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Abstract The meridional coherence, connectivity, and regional inhomogeneity in long-term sea surface
temperature (SST) variability over the Northwest Atlantic continental shelf and slope from 1982-2018 are
investigated using observational data sets. A meridionally concurrent large 88T warming trend is
identified as the dominant signal over the length of the continental shelf and slope between Cape
Hatteras in Morth Carolina and Cape Chidley, Newfoundland and Labrador, Canada. The linear trends
are 0.37 + 0.06 and 0.39 + 0.06 "C/decade for the shelf and slope regions, respectively. These meridionally
averaged 55T time series over the shelf and slope are consistent with each other and across multiple
longer observational data sets with records dating back to 1900, The coherence between the long-term
meridionally averaged time series over the shelf and slope and basin-wide averaged S5T in the North
Atlantic implies approximately two thirds of the warming trend during 1982-2018 may be attributed to
natural climate variability and the rest to externally forced change including anthropogenic warming,

Plain Language Summary This study investigates long-term changes in the sea surface
temperature (SST) since 1982 over the Northwest Atlantic continental shelf and slope. In particular, we
focus on the changes consistently found from Cape Hatteras, North Carolina, United States, to Cape
Chidley, Newfoundland and Labrador, Canada. The 85T warming rates concurrently found over

this large latitudinal range are 0.37 + 0.06 and 0.39 =+ 0.06 °C/decade for the shelf and slope regions,
respectively. Analysis indicates that approximately two thirds of the warming trend during 1982-2018
may be attributed to natural climate variability and the rest to externally forced change including
anthropogenic warming. Our findings are further confirmed by comparing with multiple other
observational data sets.

1. Introduction

The Northwest Atlantic (N'WA) continental shelf and slope between Cape Hatteras and Labrador are domi-
nated by equatorward flow, with relatively cold and fresh subpolar and Arctic-origin water (Labrador Shelf
and Slope Currents) advected from the north (Fratantoni & Pickart, 2007; Loder et al., 1998). Further off-
shore in the open ocean, the Gulf Stream transports warm and salty water from the south, separating from
the coast near Cape Hatteras and meandering northeastward. Warm-core rings form in the Slope Water
region between the continental shelf and the Gulf Stream and propagate westward/southwestward before
impinging on the shelf or reattaching to the Gulf Stream (e.g., Chen, He, ef al., 2014; Joyce et al., 1984;
Zhang & Gawarkiewicz, 2015). The NWA continental shelf and slope west of the tail of the Grand Banks
are subject to influences from both the Labrador current and the Gulf Stream (e.g., Loder et al,, 1998).

Sea surface temperature (S5T) on the NWA continental shelf and slope exhibits significant variability on a
broad range of time scales (Friedland & Hare, 2007; Richaud et al., 2016; Shearman & Lentz, 2010). In recent
decades, accelerated warming trends on the NWA continental shelf have been detected in both surface and
subsurface layers (Brickman et al., 2018; Forsyth et al., 2015; Pershing et al., 2015). There is evidence that this
warming has had major impacts on marine ecosystems and fishery productivity, with commercial
importance (Lucey & Nye, 2010; Mills et al., 2013; Mountain & Murawski, 1992; Nye et al., 2009; Pershing
et al., 2015).
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Shearman and Lentz (2010) examined observations collected along the east coast of North America since the
1820s, concluding that long-term SST variations off the 'U.5. East Coast are dominated by along-shelf advec-
tion originating from Labrador rather than local air-sea heat exchange. On seasonal time scales, Richaud
etal. (2016) reported that S5T changes over the NW A continental shelf are mainly driven by surface heat flux
and strongly correlated with latitude, based on in situ observations since the 1950s. Chen et al. (2015) used
observational data and a high-resolution numerical model to show that an episode of extreme warming
observed in 2012 was primarily driven by anomalous wintertime air-sea heat exchange. Further, a direct
link was established between the behavior of the midlatitude jet stream and temperature anomalies over
the northeast 1.5, continental shelf (Chen, Gawarkiewicz, et al., 2014).

Most previous studies have examined long-term variability within smaller subregions, for example, the Gulf
of Maine ( GoM). However, given the interconnected nature of the system, we expect that improved under-
standing of the long-term variability can be gained from examining the region as a whole (Fratantoni &
Pickart, 2007; Loder et al., 1998). Here, we investigate the long-term SST variability on the shelf and slope
from the Labrador Shelf to Cape Hatteras, focusing on its coherence, connectivity, and regional differences.

