation for elastic shape analysis of surfaces and showed that
the L>-metric on the space of SRNFs corresponds to one
member of amore general class of elastic metrics on the space
of surfaces. While it is computationally efficient, there are
several drawbacks to this approach: The SRNF metric only
consists of the last two terms of the general elastic metric for
surfaces and is thus highly degenerate; i.e., there exists a high-
dimensional space of deformations that has no cost in this
framework.! Furthermore, the SRNF map is neither injec-
tive nor surjective, and its image is not fully understood. In
consequence, there exists no analytic formula for geodesics
in the image space and geodesics are usually approximated
by numerically inverting the straight line between the given
SRNFs, where each inversion is calculated as the solution to
an optimization problem [25].

1 See the article [20] for an example of a path of closed surfaces that
connects two distinct shapes, such that the whole path has the same
SRNE.
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Contributions of this article The purpose of the present
article is to introduce a numerical framework for the com-
putation of the geodesic initial and boundary value problem
with respect to a family of metrics that contains the general
elastic metric as a special case. The framework complements
[7] which defined, using vector-valued one-forms, a metric on
the space of surfaces that is invariant under rigid motions and
reparametrizations. It does not require a numerical inversion
of the SRNF map and thus overcomes some of the aforemen-
tioned difficulties. Furthermore, this framework will allow
us in the future to choose the constants of the metric in a
data-driven way, which has potential importance in many
applications. See [3,23] for related considerations regarding
the choice of constants for the elastic metric on the space of
curves.

2 Mathematical Framework and Background

In this section, we will give the formal definition of the space
of shapes and describe the general elastic metric. Then, we
will introduce a new representation for the elastic metric
using vector valued one-forms, which will still allow us to
obtain an efficient discretization of the geodesic boundary
value problem.

From here on, we will model a surface as an immersion
f from a model space M into R3, i.e., a smooth map from
M to R? that has an injective tangent mapping. Here, M is
a two-dimensional compact manifold encoding the topology
of the objects under consideration. Typically, choices of M
include the two-sphere M = S 2 or the sheet M = [0, 1]2.

Denote by Imm (M, R?) the space of all immersions. To
define the space of shapes, we now consider the actions of
the group of rigid motions and the group of diffeomorphisms
on Imm(M, R?). The group of rigid motions is given by the
semidirect product of the group of rotations and the group of
translations, i.e., SO(3) x R3, where SO(3) is the set of all
rotation matrices. It acts on Imm(M, R3) as follows:

(SO(S) X ]R3> « Imm(M, R?) — Imm(M, R?)
(R, v), f) > Rf +v.
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Denote by Diff (M) the group of diffeomorphisms that
preserve the orientation of M. The action of Diff; (M) on
Imm (M, R?) is given by composition from the right:

Imm(M, R?) x Diff (M) — Imm(M, R?)
(f,v) > foy.

We say that two immersions f and f> have the same shape
if they are in the same orbit of the action of Diff (M), or
both actions depending on whether we want to mod out rigid
motions. The space of shapes can then be defined as the
quotient space:

S(M,R*) = Imm(M, R?)/G,

where G = Diff | (M) or G = Diff (M) x (SO(3) x R?).

This quotient space has some mild singularities and does
not carry the structure of a smooth manifold but only of an
infinite-dimensional orbifold [11]. However, for the purpose
of this article, we can ignore these subtleties and assume that
we are always working away from the singularities, which
allows us to treat S(M, R?) as an infinite-dimensional man-
ifold.

By endowing the space of immersions Imm(M, R?) with
a Riemannian metric that is invariant under the actions of
SO(3) x R3 and Diff | (M), the space of shapes S(M, R3)
becomes a Riemannian manifold (orbifold), where the metric
is induced by the Riemannian metric on Imm(M, R3).

In the following, we will denote by distimm the geodesic
distance function of a Riemannian metric on the space of
immersions Imm (M, R3) and by [ f] the equivalence class
of f under the action of G. Given two surfaces f] and f;, we
can define the distance between [ f1] and [ f>] as the infimum
of the distance between the orbits of f; and f, under the
action of G. For example, the distance function on the space
of unparametrized surfaces S = Imm(M, R3)/ Diff ;. (M)
can be defined as follows:

dists([f1], [f2]) = yeDiigf on distimm (f1 0 ¥, f2)-

+

We will use this induced distance as our measure for com-
paring unparametrized surfaces. Given two parametrized
surfaces, to measure the similarity between them, we will
need to find the optimal reparametrization in Diff ; (M) that
realizes the infimum. If we also want to mod out rigid
motions and find the distance between two elements in
the space of unparametrized surfaces modulo rigid motions
Imm(M, R?)/ (Diff (M) x SO(3) x R¥), we will need to
solve a joint optimization problem of finding the best
reparametrization, rotation and translation.

2.1 The General Elastic Metric and the SRNF
Framework

Jermyn et al. introduced in [18] the general elastic metric
which has the desired invariance properties under shape-
preserving deformations. To define this metric, we first
introduce a transformation that maps an immersion onto its
induced surface metric and normal vector field:

Imm(M, R?) > Met(M) x C®(M, R?)

f— (gz:gf,n:nf) ,

where n/ is the unit normal vector field to the surface f,
which is given in local coordinates by

_ fxxfy
n—= 2227y
|fxxfy|

and where the surface metric is given by

g = f"( g = (TS Tf Jps.

It is classical result in Riemannian geometry that any surface
can be reconstructed uniquely by these two quantities [1].
Thus, this representation allows one to define a Riemannian
metric on the space of immersions by describing it on the
image Met(M) x C®(M, R3). The general elastic metric as
introduced in [18] is defined by:

Gg n((8g,6n), (8g,0n))

= Af tr(g~'8gg ™' 88) 1y +B/ tr(g~'88) g
M M
+C [ (ommong ()
M

where A, B, C > 0 are constants and where 11, denotes the
induced volume density of the surface f.

Each of the three terms appearing in the metric (1) has
a natural geometric interpretation: The first term penalizes
local change in the metric (shearing), the second term mea-
sures the change in the volume density (scaling) and the third
term quantifies the change in the normal vector (bending).

Instead of using the (g, n) representation for comparing
surfaces, in the same paper [18], Jermyn et al. introduced the
SRNF framework, where a surface is represented only as a
rescaled normal vector field:

Q: Imm(M, R?) — C®(M, R?)
f(s) = A(s)n(s),

where A(s) denotes the local area-multiplication factor,
whichis giveninlocal coordinates by A(s) = | fx(s) X fy(s)].

@ Springer
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After equipping the target space C*° (M, R?) with the flat L2
metric, the map Q becomes an infinitesimal isometry, where
the space Imm (M, R?) is equipped with the elastic metric
GAB-C with A =0, B = {; and C = 1, i.e., the pullback
of the L? metric on C*°(M, R?) along the map Q is equal to
the metric G% 161 . Note, however, that the resulting metric is
degenerate for this choice of constants, i.e., there might exist
deformation fields that have no cost with respect to the met-
ric. Furthermore, given ¢ € C* (M, R?), there may be either
no preimage 0~ !(¢) € Imm(M, R3) of ¢ or many preim-
ages. Most importantly, the image of the space of immersions
under the SRNF map cannot be easily characterized and, so
far, it is not well understood.

