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Abstract—A modal decomposition is a useful tool that decon-
structs the statistical dependence between two random variables
by decomposing their joint distribution into orthogonal modes.
Historically, modal decompositions have played important roles
in statistics and information theory, e.g., in the study of maximal
correlation. They are defined using the singular value decompo-
sitions of divergence transition matrices (DTMs) and conditional
expectation operators corresponding to joint distributions. In this
paper, we first characterize the set of all DTMs, and illustrate
how the associated conditional expectation operators are the only
weak contractions among a class of natural candidates. While
modal decompositions have several modern machine learning
applications, such as feature extraction from categorical data,
the sample complexity of estimating them in such scenarios has
not been analyzed. Hence, we also establish some non-asymptotic
sample complexity results for the problem of estimating dominant
modes of an unknown joint distribution from training data.

I. INTRODUCTION

Modal decompositions of bivariate distributions were origi-
nally discovered in statistics by Hirschfeld [1], and have since
been rediscovered in various related contexts. The purpose of
such decompositions was to extend dimensionality reduction
techniques such as principal component analysis [2], [3] and
canonical correlation analysis (CCA) [4] to categorical data.
In fact, CCA can be perceived as both a specialization and a
generalization of such decompositions [5, Section 4.5.2]. Such
decompositions were further analyzed to understand the notion
of maximal correlation by Gebelein [6], Rényi [7], and later by
Witsenhausen [8], as well as by Sarmanov [9] who elucidated
the equivalence between squared maximal correlation and the
strong data processing inequality (SDPI) for χ2-divergence.
Yet another independent development followed in the work
of Lancaster [10], [11], whose line of analysis evolved into
a study of when bivariate distributions could be decomposed
using orthogonal polynomials; we refer readers to [12], which
generalizes Mehler’s decomposition [13] for jointly Gaussian
distributions (cf. [14]), and the references therein for further
details. Modal decompositions were then rediscovered again
and further developed by the French school of data analysis
[15], which exploited them as a data visualization tool known
as correspondence analysis [16], [17]. Finally, in the context of
non-parametric regression, Breiman and Friedman formulated
the alternating conditional expectations (ACE) algorithm to
(yet again) numerically compute modal decompositions [18].
(We also refer readers to the unified exposition of several
of these ideas in [19].) While this rich history serves as
a testament to the importance of modal decompositions in
statistics and machine learning, there has not been any rigorous
and non-asymptotic sample complexity analysis for estimating

modal decompositions from training data for the purposes of
modern data science applications.

In this paper, we make two main contributions. Firstly, after
formally introducing modal decompositions of conditional ex-
pectation operators and divergence transition matrices (DTMs)
in section I-A, we completely characterize DTMs and elucidate
the special property of our choice of conditional expectation
operators in section II. Secondly, we illustrate several non-
asymptotic sample complexity results for estimating modal
decompositions from training data in section III, which at least
partially remedy the paucity of such results in the literature.
Furthermore, in section I-B, we motivate our analysis of modal
decompositions by elucidating their utility as approximate iso-
metric embeddings of categorical data into Euclidean spaces.

A. Modal Decompositions of Bivariate Distributions

Consider the random variables X and Y taking values in
the finite alphabets X and Y, respectively, with joint distribu-
tion PX,Y . For simplicity, assume that the marginals satisfy
PX(x) > 0 and PY (y) > 0 for all x ∈ X and y ∈ Y. Define
the Hilbert space L2(X, PX) of all real-valued functions on X

with correlation as inner product:

∀f1, f2∈L2(X, PX), 〈f1, f2〉PX
,
∑
x∈X

PX(x)f1(x)f2(x) (1)

and induced L2-norm ‖·‖PX
, and similarly, define L2(Y, PY ).