2. Study Area, Data, and Methods
2.1. Study Area

This study examines SS5T on the NWA continental shelf and slope, between Cape Chidley, Newfoundland
and Labrador, Canada, and Cape Hatteras, North Carolina (Figure 1). The shelf and slope regions are sepa-
rated by the 200-m isobath. We further divide the region into smaller subregions, mosily based on physical
environment and geography { Figure 1). The shelf region consists of 14 subregions, extending from the south-
ern Mid-Atlantic Bight (MAB) to the Labrador Shelf. Among these, the first five shelf boxes nearly corre-
spond to the Ecoregions of the Northeast US. shelf—the southern MAB, northern MAB, Georges Bank
(GRB), western GoM, and eastern GoM (Ecosystemn Assessment Program, 2012). The Scotian Shelf (35) is
separated into two parts at 62°W: western S8 (shelf box 06) and eastern S8 (shelf box 07). The Gulf of St.
Lawrence is separated into northern (shelf box 09) and southern (shelf box 08) regions along the
Laurentian Channel. The remaining four shelf boxes along the Labrador Shelf north of the Newfoundland
Shelf (NFL, box 10) are separated by the latitudes of 52°N, 54.67°N, and 57.83°N.

For the slope, we focus on the region between 35°N and 50°N, where slope processes have been shown to
directly influence shelf temperatures on a variety of time scales (eg., Chen, He, et al, 2014; Zhang &
Gawarkiewicz, 2015; Gawarkiewicz et al., 2018). The slope region consists of eight subregions. The southern
boundaries of slope boxes A through E are penerally parallel to the main axis of the Gulf Stream, covering the
slope sea between the continental shelf and the Gulf Stream. Results are not sensitive to slight northward or
southward modification of the southern boundary. The southern boundaries of slope boxes F to H are
aligned with the 4,000-m isobath. Slope boxes A to F are separated by longitudes ranging from 50°W to
T0°W, with an interval of 5°. Slope boxes F to H are separated by latimdes of 43°N and 46°N.

2.2. 55T Data Sets

We use a high-resolution satellite-derived data set—the %" National Oceanic and Atmospheric
Administration Optimum Interpolation SST (NOAA OISST v2) data set {Reynolds et al., 2007} —to examine
the temporal and spatial variability of S5T across the shelf and slope regions in the NWA. 55T is set to —1.8
°C where sea ice concentration is at least 90% (Reynolds et al., 2002). Results are not sensitive to masking in
these ice-covered areas. The temporal range extends from 1982 to 2018, with monthly resolution. We used
three other historical data sets for comparison, each having century-long temporal coverage dating back
to at least 1900, though with coarser spatial resolutions. These include the Hadley Centre Sea Ice and 55T
(HadISST v1.1; Rayner et al, 2003), the Centennial in siftu Observation-Based Estimates of S5T (COBE
S5T; Ishii et al, 2005), and the NOAA Extended Reconstructed SST (NOAA ERSST v5; Huang et al,
2017). The HadISST and COBE SST have a 1° resolution, while the ERSST is on a 2° grid.

We also consider near-surface air temperature (usually at 2 m) records from coastal land-based stations
(Figure 1) from the Global Historical Climatology Network-Monthly Database, version 4.0, archived at the
National Centers for Environmental Information (https://www.ncdc.noaa.gov/; Menne et al.,, 2018). We
only select stations located near the coast (within 100-km distance from the coast) between Cape Hatteras

CHEN ET AL.

2ofl1



AU

100 Geophysical Research Letters 10.1029/2019GLOR 5455
o
5 . T
> n &
i 1 - Southern MAR
2 - Northern MAB
6y - A 3. Georges Bank
4 - Western GoM
5 - Eastern GoM
6 - Western 55
55 A 5 ™ 7 - Eastern S5
8 - Southern G5L
9 - Morthern G5L
10 - NFL Shelf
S0 W o™ 11 - Morthern NFL Shelf
12-14 - Labrador Shelf
a
=1000
=2000
3000 E
=
—4000 g
=5000
el il -6000
=T000
2. S
S n -