Although the distance between two surfaces, which is
given by the L? difference between their SRNFs, can be eas-
ily calculated, finding the inversion of the linear path between
their SRNFs that realizes this distance is not possible as the
linear path will usually leave the image of the SRNF repre-
sentation. In [25], Laga et al. introduced a way to approximate
the inversion of arbitrary paths between SRNFs by formulat-
ing inversion as an optimization problem. In practice, this has
been used to approximate geodesics, by numerically invert-
ing straight lines between the SRNFs. However, since the
image of the SRNF map is not convex in L2, this method
will not yield geodesics with respect to the SRNF metric, see
Table 3.

2.2 Immersions and Vector Valued One-Forms

In the following, we will introduce our framework for com-
paring surfaces. Therefore, let 2! (M, R?) denote the space
of all smooth R? valued one-forms on M and £2 i (M, R?)
denote the subset of .Ql(M , R3), which contains all full-
ranked one-forms on M. Given a metric g on M, in a
local chart with a field of orthonormal bases, an element of
.QJIF(M , R?) can be represented as a field of full-ranked 3 x 2
matrices. We consider the differential as a mapping

d : Imm(M, R3)/trans — .Q]+(M, R3)
fr=df . )

The differential d as defined above is injective, but not sur-
jective. Furthermore, in contrast to the SRNF mapping Q
mentioned in Sect. 2.1, it is easy to characterize the image of
the differential d. The following theorem contains this char-
acterization and a result concerning the manifold structure
space of full-ranked one forms 21 (M, R3):

Theorem 1 The space of smooth full-ranked one-forms
.Qi_(M ,R3) is an open subset of an infinite-dimensional
vector space of one-forms 2V(M,R3), and thus it is an
infinite-dimensional Fréchet manifold, where the tangent
space at each point is simply 21 (M, R3).

@ Springer

Furthermore, the image of the differential d is the space
of all exact full-ranked one-forms, which is the intersection
of Qi(M, R3) with a linear subspace of 2 LM, R3).

Proof The proof of this result follows directly from the def-
inition of these spaces. O

This theorem allows us to define a Riemannian metric on
these spaces as follows. Let o € Qi(M,R3) and £ €
Ty 21 (M, R%). For the volume form y on M induced by
the metric g, we let

Got6. ) = [ w(sualane]) Jaaefoou. )

Itis easy to see that the integrand is positive definite, and thus
the formula defines a nondegenerated Riemannian metric.
This metric does not depend on the choice of orthonormal
bases we choose and is actually independent of the metric
g on M, see [7] for more details. Thus, we can choose any
convenient metric g on M and use it to calculate this metric
on 21 (M, R%).

Using the injection (2), we obtain a pullback metric on
the space Imm(M, R3) modulo translations and it turns out
that this metric is related to the full elastic metric. The
space of immersions equipped with this inner product is
an infinite-dimensional Riemannian manifold. It should be
noted that, with respect to this metric, Imm(M, R3) /trans
is neither geodesically complete nor geodesically convex. In
addition, there exists no explicit formula to calculate min-
imizing geodesics between two given immersions f; and
f>. Instead, we will rely on numerical methods to minimize
the path length over all paths of immersions connecting the
given immersions f; and f,. Alternatively, these minimiz-
ing deformations can be found by solving the Lagrangian
optimality condition for the energy functional, called the
geodesic equation. Although we will not follow this strat-
egy, we will present this equation in “Appendix A.”

First, however, we will orthogonally decompose the tan-
gent space at « in a similar manner as in the definition of
the elastic metric earlier. In the following, we will denote
the Moore—Penrose inverse of « by a™, which is defined by
at = (@Ta) ' where « is a 3 x 2 matrix of rank 2. Using
this notation, we let

1
E=bnt s tr(at &) + &1 + &,
where

En = %ot(aTOl)*l(OtTé +&Ta) - %tr(‘fré)o‘
tr=t—a@ o't

£ = %a(aTa)*l(aTs —&la)
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Fig. 2 Geodesics between two cylinders in the space of immersions Imm(M, R3) with respect to different choices of coefficients (from top to

bottom): (1, 1,0, 1), (1,0, 1,1), (1,1, 1,0), (0, 1, 1,0)

It is easy to check that these terms are orthogonal with
respect to metric (3). We can now obtain a family of metrics
on 21 (M, R%):

GEOe2 (g, &)
1 1
= Gy (Em, Em) + bGy (5 (e e, tr(a+e—->a)
+ Gy (EL, EY) + 0G4 (50, £0). )

where the first summand is measuring the deformation of
the metric (within the class of metrics with the same volume
form), the second summand is measuring the deformation
of the volume density, the third summand is measuring the
deformation of the normal vector. The interpretation of the
last summand is less intuitive: it measures changes in the
one-form that locally come from rotations about the normal
vector.

The following theorem shows the connection of our split
metric (4) with the elastic metric (1) on surfaces.

Theorem 2 [f0 = 0, then the pullback of the split metric (4)
gives rise to the elastic metric (1) on the space of immersions.

Proof See “Appendix B” for a proof of this result. O

In Fig. 2, we show geodesics between two parametrized
cylinders with respect to the split metric (4) for different
choices of coefficients a, b, ¢ and 9. One can see how the
choice of coefficients affects the resulting geodesic. Thus, in
each specific application, we are now able to adjust the coef-
ficients of the metric in a data-driven way to obtain desired
deformations between the shapes under consideration.

Remark 1 In [7], we have presented a detailed study of met-
ric (3) on the space .Q}L(M ,RY. In particular, we have
obtained an explicit formula for the corresponding geodesic
initial value problem; in that situation, geodesics can be

computed pointwise, so the problem reduces to a finite-
dimensional ODE which can be solved explicitly, and gives
the solution in the infinite-dimensional context we are deal-
ing with here.

The space of full-ranked exact one-forms 221, (M, R?)
is, however, a proper subspace of the space of full-ranked
one-forms .Q_lF (M, R?) and is not a totally geodesic subman-
ifold of £2 41_ (M, R3) with respect to metric (3). As the space
of immersions corresponds to the space of full-ranked exact
one-forms, the obtained explicit formula for geodesics does
notdirectly help to calculate geodesics on the space of immer-
sions, which is the main goal of this article. In order to solve
the geodesic problem, we will thus introduce a discretization
of the metric and solve the geodesic matching problem using
path-straightening algorithms.

Note that the split metric (4) is defined on differentials and
thus is, by definition, independent of translations. To show
the invariance of the split metric under rigid motions and dif-
feomorphisms, we now consider the action of the group of
rotations SO(3) on .QJF(M ,R%), which is defined by point-
wise left multiplication:

SO(3) x 21 (M, RY) — 21 (M, RY)

(R, @) — Ra,
where (Ro)y = Roy, and the action of the group of diffeo-
morphisms Diff , (M) on §2 _L (M, R%), which is defined via
pullback:
2L(M,R?) x Diff L (M) — 2L(M,RY)

(@, 9) = ¢*a,

where (¢*a)x = o) © dpx. The following proposition

summarizes the most important invariances of the metric on
QL (M, R3):

@ Springer
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Fig. 3 Geodesics between two cylinders in the space of unparametrized surfaces Imm(M, R?)/ Diff | (M) with respect to different choices of
coefficients (from top to bottom): (1, 1, 0, 1), (1,0, 1, 1), (1, 1, 1, 0), (O, %, 1,0)

Proposition 1 Leta € 21 (M, R¥)and¢, n € T,2L(M,R?).

