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Abstract—Phase retrieval is a non-convex inverse problem
of signal reconstruction from intensity measurements with
respect to a measurement frame. One of the main problems
in phase retrieval is to determine for which frames the
associated phaseless measurement map is injective and stable.
In this paper we address the question of stability of phase
retrieval for two classes of random measurement maps,
namely, frames with independent frame vectors satisfying
bounded fourth moment assumption and frames with no
independence assumptions. We propose a new method based
on the frame order statistics, which can be used to establish
stability of the measurement maps for other classes of frames.

I. INTRODUCTION

The phase retrieval problem arises naturally in many
applications within a variety of fields in science and
engineering, where the only available information about a
signal of interest is the set of magnitudes of its frame coef-
ficients with respect to a measurement frame. Among such
applications are optics [19], astronomical imaging [12],
quantum mechanics [9], and speech recognition [3].

Phase retrieval problem can be formulated as fol-
lows. Let Φ = {ϕj}Nj=1 ⊂ CM be a frame, that is, a
(possibly over-complete) spanning set of CM . We con-
sider the measurement map AΦ : CM → RN defined by
AΦ(x) = {|〈x, ϕj〉|2}Nj=1. For a given vector of measure-
ments b ∈ RN , we address the following non-convex
inverse problem

find x

subject to AΦ(x) = b.

The phase retrieval problem can be also formulated in the
real case, when Φ ⊂ RM and x ∈ RM .

Since AΦ(x) = AΦ(eiθx) for any θ ∈ [0, 2π), the initial
signal x can be reconstructed in the best case only up to a
global phase factor. Thus, we identify each x ∈ CM with
its up-to-a-global-phase equivalence class and consider
the measurement map AΦ to be defined on the set of
equivalence classes CM/∼ in the sequel.

Not every frame has the injective associated measure-
ment map, so reconstruction is not always possible. One
of the main research directions in phase retrieval therefore
is to determine when is the map AΦ injective. In the case
when phaseless measurements can be corrupted by noise,
injectivity is not enough to guarantee accurate reconstruc-
tion of a signal, and the measurement map has to satisfy

some stronger assumptions. More precisely, we want to
ensure that, if for two signals x and y the measurements
AΦ(x) and AΦ(y) are close, then x and y are also close
up to a global phase factor. This leads to the notion of
stability of the measurement map.

The rest of this paper is organized as follows. In Sec-
tion II, we give an overview of the state of art results on
injectivity and stability of phaseless measurement maps. In
Section III, we introduce the notion of frame order statistics
and discuss their connection to stability of the measurement
maps. Using this connection, we analyze measurement
map stability for two classes of random frames. Namely,
in Section III-A we show stability for a more general
compared to the previously known results class of random
frames with independent frame vectors having a bounded
fourth moment, and in Section III-B we discuss stability
for frames with frame vectors that are not assumed to be
independent. In this paper, we focus on the complex case
phase retrieval, but similar results can be obtained in the
real case as well, for the adjusted notion of stability.

II. INJECTIVITY AND STABILITY OF PHASE RETRIEVAL

In the investigation of the injectivity of phaseless mea-
surement maps, the question about the minimal number
of measurements required receives the most attention. In
the real case, when we consider the restriction of A to
RM , the following result is shown by Balan, Casazza, and
Edidin [3].

Theorem II.1. [3] For any dimension M and a frame
Φ ⊂ RM , the following holds for the measurement map
AΦ : RM → R|Φ| give by AΦ(x) = {|〈x, ϕ〉|2}ϕ∈Φ

(i) If |Φ| < 2M − 1, then AΦ is not injective.
(ii) If N ≥ 2M − 1, then AΦ is injective for a generic Φ

with |Φ| = N .

For the complex case, no similar result is known to
the date. The following conjecture has been proposed by
Bandeira, Cahill, Mixon, and Nelson in 2014 [4].

Conjecture II.2. (The 4M-4 Conjecture.) For any M ≥ 2,
consider a frame Φ ⊂ CM . Then the following holds:

(i) If |Φ| < 4M − 4, then AΦ is not injective.
(ii) If N ≥ 4M − 4, then AΦ is injective for a generic Φ

with |Φ| = N .



Over the last decade the following progress has been
achieved on this conjecture.

• In 2006 Balan, Casazza, and Edidin showed that if
N ≥ 4M − 2 then AΦ is injective for a generic Φ [3].

• In 2011 Heinosaari, Mazzarella, and Wolf showed that
if |Φ| < (4 + o(1))M , then AΦ is not injective [13].