0w 65" W 60 W 55° W

Figure 1. The Northwest Atlantic continental shelf and slope regions, bounded by the red lines. The shelf region consists of 14 shelf boxes (with numbers in black),
which are named according to their gengraphic locations as illustrated in the legend (MAR, Mid-Atlantic Bight; GoM, Gulf of Maine; 55, Scotian Shelf; GSL, Gulfof
&t Lawrence; and NFL, Newfoundland). The slope region consists of eight slope howes (hoxes A-H). The land-hased stations measuring air temperature are marked
as light preen dots on the map. Major gengraphic locations are labeled. Three isohaths are plotted as thin Mack lines; 200 m, 2,000 m, and 4,000 m.

and the Labrador Shelf, with temporal coverage including 1952-2018 and measurement elevation less than
110 m. There are only four stations near the Labrador Shelf satisfying these conditions. To take into account
the spatial inhomogeneity in air temperature observations, we have separated the observations into smaller
regions, divided by 5° latitudinal increments. The average air temperature for each smaller region is
calculated first, followed by an average calculated from the regional average air temperatures. The final
meridional mean of the air temperature spans the same latitudinal range as the shelf and slope.

We calculated and plotted the Gulf Stream position using daily 14" satellite-based gridded sea surface height
for 1993-2018 from the Copernicus Marine Environment Monitoring Service (hitp://marine.copernicus.
en/). The average position of the Gulf Stream is identified at each longitude between 52° and 72°W, as the grid
node where the standard deviation of sea level anomalies is maximized (Pérez-Hernandez & Joyce, 2014).
The average Gulf Stream path is nearly identical to the axis of maximum geostrophic velocity (not shown).

2.3, Methods

Monthly spatially averaged SST time series are calculated for each shelf and slope box, and a monthly mean
climatology for the period 1982-201% is subsequently removed to obtain SS8T anomaly (SSTA) time series
within each box Subsequently, yearly SSTA time series are calculated for each year. Similar methods were
applied to obtain air temperature anomaly time series.
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All the correlations are based on yearly time series. Statistical significance is calculated via a Student's f test
considering the effective degree of freedom to account for autocorrelation (Bretherton et al., 1999). Linear
regressions are used to calculate the linear trends, and the corresponding standard errors are calculated at
the 5% level.

3. Results
3.1. Meridional Structure of Long-Term SST Variability

To investigate the meridional coherence and connectivity in the long-term SST variability over the NWA
continental shelf and slope, the yearly 35TAs within each subregion are stacked in the meridional direction
for the shelf and slope (Figures 2a and 2b). The most notable signal is relatively cool SSTA in the first half of
the time series (before 1999) and relatively warm in the latter half (after 2005) for both the shelf and slope.
These long-term warming signals are more or less meridionally coherent.

On top of the meridionally coherent warming trend, varying degrees of warming are observed among the
shelf and slope subregions. The warming rates of each shelf and slope subregion are sensitive to the selection
of the period. Generally, from 1952 to 2018, the northern regions of the shelf (shelf boxes 11-14) and slope
(slope boxes F-H) exhibit relatively slow warming rates, especially slope box F, which has a slight cooling
trend in recent decades. The fastest warming rates, based on the linear trends for each subregion, are
observed in the 35 and GoM and in slope boxes B-D. In addition, there are concurrent extreme signals in
the meridional direction. Most notably, prominent warming is observed in 2012 across all latitudes, a signal
attributed predominantly to anomalous wintertime air-sea heat flux (Chen, Gawarkiewicz, et al., 2014;
Chen et al., 2015).

Figures 2a and 2b also hint at equatorward propagation of warm and cold anomalies, potentially due to
along-shelf and slope advection. Cold anomalies in the northernmost shelf boxes in 1983-1984 propagate
equatorward until 1987-198%, equivalent to a speed of 3-4 cm/s. This is consistent with the mean propaga-
tion speed (4 cm/s) estimated by the Marine Ecosystem Responses to Climate In the North Atlantic Working
Group (2012) for the advection of salinity anomalies of the Arctic-originated waters along the continental
shelf from the 55 to the GoM/GB region. Similar results are found for the warm temperature anomalies in
the shelf regions between 2010 and 2018. For some years, the southern and northern boxes have opposing
thermal responses, for example, between slope boxes A-D and F-H from 2014 to 2018,

3.2. Meridionally Averaged Shelf and Slope 55TAs

Given the meridionally coherent temperature variability noted above, we calculated the SSTA for the entire
shelf and the entire slope regions, generated the same way as was done for each single shelf/slope box
(Figure 2c). The meridional mean shelf and slope S8TAs are highly coherent with each other throughout
the record (r = 0.85 with trend; r = 0.66 after linearly detrended; both p < 0.05). Linear trends are 0L37 +
0.06 “C/decade for the shelf region and 0.39 + 0.06 °C/decade for the slope region. Removing the meridional
mean from the SSTA time series within each individual subregion mostly eliminates the linear SSTA warm-
ing trends observed in the shelf and slope regions (not shown). In addition, the extreme warming in 2012 on
both the shelf and slope disappears.

