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Abstract—The rapid progress of urbanization has expedited
the process of urban planning, e.g., new residential, commercial
areas, which in turn boosts the local travel demand. We propose
a novel “off-deployment traffic estimation problem”, namely, to
foresee the traffic condition changes of a region prior to the
deployment of a construction plan. This problem is important to
city planners to evaluate and develop urban deployment plans.
However, this task is challenging. Traditional traffic estimation
approaches lack the ability to solve this problem, since no data
about the impact can be collected before the deployment and old
data fails to capture the traffic pattern changes. In this paper,
we define the off-deployment traffic estimation problem as a
traffic generation problem, and develop a novel deep generative
model TrafficGAN that captures the shared patterns across
spatial regions of how traffic conditions evolve according to
travel demand changes and underlying road network structures.
In particular, TrafficGAN captures the road network structures
through a dynamic filter in the dynamic convolutional layer.
We evaluate our TrafficGAN using a large-scale traffic data
collected from Shenzhen, China. Results show that TrafficGAN
can more accurately estimate the traffic conditions compared
with all baselines.

Index Terms—traffic estimation, TrafficGAN, generative
model.

I. INTRODUCTION

Over the past a few decades, we have witnessed drastic

urbanization at the global scale. It is reported that the world’s

urban population ratio has reached 54% in 2014, and it is

projected that by 2050, two-thirds of the world population

will live in urban areas [3].

With the rapid progress of urbanization, urban planning is

becoming a vital problem concerning with resources alloca-

tion, urban transportation efficiency and living environment.

The fast development of new residential and commercial areas

always comes with population growth, which in turn increases

the travel demands and the risk of worsening traffic conditions

due to the overload of the transportation infrastructures. For

example, the Olympic Village was built in the northern area

of Beijing for the 2008 Olympic Games with many new

residential and commercial areas constructed in its nearby

areas as illustrated in Fig. 1. The population in that region

increased drastically after 2008, which significantly worsened

the local traffic conditions [11]. This could have been avoided

if more thorough and accurate traffic evaluation had been done

before the constructions. Therefore, it is crucial to foresee both

Fig. 1: Traffic condition changes around Olympic Village in

Beijing, China

positive and negative impacts on traffic conditions before an

urban construction plan is deployed. In our work, we refer to

such a problem as “off-deployment traffic estimation” problem.

Solving this problem is technically challenging, since no new

data can be collected before deployment in an area, while old

data collected before deployment fails to capture the traffic

pattern changes.

The traffic estimation problem has been extensively studied

in the literature [2], [10], [17]. These works use the historical

traffic data of regions to build machine learning models that

capture the correlations among the past traffic, environmental

features and the future traffic. However, when predicting the

traffic impact of a newly developed construction plan, these

models will fail because they cannot capture the future traffic

pattern changes caused by the new deployment plan due to

the lack of training samples. Traditionally in civil engineering,

agent-based simulation models [12] or physical models [18]

are used to estimate the projected traffic volume after construc-

tions. However, these models rely heavily on model choice and

parameter settings, which are not transferable across urban

regions.

In this paper, we propose a novel traffic generative ad-

versarial network (TrafficGAN) to tackle the off-deployment

traffic estimation problem. The proposed TrafficGAN captures

the traffic correlations along the underlying road networks,

and can estimate traffic conditions prior to deployment of a

construction plan. Our main contributions are summarized as

follows:

• We model the off-deployment traffic estimation problem

as a traffic data generation problem, and propose a novel

deep generative model – TrafficGAN, which captures the

shared patterns across spatial regions of how traffic conditions
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evolve according to travel demand changes and underlying

road network structures. (See Sec IV.)

• We evaluate TrafficGAN using a large scale traffic data

collected during 7/2016-12/2016 from Shenzhen, China. The

unique dataset represents a wide range of regions with diverse

travel demands and traffic conditions in both rural and urban

areas. Our results demonstrate that our proposed TrafficGAN

can accurately estimate the traffic conditions compared with

all baselines. (See Sec VI.)

II. OVERVIEW

In this section, we define the off-deployment traffic estima-

tion problem, outline our solution framework and describe the

datasets we use.