1. Metric (4) is invariant under pointwise left multiplication
with SO(3), i.e., if R € SO(3), then

Ga(g’ 77) = GRa(Rgv RTI)

2. Metric (4) is invariant under the right action of the dif-
feomorphism group, i.e., for any ¢ € Diff { (M), we have

Ga(gv 77) = G(p*a@*{, 90*77)-

Proof The proof of the proposition follows exactly as for the
metric (3), which can be found in [7]. O

The group of rotations SO(3) acts on the space of immer-
sions by left multiplication, which is the same as it acts on
the space of one forms. Thus, by the first statement of Propo-
sition 1, the pullback metric on Imm (M, R3) is also invariant
under the group of rigid motions SO(3) x R3. For the stan-
dard action of Diff { (M) by composition from the right on
Imm(M, R3), the following commutative diagram illustrates
that the pullback action of Diff ; (M) on 2} (M, R?) is com-
patible with the action of Diff ; (M) on Imm (M, R3):

f—4 sy

action on Imm(M,R%l laction on .Qj_ (M,R3)

fop—L s ordf =df odg

Therefore, the second statement of Proposition 1 gives the
reparametrization invariance of the pullback metric on the
space Imm(M, R3).

Thus, the metric on the space of immersions Imm (M, R3)
induces a metric on the space of unparametrized surfaces

@ Springer

Imm(M, R3)/ Diff (M) and a metric on the space of
unparametrized surfaces modulo rigid motions Imm (M, R3)/
(Diff+(M) x SO3) x ]R3). In Fig. 3, we show geodesics
between two cylinders in the space Imm (M, R3)/ Diff +(M)
with respect to the split metric (4) for different choices of
coefficients a, b, ¢ and 9. The corresponding geodesics in the
space Imm(M, R?)/ (Diff 1 (M) x SO(3) x R?) are shown
in Fig. 4.

3 A Numerical Framework for the General
Elastic Metric

In this section, we will describe the discretization and
optimization procedure that we implemented to solve the
geodesic boundary value problem. From here on, we assume
that M = S? and use a spherical coordinate system to repre-
sent an immersion f : S — R3 as a function f : [0, 277] x
[0,7] — R3 such that fO,9) = fQ2nm, ), f(6,0) =
f(0,0) and f(0,7) = f(0,m), see Remark 2 below on
how we obtain such (discrete) parametrizations in practice
from a triangulated surface.

Remark 2 We represent the surface of a given 3D shape with
its embedding on a sphere f : §? — R3, which is always
possible for genus-0 surfaces. In practice, methods such as
conformal mapping introduce significant distortions when
dealing with complex shapes that contain many elongated
parts. Since the proposed approach does not require the map-
ping to be conformal, we adopt the approach of Praun and
Hoppe [27], which has been implemented by Kurtek et.al.
[24]. The idea is to progressively embed a surface on a sphere
while minimizing area distortion. The approach starts by
reducing the mesh, using progressive mesh simplification,
to a basic polyhedra that can be easily embedded on $.
Then, it iteratively inserts vertices and embeds each new ver-
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Fig. 4 Geodesics between two cylinders in the space
of unparametrized surfaces modulo rigid motions
Imm(M, R3)/ (Diff (M) x SO(3) x R¥) with respect to different
choices of coefficients (from top to bottom): (1, 1,0, 1), (1,0, 1, 1),
(1,1, 1,0), (0, % 1, 0). Note that the cylinders in the right are rotated
in order to minimize energy beyond what is possible in Fig. 3, which

tex inside the spherical kernel of its one-ring neighborhood
while optimizing for the area distortion. Using the implemen-
tation provided in [24], we reconstruct the mesh up to 1500
vertices, which is sufficient for computing geodesics. This
procedure produces spherical maps that preserve important
shape features as shown in all of the examples in this paper.
We want to remark here that finding parameterizations of
higher genus surfaces is still an open problem. Since we are
not aiming at solving the parameterization problem, we focus
in this paper on genus-0 manifold surfaces only.

The identity immersioni : S> — R? induces the spherical
metric on 2, which will serve as a background metric for
the discretization; the vector fields

1 9 0

sing 90 3¢
form an orthonormal basis of the tangent space for any
@,¢) € [0,27] x (0, ). With respect to this basis and
the standard basis on R3, the differential d f of an immer-

sion f = (x,y,z)! can be represented by a field of 3 x 2
matrices:

PR R A
f<sin¢a_e’%>_

In the following, we denote by |[|-|| s the norm induced by the
pullback of the split metric (4) and let u € Ty Imm(S?, R?)
be a tangent vector. Since u can be seen as a function from 2

1 odx oJx
sing 90 9¢
1 9y 9y
sing 30 3¢
1 0z 0z
sing 96’ 3¢

D) VY

293J
29I

3333

leads to more extensive deformation as well. As compared to Fig. 3,
the shapes on the right are rotated by ¢ = 1.54 and ¢ = 0.21 (row 1),
6 = 1.56 and ¢ = 0.28 (row 2), 6 = 1.58 and ¢ = 0.56 (row 3) and
6 = 1.58 and ¢ = 0.47 (row 4), where 0 and ¢ are the rotation angles
around the z-axis and y-axis. All angles are in radians

to R3, using this representation, the norm of u with respect
to the split metric will be given as follows:

1/2
lull; = [G§° (du, du)]'".

3.1 Geodesics in the Space of Surfaces

We will now describe the solution of the boundary value
problem in the preshape space of all parametrized surfaces.

Remark3 We should emphasize here that the space of
immersions with respect to the proposed family of Rieman-
nian metrics is not geodesically convex. Thus, the solution
of the minimization problem might not exist in the space of
immersions but only in a larger space of functions (includ-
ing those with possibly degenerate differential). In fact, for
dim M > 2, there exists no Riemannian metric on the space
of immersions for which geodesic completeness or convexity
results have been obtained; in the case of immersed curves,
such results have been achieved for metrics of order two or
higher [9], but it remains unknown for our higher dimensional
situation.

Given two parametrized surfaces f1 and f>, we can dis-
cretize the linear path connecting f1 and f> in T time steps:

Sin() = A =) f1 + 1 fo.

where t; = i/T,i =0, ..., T. The differential d fi;, is then
the linear path between d f1 and d f>, which stays by definition
in the space of exactone-forms foralli = 0, ..., T.Note that
this path does not necessarily stay in the space of full-ranked
one-forms, e.g., if df} = —df> for some x € S2. However,

@ Springer
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we did not encounter any problems with this possible degen-
eracy. To solve the geodesic boundary value problem, we will
perturb f(¢) in all possible directions that fix the end points
and that remain in the space of immersions. Since the map
d, as defined in Equation (2), is injective, this is equivalent
to perturbing the differential df (¢) in all possible directions
in the space of exact one-forms that keep the two boundary
one-forms fixed.

To obtain a basis of perturbations in the space of immer-
sions, we use the fact that the set of spherical harmonics in
each component form a Hilbert basis of L2(S2, R?). We trun-
cate this basis at a chosen maximal degree deg and denote the
obtained set by {S;}. The number of elements in this basis
is L = 3((deg +1)2 — 1) (here, we remove the spherical
harmonic of degree 0 and order O since it is a constant func-
tion, which corresponds to a pure translation). To calculate
the optimal deformation between two given surfaces, we aim
to minimize the (discrete) path energy over all curves of the
form

f@o) = f1, flr)=f2
L
f&)=A—-t)fi+tifa+ ZCoeff(j, i)S;, )

j=1

wherei = 1,...,T—1and Coeffisa L x (T —1) coefficient
matrix.