Assuming the coherent trends observed over the length of the study domain are driven primarily by the
atmosphere, we compare meridional means for the shelf and slope with local near-surface air temperatures
along the coast covering the same latitudinal range ( Figure 1). The long-term trend in air temperature anom-
aly shows similar warming compared to the meridional mean shelf and slope S8TAs, although it is margin-
ally smaller (0.39 + 0.09 °C/decade; Figure 2d). The coastal air temperature anomaly is significantly
correlated with the meridional mean of the shelf SSTA (r = 0.81; p < 0.05; detrended) but less correlated with
the slope meridional mean S5TA (r = 0.63; p < 0.05; detrended). This suggests that the concurrent thermal
signal over the shelf is more consistent with local atmospheric forcing than over the slope, although there are
some exceptions. For example, warm atmospheric temperature anomalies during 1990, 1991, 1998, and 2010
did not coincide with warm S5T anomalies, suggesting that ocean processes play an important role in cool-
ing surface temperatures during these periods.
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Figure 2. Time series of sea surface temperature anomalies {S5TA) and near-surface air temperature anomalies, (a) Hovmdller diagram of SSTA for the shelf boxes,
with x axis representing vear and y axis representing regional boses in a latitndinally increasing order. (b) Same as (a) but for the slope boxes. (¢) The meridional
means for the shelfl boxes 1-14 (blue) and slope boxes A-H (red), in monthly (thin solid lines) and yearly (thick solid lines) means. Linear trends are plotted as the
thick dashed lines with corresponding colors. (d) The near-surface air temperature anomalies in monthly (thin solid black line) and vearly (thick solid black line)
means based on air temperature observed near the coast over the land (cyan stars on Figure 1), The linear trend is plotted as the thick dashed black line.

3.3. Spatial Pattern of Linear Trends

On top of the meridionally coherent warming, there are considerable regional differences in the linear
trends of S5TAs in the NWA (Figure 3). For example, the Labrador Shelf is warming slower (less than
0.25 *C/decade over shelf boxes 11-14) relative to the rest of the shelf, while the warming rate in the interior
Labrador Sea is about 0.50 °C/decade, twice the warming trends on the Labrador Shelf

Generally, the long-term linear trends on the shelf show less spatial variation than those over the slope
where we observe distinct regions of warming and cooling (Figure 3). There are two prominent warming
regions and one prominent cooling region within our study domain. One of the two warming regions is in
slope boxes B to D, off the 55 GoM, and GB. The fastest surface warming measures roughly
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Figure 3. Spatial pattemn of linear trends of sea surface temperature anomaly berwesn 1982 and 2018 hased on the National Oceanic and Atmospheric
Administration Optimum Interpolation sea surface temperature, nsignificant values at 5% are masked in gray, The mean Gulf Stream path between 50° and
75°W is indicated by the black solid line. Three isohaths are plotted as thin black lines: 200 m, 2,000 m, and 4,000 m. The shelf and slope boxes are also indicated,

1.00 °C/decade over the slope between the 2,000- and 4,000-m isobaths off the Northeast Channel. Enhanced
warming is also observed along the Gulf Stream mean path between 707 and 75"W, with a maximum value of
0.96 “C/decade. A region of enhanced cooling is observed over the slope near the tail of the Grand Banks
between the 200- and 4,000-m isobaths, with the maximum cooling rate measuring 0.51 °C/decade.
Another area of cooling is observed outside of our study region on the shelf in the South Atlantic Bight,
where 55T is cooling at a rate of about 1.01 *C/decade off Frying Pan Shoals.