A. Problem Definition and Solution Framework

Urban planning, especially, governmental zoning1, is a

process of planning land use and development in a target

region. In this work, we focus on urban deployment and zoning

plans when developing certain new residential or commercial

areas in a target region. Denote a city under planning as R0.

Definition 1 (Grid cell s). The planning city R0 is partitioned

into N0 grid cells with equal side-length in latitude and

longitude, denoted as S = {si}, where 1 ≤ i ≤ N0, i ∈ N.

Definition 2 (Target region R). A target region R is a square

geographic region in R0, formed by �× � grid cells. Formally,

R = 〈s, �〉 is uniquely defined by an anchor grid cell s on its

top-left corner and a number � of grid cells on the side2.

Definition 3 (Travel demand of a grid cell and a target
region). The travel demand of a geographic area captures the

total number of departures in a period of time, e.g., one hour

interval. Thus, we denote the travel demand of a grid cell s
as ds ∈ N. Given a target region R, DR is an � × � matrix

representing the travel demand distribution of all grid cells in

R. Moreover, we denote the total travel demand of a target

region R as dR ∈ N, which is the sum of travel demands in all

grid cells within R, i.e., dR =
∑

s∈R ds =
∑

1≤i,j≤l DR(i, j).
In general, it is hard to obtain the total travel demand in

a region including all transport modes. In this work, we use

the demand for taxis to represent the regional travel demand,

where many studies have shown that taxi demands represent

the total demands quite well [6], [16].

Definition 4 (Traffic status of a grid cell and traffic dis-
tribution of a target region). Traffic status includes various

measures representing the quality of traffic in a geographic

region, such as average driving speed, traffic inflow/outflow,

traffic volume, etc. Taking traffic inflow as an example, we

denote ms as the traffic inflow of grid cell s in a period of

time. Similar, given a target region R with � × � grid cells,

we denote an �× � matrix MR as the traffic distribution in R.

Each element of MR represents the taxi inflow in a grid cell.

Definition 5 (Urban deployment plan). An urban deployment

plan in a target region R is referred to a plan to construct

1https://en.wikipedia.org/wiki/Zoning
2Note that target regions can also be defined as rectangles rather than

squares. For simplicity, we use square shape of target regions in this work.

new residential or commercial areas in the region R without

changing the road structures. As a part of the plan, the

expected travel demand after deployment is specified3, denoted

by d̂R.

Problem definition. Given a city area R0 partitioned into

grid cells S, the citywide historical travel demands and traffic

distributions DR0,t and MR0,t are available over a time span

1 ≤ t ≤ T . For a target region R = 〈s, �〉 and a deployment

plan in R with the expected travel demand d̂R, we aim to

estimate the traffic distribution MR(d̂R).
Solution framework. Our off-deployment traffic estimation

framework takes taxi GPS data and road map data as in-

puts, processes the data in three stages to get the output:

Stage 1 (Data Preprocessing), Stage 2 (TrafficGAN Training)
and Stage 3 (Urban Plan Evaluation) which are detailed in

Sec III, IV and V, respectively.

B. Data Description

We use two real world datasets in this paper, (1) taxi GPS

data; (2) road map data. For consistency, all datasets are

collected from the same time interval, i.e., from Jul 1st to

Dec 31st, 2016 in Shenzhen, China.

Taxi GPS data contains GPS records collected from taxis in

Shenzhen, China from Jul 1st to Dec 31st, 2016. There are

17,877 taxis equipped with GPS sensors, each GPS sensor

generates a GPS record every 40 seconds on average. Overall,

a total number of 51,485,760 GPS records are collected each

day.

Road map4. In our study, we use the Google GeoCoding5 to

retrieve the bounding box of Shenzhen. The bounding box is

defined between 22.534◦ to 22.87◦ in latitude and 113.77◦ to

114.40◦ in longitude.

III. STAGE 1: DATA PREPROCESSING

A. Map Gridding

For the ease of implementation in practice, we adopt the grid

based method, which simply partitions the map into equal side-

length grids [13]. In this paper, we divide the map of Shenzhen

City into 40 × 50 grid cells with a side-length l1 = 0.0084◦

in latitude and l2 = 0.0126◦ in longitude.