The discrete energy functional F : REXT=D 5 R is
then given by

T
F(Coeff) = Y 1 /i1, AT ©

i=1

where the norm ||-]| is induced by the pullback of the split
metric (4),

filtin) = % %

is the (discrete) derivative of f(¢) at f(t;—1) and AT = %
is the width of a subinterval. Alternatively, one can also
discretize the derivative of f using the central difference
for interior data points, which makes the energy functional
symmetric, but leads to slightly higher computational cost.
To find the optimal coefficient matrix Coeff, we employ a
BFGS method, which is a quasi-Newton method for solv-
ing unconstrained minimization problems [13], as provided
in the optimize package of scipy. We calculate the gradient
using automatic differentiation in Pyforch, which leads to
the algorithm described in Algorithm 1. See [21] for more
examples of applying tools of deep learning and in particular
automatic differentiation in shape and image analysis.
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Algorithm 1 The matching problem for parametrized sur-

faces
Input:

1) the source and target surfaces f] and f>;

2) the coefficients (a, b, ¢, 0) of the metric;

3) the number of time steps 7';

4) a basis {S;,i = 1,..., L} for the space of parametrized sur-
faces.

Output:

1) the geodesic fgeo connecting fi to f2;
2) the geodesic distance dist between fi, and f>;

: Initialize Coeff = 0 and f(#;) by equation (5).

: Compute f;(t;—1) by equation (7).

: Define the functional F'(Coeff) as in equation (6).

: Minimize F using a BGFS-method, where the gradient of F with
respect to Coeff is calculated using the automatic differentiation
package in Pytorch.

5: Set

fgeo(tO) = fls

AWM —

fgeo(lT) = f2

L
feeolt) = (1= t) fi + ti fr+ Y _ Coeft (j, i),
j=1

and dist = / F (Coeff).

6: return fye, and dist.

3.2 Geodesics in the Space of Unparametrized
Surfaces

Now we present our algorithm for calculating geodesics in the
space of unparametrized surfaces Imm(S 2 R3)/ Diff +(S 2).
The main difficulty for this task is to find the optimal y €
Diff ;. (§?) that realizes the distance

dists([f1]. [f2]) =  inf

1 distymm (f1 0 ¥, f2),

y eDiff ; (52)
where [ f] is the equivalence class of f under the action
of the group of orientation-preserving diffeomorphisms
Dift (S 2) and dists denotes the distance function on the
space Imm(S2, R3)/ Diff | (%) with respect to the metric
that is induced from the split metric (4).

In order to practically perform the minimization over the
infinite-dimensional space Diff ;. (§2), we have to choose a
suitable discretization of this group: Let Id be the identity
map from S2 to itself. The tangent space T1g Diff +(SZ) is the
set of all (smooth) vector fields on 2. The set of gradient and
skew gradient vector fields of the set of spherical harmon-
ics provides an orthogonal basis for this tangent space—here
orthogonal means with respect to the standard L? metric, see,
e.g., [22]. Normalizing these basis, we obtain an orthonormal
basis for the tangent space Tiq Diff ; (52). To choose a finite-
dimensional discretization of the tangent space, we truncate
this basis at a maximal degree d?g; then, the number of ele-
ments in this basis is L = 2(@ + 1)2 — 2. From here on,
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we will denote this truncated basis by {v;,i =1, ..., I:}. Let
X' =(X{,X3,..., XE) be the coefficients of a vector field
with respect to this basis, and consider the induced mapping

L

y =Proj [Id+ > Xju |, 8)
k=1

where Proj(x) = Ifc_l denotes the map that projects nonzero

vectors in R onto the unit sphere S C R3. The following
result gives an explicit bound on the size of XV that ensures
that the corresponding y, defined by (8), is a diffeomorphisms
of §2.

Theorem3 Let U = Y - X} vk be a vector field on the
sphere S* and let y = Proj (Id +tU) be the corresponding
map as defined in (8), for some real t. Then, y is a diffeo-
morphism if

1

[t < =77
inf pepr A-(VU)

(€))

where VU is the (1, 1) tensor field v — V,U and A_(VU)
is the smaller of the two real eigenvalues of the symmetrized
matrix VU = $(VU + (VI)T).

Note that VU is a tensor that for each point x € S gives
a linear transformation 7, S> — T, S2, which is defined by
VU (v) being the covariant derivative of U in the direction v.

Proof The proof of this result is postponed to “Appendix B.”
Note that since Tr(VU) = divU, which integrates to zero
over the compact manifold M, we know that A_(VU) is
always negative somewhere; hence, the bound on |¢| is some
positive number. O

We are now able to describe the discrete optimization
problem on the space of unparametrized surfaces, i.e., we aim
to minimize the discrete functional F : REFEX(T=2) . R
given by

T
F(XY, Coeff) = Y [l i), AT. (10)
i=1

where the norm ||-|| is induced by the pullback of the split

metric (4), Coeff, S;, AT = % are as in Sect. 3.1 and where
the discrete curve f is now of the form

f@o) = fioy, flr)=ra
L
f@y=0-t)fi+tifo+ ZCoeff(j, i)S;, (11)
=1

and where the reparametrization y is given by formula (8)
with coefficient vector XV = (X7, X3, ..., XUL)‘

1 fiohn fioh fo
ﬁ
i f10ha fioh fo

Fig.5 Examples of boundary surfaces before and after the optimization
over the reparametrization group with respect to the split (1, 1, 1, 0)
metric. Here, the second shape shows the parametrization of the first
boundary surface after composing by the initial guess in the icosahedral
group and the third shape shows the final point correspondences after the
full optimization, where & denotes the optimal reparametrization. One
can observe how the parametrization of the initial surface successively
better matches the parametrization of the target surface (the color map
represents the parametrization of the surfaces)

Remark 4 (Initialization over Diff | (S%)) When using a
gradient-based optimization method, it is always an impor-
tant issue to find a good initialization, as the optimization
procedure can get stuck in local minima and is usually sen-
sitive to this initialization. In order to find a good initial
guess for the optimal reparametrization of the surface fi,
we first align the corresponding SRNFs of the two bound-
ary surfaces f; and f>. This seems a natural initialization
for the (0, %, 1, 0) metric as the L2-distance on the space
of SRNFs is a first-order approximation of the geodesic
distance of this metrics. However, in all our experiments,
it turned out that this initialization works well for other
choices of constants as well, as the optimal point correspon-
dences for different choices of constants, albeit different,
are still similar on a global scale. Furthermore, we note that
any three-dimensional rotation can be seen as a diffeomor-
phism of S%. We use this fact to first minimize only over
this finite-dimensional subgroup of the infinite-dimensional
reparametrization group. Finally, to initialize the optimiza-
tion over this finite-dimensional group, we first consider the
icosahedral group, which contains 60 orientation-preserving
rotations denoted by h;,i = 1,...,60, as a finite subset
of SO(3). We then choose the best diffeomorphism among
these 60 elements as our initial guess. See Fig.5 for exam-
ples of registration before and after this initialization and the
whole optimization process over the group of orientation-
preserving diffeomorphisms Diff | (5?).