We will analyze the singular value decomposition (SVD)
structure of two equivalent representations of PX,Y . The first
representation is the conditional expectation operator PX|Y :
L2(X, PX)→ L2(Y, PY ) that maps any f ∈ L2(X, PX) to:

∀y ∈ Y,
(
PX|Y f

)
(y) , E[f(X)|Y = y] . (2)

The second representation is the (aforementioned) DTM B ∈
R|Y|×|X|, whose (y, x)th entry is defined as [20]:

∀x ∈ X, ∀y ∈ Y, B(x, y) ,
PX,Y (x, y)√
PX(x)PY (y)

. (3)

(It is worth mentioning that the DTM B parallels the spectral
graph theoretic concept of a symmetric normalized Laplacian
matrix—see, e.g., [21, Section II-D], [22, Section 2.2].)

Let K , min{|X|, |Y|}, and denote the orthonormal sets
of right and left singular vectors of PX|Y as f∗0 , . . . , f

∗
K−1 ∈

L2(X, PX) and g∗0 , . . . , g
∗
K−1 ∈ L2(Y, PY ), respectively, with

corresponding singular values σ0 ≥ σ1 ≥ · · · ≥ σK−1 ≥ 0:

∀i ∈ {0, . . . ,K − 1}, PX|Y f
∗
i = σi g

∗
i . (4)



As shown in [7, Theorem 1] (cf. [23, Prop 2, Appendix A]),
σ0 = 1, f∗0 (x) = 1 for all x ∈ X, and g∗0(y) = 1 for all y ∈ Y.
Moreover, for any i ∈ {1, . . . ,K−1}, σi denotes the maximal
correlation, cf. [1], [6], [7], [24, Section III]:

σi = max
f∈L2(X,PX), g∈L2(Y,PY ):

∀j<i, E[f(X)f∗
j (X)]=E[g(Y )g∗

j (Y )]=0

E[f(X)2]=E[g(Y )2]=1

E[f(X)g(Y )] , (5)

where the optimal functions are f∗i and g∗i . Equivalently, we
have the following SVD for B [24, Prop 2]:

B =
K−1∑
i=0

σiψ
Y
i

(
ψX

i

)T
, (6)

where the sets of singular vectors ψX
0 , . . . ,ψ

X
K−1 ∈ R|X| and

ψY
0 , . . . ,ψ

Y
K−1 ∈ R|Y| (which are orthonormal with respect

to the standard Euclidean inner product) satisfy the relations:

∀i∈{0, . . . ,K − 1}, ∀x ∈ X, ψX
i (x) = f∗i (x)

√
PX(x) , (7)

∀i∈{0, . . . ,K − 1}, ∀y ∈ Y, ψY
i (y) = g∗i (y)

√
PY (y) , (8)

where ψX
i (x) and ψY

i (y) are the xth and yth entries of ψX
i

and ψY
i , respectively, and we have ψX

0 (x) =
√
PX(x) for all

x ∈ X and ψY
0 (y) =

√
PY (y) for all y ∈ Y.

As shown in the complete manuscript [24, Prop 2], (4) and
(6) can be recast as a modal decomposition of PX,Y :

PX,Y (x, y) = PX(x)PY (y)

(
1 +

K−1∑
i=1

σi f
∗
i (x) g∗i (y)

)
(9)

for all x ∈ X and y ∈ Y, where E[f∗i (X)] = E[g∗i (Y )] = 0
and E

[
f∗i (X)f∗j (X)

]
= E

[
g∗i (Y )g∗j (Y )

]
= 1i=j for every

i, j ∈ {1, . . . ,K − 1} (and 1A denotes the indicator function
that equals 1 if the proposition A is true and 0 otherwise).
This elegantly decomposes the statistical dependence between
X and Y into orthogonal modes, and elucidates the rela-
tive importance of these modes via the singular values. The
decomposition (9) and maximal correlations (5) have been
either the subject of or crucial in many recent studies on,
e.g., hypercontractivity [25], SDPIs and functional inequalities
[23], [26], [27], estimation theory, security, and privacy [28],
feature extraction and dimensionality reduction [29], [30], and
neural networks [31]. In the next subsection, we elaborate on
one motivation for our analysis of modal decompositions; we
refer readers to [24, Sections IV and V] for various other
motivations and characterizations of modal decompositions.