B. Training Sets Construction

Given all 40× 50 grid cells in Shenzhen, we choose target

region size � = 10 as an example in this study, where our

TrafficGAN can actually apply to any target region size. Thus,

there are in total 1, 271 possible target regions with size 10×
10. The location of each region is described with a tuple (i, j)
which indicates the coordinates of the first grid cell (the upper-

left one) in the region, i.e., the row and column index 0 ≤ i ≤
30, 0 ≤ j ≤ 40, i, j ∈ N. However, it is unnecessary and

too costly to use data from all 1, 271 regions as training data.

3The expected travel demand d̂R after deploying a construction plan is
assumed given in this paper, which can be done by commonly used Four-
Steps demand forecasting approaches in Civil Engineering [14].

4http://www.openstreetmap.org/
5https://developers.google.com/maps/documentation/geocoding/
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Instead, we select 63 regions covering entire Shenzhen city

as target regions, extract their traffic distributions and travel

demands over time.

Travel Demand. We use six months taxi GPS records of

Shenzhen, China in 2016 to extract the travel demand of each

grid cell and region in Shenzhen. In each time slot, i.e., one

hour, we count the total pickup events within each grid cell

and each �× � region.

Traffic Distribution. Traffic distribution reflects the traffic

conditions in a region, which is quantified with traffic inflow

in this study. Since it is hard to obtain the total traffic inflow

in a grid cell including all transport modes, in this paper, we

use taxi inflow to represent traffic inflow and many studies has

proved its effectiveness [8], [20]. In each time slot of each day,

we count all taxis which stay or arrive at each grid cell as the

taxi inflow.

IV. STAGE 2: TRAFFICGAN TRAINING

Taking an analogy, our “off-deployment traffic estimation”

problem is similar as image generation problem, where the

traffic distribution of a region can be viewed as a gray-scale

“image”, the traffic status (e.g., inflow) of each grid can be

viewed as a “pixel” value. Thus, image generation approaches,

such as GANs [7], sound a promising solution. However, the

unique challenges of our problem prevent the state-of-the-art

GAN models from solving it:

• Traffic correlations along road networks. In a target region

R, the traffic of neighboring grids along the underlying road

networks has strong correlations. Capturing such correlations

is non-trivial since the correlation patterns are defined by

the road network structures, which may have irregular shapes

(rather than squares or rectangles).

• Conditioned Traffic Distribution Generation. The gener-

ated traffic distribution is meaningful only when conditioned

on the given region R and the travel demand dR. However,

how to design a generative model that outputs the traffic distri-

butions for a desired region and travel demand is challenging.

In this section, we introduce our TrafficGAN for off-

deployment traffic estimation problem.

A. Quantifying Traffic Correlation

Traffic correlation is used to capture the inherent traffic

dependence between a grid cell pair. We use the Pearson

correlation coefficient between time series traffic data of a grid

cell pair to quantify its traffic correlation. Pearson correlation
coefficient [9] a can be calculated by Eq. 1, where X and Y
are time series taxi inflow data of two grid cells in our case,

X and Y are the mean of X and Y :

aXY =

∑n
i=1

(
Xi −X

) (
Yi − Y

)
√∑n

i=1

(
Xi −X

)2√∑n
i=1

(
Yi − Y

)2 , (1)

a ∈ [−1, 1]. For an � × � region R, its corresponding traffic

correlation matrix A is a symmetric �2× �2 matrix, where the

entry aij is the traffic correlation between grid cell si and sj ,

si, sj ∈ R.

In a road network, nearby road segments (resp. nearby grid

cells) often have stronger correlations in traffic according to

the First Law of Geography [19], and the effective traffic

correlations are generally positive. In our work, for a specific

grid cell, we only keep its nearby grid cells which are directly

connected with it by roads and thus (likely) to have positive

traffic correlations.

After removing other uncorrelated grids, we perform row

normalization for the traffic correlation matrix A, i.e., aij =

aij/
∑�2

j=1 aij , so it will not affect the scale of features when

multiplied to the feature matrix in Eq. 2.

Next, we will elaborate on how to integrate the traffic corre-

lation matrix for traffic distributions estimation and generation.

B. TrafficGAN

In this paper, to solve the challenges mentioned above, we

propose a novel conditional generative model – TrafficGAN

which can capture the traffic correlations of road networks,

control the generation results with desired region and travel

demand conditions, and generate realistic traffic distributions.