• In 2014 several examples of frames with cardinality
4M − 4 and injective measurement maps were con-
structed [5], [11].

• Later in 2014 Conca, Edidin, Hering, and Vinzant
and, independently, Király and Ehler showed that if
N ≥ 4M − 4, then AΦ is injective for a generic Φ
with |Φ| = N , which proves part (ii) of the conjec-
ture [8] [15].

• In 2015 Vinzant disproved part (i) of the conjecture for
M = 4. She constructed a frame with 11 vectors and
showed the injectivity of A for this frame [22].

The example of an injective measurement frame pro-
posed in [22] is not unique. In fact, this paper shows that
the set of injective frames is of full dimension in C4×11.
Even though this certainly disproves part (i) of the 4M−4
Conjecture in the case M = 4, Vinzant conjectured that it
is asymptotically true in the following probabilistic sense.

Conjecture II.3. (Vinzant’s Refined Injectivity Conjec-
ture.) Draw Φ uniformly from the Grassmannian of M -
dimensional subspaces of C4M−5. Let pM denote the
probability that the measurement mapAΦ is injective. Then
pM < 1 for all M , and lim

M→∞
pM = 0.

While part (ii) of the 4M − 4 Conjecture, proven by
Conca, Edidin et. al. (and, independently, by Király and
Ehler), guarantees that for a randomly selected frame Φ
with |Φ| ≥ 4M − 4 the measurement map is injective
with probability 1, it does not provide any method to
check whether the measurement map of a concrete frame
is injective. Since in practice the particular structure of the
frame is often dictated by the application considered, it is
also important to study injectivity of A for some particular
classes of frames.

As such, the injectivity property of the full Gabor frames
where studied by Bojarovska and Flinth [6]. In particular,
they found the following easily checkable sufficient con-
dition for injectivity.

Theorem II.4. [6] Let g ∈ CM be a window, such that for
any λ ∈ ZM×ZM , 〈g, π(λ)g〉 6= 0. Then the measurement
map A(g,ZM×ZM ), corresponding to the full Gabor frame
(g,ZM × ZM ), is injective.

Remark II.5. Note, that the number of measurements con-
sidered in Theorem II.4 is |(g,ZM ×ZM )| = M2. Finding
a condition for injectivity of phaseless measurements with
respect to a Gabor frame (g,Λ) with |Λ| < M2 remains
an important open question.

Another important research task in phase retrieval is to
find conditions on the measurement frame Φ to ensure
stable uniqueness of the reconstruction of a signal x from
its phaseless measurements AΦ(x). Eldar and Mendelson
proposed the following notion of phaseless measurement
map stability [10].

Definition II.6. Let Φ = {ϕj}Nj=1 ⊂ CM be a frame.
The measurement map AΦ : CM → RN given by
AΦ(x) = {|〈x, ϕj〉|2}Nj=1 is called stable with a con-
stant C in a set T ⊂ CM if for every x, y ∈ T ,

||AΦ(x)−AΦ(y)||1 ≥ C min
θ∈[0,2π)

||x− eiθy||2||x+ eiθy||2.

Note that stability in a set is a much stronger property
than injectivity up to a global phase factor, as it provides
a quantitative bound on how AΦ(x) and AΦ(y) differ for
different (up to a global phase) x and y.

To date, the following is known about stability:

• In 2014, Eldar and Mendelson showed that for a frame Φ
of cardinality O(M), such that ϕj(m) are independent
L-subgaussian random variables, the mapping AΦ is
stable in CM under the additional small ball assumption
on the distribution of ϕj(m) [10].

• In 2016, Krahmer and Liu showed that the small ball
assumption can be dropped to show stability in the set
of µ-flat vectors Tµ = {x ∈ RM , ||x||∞ ≤ µ||x||2} [16].

• In 2016, Kabanava, Kueng, Rauhut, and Terstiege
showed stability of a measurement map AΦ when frame
vectors are independently uniformly sampled from Gaus-
sian distribution or from an approximate 4-design [14].

• In 2016, Kueng, Zhu, and Gross showed stability of a
measurement map AΦ when when frame vectors are in-
dependently uniformly sampled from Clifford orbit [17].

The question of stability is also discussed in [2,
Lemma 3.2]. We propose a new method based on the frame
order statistics, which can be used to establish stability
of the measurement maps for other classes of frames,
including frame with correlated frame vectors.