B. Motivation: Embeddings of Categorical Data

Consider the problem of clustering the elements of X or Y
in a manner that captures the salient dependencies between X
and Y . For example, in the context of the “Netflix problem”
[32], where X is the set of subscriber indices and Y is the set
of movie indices, clustering the subscribers according to what
movies they watch can help to build effective recommendation
systems. However, since X and Y are categorical, in order to
utilize simple clustering algorithms such as κ-means clustering
[33]–[35], we must embed elements of X or Y into points in

Rk with k ∈ {1, . . . ,K − 1}. So, our objective is to extract
real-valued features of X that carry as much information about
Y as possible. We can interpret (5) as a natural formulation
that achieves this goal. Indeed, the dominant pairs of singular
vectors (f∗1 (X), g∗1(Y )), . . . , (f∗k (X), g∗k(Y )) yield features of
X and Y that are maximally correlated with each other and
carry orthogonal modes of information to avoid redundancy.
These features produce the following embeddings of X and Y

into the Euclidean space Rk:

X 3 x 7→ [σ1f
∗
1 (x) · · · σkf∗k (x)]

T∈ Rk , (10)

Y 3 y 7→ [σ1g
∗
1(y) · · · σkg∗k(y)]

T∈ Rk , (11)

which permit us to cluster elements of X or Y by clustering
the corresponding embedded points in Rk. These embeddings
are particularly useful in high-dimensional settings where K is
large, and we use k � K to perform dimensionality reduction.

As expounded in [5, Section 4.5.3], our proposed embed-
dings (10) and (11) are very closely related to diffusion maps
[36], which were introduced as a general conceptual frame-
work for understanding “kernel eigenmap methods” such as
Laplacian eigenmaps [37], and have been exploited in several
machine learning tasks such as manifold learning and spectral
clustering (see, e.g., [38, Section 2]). Indeed, much like diffu-
sion maps, first consider the embedding X 3 x 7→ PY |X(·|x)
of X into R|Y|−1 using the conditional distributions. Observe
using (9) that this association can be represented by the iso-
metric embedding X 3 x 7→

[
σ1f

∗
1 (x) · · · σK−1f∗K−1(x)

]T ∈
RK−1. It is straightforward to verify that the `2-distance be-
tween the isometric embeddings of any two elements x, x′ ∈ X

precisely captures the (χ2-divergence like) diffusion distance
between the corresponding conditional distributions:

D2
diff(x, x′) ,

∑
y∈Y

(
PY |X(y|x)− PY |X(y|x′)

)2
PY (y)

(12)

=
K−1∑
i=1

σ2
i (f∗i (x)− f∗i (x′))

2
. (13)

Thus, clustering isometric embeddings of X using `2-distance
corresponds to clustering conditional distribution embeddings
of X using diffusion distance. To reduce the dimensionality of
this isometric embedding when K is large and k � K, we can
truncate it to produce the approximate isometric embedding
in (10). When σk+1 is very small, it is easy to see via (13)
that the `2-distance between two embeddings of the form
(10) approximately captures the diffusion distance between the
corresponding conditional distributions.

In practical settings, we usually have access to n samples
of training data {(Xi, Yi) ∈ X × Y : i ∈ {1, . . . , n}} that
are drawn i.i.d. from the unknown true distribution PX,Y . For
instance, each sample (Xi, Yi) might convey that subscriber
Xi has streamed movie Yi. In order to learn the embeddings
(10) and (11), we need to estimate the k dominant pairs of
singular vectors (f∗1 , g

∗
1), . . . , (f∗k , g

∗
k) using the training data.

The natural approach to do this is to efficiently compute the
dominant singular vectors of the DTM corresponding to the



empirical distribution of the data using numerical linear alge-
bra techniques such as the orthogonal iteration method, the QR
iteration algorithm and its numerically enhanced variants, and
Krylov subspace based methods (e.g., Lanczos algorithm) [39],
[40]. Specifically, applying the orthogonal iteration method to
DTMs is equivalent to applying the renowned ACE algorithm
[18] to conditional expectation operators; see [24, Section VI],
[5, Section 4.4] for more details and convergence properties.