TrafficGAN consists of a generator G and a discriminator D,

and it applies dynamic convolutional layers in G and D.

1) Dynamic Convolutional Layer: The goal of dynamic

convolutional layer is to learn a function of traffic features in

a region including traffic inflow, volume, speed, etc. The input

of dynamic convolutional layer includes two parts:

• A traffic feature matrix H of size N × F0 (N : number of

grid cells in a region, N = �× �; F0: initial number of traffic

features).

• A non-negative and row-normalized traffic correlation matrix

A of size N ×N .

The output is a new feature matrix after one-layer convolu-

tion. The layer-wise propagation rule is:

Hi+1 = f (Hi,A) = σ (AHiWi+1) , (2)

where Hi is the feature matrix of a region got after ith layer

and is the input of the (i + 1)th layer, Wi+1 is the weight

matrix in (i+ 1)th layer and σ is an activation function.

Dynamic Convolutional Layer vs. Standard Convolutional
Layer. By introducing the traffic correlation matrix A in

dynamic convolutional layer, a dynamic “filter” is created and

applied to the feature matrix H , where the size and the shape

of the dynamic filter is controlled by A. The filter of a standard

convolutional layer has fixed size, e.g., a 3× 3 square, which

cannot naturally captures the traffic correlations along the road

networks. In contrast, the dynamic filters created by the traffic

correlation matrix can align with the road network well.

Moreover, the corresponding dynamic de-convolutional

layer is the same as the dynamic convolutional layer. This

is because the matrix operation of the dynamic convolutional

layer and dynamic de-convolutional layer is invariant. We omit

the detailed proof for brevity.

2) TrafficGAN Architecture: To tackle the challenge of

conditioned traffic distribution generation, we introduce con-

ditional generative model structure in designing TrafficGAN.

The goal of the generator G is to generate traffic distributions
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with respect to the region location loc and travel demand d.

The input of the generator G includes three parts, i) a low-

dimensional code vector z, randomly sampled from Gaussian

distribution, ii) condition vector c = [loc, d], defining the

desired region and travel demand and iii) a traffic correlation

matrix Aloc. The discriminator D takes three inputs, i) a traffic

distribution M , ii) condition information c = [loc, d] and iii)

a traffic correlation matrix Aloc. D outputs a scalar indicating

whether the traffic distribution M is real and whether the input

M and c are matched. The detailed structures of generator

G and discriminator D are detailed in Fig. 2a and Fig. 2b,

len(c) represents the number of conditions in c. In our case,

N = 100, F0 = 1 since the only traffic feature is taxi inflow.

Algorithm 1 TrafficGAN Training Process

Input: Training iteration K, a training set Z , initialized G
and D.

Output: Well trained G and D.

1: In each training iteration iter:

2: repeat
3: Sample Z0 from training set Z .

4: Sample N from Gaussian distribution.

5: Generate T̃ with G.

6: Sample T̂ from training set Z .

7: Update D with Eq. 5 to maximize Eq. 4.

8: Update G with Eq. 7 to maximize Eq. 6.

9: until iter > K.

3) TrafficGAN Loss Function: In TrafficGAN, the gener-

ator G aims to generate “like-real” traffic distributions so that

the discriminator D cannot distinguish the generated traffic

distributions from the real traffic distributions well. As a result,

the loss function of TrafficGAN is in the form of Eq. 3,

modeled as a Min-Max game. (See more details in [15].)

min
G

max
D

V (D,G) = EM∼pdata(M)[logD(c,Aloc,M)]

+ Ez∼pz(z)[log(1−D(G(c,Aloc, z)))]. (3)

4) Training Process: During the training process, we

apply batch gradient descent. The detailed training pro-

cess is shown in Algorithm 1, where the discriminator

D and the generator G are updated in line 3 – 7 and

line 8, respectively. Denote the training set which contains

n samples as Z = {(c1,A1
loc,M

1), · · · , (cn,An
loc,M

n)},

with ci = [loci, di] as a condition vector. Denote Z0 =
{(c1,A1

loc,M
1), · · · , (cm,Am

loc,M
m)} (line 3) as a subset

of Z containing m triples, where m < n. Denote N =
{z1, z2, · · · , zm} as a set of m codes sampled from Gaus-

sian distribution (line 4), T̃ = {M̃1, · · · ,M̃m} as a set

of m traffic distributions generated with G (line 5), where

M̃ i = G(ci,Ai
loc, z

i). Denote T̂ = {M̂1,M̂2, · · · ,M̂m} as

a set of m traffic distributions sampled from the training set

Z (line 6), each M̂ i is mismatched with (ci,Ai
loc). In each

training iteration, we update the parameters θD of D with

Eq. 4 and Eq. 5, where η is learning rate.