@ Springer
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In the following, we will describe two algorithms for cal-
culating geodesics in the space of unparametrized surfaces
Imm(S?, R?): a joint optimization procedure and a coordi-
nate descent approach, where we minimize alternating in the
space of parametrized surfaces and over the reparametriza-
tion group separately.

We will start by describing the joint optimization proce-
dure, which is analogous to the optimization for parametrized
surfaces with one caveat: Since Formula (8) only leads to
diffeomorphisms near the identity, i.e., reparametrizations
that map points on S? to nearby points, we will describe
large deformations between S> as a composition of N such
(small) deformations. This will lead us to iteratively solve the
joint optimization problem. The corresponding algorithm is
described in Algorithm 2.

Algorithm 2 The joint optimization approach
Input:

1) the source and target surfaces f] and f>;

2) the coefficients (a, b, ¢, 9) of the metric;

3) the number of time steps 7';

4) bases {S;,i = 1,...,L}and {v;,i = 1, .‘.,E} for the space
of parametrized surfaces and vector fields on S resp.;

5) the number N that describes the maximal amount of small defor-
mations used.

Output:

1) the geodesic fgeo connecting [ f1] to [f2];
2) the geodesic distance dist between [ f1] and [ f2];

1: Initialize f = f;, Coeff = 0

2: while kK < N do

3:  Initialize y by Formula (8) with X = 0 and f(#;) by Equation
(11).

4:  Compute f;(t;i—1) by Equation (7).

5:  Define the functional F(X?, Coeff) by (10) where the discrete
curve f is of the form

fwo) = foy, flr)=r
L
f) =0 —t)fi+tfr+ ) Coeff(j,i)S;,

J=1

6:  Minimize F using a BEGS method, where the gradients of F
with respect to XV and Coeff are calculated using the automatic
differentiation package in Pytorch.

7:  Compute the optimal y using Formula (8).

8: Update f = foy.

9 k=k+1

10: end while

11: Set

fgeo(tO) =/ fgeo(tT) = /2

L
feeoti) = (1= 1)) f + i fr+ Y Coeff (j, )5,
j=1

and dist = v/ F(X?, Coeff).

12: return fge, and dist
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As an alternative to the joint optimization, we will present
in the following a coordinate descent method, where we sep-
arate the variables in the space of surfaces from the variables
that govern the reparametrization of the initial surface, i.e.,
we alternate between calculating a discrete geodesic, denoted
by fopt, between the parametrized surfaces f; and f> in the
space of immersions Imm(S2, R3) and reparametrizing the
initial surface f = fi. To update the reparametrization, we
consider only the first two time points of fop, i.€., f and
fopt(t1) and define the following functional

F (XY = | fop(t) = Fov|3,, - (12)

where y is given by Formula (8) and X" = (X7, X3, ..., X'I’:).
We can now employ a BFGS method to find the optimal coef-

ficient vector Xg,,, compute y using Formula (8) and then
update f = f o y. Then, we repeat this process by recal-
culating the geodesic in the space of parametrized surfaces
(with the changed initial surface f). The whole optimization

process is summarized in Algorithm 3.

3.3 Geodesics in the Space of Unparametrized
Surfaces Modulo Rigid Motions

Note that the split metric (4) associates no cost with trans-
lation and thus the obtained geodesic is automatically in
the space of surfaces modulo translations. To calculate
the geodesic between two surfaces [ fi] and [f>] in the
space of unparametrized surfaces modulo rigid motions
Imm(S?, R?)/ (Diff . (S?) x SO(3) x R?), we will need to
minimize in addition over the rotation group, i.e., solve the
optimization problem on SO(3) x Diff (S 2y:

dists([f1], [f2]) = Reisl,g@) distimm (f1 © ¥, Rf2),

y €Diff . (5%)

where [ f] is the equivalence class of f under the actions of
Diff (S 2) and SO(3) and dists denotes the distance function
on the space Imm(S2, R?)/ (Diff  (5?) x SO(3) x R?).

Let |||, Coeff, S;, AT be as in Sect. 3.1, and let f be
the current parametrization of the first boundary surface.
It is known that the group of rotations SO(3) is a three-
dimensional Lie group and the matrix exponential exp from
its Lie algebra so(3) is surjective. Since there is an iso-
morphism between R3 and so(3), the discrete optimization
problem on the space of unparametrized surfaces modulo
rigid motions will be minimizing the discrete functional
F : R3FLHALXT=2) _, R gjven by

T
F(x®, X", Coeff) = " |l fiti-0IF,_, AT,

i=1

where the discrete curve in this case is of the form
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Algorithm 3 The coordinate descent approach
Input:

1) the source and target surfaces f1 and f7;

2) the coefficients (a, b, ¢, 0) of the metric;

3) the number of time steps 7';

4) bases {S;,i = 1,...,L}and {v;,i = 1,..., L} for the space
of parametrized surfaces and vector fields on S2 resp;

5) the number N that describes the maximal amount of small defor-
mations used.

Output:

1) the geodesic fgeo connecting [ f1] to [ f2];
2) the geodesic distance dist between [ f1] and [ f2];

1: Let f = f; and initialize Coeff = 0.

2: Choose a positive integer N.

3: while k < N do

4:  Define the functional F'(Coeff) by (6) where the discrete curve
f is of the form

fa)=/r. far)=rr

L
f@)y=0—-t)fi +tifa+ ZCOCff(ja 0Sj,

j=1

5:  Minimize F (Coeff) using a BFGS method, where the gradient
of F with respect to Coeft is calculated using the automatic dif-
ferentiation package in Pytorch.

Calculate fop(11) = Y 1, Coeff(i, 1)S;.

Initialize XV = 0 and y by Formula (8).

Define the functional F,(X") by Equation (12).

Minimize F, using a BFGS method with gradient of F, with
respect to XV calculated using the automatic differentiation pack-
age.

10:  Compute y using Formula (8).

11:  Update f = foy.

R

12 k=k+1
13: end while
14: Set

fgeo(to) =/ fgeo(tT) = f2

L
feeolti) = (L =11 fr + i fo + Y _ Coeff(j, i),
Jj=1

and dist = / F (Coeft).

15: return  fye, and dist

fo)=Foy, [flr)=exp(X®)fa
L
[ = —t) fr+fr)+ ) Coeff(j, i)S;,
j=1
i = 1,---,T — 1 and where the reparametrization y

is given by Formula (8) with coefficient vector X" =
(X7, X5, ..., XE). We will tackle this simpler
(finite-dimensional) optimization problem using an analo-
gous approach as in the previous section and will thus omit
further details (Fig. 6).

4 Experiments

In this section, we will present examples of geodesics as
calculated using our optimization procedures. The human
body shapes have been kindly provided by Nil Hasler [15],
and the hand shape is taken from SHRECO07 watertight mod-
els. All other shapes are courtesy of the TOSCA shape
database [8].