II. CHARACTERIZATION OF OPERATORS

In this section, we present two main results. The first result
in section II-A characterizes the set of all DTMs and develops
basic properties of the map that takes bivariate distributions to
their DTMs. The second result in section II-B portrays how our
unique choice of Hilbert spaces ensures that our conditional
expectation operators are weak contractions.

A. Characterization of DTMs

We begin by introducing some useful notation. Let PX×Y

denote the set of all bivariate distributions over X × Y with
entry-wise strictly positive marginals, and PX×Y

◦ denote the
relative interior of PX×Y (i.e., all entry-wise strictly positive
bivariate distributions). Moreover, define the DTM function
B : PX×Y → R|Y|×|X| according to (3), so that B = B(PX,Y )
with some abuse of notation. Let BX×Y , B(PX×Y) be
the set of all DTMs, i.e., the range of the DTM function,
and let BX×Y

◦ , B(PX×Y
◦ ) denote the set of all DTMs

corresponding to distributions in PX×Y
◦ . Then, the ensuing

theorem characterizes BX×Y and BX×Y
◦ , and establishes that

B is an equivalent representation of PX,Y .

Theorem 1 (Characterization of DTMs). The following hold:
1) A matrix M is a DTM corresponding to a distribution in

PX×Y
◦ if and only if M > 0 (entry-wise) and ‖M‖s = 1:

BX×Y
◦ =

{
M ∈ R|Y|×|X| : M > 0 and ‖M‖s = 1

}
,

where ‖·‖s denotes the spectral norm, and 0 is a matrix
with all entries equal to 0 of appropriate dimension.

2) A matrix M is a DTM corresponding to a distribution in
PX×Y if and only if M ≥ 0 (entry-wise), ‖M‖s = 1, and
both MTM and MMT have entry-wise strictly positive
eigenvectors corresponding to their unit eigenvalue:

BX×Y =
{
M ∈ R|Y|×|X| : M ≥ 0, ‖M‖s = 1,

∃ψX > 0, MTMψX = ψX , and

∃ψY > 0, MMTψY = ψY
}
.

3) B : PX×Y → BX×Y is bijective and continuous.

Theorem 1 is established using the Perron-Frobenius the-
orem (cf. [41, Theorems 8.2.2 and 8.3.1]) in [24, Appendix
II-B]. In view of part 2 of Theorem 1, it is worth noting that
a non-negative square matrix A ≥ 0, such as the Gramian
MTM or dual Gramian MMT, has entry-wise strictly pos-
itive left and right eigenvectors corresponding to its spectral
radius ρ(A) if and only if the triangular block form of A is a
direct sum of irreducible non-negative square matrices whose
spectral radii are also ρ(A), cf. [42, Chapter 2, Section 3].

B. Representation of Conditional Expectation Operators

It is reasonable to ask why we focus on SVDs of DTMs, i.e.,
conditional expectation operators with the specific choices of
Hilbert spaces in section I-A, as opposed to other commonly
used representations of PX,Y , e.g., information density [43],
[44]. To partially address this question, we demonstrate that
our choices of Hilbert spaces uniquely produce conditional
expectation operators that are weak contractions over a rea-
sonable class of candidates.

Given PX,Y ∈ PX×Y, the map PX|Y is completely charac-
terized by the conditional distribution PX|Y via (2). However,
to make PX|Y a well-defined linear operator with an SVD,
we must endow its input and output vector spaces of functions
with inner products. Fix the output Hilbert space of PX|Y to
be L2(Y, PY ). While this produces a canonical choice of input
Hilbert space L2(X, PX), let us instead select the Hilbert space
L2(X, QX) for any (entry-wise) strictly positive distribution
QX > 0 over X. We then define the corresponding induced
operator norm of PX|Y : L2(X, QX)→ L2(Y, PY ) as:∥∥PX|Y

∥∥
QX→PY

, max
f∈L2(X,QX)\{0}

∥∥PX|Y f
∥∥
PY∥∥f∥∥

QX

, (14)

where we also use 0 to represent the everywhere zero function.
The next theorem conveys that the only choice of input Hilbert
space that makes PX|Y a weak contraction is L2(X, PX).