ṼD =
1

m

m∑
i=1

(
log(1−D(ci,Ai

loc,M̃
i))

+ logD(ci,Ai
loc,M

i) + log(1−D(ci,Ai
loc,M̂

i))
)
, (4)

θD = θD + ηD�ṼθD
(θD). (5)

Then, we update the parameters θG of G with Eq.6 and Eq.7.

ṼG =
1

m

m∑
i=1

logD(G(ci,Ai
loc, z

i)), (6)

θG = θG + ηG�ṼθG
(θG). (7)

V. STAGE 3: URBAN PLAN EVALUATION

The generator G obtained from Stage 2 can be used by

urban planners to evaluate urban construction plans at various

locations, and search for more appropriate plans. To do so,

given an urban deployment plan, the generator G takes (i)

the expected travel demand d̂R, (ii) the location of the target

region R, (iii) traffic correlation matrix of R, and (iv) random

code vector z, as inputs to generate traffic distributions for the

plan to be evaluated.

Note that future traffic distributions hinge on many factors

such as weather, etc. To capture the entire distribution of what

the future traffic will look like over all potential (hidden)

factors, we randomize a large number L of random code

vectors to regenerate the traffic distributions for the urban plan.

All L generated traffic distributions [M̃1, · · · ,M̃L] are used

to capture the future traffic distributions. The urban planners

can summarize and evaluate various statistics of their interests

using the L generated traffic distributions, for example, the

mean, variance, minimum, maximum of L traffic distributions.

VI. EVALUATIONS

We conduct experiments to evaluate our proposed Traffic-

GAN with baseline approaches using large scale real world

taxi GPS data.

A. Experiment Design

We performed two sets of experiments: (i) Generate traffic

distributions in a target region R that was “seen” by Traf-

ficGAN in the training set but under other travel demands;

(ii) Generate traffic distributions for an “unseen” target region

R with a specific target travel demand dR, where R was

not included in the training set, therefore, TrafficGAN has

never seen traffic distributions of R under any travel demand

during training process. Obviously, the second task is more

challenging.

In this paper, Euclidean distance is used to evaluate the

quality of a generated traffic distribution against the ground

truth traffic distribution of a target region R. Euclidean dis-

tance is defined as follows. For two vectors V = (v1, · · · , vn)
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(a) Generator of TrafficGAN (b) Discriminator of TrafficGAN

Fig. 2: TrafficGAN architecture

and V̂ = (v̂1, · · · , v̂n), the Euclidean distance between V and

V̂ is:

‖V̂ − V ‖2 =

√√√√
n∑

i=1

(v̂i − vi)2. (8)

We define four statistics P1, P2, P3, P4 to measure and eval-

uate the difference between the generated traffic distribution

and the ground-truth traffic distribution.

•P1: For each R and dR pair, we calculate the average traffic

distribution using real traffic distributions and refer to it as

“true average distribution”. We also calculate the average of

generated traffic distributions and refer to it as “generated

average distribution”. The smaller Euclidean distance between

the two average distributions (denoted with P1) reflects that

the mean of the generated data are similar to the mean of the

true data.

•P2 and P3: Under the condition of target region R and target

travel demand dR, for each grid cell s ∈ R, we calculate the

Euclidean distance between s in real traffic distributions and

in generated distributions so that we have N = �2 Euclidean

distances for all s ∈ R. The mean of them is denoted as P2

and the standard deviation is denoted as P3.

•P4 refers to the Euclidean distance between real traffic

distributions and generated traffic distributions with various

travel demands.

B. Baseline Models

We compare our TrafficGAN with four baseline approaches

below.

Standard cGAN [15]. Without deep convolutional layers, the

generator and discriminator are both composed of four fully-

connected layers.