4. Discussion
4.1. Meridionally averaged Long-Term 55T Warming Trends

To assess the robustness of the long-term SST variability, we compared the results from the NOAA OISST
with three other coarser resolution 55T data sets. Despite different spatial resolutions, the meridional means
of shelf and slope 535TAs in the three data sets show a similar behavior to those based on the NOAA OISST
data set during the overlapping period (Figures 4a and 4b). The correlation coefficient between any pair

among the four data sets is above 0.94 for the shelf and above 0.82 for the slope after linearly detrending
the time series for 1982-2018.

Considering the longer period since the 1900s, the three additional data sets exhibit consistent long-term
changes in the meridional means, especially for the continental shelf region. The correlation coefficients
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Figure 4. Comparison of meridional mean sea surface temperature (S5T) anomalies time series for the overall shelf and slope regions, as well as the North Atlantic
basin-averaged time series. (a) Comparison of meridional mean 55T anomalies between four different observational data sets for the overall shelf region (shelf boxes
1-14): Hadley Centre Sea Ioe and S5T (HadISST; blue; 1900-2018), COBE 55T (cyan; 1900-2018), National Oceanic and Atmospheric Administration Extended
Reconstructed S5T (NOAA ERSST; gray; 1900-2018), and NOAA Optimum Interpolation (O155T; red; 1982-2018); (b) S8ame as (a) but for the overall slope region
(slope boxes A-H); (c) Basin-averaged annual sea surface temperature anomalies for the whole North Atlantic (0°-60"N and 0°-80"W) based on HadISST after
masking out the sea-ice grid points, represented by the black solid line, and its 10-vear low-pass filtered time series, represented by the thick solid gray line, berween

1901 and 2017,

between any pair among the three data sets are always above 0.90 for 1900-2018. These longer records
provide additional insight into the recent strong warming trend, observed since 1982. On multidecadal
time scales, meridional means on the NWA continental shelf are cold before the 1930s, followed by a
relatively warm period centered around the 1950s, consistent with lightship temperature records (Stearns,
1965). Another cold episode occurs between the 1960s and 1980s, followed by rapid warming in recent
decades. This multidecadal variability is superimposed on an overall trend of warming. The linear trends
for 1900-2018 in the meridional means of shelf SSTA are about 0.10 + 0.01, 0.10 + (.01, and 0.14 + 0.01
*C/decade for the three data sets, which are consistent with the previously reported long-term changes of
S5TA in GoM (1.0 £ 0.3 °C/century) from 1820s to 2010 (Shearman & Lentz, 2010).

Ower the continental slope, consistency among the three longer data sets decreases, mainly during the two
cold episodes in the 1910s-1930s and 1960s-1980s. On average, the HadISST data set is about 0.62 °C and
0.53 °C colder than the COBE 58T data set and 0.40 °C and 0.24 °C colder than the NOAA ERSST data set
during these two periods, while the correlation coefficients between the HadISST and the other two are
about 0.82 and 0.86 after detrending. The linear trends of three data sets in meridional means of SSTA over
the slope are about 0.11 + 0.01, 0.06 £+ 0.01, and 0.09 + 0.01 °C/decade, which also indicate the general
increase of temperature since the 1900s. Similar to the 1982-2018 period, the meridional means on the shelf
and slope are highly correlated in 1900-2018% (r > 0.78; p < 0.05; detrended).

The longer time series suggest that the strong warming trends on shelf and slope since 1982 are composed of
at least two components, that is, the multidecadal variability and longer-term warming trend. The
basin-wide averaged SSTA in the whole North Atlantic (0° to 60°N and 0° to 80°W) similarly exhibits two
components (Figure 4c), which are interpreted by previous studies as the natural variability and externally
forced warming trend, respectively (Frankignoul et al., 2017; Sutton ef al., 2018; Trenberth & Shea, 2006;
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Figure 5. Comparison of spatial patterns in surface sea temperature (85T linear trends (1982-2018) between four different data sets: (a) Mational Oceanic and
Atmospheric Administration Optimum Interpolation S5T (NOAA OISST), (b) Hadley Centre Sea Ice and 55T (HadISST), (c) Centennial in situ Observation-
Based Estimates of 35T (COBE 55T), and (d) NOAA Extended Reconstructed 55T (ERSST). The Gulf Stream location, region boundaries, and numbers are the same
as those in Figure 3. Insignificant values at 5% are masked in gray.