Theorem 2 (Weak Contraction). The minimum operator norm
of PX|Y over all choices of QX > 0 is:

min
QX>0

∥∥PX|Y
∥∥
QX→PY

=
∥∥PX|Y

∥∥
PX→PY

= 1 ,

where Q∗X = PX is the unique minimizer. Furthermore, for
any QX > 0, we have the following χ2-divergence bound:∥∥PX|Y

∥∥2
QX→PY

≥ 1 + χ2(PX ||QX) ,
∑
x∈X

PX(x)2

QX(x)
.

Proof. Note that for all QX > 0, we have f∗0 ∈ L2(X, QX)
with ‖f∗0 ‖QX

= 1 and ‖PX|Y f
∗
0 ‖PY

= ‖g∗0‖PY
= 1, where

f∗0 and g∗0 are everywhere unity functions. As a result, we
get ‖PX|Y ‖QX→PY

≥ 1. Moreover, since σ0 = 1, we know
that QX = PX achieves this lower bound; indeed, for every
f ∈ L2(X, PX), the conditional Jensen’s inequality yields:

E
[
E[f(X)|Y ]

2
]
≤ E

[
E
[
f(X)2

∣∣Y ]] = E
[
f(X)2

]
.

This proves that the minimum operator norm of PX|Y is 1.
To prove that Q∗X = PX is the unique minimizer, it suffices

to establish the χ2-divergence bound, because χ2-divergence
is zero if and only if its input distributions are equal. For any
QX > 0, a direct calculation shows that the adjoint operator
P∗X|Y : L2(Y, PY ) → L2(X, QX) of PX|Y : L2(X, QX) →
L2(Y, PY ) is given by (see [24, Appendix II-C] for details):

∀x ∈ X,
(
P∗X|Y g

)
(x) =

PX(x)

QX(x)
E[g(Y )|X = x]

for every g ∈ L2(Y, PY ), where the conditional expectation
is with respect to PY |X associated with PX,Y . Now observe



that (P∗X|Y g
∗
0)(x) = PX(x)/QX(x) for all x ∈ X. Hence,

‖g∗0‖PY
= 1 and we have:∥∥P∗X|Y g∗0∥∥2QX

=
∑
x∈X

QX(x)
PX(x)2

QX(x)2
= 1 + χ2(PX ||QX) .

Since ‖PX|Y ‖2QX→PY
= ‖P∗X|Y ‖

2
PY→QX

≥ ‖P∗X|Y g
∗
0‖2QX

,
we obtain the desired bound. This completes the proof. �

Theorem 2 illustrates that given PX,Y ∈ PX×Y, the only
inner products that make PX|Y = E[·|Y ] and E[·|X] adjoints
and weak contractions are those with respect to PX and PY .

III. SAMPLE COMPLEXITY ANALYSIS

In this section, we present two main sample complexity
results for estimation of the dominant k ∈ {1, . . . ,K − 1}
modes in (9). As mentioned at the end of section I-B, we will
assume that the true joint distribution PX,Y is unknown, but
we have n samples of labeled training data {(Xi, Yi) ∈ X×Y :
i ∈ {1, . . . , n}} drawn i.i.d. from PX,Y . Therefore, we will
use the empirical distribution P̂n

X,Y on X× Y:

∀x ∈ X, ∀y ∈ Y, P̂n
X,Y (x, y) ,

1

n

n∑
i=1

1Xi=x 1Yi=y (15)

as a proxy for PX,Y . Note that when K is large, the training
data is often enough to accurately estimate PX and PY , but
not PX,Y . Furthermore, in many scenarios, we may have ad-
ditional (inexpensive) unlabeled training data available, which
also improves the estimation accuracy of PX and PY . In light
of these and other analytical tractability considerations, we
will assume that the true marginals PX and PY are known,
and for some p0 > 0, they satisfy the (universal) lower bound:

min
x∈X

PX(x) ≥ p0 and min
y∈Y

PY (y) ≥ p0 . (16)

To estimate the dominant modes in (9), define the singular
vector estimates f̂∗i ∈ L2(X, PX) and ĝ∗i ∈ L2(Y, PY ) for
i ∈ {1, . . . ,K}, and the singular value estimates σ̂1 ≥ · · · ≥
σ̂K ≥ 0, via the “empirical” modal decomposition:

P̂n
X,Y (x, y) = PX(x)PY (y)

(
1 +

K∑
i=1

σ̂i f̂
∗
i (x) ĝ∗i (y)

)
, (17)

where E
[
f̂∗i (X)f̂∗j (X)

]
= E

[
ĝ∗i (Y )ĝ∗j (Y )

]
= 1i=j for i, j ∈

{1, . . . ,K}. The decomposition (17) corresponds to the SVD
of a quasi-DTM B̂ ∈ R|Y|×|X| with (y, x)th entry given by:

∀x ∈ X, ∀y ∈ Y, B̂(x, y),
P̂n
X,Y (x, y)−PX(x)PY (y)√

PX(x)PY (y)
. (18)

Indeed, the matrix B̂ has the SVD:

B̂ =
K∑
i=1

σ̂i ψ̂
Y
i

(
ψ̂X

i

)T
, (19)

where the sets of orthonormal singular vectors ψ̂X
1 , . . . , ψ̂

X
K ∈

R|X| and ψ̂Y
1 , . . . , ψ̂

Y
K ∈ R|Y| have elements:

∀i ∈ {1, . . . ,K}, ∀x ∈ X, ψ̂X
i (x) = f̂∗i (x)

√
PX(x) , (20)

∀i ∈ {1, . . . ,K}, ∀y ∈ Y, ψ̂Y
i (y) = ĝ∗i (y)

√
PY (y) . (21)

Finally, for convenience, we define (and will analyze) the
following zero-mean singular vector estimates for every i ∈
{1, . . . ,K}: f̌∗i (x) , f̂∗i (x) − E

[
f̂∗i (X)

]
for all x ∈ X, and

ǧ∗i (y) , ĝ∗i (y)− E
[
ĝ∗i (Y )

]
for all y ∈ Y.

A. Estimation of Dominant Maximal Correlations
We first determine the number of samples required to obtain

accurate estimates σ̂1, . . . , σ̂k of σ1, . . . , σk in terms of the
(squared) `1-loss. The next theorem conveys an exponential
concentration of measure inequality for the `1-loss.

Theorem 3 (Estimation Tail Bound I). For any 0 ≤ δ ≤
√
k

p0

√
2

:

P

(
k∑

i=1

∣∣σ̂i − σi∣∣ ≥ δ) ≤ exp

(
1

4
− n p20 δ

2

8k

)
,

where exp(·) denotes the natural exponential.

Proof Sketch. We outline the proof here, and refer readers to
[24, Appendix VI-A] for details. First, for each i ∈ {1, . . . , n},
let Zi ∈ R|Y|×|X| be a random matrix with (y, x)th element:

∀x ∈ X, ∀y ∈ Y, Zi(x, y) ,
1Xi=x1Yi=y − PX(x)PY (y)√

PX(x)PY (y)
.