4.1 Geodesics and Karcher Mean

In Fig. 8, we present examples of geodesics between given
surfaces in the space Imm(S?, R3)/ Diff, (§%) with respect
to the split (1, 1, 0.1, 0) metric and the corresponding evo-
lutions of energies. In all our examples, we observed a good
and relatively fast convergence of the optimization proce-
dure, and we present some selected results of the resulting
deformation and the corresponding computation times in
Table 1. In Fig. 7, we present the Karcher mean of a family
of cat surfaces with respect to the split (1, 1, 0.1, 0) met-
ric in the space of unparametrized surfaces modulo rigid
motions Imm (52, R3) /(Diff 1 (§%) x SO(3) xR?). One can
observe that the mean captures the overall characteristics of
the family of surfaces under consideration, but simplifies
some of the features that undergo high variability. To cal-
culate the Karcher mean, we followed an iterative algorithm
as described e.g. in [12] in the context of diffeomorphism-
based shape analysis. In this method, one arbitrarily orders
the data points as f1, ..., f, and let g be the midpoint of
the geodesic between f1 and f>. Then, one defines g;4 by
travelling until time % on the geodesic that connects g;_1
to fi+1 in time 1. The approximation of the Karcher mean is
then given by g,—1. We want to remark here that this method
depends on the ordering of the data points (initialization), and
in future work, we plan to further investigate this and com-
pare it to other Karcher mean algorithms, such as directly
minimizing the sum of squares of geodesic distances. All
results were obtained on a standard laptop without any par-
allelization or GPU implementation, which could certainly
be used to obtain a significant increase in speed (Fig. 8).

Remark 5 The results in Table 1 suggest that our methods
are well suited for multiresolution methods, i.e., to solve
the geodesic matching problem first on a coarser resolution
(in time, space and degree of spherical harmonics) and then
use an upsampled version of the previously obtained solu-
tion as initial guess for solving a high-resolution version of
the matching problem. Our numerical framework allows for
these approaches in all available parameters, and in all our
experiments, this procedure seems to allow for as moderate
improvements in the speed of the optimization. See Fig. 6
for an example of a multiresolution geodesic in spatial reso-
lution.
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Fig.6 Example of a geodesic in several resolutions: 12 x 25 (top), 25 x 49 (middle) and 50 x 99 (bottom) with respect to the split (1, 1, 0.1, 0)
metric in the space of unparametrized surfaces Imm(S2, R?)/ Diff ;. (%), where deg = 7, deg = 7 and T = 13

Table 1 Numerical results of matching surfaces with different resolu-
tions in time and space: low: 12 x 25, deg = deg = 5, T = 5; middle:
25 x 49, deg = 7, @ = 8, T = 10; and high: 50 x 99, deg = 9,
@ = 11, T = 15. Here, Iter denotes the number of iterations until
convergence in the optimization process

Boundary Surfaces | Resolution | Iter | RunTime

) low 114 39.7s
‘W_ W/ middle | 237 | 3min 3s
high 235 14min 2s

low 42 40.7s
g’ v middle | 113 | Imin 35s
high 139 8min 25s

low 88 32.5s
k .% middle | 220 | 2min 22s
high 193 | 10min 27s

Fig. 7 Karcher mean (middle) of a set of shapes of cats in the

space Imm (52, R?) /(Diff | (5?) x SO(3) xR?) with respect to the split
(1, 1, 0.1, 0) metric

4.2 Comparison to the SRNF Framework

Finally, we aim to compare the results obtained with our
method to the results using the inversion of linear paths in
the SRNF space. The SRNF metric corresponds to the split
metric (4) with constant (0, 1/2, 1, 0), see “Appendix B.” To
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demonstrate this correspondence, we consider four pairs of
boundary surfaces. We calculated the length of the linear path
between each pair of surfaces under the split (0, 1/2, 1, 0)
and the length of the image of the linear path under the SRNF
framework. The relative errors between the lengths for dif-
ferent time step sizes are shown in Table 2 and demonstrate
that these two metrics indeed coincide.

Since the image of the SRNF map is not convex in L2,
the linear interpolation between two SRNFs may not have
a preimage under the SRNF map. Also, even for functions
that are in the image of SRNF map, the inverse does not have
an analytic expression; in fact, such an expression does not
exist in general, since the SRNF map is not injective. As a
way to overcome this difficulty, Laga et al. [25] introduced
a numerical method to calculate an approximated inversion
of any path between two given SRNFs. In practice, this has
been used to approximate the geodesic by inverting the lin-
ear path between the given SRNFs. We want to remark here
that the algorithm of [25] could also be used to invert a
geodesic in the image of the SRNF map. However, calculat-
ing geodesics in the image of the SRNF map is a nontrivial
process, which to the best of our knowledge has not yet been
attempted. We would expect that this procedure would lead
to minimizers that recover the minimizers obtained in the
present framework. In Fig. 9, we consider two pairs of sur-
faces and calculate the geodesic between each pair of the
boundary surfaces under the split (0, 1/2, 1, 0) metric with
deg = deg = 7, T = 13 in the space of unparametrized sur-
faces Imm(S2, R?)/ Diff (S%). The comparisons of these
geodesics with the approximated inversions of the linear
paths between the boundary surfaces are shown in Fig. 9.
One can see that in the last row for the geodesic between the
human body surfaces, the arms are shrinking at the beginning
and then stretching, which may be not a desired deformation
for some applications. However, by adjusting the coefficients
of our metric, we could obtain geodesics with the natural
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Fig. 8 Examples of geodesics w.r.t. to the (1, 1, 0.1, 0) metric in the
space of shapes Imm(S2, R3)/ Diff | (52), where we choose a resolu-
tion of 50 x 99, a maximal degree of spherical harmonics deg = deg = 7

Table2 Comparisons between the lengths of linear paths with respect
to the split (0, % 1, 0) metric and the lengths of the SRNF representa-
tions of the linear paths with respect to the L? metric. L;: the length
of linear path; Ly, : the length of the SRNF representation of the linear
path with respect to the L? metric

Boundary Surfaces Tstps L; Lyp- Relative Error

13 | 0.8917 | 0.8872 0.00502

4 pﬂ; 20 | 0.8952 | 0.8908 0.00494
99 | 0.8952 | 0.8952 0.00002

13 | 0.7384 | 0.7350 0.00456

/ 20 | 0.7372 | 0.7359 0.00169

99 | 0.7371 | 0.7367 0.00053

13 | 0.6722 | 0.6717 0.00072

- ﬁ 20 | 0.6722 | 0.6720 0.00030
99 | 0.6723 | 0.6723 0.00002

13 | 0.9875 | 0.9853 0.00226

> ﬁ 20 | 0.9874 | 0.9866 0.00084

99 | 0.9875 | 0.9875 0.00004

60

80 100 120 140 0 50 100 150 200

and 13 timesteps, i.e., we search in an approximately 2205-dimensional
space. The corresponding energy evolution for each example is shown
on the bottom from left to right

behavior, see Fig. 10 for geodesics with respect to different
choices of coefficients.

