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Abstract—Many direction-of-arrival (DOA) estimation algo-
rithms require accurate measurements from all sensing elements
on an antenna array. However, in various practical settings,
it becomes imperative to perform DOA estimation even in the
presence of faulty elements. In this work, we develop an algorithm
that can jointly estimate the DOA of sources and the locations of
the faulty elements. This is achieved by introducing weights that
describe the degree of outlierness of each element. Further, for
situations where only single snapshots are available, we propose
a new snapshot diversity formulation for which our algorithm can
still be applied. Simulation results over four different fault models
demonstrate that the proposed algorithm robustly estimates
DOAs and accurately identifies the faulty elements.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation, an important and
well-studied problem in array signal processing, has many
applications in wireless communications [1], [2], radar [3]–
[5], and sonar [6], [7]. Many DOA estimation algorithms
have been proposed in the past decades, including subspace
methods, e.g. multiple signal classification (MUSIC) [8], and
direct data domain methods, e.g. matrix pencil method [9].
Recently, new techniques based on sparse signal recovery have
been proposed [10]–[12]; these methods can be applied even
when only a single snapshot is available, or when sources are
highly correlated. Nonetheless, the aforementioned methods
require accurate signal measurements.

In DOA estimation, several antenna elements are collec-
tively used as a single antenna array to perform the estimation
task. Failure of a few elements may arise in practice, which
would result in inaccurate estimation if these faulty measure-
ments are not identified and handled. This becomes challeng-
ing in certain applications as constant calibration (testing and
repair) of the faulty elements is not practical. Therefore, it
becomes critical to leverage the inherent redundancy available
in various array geometries [13]–[15]. For example, uniform
linear array (ULA) allows for DOA estimation even if some
of the elements are removed from the array [16]. Motivated
by this observation, previous efforts to enable robust DOA
estimation have been presented in a few different ways. Firstly,
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impaired measurements may be presented as missing or invalid
values [17]. Here, the locations of the faulty measurements
are known, and estimation algorithms include an interpolation
step (e.g. matrix completion) from the remaining fault-free
measurements. Secondly, faulty measurements may also be
due to impulse noise, which can take on arbitrarily large
values. In [18], Dai and So model these as outlier measure-
ments with locations being randomly distributed over different
snapshots. Thirdly, outliers may manifest in a fraction of the
snapshots collected at the array. Robust Principle Component
Analysis methods, which find the low-dimensional subspace
that captures the fault-free measurements, are used in such
cases [19], [20]. There are also several related works that
assumes particular fault behavior (e.g. noise only [21]) or
known fault locations and instance when failure occurs (e.g.
[22]).

In this work, unreliable measurements arise from the pres-
ence of faulty components. This differs from the aforemen-
tioned scenarios as the locations of faulty elements are fixed
across all snapshots. Moreover, these locations are unknown
and not immediately obvious from the measurements. In
our approach, we introduce weights for each array element
representing its degree of outlierness. Thus, the objective is to
estimate the DOAs and these weights, which is done through
an alternating update method. Further, recognizing that only
single snapshots may be available in certain applications [23],
[24], we propose a new snapshot diversity regime, where we
utilize a collection of multiple independent single-snapshot
measurements. Our simulations show that such a method is
capable of accurately identifying the faulty elements for a wide
range of number of sources and faulty elements.

II. SIGNAL MODEL

A. Modeling Arbitrary Fault Behavior
We consider a ULA with N elements, spaced equally at

distance d apart (usually chosen as half-wavelength λc/2). M
narrowband sources impinge on the ULA at distinct directions,
θθθ = {θ0, . . . , θM−1} (where θm ∈ (−π/2, π/2)). We assume
that M source DOAs θθθ form a subset of a finely divided grid
of P candidate DOAs in the range (−π/2, π/2) with P �M .
The matrix A is the N×P array manifold matrix, with entries
An,p = exp

(
j 2πλc

nd sin θp

)
, n ∈ [N ], p ∈ [P ].
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Thus, for a single snapshot at time t, the measurements from
the N ULA elements are

y(t) = As(t) + εεε(t), (1)

where the signal s(t) ∈ CP is M -sparse with non-zero terms
at the indices corresponding to the presence of a source at the
respective DOA (θp ∈ θθθ).

In the fault-free case, the error terms εεε(t) ∈ CN are assumed
to follow the additive white Gaussian noise (AWGN) model
with variance σ2. However, if the n-th element is faulty, the
corresponding error εn(t) can take on arbitrarily large values.
Hence, the error terms can be expressed as

εn(t) ∼ CN (0, σ2
n) (2)

σ2
n =

(
σ

γn

)2

=

{
σ2, (γn = 1) if element n is not faulty,
( σγn )

2, (0 < γn < 1) if element n is faulty.