Accordingly, Z1, . . . ,Zn are i.i.d., and B̂ = 1
n

∑n
i=1 Zi due

to (15). For every i ∈ {1, . . . , n}, define the corresponding
zero-mean random matrices Z̃i , Zi − E

[
Zi

]
. Each Z̃i is

almost surely bounded in Frobenius norm ‖ · ‖F:∥∥Z̃i

∥∥2
F

=
∑
x∈X

∑
y∈Y

(1Xi=x1Yi=y − PX,Y (x, y))
2

PX(x)PY (y)
(22)

≤ 1

p20

(∑
x∈X

∑
y∈Y

1Xi=x1Yi=y + PX,Y (x, y)2

)
(23)

≤ 2

p20
, (24)

where (23) follows from (16) and the fact that for all x ∈ X

and y ∈ Y, −2 1Xi=x1Yi=yPX,Y (x, y) ≤ 0, and (24) holds
because the first summation in (23) is equal to unity while the
second summation is upper bounded by unity. Furthermore,
the “total variance” of each Z̃i is also bounded:

E
[∥∥Z̃i

∥∥2
F

]
≤ 1

p20

∑
x∈X

∑
y∈Y

var[1Xi=x1Yi=y] ≤ 1

p20
, (25)

where var[·] denotes the variance operator, the first inequality
follows from (22) and (16), and the second inequality holds
because var[1Xi=x1Yi=y] ≤ PX,Y (x, y) for all x ∈ X and
y ∈ Y. The boundedness conditions (24) and (25) ensure that
we can apply a vector version of Bernstein’s inequality to the
i.i.d. sequence Z̃1, . . . , Z̃n (as we will do shortly).

Next, note that σ̂1, . . . , σ̂k are the k largest singular values
of B̂. Moreover, due to (3), (6), and the structure of ψX

0 and
ψY

0 delineated in section I-A, we get:

E
[
Z1

]
= B−ψY

0

(
ψX

0

)T
=

K−1∑
j=1

σj ψ
Y
j

(
ψX

j

)T
,



which implies that σ1, . . . , σk are the k largest singular values
of E

[
Z1

]
. To complete the proof, we employ the following

singular value perturbation bound.

Lemma 4 (Stability of Singular Values). Given two matrices
A1,A2 ∈ Rk1×k2 , for every k ∈ {1, . . . ,min{k1, k2}}:

k∑
i=1

∣∣σi(A1)− σi(A2)
∣∣ ≤ √k ∥∥A1 −A2

∥∥
F
,

where σi(·) denotes the ith largest singular value of its matrix
argument with i ∈ {1, . . . ,min{k1, k2}}.

Lemma 4 is derived in [24, Lemma 104] via a weak majoriza-
tion result for singular values known as the Lidskii inequality,
cf. [45, Theorem 3.4.5]. Applying it to our problem yields:

k∑
i=1

∣∣σ̂i−σi∣∣ ≤ √k ∥∥B̂−E[Z1

]∥∥
F

=
√
k

∥∥∥∥∥ 1

n

n∑
i=1

Z̃i

∥∥∥∥∥
F

. (26)

Finally, for any 0 ≤ δ ≤
√
k

p0

√
2

, we have:

P

(
k∑

i=1

∣∣σ̂i − σi∣∣ ≥ δ) ≤ P

(∥∥∥∥∥ 1

n

n∑
i=1

Z̃i

∥∥∥∥∥
F

≥ δ√
k

)
(27)

≤ exp

(
1

4
− n p20 δ

2

8k

)
, (28)

where (27) follows from (26), and to obtain (28) we have used
the bounds (24) and (25) along with the vector generalization
of Bernstein’s inequality in [46, Theorem 2.4] (also see [24,
Lemma 103]). This completes the proof. �

Theorem 3 shows that estimating σ1, . . . , σk via σ̂1, . . . , σ̂k
to within a fixed `1-norm error and a fixed confidence level
requires the number of samples n to grow linearly with k.
A key consequence of Theorem 3 is the following corollary,
which presents a corresponding squared `1-risk bound.

Corollary 5 (Squared `1-Risk Bound I). For every sufficiently
large n such that n ≥ 16 log(4kn):

E

( k∑
i=1

∣∣σ̂i − σi∣∣)2
 ≤ 6k + 8k log(nk)

p20n
,

where log(·) denotes the natural logarithm.