III. STABILITY OF PHASE RETRIEVAL USING FRAME
ORDER STATISTICS

If frame vectors are well spread in CM , one should
expect that, for each one-dimensional subspace of CM ,
there are not too many frame vectors that are almost
colinear or almost orthogonal to it. To formalize this idea
we introduce frame order statistics [21]. Here and in the
sequel, SM−1 = {x ∈ CM , s.t. ||x||2 = 1} denotes the
unit sphere.

Definition III.1. Let Φ = {ϕj}Nj=1 ⊂ SM−1 be a unit
norm frame and consider a vector x ∈ SM−1.



(i) For α ≤ N , the α-smallest frame order statistics of Φ
is given by

SFOS(Φ, α, x) = max
J⊆{1,...,N},
|J|≥α

min
j∈J
|〈x, ϕj〉|.

(ii) For β ≤ N , the β-largest frame order statistics of Φ is
given by

LFOS(Φ, β, x) = min
J⊆{1,...,N},
|J|≥β

max
j∈J
|〈x, ϕj〉|.

As follows from the definition, if we delete bN − αc
smallest and bN−βc largest in modulus frame coefficients,
then the remaining ones satisfy

SFOS(Φ, α, x) ≤ |〈x, ϕj〉| ≤ LFOS(Φ, β, x).

The study of frame order statistics is not only of interest
in frame theory, but it also plays an important role in vari-
ous areas of signal processing, such as phase retrieval [1],
[20] and quantization [18], [7]. The following result shows
that a frame with bounded frame order statistic has an
injective associated measurement map.

Theorem III.2. Let Φ ⊂ CM be a frame. Suppose that,
for each fixed α < 1− 1

2C0
, there exist constant c ∈ (0, 1),

such that

min
x∈SM−1

SFOS(Φ, αN) ≥ c√
M
.

Then there exists a constant L > 0, such that the phaseless
measurement map AΦ is stable with constant C ≥ L |Φ|M
in CM . That is, for any x, y ∈ CM ,

||AΦ(x)−AΦ(y)||1 ≥ L
|Φ|
M

min
θ∈[0,2π)

||x−eiθy||2||x+eiθy||2.

Proof. Let |Φ| = N and Φ = {ϕi}Ni=1. For any x, y ∈ CM ,
we have

||AΦ(x)−AΦ(y)||1 =
N∑
i=1

||〈x, ϕi〉|2 − |〈y, ϕi〉|2|

=
N∑
i=1

| (|〈x, ϕi〉| − |〈y, ϕi〉|) (|〈x, ϕi〉|+ |〈y, ϕi〉|) |.

Let θx, θy ∈ [0, 2π) be such that

| (|〈x, ϕi〉| − |〈y, ϕi〉|) (|〈x, ϕi〉|+ |〈y, ϕi〉|) |
= |eiθx〈x, ϕi〉 − eiθy 〈y, ϕi〉||eiθx〈x, ϕi〉+ eiθy 〈y, ϕi〉|
= |〈x− ei(θy−θx)y, ϕi〉||〈x+ ei(θy−θx)y, ϕi〉|.

Then we have

||AΦ(x)−AΦ(y)||1
= ||x− ei(θy−θx)y||2||x+ ei(θy−θx)y||2

·
N∑
i=1

∣∣∣〈 x−ei(θy−θx)y

||x−ei(θy−θx)y||2
, ϕi

〉∣∣∣ ∣∣∣〈 x+ei(θy−θx)y

||x+ei(θy−θx)y||2
, ϕi

〉∣∣∣ .

Let us fix some 1
2 < α < 1 − 1

2C0
. Then assumptions

of the theorem imply that there exist constants c, such
that, for every unit norm vector u ∈ SM−1

R , there exists
a set of indices Ju ⊂ {1, . . . , N} with |Ju| ≥ αN and
|〈u, ϕj〉| ≥ c√

M
for all j ∈ Ju.

In particular, for unit vectors u = x−ei(θy−θx)y

||x−ei(θy−θx)y||2

and v = x+ei(θy−θx)y

||x+ei(θy−θx)y||2
, there exist Ju, Jv ⊂ {1, . . . , N},

such that |Ju| , |Jv| ≥ αN , and |〈u, ϕi〉| |〈v, ϕi〉| ≥ c2

M for
all j ∈ Ju ∩ Jv . Then, since |Ju ∩ Jv| ≥ (2α− 1)N > 0,
we have

N∑
i=1

∣∣∣〈 x−ei(θy−θx)y

||x−ei(θy−θx)y||2
, ϕi

〉∣∣∣ ∣∣∣〈 x+ei(θy−θx)y

||x+ei(θy−θx)y||2
, ϕi

〉∣∣∣
≥

∑
i∈Ju∩Jv

|〈u, ϕi〉||〈v, ϕi〉| ≥
c2(2α− 1)N

M
.