Note that γn = 1 describes a non-faulty element and a very
small γn corresponds to large measurement errors due to
faults. This model is similar to that proposed in [25] and
[26] for modeling outliers in measurements. We assume that,
among the N elements, no more than N/2 of them are faulty.

We need sufficiently large samples of εn(t) (over many
snapshots) to get a good estimate of σ2

n, and subsequently
γn. Nonetheless, we note that in some situations, only single
snapshots may be available [23], [24]. Next, we propose that a
collection of independent single snapshots, termed as snapshot
diversity, can be used to address this problem.

B. Snapshot Diversity

A common formulation in sparse representation problems is
the multiple measurement vector (MMV) model. In the context
of DOA estimation, this corresponds to DOAs being constant
across all snapshots. However, we note that multiple snapshots
of static DOAs may not always be available [23], [24].

Instead, we consider the setting where a collection of
many independent single-snapshot measurements is collected,
highlighting a rather unexplored notion in the context of
DOA estimation. We refer to this as snapshot diversity. Each
snapshot captures sources from a different set, and possibly
different number, of DOAs. Stacking the measurements from
(1) across T independent snapshots, we obtain the following
expression for the N × T measurements,

Y = [y(0), . . . ,y(T − 1)] = AS+ EEE = AS+E+W. (3)

The signal S is a P ×T element-wise sparse matrix, whereby
non-zero indices correspond to the presence of the correspond-
ing DOAs in the respective snapshots. The N×T measurement
error matrix EEE encapsulates the AWGN, denoted by W, and
the errors due to faults, denoted by the row-sparse matrix E
whose support corresponds to the fault locations.

This formulation can be seen as a generalized version of
the MMV setup; in the latter case, S is also row-sparse (static
DOAs correspond to the same non-zero indices across all
snapshots). However, algorithms for MMV are not applicable

for the formulation in (3), since row sparsity is only enforced
on E, but not on S, which corresponds to the DOAs.

Nevertheless, rather than treating each snapshot indepen-
dently, we propose an algorithm that makes use of the row
sparsity of E and the statistics of W to identify the faulty
elements. The snapshot diversity formulation described here
aids in estimating γn, as the residual terms (i.e., rn(t) =
yn(t)−Anŝ(t) for some estimate of the signal ŝ) are indepen-
dently and identically distributed for the same n, regardless of
the underlying DOAs for each snapshot.

In the next section, we leverage the setup with snapshot di-
versity described here and propose an algorithm that identifies
the faulty elements and estimates DOAs through alternating
updates.

III. ALGORITHM

A. Weighted Sparse Signal Recovery

Given the observations Y in our model setup (cf. (2) and
(3)), we are interested in estimating the nonnegative outlier
weights γγγ = [γ1, γ2, . . . , γN ] and the DOAs θθθ from the non-
zero indices of the signal S that minimizes the weighted
residual ‖diag(γγγ)·(Y−AS)‖2F . Recall that sparsity conditions
are imposed on S and on the number of faulty elements
present. The latter conditions translates to γn < 1 for as few
elements as possible. Therefore, our overall objective function
can be stated as follows

argmin
S,γγγ
‖diag(γγγ) · (Y−AS)‖2F +α‖S‖0+λ‖ log(γγγ)‖1. (4)

Note that ‖S‖0 and ‖ log(γγγ)‖1 encapsulate the aforementioned
sparsity conditions of the problem. In particular, the `1 term
over log(γγγ) is based on a similar model proposed by [25],
and corresponds to an inverse power prior distribution on the
outlier weights.

B. Alternating Method of DOA and Outlier Estimation

Note that (4) describes a non-convex optimization problem.
However, when S is fixed, the objective becomes convex in
γγγ; on the other hand, for a fixed γγγ, the problem outlines
a typical sparse signal recovery problem [12], [27]. In line
with similar problems, we propose an iterative algorithm that
performs alternating updates on γγγ and S (cf. Algorithm 1).

The main computation in each iteration of Algorithm 1
lies in the DOA estimation (S) for fixed γγγ. We adopt a
variant of orthogonal matching pursuit (OMP) – weighted
OMP (W-OMP) [26] – which has low computational and time
complexity [28]. Upon fixing S, the outlier weights γn can be
estimated from the residuals. Inspecting (4) when λ and S are
fixed, γγγ takes a closed form, where for each n ∈ [N ],

γ∗n =

√
λ/T

2
T

∑T
t=1

(
yn(t)−Ans(t)

)2 =

√
λ
2T

σ̂n
=
σ̂ref

σ̂n
. (5)