Corollary 5 is proved in [24, Appendix VI-B]. We remark
that several other consequences of Theorem 3 and Corollary 5,
such as estimation bounds for Ky Fan k-norms, can be found
in [24, Section VI-B].

B. Estimation of Dominant Features

In this final subsection, we determine the number of samples
required to obtain accurate estimates f̌k∗ =

(
f̌∗1 , . . . , f̌

∗
k

)
of the

singular vectors fk∗ =
(
f∗1 , . . . , f

∗
k

)
. (By symmetry, analogous

results can be obtained for the estimation of gk∗ =
(
g∗1 , . . . , g

∗
k

)
using ǧk∗ =

(
ǧ∗1 , . . . , ǧ

∗
k

)
.) Despite the existence of invariant

subspace stability results, e.g., the Davis-Kahan theorems and
Wedin’s theorems (see [47, Chapter V, Sections 3 and 4]), the

individual singular vectors of an operator often vary greatly
under perturbations. So, instead of directly analyzing the con-
vergence of f̌k∗ to fk∗ , our development focuses on measuring
the accuracy of these estimates with the loss function:

k∑
i=1

∥∥PX|Y f
∗
i

∥∥2
PY
−

k∑
i=1

∥∥PX|Y f̌
∗
i

∥∥2
PY
≥ 0 , (29)

where the first term is equal to σ2
1 + · · ·+σ2

k, the second term
can be construed as an estimator of the first term, and the
non-negativity above is argued in [24, Section VI-B, Lemma
3, Equation (546)]. To facilitate further interpretation of this
loss function, we refer readers to the detailed exposition in
[24] of how this loss function captures the extent to which the
estimates f̌k∗ preserve as much of a “k-rank approximation” of
the mutual information between X and Y (see [24, Equation
(73)]) as possible under local approximations.

As before, the next theorem portrays an exponential con-
centration of measure inequality for the loss function in (29).

Theorem 6 (Estimation Tail Bound II). For any 0 ≤ δ ≤ 4k:

P

(
k∑

i=1

∥∥PX|Y f
∗
i

∥∥2
PY
−
∥∥PX|Y f̌

∗
i

∥∥2
PY
≥ δ

)

≤
(
|X|+ |Y|

)
exp

(
−n p0 δ

2

64 k2

)
,

where we clarify that the probability measure P is given by
the law of f̌k∗ .

Theorem 6 is derived in [24, Appendix VI-D] using a matrix
generalization of Bernstein’s inequality, cf. [48, Theorem 1.6],
and the Weyl inequality from matrix perturbation theory, cf.
[41, Corollary 7.3.5(a)]. It illustrates that estimating fk∗ via f̌k∗
to within a fixed error and confidence level requires n to grow
quadratically with k. As before, a key consequence of Theo-
rem 6 is the following corollary, which presents a bound on
the mean squared error (MSE) between

∑k
i=1

∥∥PX|Y f̌
∗
i

∥∥2
PY

and
∑k

i=1

∥∥PX|Y f
∗
i

∥∥2
PY

.

Corollary 7 (MSE Risk Bound II). For every sufficiently large
n such that p0n

64 ≥
1

|X|+|Y| and p0n
4 ≥ log

(
p0n
64

(
|X|+ |Y|

))
:

E

( k∑
i=1

∥∥PX|Y f
∗
i

∥∥2
PY
−
∥∥PX|Y f̌

∗
i

∥∥2
PY

)2
≤

64k2
(

log
(
p0n
(
|X|+ |Y|

))
− 3
)

p0n
.

Corollary 7 is established in [24, Appendix VI-E].
The non-asymptotic sample complexity results in this sec-

tion provide an initial theoretical foundation for the important
problem of estimating modal decompositions. We believe that
these results can be sharpened and generalized (by removing
some of our assumptions) using tools from the rich matrix
estimation literature (see [49] and the references therein). In
closing, we again refer readers to the manuscript [24, Section
VI] for several complementary sample complexity bounds as
well as some pertinent large deviations theoretic analysis.
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