In Table 3, we compare the lengths of geodesics for
four pairs of surfaces in the space of parametrized surfaces
Imm(S?, R3), the lengths of the approximated inversions
(with seven time steps) under the split (0, 1/2, 1, 0) metric
and the L? differences between the SRNFs of the boundary
surfaces. One can see from the table that for each pair of
surfaces, the length of the geodesic is much closer to the L?
difference than the length of the approximated inversion of
the straight line between the SRNFs of the boundary surfaces.
Note that the L2-difference is a lower bound for the geodesic
distance that will, in general, be strictly smaller than the true
geodesic distance, as the image of the SNRF-representation
is not a totally geodesic (open) subspace of the space of all
L?>-functions.
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Fig. 9 Comparisons of geodesics with respect to the split (0, 1 3. 1, 0) metric and the approximated inversions of straight lines under the SRNF
framework. Row 1, 3: the approximated inversions under the SRNF framework; Row 2, 4: geodesics under the split (0, % 1, 0) metric in the space

of parametrized surfaces

== ==
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Fig. 10 Geodesics between two human body surfaces in the space of unparametrized surfaces Imm($2, R3)/ Diff 1 (52) with respect to two different
choices of coefficients (0, 1, 1, 0) (top) and (1, 1, 0.1, 0) (bottom). In particular, in the deformation of the arms, one can observe the influence of

the constants

5 Conclusion

In this article, we have introduced a family of elastic met-
rics on the space of parametrized surfaces in 3D space using
a corresponding family of metrics on the space of vector-
valued one-forms. For this class of metrics, we have provided
a numerical framework for the computation of geodesics
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on the space of both parametrized and unparametrized sur-
faces. This new class of metrics generalizes a previously
studied family of elastic metrics and includes, in particu-
lar, the Square Root Normal Field (SRNF) metric, which has
been proven successful in various applications. In the numer-
ical experiment, provided in Sect. 4, we have demonstrated
our framework by showing several examples of geodesics
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Table 3 Lengths of deformations with respect to the (0, % 1, 0) met-

ric between boundary surfaces with the maximal spherical harmonic
degree of 7 and time step size of 25. L;: the length of the linear path
between boundary surfaces; Lg: the length of geodesic as calculated
in our numerical framework; L;: the length of approximated inversion
from SRNF straight line; and L2-Diff: the L? difference between the
SRNFs of these boundary surfaces

Boundary Surfaces L, Ly L;(7stps) | L? Diff
V i i !E g 0.8932 | 0.7948 1.1442 0.6130
@ j l 0.7380 | 0.7171 0.7919 0.6543
? . 0.6723 | 0.5985 0.8393 0.5938
d , 0.9875 | 0.7973 1.2159 0.7786

and compared our results with earlier results obtained from
the SRNF framework. Our framework does not require a
numerical inversion of the SRNF map and thus overcomes
some of the difficulties of previous work. Furthermore, it
allows to choose the constants of the metric in a data-driven
way, which has potential importance in many applications. In
future work, we plan to further demonstrate the viability of
the proposed method in applications to real data. In addition,
we are currently working toward developing a generaliza-
tion of the SRNF map that will allow us to approximate the
geodesic distance for our general class of metrics and will
thus speed up the computation by choosing a better initial
guess for the parametrization of the boundary surface.
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Appendix A: The Geodesic Equation

In the following, we give the geodesic equation on the space
of immersions Imm (M, R?) with respect to the pullback of
the metric (3) on the space of 1-forms. In this “Appendix,”
we will assume that the domain M is a compact orientable
surface without boundary, because we will need to use the
Hodge decomposition. We will view « € §2 Jlr (M,R3) as a
vector-valued 1-form with components (o), a2, a3), where
each o is a 1-form on M in the usual sense. Then, metric (3)

can be rewritten as

Gult,8) = /M (€ Aat”) gu 1

3
= ivAoz)i o
Z/M@x E) gu st

i=1

where & = (§',62,8%) € T, (M, R3), Aq = (@Ta)™!
is the induced Riemannian metric on 1-forms on M, and
0o = y/det (T a) is the induced volume form on M. As
such, all computations can be done one component at a time.

If F = (f', 2, f3)is a vector-valued function with each
fi': M — R real-valued, then 8 = dF is a vector-valued
1-form with B/ = df’. The Hodge decomposition tells us
that every 1-form & may be written as

where 8y = 0 and § : 2'(M,R) — C®(M) is the codif-
ferential operator.

The space Imm(M, R?) is formally a submanifold of
21 (M, IR3), and thus by general submanifold geometry, we
know that the geodesic equation on Imm(M, R3) will be
given by

D d

aa’ =" Y

Since 6y = 0, we know that xy is an exact form, where *
denotes the Hodge star operator. Then, there is a function p,
unique up to a constant, such that dp = xy. We obtain

D d
Ap=68dp =8¢y =xd | ——a ).
P b V= <dtdta)

In coordinates (u, v) on M, the operator xd is given by:

*d(f du+ gdv) = Su—Jv _fU,

where ¢ is the volume form on M. From the geodesic
equation on §2 i (M, R3) with respect to the metric (3), as cal-
culated in our previous paper [7], we know that the covariant
derivative is given by

D da

dr dr YT a@’ o) ol o —aatey + (@at) o

—% tr(o; (ozTot)_lottT)ot + tr(oa oy,
Since do;; = 0, we obtain
Ap = *d( — oy (ozTa)_latTa) —aato + (a,a+)T(x,

—% tr(o; (oeTot)_loz,T)oz + tr((xtoﬁ')at).
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Let L = asa™. Applying the Hodge star operator to both
sides, we see that @ is a geodesic on Imm(M, R3) if and
only if we have

*Ap = +xd(2dP) = d2 A dD

where 2 = LLT+L?—LTL+5 tr(LT L)—tr(L) L. Here, we
emphasize that p and @ are actually vector-valued functions,
so these computations are done componentwise for each i €
{1, 2, 3}. In other words, we have

3
*Api =Y dQ; nd®j, i€ (l1,2,3)
j=1

Appendix B: Proofs

Proof of Theorem 2 1In the following, we prove the correspon-
dence between our split metric on the space .QL(M ,R3) and
the SRNF metric on the space of surfaces. Let M (3, 2) be
the space of 3 x 2 matrices with rank 2. Using the pointwise
property of our metric, we will focus on the corresponding
split metric on the matrix space M (3, 2). Fora € M (3,2)
and v € T,, M (3, 2), we decompose v into four parts

1
V= vy, + 3 tr(@Tv)a + v + vo,
where

1 1
U = Ea(aTa)*] (a’v+vTa) - 3 tr(@ v)a

€L

v =v— a(aTa)_laTv

Ta).

1
vy = Ea(aTa)fl(aTv —v
The corresponding split metric on M4 (3, 2) is then of the
form:

Gg,b,c,D(U’ U)

1 n 1 "
= a{Uy, Up)a + b 2 tr(a™ v)a, 3 tr(a™ v)a

a
+e(vt, v + (v, Vo)as (13)
Now consider the projection 7w : M (3,2) — Sym, (2), a —
a’a. This projection is a Riemannian submersion, where
M4 (3,2) carries metric (13) with choices of constants
(1, 1,1, 1) and the space Sym , (2) is equipped with the fol-
lowing metric:

S 1 1, -
(h k)™ = (e hg ™ h) Vdet(g).

@ Springer

The horizontal bundle with respect to the projection 7 is
given by

Hy = {ueM@B,2)|ua™ € Sym(n)},
and the differential dzr induces an isometry
dr, : Hy = Tr@) Sym, (m).

It is easy to check that v, and %tr(aﬂ))a are horizontal
vectors.
Let g = (a) = a’ a. By computation, we have

1
tr(av) = > tr(g”'dm,v)

and

dm,(vy) = aTvm + vnT1a =alv+vla— tr(aﬂ;)ara

1
=dm,v — 2 tr (g_ldnav) g.
Therefore, the first term in (13) becomes

(Ui, Ym)a

= (drg(vm), dm, (Um))?&n)

Sym

= <d7tav - ltr (g_ldrrav) g, dmyv — ltr (g_ldnav) g>
2 2 e

= (dmgv, dnav)gym —tr (g_ldr[av) (dmqv, g)gym

1 _ S
+ Ztr2 (g7 'dmav) (g, )"

= % tr (g7 dmavg dmav) y/det(g)
- % tr? (g7 'dm,v) y/det(g)

and the second term becomes
1 1 1
<5 tr(atv)a, 3 tr(a+v)a> =3 tr’(atv)v/det(ala)

a
1
g tr’ (g~ 'dmav)y/det(g).