The update step for γn at each iteration can be seen as a ratio
of a reference term (σ̂ref) and the second raw moment of the
residuals (which also corresponds to the standard deviation,
σ̂n, following the zero-mean assumption about the errors).
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Algorithm 1 Alternating Method for Determining DOAs and
Outlier Weights under Snapshot Diversity
Input: Y = [y(0), . . . ,y(T − 1)]
Output: γ̂γγ = [γ̂1, . . . , γ̂N ], Ŝ = [̂s(0), . . . , ŝ(T − 1)]

1: Initialization: Set all γn = 1, ∀n ∈ [N ]
2: for i = 1 to imax do
3: for all snapshots t = 0 to T − 1 do
4: Estimate ŝ(i)(t) and ê(i)(t) using weighted OMP
5: Residual r(i)(t) = y(t)−Aŝ(i)(t)
6: end for
7: Estimate γ̂γγ(i) from residuals R(i) using Algorithm 2
8: if ‖γ̂γγ(i) − γ̂γγ(i−1)‖ < ε then
9: BREAK

10: end if
11: end for
12: return γ̂γγ

(i), Ŝ(i)

Note that we also need to impose an additional clipping step
to ensure γn is constrained to the interval [0, 1].

The above expression reflects the effect of Lagrange param-
eter λ on the estimation of the weights γn – a large λ leads to
more γn terms getting clipped to 1, and would therefore be less
sensitive to outliers. On the other hand, a small λ promotes
all γn terms to be small, but this may induce false positives
(i.e., implying that the element is faulty even if it is not).

In Algorithm 1, the W-OMP algorithm [26] solves for (3)
to jointly estimate S and E, although the latter term is not
used in the subsequent step. This is achieved by appending an
N×N identity matrix to the array manifold matrix A, forming
an expanded dictionary for the sparse signal recovery. The use
of this expanded dictionary to account for E is believed to aid
in faster convergence, since it can capture the large magnitude
errors, and can reduce DOA estimation errors when estimating
S in the presence of large faults in the earlier iterations.

After obtaining the outlier weights γγγ from Algorithm 1, a
final round of DOA estimation can be performed with W-OMP
without the identity matrix (i.e., only estimating S), since the
errors due to faulty elements have been accounted for through
the outlier weights.

C. Estimating Variance and Weights

A key step in Algorithm 1 is estimating γn from the
residuals. In the context of (2), σ̂ref is related to the standard
deviation of the AWGN. However, as seen in (5), σ̂ref can be
adjusted, in relation to the Lagrange multiplier λ, to tune the
sensitivity of the faulty element detection.

Firstly, to obtain a robust estimation of variability of the
AWGN, we chose the median absolute deviation (MAD)
statistic. The MAD of all the complex residual terms is

MAD(R) =
√

median(Re{R})2 + median(Im{R})2, (6)

where Re{R} and Im{R} refers to the real and imaginary
parts of the residuals respectively. Note that E[Re{R}] =
E[Im{R}] = 0 since we assume that the distribution of R
is centered about 0.

Algorithm 2 Weight Estimation
Input: R = [r(0), . . . , r(T − 1)]
Output: γ̂γγ = [γ̂1, . . . , γ̂N ]

1: for n = 1 to N do
2: σ̂n =

√
Et [|rn(t)|2] =

√
1
T (rnrHn )

(under the assumption that Et [rn(t)] = 0)
3: end for
4: Compute reference term from median absolute deviation
σ̂ref = k ·MAD(R), (with chosen parameter: k = 10)

5: Weight Estimation: γn = min
(
σ̂ref
σ̂n
, 1
)
, ∀n ∈ [N ]

6: return γ̂γγ

Subsequently, we obtain an estimate of the reference value

σ̂ref = k ·MAD(R).

For a Gaussian distribution, [29] describes using k = 1.4826
to attain the standard deviation. However, in the context of
Algorithm 2, the value of k is associated with the Lagrange
multiplier λ and serves as a hyperparameter.

Remark. The choice of a small k corresponds to a small λ,
which in turn favors small γn estimates but may result in false
positives in fault detection. On the other hand, a significantly
large k favors large γn estimates, and result in less sensitive
fault detection.

The choice of k = 10 was empirically found to be the most
effective across several fault models studied in our simulations.

IV. SIMULATION RESULTS

In this section, we empirically evaluate the proposed al-
gorithm. We conduct Monte Carlo simulations of a ULA
(N = 32) under different conditions. For each trial, we
generate 100 snapshots, each with different number of DOAs
(between 1 and 8), randomly generated from a sufficiently
fine grid (θm ∈ (−70◦, 70◦) to avoid DOAs near the array
endfires). We enforce a minimum separation on the DOAs
(i.e., for two sources θ and θ′, | sin θ− sin θ′| > 4/(N −1)), a
necessary condition for parameter identifiability in a mixture
of sines and spikes [30].