That is, for all pairs x, y ∈ CM ,

||AΦ(x)−AΦ(y)||1

≥ c2(2α− 1)
N

M
||x− ei(θy−θx)y||2||x+ ei(θy−θx)y||2.

A. Stability for random frames with bounded fourth
moment

For random frames with independent frame vectors,
such that entries of the frame vectors safisfy a bounded
fourth moment assumption, we have the following uniform
bounds on the frame oder statistics [21].

Theorem III.3. Consider a frame Φ = {ϕj}Nj=1 ⊂ CM
with M large enough, such that ϕj(m) are independent
identically distributed centered random variables, normal-
ized so that Var(ϕj(m)) = 1

M . Assume further that
E(|ϕi(m)|4) ≤ B

M2 , for some constant B ≥ 1, and
N ≥ C0M logM , for some constant C0. Then

(a) For each fixed α < 1− 1
2C0

,

min
x∈SM−1

SFOS(Φ, αN) ≥ c√
M

with probability at least 1 − e−c1M logM , where con-
stants c, c1 > 0 depend only on B, α, and C0.

(b) For each fixed β < 1− 1
2C0

,

max
x∈SM−1

LuFOS(Φ, βN) ≤ K√
M

with probability at least 1 − e−c1M logM , where con-
stants K, c1 > 0 depend only on B, β, and C0.

Using the uniform bounds on the frame order statistics
obtained in Theorem III.3 and Theorem III.2, we obtain
the following result that shows stability of the phaseless
measurement map for a random frame with independent
frame vectors under bounded fourth moment assumption.



Corollary III.4. Let the frame Φ ⊂ CM satisfy assump-
tions of Theorem III.3. Then there exists a numerical
constant L > 0, such that, with overwhelming proba-
bility, the measurement map AΦ is stable with constant
C ≥ L log(M) in CM . That is, for any x, y ∈ CM ,

||AΦ(x)−AΦ(y)||1 ≥ L log(M) min
θ∈[0,2π)

||x− eiθy||2||x+ eiθy||2.

At the cost of slight increase of the measurement frame
cardinality, Theorem III.3 allows to show stability of AΦ

in CM for a larger class of random frames Φ than consid-
ered before, and without any additional restrictions on the
set T of the measured signals.

B. Stability without independence of frame vectors

While all the previous results on the stability of the
phaseless measurement map are obtained for frames with
independent frame vectors, this assumption is often not
realistic for particular signal processing applications where
the phase retrieval problem arises. The following result
gives bounds of the frame order statistics for a wide class
of frames with (possibly dependent) identically distributed
frame vectors. This class of frames includes, in particular,
Gabor frames with a random window. This result can be
also found in [20], [21].

Theorem III.5. Fix x ∈ SM−1 and consider a frame Φ
with frame vectors uniformly distributed on SM−1. Then

(a) For any c ∈ (0, 1) and k > 0, with probability at least
1− 1

k2 , we have

SFOS
(
Φ, |Φ|(1− c2 + kc), x

)
≥ c√

M
.

(b) For any C > 1 and k > 0, with probability at least
1− 1

k2 , we have

LFOS
(

Φ, |Φ|
(

1− 8
π e
−C2

2 + k 2
√

2√
π
e−

C2

4

)
, x
)
≤ C√

M
.

Note that, unlike Theorem III.3, Theorem III.5 is a
non-uniform result in the sense that the proven bounds
hold with high probability for each individual signal x. It
implies the following non-uniform stability result.

Corollary III.6. Let Φ be a frame with frame vectors
uniformly distributed on SM−1. Then, for any k >

√
2,

there exists a constant C = 1
27k2

(
1− 2

3k2

)
, such that for

each pair x, y ∈ CM the following holds with probability
at least 1− 2

k2

||AΛ(x)−AΛ(y)||1 ≥ C||x− y||2||x+ y||2.

Obtaining a uniform version of Theorem III.5 would
imply stability, and thus also injectivity, of AΦ for a wide
range of frames whose frame vectors are not independent,
including Gabor frames. This would be a big step forward
in the study of phase retrieval problem.
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