Conditional DCGAN [4]. The generator and discrimina-

tor of cDCGAN are composed of four transposed convolu-

tional/convolutional layers.

Spatial smoothing approach with neighboring regions [5].
This method uses the traffic distributions of 9 closest regions

under the same travel demand to compute a mean distribution

as the resulting estimation.

Regression [1]. Ridge regression is applied to estimate the

taxi inflow of each grid cell with the location of the grid cell

and the travel demand as predictors.

TABLE I: Comparisons of [P1, · · · , P4] for an “unseen” region

TrafficGAN cGAN cDCGAN smoothing regression
P1 956.78 14321.60 1452.82 1178.62 55302.89
P2 420.50 7096.76 523.37 NA NA
P3 314.21 1914.90 539.78 NA NA
P4 5249.24 73505.63 7519.95 NA NA

TABLE II: Comparisons of [P1, · · · , P4] for a “seen” region

TrafficGAN cGAN cDCGAN smoothing regression
P1 896.95 14436.03 1473.42 1418.74 57792.57
P2 361.74 6393.57 455.25 NA NA
P3 277.67 1837.80 512.83 NA NA
P4 4560.26 66524.57 6857.47 NA NA

C. Experiment Settings

In the experiments, we train TrafficGAN, cGAN and cDC-

GAN both for 200 epochs, and randomly sample code z from

a standard normal distribution. All models are trained using

Adam [11] with β1 = 0.5 and β2 = 0.999, and a learning

rate of 2× 10−5 for the first 10 epochs and linearly decayed

to 2 × 10−6. In the training process, we use batch stochastic

gradient descent with a batch size of 128.

D. Evaluation Results

1) Statistics comparisons with four baselines: We pick two

representative regions (seen and unseen) as target regions

with a specific travel demand. The statistics of P1 − P4 are

shown in Table. I and Table. II. For both “seen” and “unseen”

regions, TrafficGAN has the lowest error in any metric among

P1−P4, which indicates the generated traffic distributions with

TrafficGAN are much closer to the real ones. Compared with

cGAN and cDCGAN, our TrafficGAN model brings down the

P1 error by up to 93.79% and 39.12% on the “seen” region

and up to 93.32% and 34.14% on the “unseen” region.

2) Spatial pattern visualization: In this part, we visualize

the generated/estimated traffic distributions and compare them

with the real one. Here the traffic distributions are normalized

to the same scale. Fig. 3 shows the visualizations of spatial

patterns of 9 connected “unseen” regions, where each region

has a corresponding travel demand. Fig. 3a marks the locations

of selected 9 regions with red color on the whole city map.

Fig. 3b shows the zoomed-in road map of the 9 regions. Fig. 3c

shows the true average distribution and Fig. 3d shows the
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Fig. 3: Spatial patterns of 9 “unseen” regions

generated average distribution with TrafficGAN. Fig. 3e - 3h

show the generated/estimated average traffic distribution of

the baselines. Obviously, the generated average distribution

with TrafficGAN captures the structure of the underlying

road networks of all 9 “unseen” regions. TrafficGAN clearly

outperforms all the baselines which cannot accurately learn

the spatial patterns of “unseen” regions and they usually

overestimate or underestimate the value in each grid cell.

Results on the seen regions also suggest the same trend. Due

to space limit, we only present the results on unseen regions

since it is a harder task.

VII. CONCLUSION

This paper proposed and investigated a novel off-deployment
traffic estimation problem, namely, estimating the impact on

regional traffic conditions before an urban construction plan is

deployed. Solving this problem is crucial to potentially avoid

traffic issues caused by an urban construction plan. In this

paper, a novel generative model - TrafficGAN was proposed.

Using traffic data (e.g., taxi inflow) from all regions under

different travel demands, TrafficGAN is trained to capture the

fundamental patterns of how traffic condition evolves with

respect to the travel demand changes and underlying road net-

work structures. With such knowledge, the obtained generator

is capable of generating realistic traffic conditions within a

region for a not-yet-observed travel demand. Evaluation results

on a large-scale real taxi dataset demonstrate that TrafficGAN

can generate meaningful and accurate traffic distributions on

the road network under various travel demands, and outper-

forms all the baselines.
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