To simulate faulty elements, we explore four fault behaviors
– zeroed measurements (cf. (7a)), random measurements (cf.
(7b)), measurements with higher noise variance (cf. (7c)) and
off-position model mismatch (cf. (7d)).

yn,faulty = 0 (7a)
yn,faulty ∼ CN (0,M) (7b)

yn,faulty ∼ CN (yn,true, σ
2
10dB SNR) (7c)

yn,faulty =
M−1∑
m=0

sm exp((n+ δ)jωm) (7d)

δ ∈ {[−0.75,−0.25] ∪ [0.25, 0.75]}

The default signal-to-noise ratio (SNR) is 30 dB. For each
test case, we conduct 100 independent trials, and the results
are reported below.
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Fig. 1. Plot of average RMSE of DOAs (in degrees) across 100 trials under
4 different fault conditions ((7a) – (7d))
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Fig. 2. Plot of errors in identifying faulty and non-faulty elements against (a)
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SNR (with 8 faults present) for the 4 respective fault conditions simulated.
The gray dotted line corresponds to the number of faulty elements present.

A. DOA Estimation

To study the performance of the DOA estimation, we used
the following root-mean-square error (RMSE) metric,

RMSE(θ̂θθ, θθθ) =√√√√ 1

100

100∑
z=1

1

T

T−1∑
t=0

1

M(t)

M(t)−1∑
m=0

(
θ̂m(t)− θm(t)

)2
(8)

where M(t) is the number of sources for the t-th snapshot.
We assume that the number of sources are known; i.e., the
algorithms obtain the best M DOA estimates. (In rare cases
where less than M DOAs are estimated, the snapshot is
omitted from the RMSE calculation.)

We benchmarked the performance of our algorithm against
two conventional single-snapshot algorithms (with no correc-
tion for faults) – single snapshot MUSIC [31] and matrix
pencil [9]. We also provide the performance of the DOAs
estimated through a single iteration of the expanded dictionary
OMP, and through OMP with “oracle weights” (i.e., γn = 1
for non-faulty elements, and γn = 0 for faulty elements).

The DOA RMSE obtained from these algorithms were
compared for the four fault models studied (Figure 1). In
three out of the four fault models, our proposed algorithm
consistently obtains lower RMSE compared to MUSIC and
matrix pencil methods when only 1 to 8 faulty elements

are present, but performs equally poorly when more than 8
faults are present. Under (7c), the algorithms have very similar
performance. We believe that this reflects the robustness of the
algorithms studied, and in particular SS-MUSIC and matrix
pencil, against low SNR (i.e., high variance AWGN). There-
fore, the DOA estimation was not impacted significantly in
both the conventional methods and in our proposed algorithm.

B. Fault Detection
To assess the fault detection performance, we classify ele-

ments with final weights below a set threshold (e.g. γn < 1)
as faulty. Subsequently, we compare the errors in identifying
the elements (both missed detection of faulty elements and
false alarms on non-faulty elements). Changing the threshold
affects the sensitivity level of detection/false alarm. In our
simulations, it was found that up to 6 faulty elements can
be accurately identified under the snapshot diversity condition
with our proposed algorithm (Figure 2(a)).

We also investigated the detection of 8 faulty elements at
various SNR of the measurements (Figure 2(b)). Our algorithm
performs well in identifying the 8 faulty elements under high
SNR regime. However, as observed in (7c), the algorithm
deteriorates even at 30 dB SNR. Under this fault model, both
the fault errors and the measurement noise follow a Gaussian
distribution but with slightly different variance. As the variance
of the fault errors approaches that of the measurement noise,
the distinction between the faulty and non-faulty measure-
ments become less discernible. In such situations, choosing
a smaller factor k may help in accentuating the distinction
between fault and noise and help increase sensitivity in fault
detection.

C. Discussion
In our setup, we model faults as arbitrary additive terms,

i.e., we do not consider signal dependent noise or interference.
We hope to expand our analysis and experiments to consider
these factors in future works. Further, we recognize that our
algorithm depends on the difference in magnitude of the
variance between the measurement AWGN and the fault errors.
Future directions include a more well-informed choice of
factor k or estimation of the γγγ vector.

It should also be highlighted that the estimation of the signal
S in the alternating steps is an approximation to the original
sparse recovery problem. The suboptimal estimation of S was
counteracted by an overestimate over the measurement error
through a larger σ̂ref. Refinement to this estimation in the
iterative alternating step could be explored.

V. CONCLUSION

In this work, we develop a framework to identify faulty
elements on a ULA through outlier weights. This helps us de-
velop an alternating update method to robustly estimate DOAs
from unreliable measurements generated by the array. Utilizing
a novel concept of snapshot diversity, the proposed method
also applies to the settings where only a single snapshot is
available. The empirical evaluation of the proposed method
under four different fault model demonstrates its efficacy.
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