Ting et al., 2009). The multidecadal variability (emphasized with the 10-vear low-pass filtered gray solid line
in Figure 4c) is often called the Atlantic Multidecadal Variability or Adantic Multidecadal Oscillation
(Enfield et al., 2001; Kerr, 2000). A gquadratic trend is fitted to the basin-wide time series for 1900-2018 as
an approximate estimate for the externally forced signal (cf., Enfield & Cid-Serrano, 2010). This externally
forced signal explains approximately one third of the linear trend in 1982-2018 of the basin-wide S5TA.
We have also used a more sophisticated method to estimate the externally forced signal, which is an
optimal perturbation filter based on linear inverse modeling (Frankignoul et al, 2017). The externally
forced signal estimated from the second method also explains approximately one third of the linear trend
in 1982-2018. The similarity between the basin-wide and shelf/slope S5TA time series (r = 0.80 for the
shelf and r = 0.77 for the slope, both p < 005 including the long-term trends based on the HadISST;
r = 0.61 after linearly detrending for both) suggests a similar decomposition for the shelf and slope S5TA.
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Hence, approximately two thirds of the linear trend of 55T anomalies in the shelf and slope region in
1982-201% may be attributed to the natural multidecadal variability.

4.2. Ocean Processes Contributing to the Spatial Structure

Although the coherent simultaneous thermal signals (meridional means of SSTA) over the NW A continental
shelf and slope suggest large-scale atmospheric forcing as the dominant driver, the spatial inhomogeneity in
the linear trends of S5TA suggest that local ocean processes also play an important role. Based on the high-
resolution NOAA OISST data set (1982-2018), the two regions with prominent warming trends observed
over the slope are likely related to Gulf Stream variability. The Gulf Stream has been reported to have a slight
northward shift during recent years (Jovee et al., 2019), which is correlated with changes in fish distribution
over the shelf (Davis et al., 2017; Nye et al., 2009) and associated with warmer ocean temperature in the
NWA Ocean (Frankignoul et al., 2001; Pefia-Molino & Joyee, 2008; Zhang & Vallis, 2007). It is plausible that
the enhanced warming trend concentrated along the Gulf Stream path is caused by a northward shift in the
position of the Gulf Stream. On the other hand, the enhanced warming trends in the slope region off the S5,
GoM, and GB may be related to an increase in the number of Gulf Stream warm-core rings in the region
{Gangopadhyay et al., 2019) or the westward shift of the Gulf Stream destabilization point {Andres, 2016).
The westward shift of the destabilization point increases the likelihood of Gulf Stream meanders and rings
acting in the slope region. In these two regions, the correlation coefficients between the vearly S5TA and
SSHA in 1993-2018 are 0.89 and 0.82 after linearly detrending, respectively, further suggesting the role of
the Gulf Stream variability.

The localized cooling trends near the tail of Grand Banks may also be due to a slight offshore shift in the Gulf
Stream path between 65°W and 50"W (Dong et al, 2019). This cooling pattern only exists in the high-
resolution NOAA OISST data set, compared with the three coarser data sets (Figure 5). However, the
enhanced warming pattern observed in the slope region is hinted at in the other data sets despite the overall
weaker trends.

5. Conclusions

We investigated the coherence, connectivity, and regional differences in long-term 55T variability from
1952-2018 over the NWA continental shelf and slope using several observational data sets. Given the large
latitudinal extent of the study domain, extending from Labrador to Cape Hatteras, we divided the domain
into subregions according to latitude and peography. Despite some spatial inhomogeneity in the long-term
changes of S5TA, the leading signal is strong meridionally coherent long-term warming along the entire
length of the shelf and slope. The linear trends in 1982-2018 are 0.37 + 0.06 *C/decade for the shelf region
and 0.39 + 0.06 °C/decade for the slope region. These meridional means over the whole shelf and slope
regions are consistent not only with each other but also with those computed using three coarser observa-
tional data sets extending back to the 1900s. We further compared these long-term 88T changes with local
near-surface air temperature anomalies over the land along the coast, which was highly correlated with
the meridional mean of shelf S5T. Since 1900, the long-term meridional means are highly coherent with
the basin-averaged S5T in the whole North Atlantic confounded by the multidecadal variability and overall

longer-term warming trend. Finally, the similarity between the basin-wide average and the shelf/slope mer-
idional mean trends implies approximately two-thirds of the linear warming trend in 1982-2018 may be
attributed to natural climate variability and approximately one third to external forcing.
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