For the third term in (13), we consider the corresponding unit
normal map on the space of matrices given by

n:My(3,2) - R3

ar X ap ap X ap

> = :
lai x a2l \/det(aT a)

where a; and a, are the first and the second columns of a,
respectively. For any tangent vector u = (u1 uz) at a, the
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differential of n at a is

uy X ar +ay x uy — (a; x ap) tr(atu)
VdetaTa) '

Itis easy to check that aa™ v is in the kernel of the differential
dng, i.e.,

dng(u) =

dn,(v) = dna(vJ‘ +aatv) = dna(vL).

Note that tr(atvt) = 0, aaTa; = a; and aatar = as.
Using the following identity for three-dimensional vectors
b,c,d,e:

(bxc)-(dxe)=bldcTe—bTecld

and the formula for the inverse of a” a:

T 1 1 alay —alay
(a a) = T %" Tl ’
det(a’a) \ay a2 ajai
we have

(dngv, dngv)ps = (dnavJ‘, dnavJ‘)Rs
1

- det(ala)
1

= det@’a)

(vf‘ X ay +ay x vj‘, vf‘ X ap +ay X v%‘)]Rz
[(vlTvl - v]Taa+v1> a2Ta2
-2 (vlTvz - vlTaa+v2> alTag + (vavz — vaaa+v2> alTal],

where vll, sz are the first and the second columns of v and

v1, vp are the first and the second columns of v, respectively.
It follows that

1 L T\ 1, T =1, LT T

, det =t det
(v v >a,/ etala) = rw@a’ )~ )T det@” a)

= (tr(v(aTa)flvT) — tr(aa+v(aTa)71vT)) det(aTa)

= (tr(vTv(aTa)fl) — tr(vTanrv(aTa)*l)) det(aTa)

- ol (1 —aat)v; vi(l —aatHv a%az —c;lTaz

- vy (I = aatyv vy (I — aat vy ajay ajai

= (vlTvl - vlTaa+v1) a2Ta2 -2 (vlTvz - vlTaa""vz) a]Taz
+ (v2Tv2 — vaaa+v2) alTal

= (dnqv, dngv)p3 det(aTa),

that is,

<vJ‘, vJ‘> = (dnqv, dngv)gs/det(g).

Therefore, the split metric (13) on M (3, 2) can be rewritten
as

G0, v)

=a <l tr (g_ldﬂavg_ldnav) - % tr2 (g_ldﬂav)) \/m

4
b
+ 3 r? (gildnav> Vdet(g) + c{dnqv, dngv)p3+/det(g)
+ 9{vo, v0)a-

Now it is easy to see that the first three terms give rise to
the formula of the full elastic metric on the space of surfaces
for A =a/4,B = (b — a)/8, C = ¢ and the SRNF metric
corresponds to the split metric (4) with constants (0, %, 1,0).

O

Proof of Theorem 3 We first perform the computation in
spherical coordinates (6, ¢) € [0, 2] x [0, w]. Denote the
usual spherical coordinate orthonormal basis by

e1 = (sin¢g cos, sin ¢ sin 9, cos ¢),

er) = (cos ¢ cosB, cos¢sinf, —sin @),

e3 = (—sind, cos 9, 0).
We have the following formulas for the partial derivatives:

3¢€1 = e, 3¢€2 = —eq, 8¢e3 = 0,

dge1 = sin ¢es, dgey = cos pe3,

dge3 = — sin e — Cos Pey. (14)
We also note that the covariant derivatives are given by

Ve,e2 =0,
Ve,e2 = cot ¢ e3,

Ve, 3 =0
Ve,e3 = —cot g er. (15)

Write

U©,9) =u®, p)ea(d, ¢) +v(0, p)e3 (0, ¢).

For a real parameter ¢, we consider the following map
W: §? — R3 given in coordinates by

WO, 9) =e1(6,¢) +1tU©0. $)
=e1(0,9) +1u0, p)e2(0, ¢) +1v(0, p)e3 (0, @).

Then, n = W/|W/|.
Note that in order for 1 to be a diffeomorphism, we require
that the Jacobian determinant be nonzero; it is given by

1
sin ¢
Observe that

1 W - W
(e~

an _ dn
Jac(n) = ‘% X 20|

1
N W) = Wi wi (W),

v W2
Y O U 2 W
1=\ T Twr ) T qw et

@ Springer
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Since ng and 7y are both perpendicular to W, we know that
ng x ng is parallel to W; thus, we obtain the formula

Jac(n) = | Py (Wg) x Py (Wo)|

1
sin | W2
1
e
sing|W|3
1

=W|W'(W¢XW9)

Py (Wg) x PWL(WQ))|

’

using the cyclic invariance of the scalar triple product and
the fact that W x Py, 1 (V) = W x V for any vector V.

Since W = e; + tU for the vector field U = uey + ves,
it is straightforward to compute using (14)-(15) that

Wy =er +1tUyp = ex + 1V, U — tueyq,

Wy t
- =e3+ —Ug =e3+1tV,U — tvey,
sin ¢ sin ¢ ;
- +
Let my = ug, my = vy, m3 = %7 — %

We have by (15) that
Ve, U = myex + moes, Ve, U = m3ep + myes,

which we abbreviate by

M:=vVU = ("“ mz).
ms3 nig

Thus, the Jacobian is nonzero if and only if the following
determinant is nonzero:

1 tu tv
D=|W-(Wyx Wp)|=|—tul+tm tmy |. (16)
—tv tmzy 14+tmy

Expanding the determinant (16) along the first column, then
it is given by

D =det(1 +tM) +>(JU, (1 +tM)JU),
where J = <(1) _01>

Let M = %(M + MT) denote the symmetrization of M,
and let A1 < A, denote the real eigenvalues of M. Then,
tr M =tr M and det M = det M + %(mz — m3)2, so that
det(1 +tM) > det(1 +tM) = (1 + rt)(1 + Aot).
Since J is a rotation, we have
(JU, (1 +tM)JU) = {(JU, (1 +tM)JU)

> (1 +mnJUP?

@ Springer

=1+ 1D)|U.
Thus,
D > (14 M)+ Aot + |UP).

For sufficiently small 7, we know (1 + A7) is positive, and
since A1 < A, we obtain

D > (1+x1)?

Thus, 14+A17 > 01is asufficient condition for positivity of D,
and this happens as long as |7| < Ikl_ll It is easy to compute
that

my +my — /(my —mg)? + (my + m3)?

Al =
! 2

In particular, m +m4 = tr (VU) = div U, and by the diver-
gence theorem, we know the integral of m| + my over S is
zero, and in particular m| + my is either identically zero or
changes sign on S2. Since 7 is nonnegative, we therefore are
concerned about the most negative that A(x) can be:

I+ A x)t>14¢inf A;(x) =1 —1¢ sup (—Ar1(x)) >0,
)CESZ p€S2

which is equivalent to

2
r < .
sup —(my +ma) +/(my — ma)? + (ma + m3)?
pes?
This is clearly (9). O
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