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ABSTRACT

Human dwellers make daily decisions by their own “strategies” gov-
erning their mobility dynamics (e.g., Uber drivers have preferred
working regions and times, and urban commuters have preferred
routes and transit modes). Understanding and characterizing the
unique decision-making strategies of human agents has great po-
tential in promoting their individual well-being. In this paper, we
outline a novel spatial-temporal imitation learning (STIL) frame-
work that defines, investigates, and addresses the emerging research
challenges of analyzing and learning human decision-making strate-
gies from human-generated spatial-temporal data. We present the
state-of-the-art imitation learning algorithms, and the limitations
of these algorithms in analyzing human-generated spatial-temporal
data. Moreover, we present our preliminary studies, and outline the
challenging open questions.
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1 INTRODUCTION

With the fast development of mobile sensing and information tech-
nology, large volumes of human-generated spatio-temporal data
(HSTD) are increasingly collected, (e.g., GPS trajectories from taxis
and personal vehicles, passenger trip data from automated fare
collection (AFC) devices on buses and subway trains, and working
traces from the emerging gig-economy services, such as food deliv-
ery (DoorDash [4], Postmates [12]), and everyday tasks (TaskRab-
bit [15])). Such HSTD capture unique decision-making characteris-
tics of the “data generators” (e.g., gig-workers, and bus passengers),
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Figure 1: Spatial-temporal imitation learning framework

for examples, preferred working regions and time of taxi drivers and
gig-workers, favored routes and transit mode of urban travellers,
etc. Analyzing HSTD allows us to better understand and dissect
how the experienced vs unskilled human agents make decisions
under various circumstances, thus, enabling targeted training and
incentive mechanisms to promote well-beings of urban dwellers
and societies (in income levels, travel and living convenience, etc).
In this paper, we outline a spatial-temporal imitation learn-
ing (STIL) framework that defines, investigates, and addresses the
emerging research challenges of analyzing and learning human
decision-making strategies from HSTD. As shown in Fig 1, the
spatial-temporal imitation learning framework takes demonstra-
tion data from a group of (likely interactive) experts as input, and
outputs the policies and reward functions employed by the group
of expert demonstrators.

2 APPLICATION SCENARIOS

Consider taxi services. As a human agent, each taxi driver generates
driving trajectories over time which capture her unique strategy
of where to find the next passenger. Each taxi driver may only
prefer working in certain regions in the city. As a result, passenger
demands in some (rural) areas may be significantly under supplied.
With the decision-making strategies learned from the drivers’ tra-
jectories, service provider can offer targeted incentives to motivate
some drivers to cover those under-served areas [21]. More applica-
tion scenarios include the food delivery service (e.g., DoorDash),
and everyday task service (e.g., TaskRabbit), where gig-workers are
human-agents making decisions based on their own preferences (or
inherent “reward function”). The goal of spatial-temporal imitation
learning is to accurately infer such decision-making preferences from
HSTD (e.g., generated by gig-workers).
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3 SPATIAL-TEMPORAL IMITATION
LEARNING: STATE-OF-THE-ART WORK
AND OPEN CHALLENGES

Imitation learning has been extensively studied to inversely learn
human demonstrators’ decision-making strategies [1, 3, 7, 14, 16,
18, 19, 23, 24], which is an effective computational tool playing
essential roles in a variety of applications, including autonomous
vehicle and robot control [5, 6], human motion analysis [8, 9], etc.
When performing imitation learning over HSTD (in short, spatial-
temporal imitation learning), it leads to unique applications, such
as traffic estimation and prediction [13, 25], human mobility and
intention analysis [11, 17], urban planning [19, 20], and incentive
mechanism design [2, 21].

The vast majority of the existing work on imitation learning is
essentially designed for general demonstration data from human
agents [1, 3, 7, 18, 19, 24], with strong assumptions of invariant
decision-making strategies over time and space, small scale sce-
narios with good spatial-temporal coverage, and optimal decision-
making strategies used by human agents. Below, we briefly in-
troduce our preliminary studies to address these challenges, and
outline the open challenges to be investigated.

3.1 Preliminary investigations.

In [10, 11], we employ relative entropy inverse reinforcement learn-
ing [3] to study the diverse decision-making preferences of taxi
drivers, when they look for passengers. In [20], we model the transit
mode choice and transit stop selection problem of urban travelers
as a Markov decision process (MDP), and inversely learn the pas-
sengers’ unique decision-making strategy using maximum-entropy
inverse reinforcement learning approach [24]. In [22], we develop
a conditional generative adversarial imitation learning framework
(cGAIL) to address the spatial dynamics of human agents’ reward
function and the spatial sparsity of collected HSTD. Moreover, in
[21], we further investigate how to utilize the decision-making
preferences learned from urban decision-makers to improve their
decision-making strategies, by developing a targeted incentive de-
sign mechanism.

3.2 Open Challenges.

Beyond our preliminary investigations, there are still many crucial
and open challenges in conducting preference learning from HSTD
listed below.

e Interactions among agents. Human agents (e.g., in urban
area) are not making decisions independently. Instead, they
are making interactive decisions, and their decisions influ-
ence each other, (e.g., traffic slows down on a route cho-
sen by more drivers, which affects other drivers choices to
avoid the slowdown). It is challenging that how to model
such interactions as a multi-agent game, and how to develop
game-theoretical approach to solve the preference learning
problem.

e Scalable and online algorithm design. The real world in-
verse preference learning problem usually involves a large
space of states and actions, (e.g., the locations an urban trav-
eler may visit and the transit routes/stops a traveler may
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choose). It is thus challenging to develop imitation learn-
ing approach that scales well, while learning the decision-
making preferences in an online and incremental fashion.
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