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A hybrid method that combines Gaussian basis functions typically used in bound-state molec-
ular electronic structure calculations with a grid-based discrete variable representation with finite
elements(FEM-DVR) suitable for a general electronic continuum representation is used to fully de-
scribe the double ionization of molecular H2 by a single photoabsorption. This work expands the
hybrid method, previously applied to single ionization events, to double photoionization. To con-
struct the full two-electron operator encoding the electron correlation necessary to doubly ionize the
target via the action of a single photon requires all classes of mixed integrals between combinations
of the different basis function types. Comparison of the present results with benchmark theoreti-
cal calculations and experimental results shows excellent agreement for both molecular H2 and for
its united-atom limit, atomic helium; the triply differential cross sections that relate the angular
distribution and energy sharing of all of the particles in the frame of the molecule are compared.
The two-electron results computed using this hybrid basis hint at application of this general de-
scriptive scheme beyond this simplest molecular target towards describing double ionization in more
complicated and experimentally relevant molecules.

I. INTRODUCTION

The design and application of suitable and efficient
representations for continuum processes, especially for
a general molecular target, remains a continued goal
for computational studies of collisional phenomena. In
particular, double photoionization whereby an atom or
molecule yields two ejected electrons via the absorption
of a single photon provides a direct pathway to observe
the correlated electron dynamics, since the process is
driven by electron correlation [1–8]. For even the simplest
molecular target, H2, a full description of this process
which can elucidate differential quantities such as energy
sharing probabilities and angular distributions relative
to the molecular axis (i.e., body-frame observations) re-
quires sophisticated and computationally intensive treat-
ments. This is due to the relatively small magnitude of
the double ionization amplitudes compared to the sin-
gle ionization channels that dominate at photon ener-
gies near the double ionization threshold, wherein these
small probability events directly probe the electron cor-
relation throughout the process [9]. In a similar vein,
detailed experimental measurements that catch several
ionized fragments in coincidence and can reconstruct the
body-frame information at the moment of photoabsorp-
tion from the resulting momentum of the fragments rep-
resent the state-of-the-art in fully describing such molec-
ular processes where two electrons are ejected, followed
by a Coulomb explosion of the residual target.
The fundamental molecule to investigate the detailed

photoelectron angular distributions in the body frame
from single photon double ionization that has the most
complete experimental measurements is H2 (or D2) [10–
17]. Numerous ab initio theoretical calculations over the
last few years have helped elucidate and inform these co-

incidence experiments [18–28]. Still, one of the challenges
inherent in a theoretical description is the ability to accu-
rately represent the molecular continuum states for even
the simplest molecules like H2. For example, pure grid-
based calculations have dominated due to their compu-
tational advantages in producing highly-structured mul-
tiprocessor representations of the operators and wave
functions in a Born-Oppenheimer picture of molecular
hydrogen that promotes the ground state wave packet
vertically into the electronic double continuum. For di-
atomic molecules such as H2, another computational ad-
vantage can be gained by utilizing prolate-spheroidal co-
ordinate systems that preserve the cylindrical symmetry
of diatomics and build in the singularities at the foci and
accurately represent cusps in the electronic wave function
at the nuclei [26–28].

We have previously reported an approach that treats
the electronic coordinates using a combined represen-
tation with analytic Gaussian-type basis functions near
the nuclei and overlapping a finite-element discrete vari-
able representation (FEM-DVR) grid-based approach
that spans the radial coordinate into long-range regions
that become relevant in ionization problems and must
be able to efficiently represent the oscillatory nature
of the continuum electrons far from the nuclei. In
Refs. [29] and [30] (hereafter referred to as Paper I and
Paper II, respectively), we described this ”hybrid Gaus-
sian basis” and applied it to molecular single photoion-
ization. Subsequently, we have also utilized this com-
bined Gaussian-DVR representation to compute molecu-
lar frame photoelectron angular distributions (MFPADs)
from heavier nuclei diatomic molecules [31]. The under-
lying combination of analytical basis functions which are
well-suited and ubiquitous for computing exponentially-
decaying bound states in standard quantum chemistry
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calculations with grid-based FEM-DVR descriptions that
provide efficient and essentially complete radial descrip-
tions of unbounded states seeks to join the natural ad-
vantages of these different methods for describing molec-
ular continuum processes, and these previous works have
illustrated the application of these hybrid basis tech-
niques to so far only single photoionization processes. We
note that, conceptually, the partitioning of the coordi-
nate space into inner and outer regions has been utilized
extensively in R-matrix theory for collisional physics [32],
and the philosophical root with R-matrix theory that dif-
ferent regions of space can be treated uniquely is common
to both approaches.

In this work, we extend the hybrid basis methods
to the substantially more challenging problem of dou-
ble photoionization of two-electron targets. In particu-
lar, we describe and compute all of the specific classes of
mixed two-electron integrals (i.e., unique combinations of
Gaussian-type and FEM-DVR basis functions) and uti-
lize all classes for the full two-electron problem. We have
previously enumerated these classes in Paper II, but have
only had occasion to utilize certain classes for comput-
ing one-electron close-shell direct and exchange operators
in those previous molecular single-ionization studies [31];
here we shall need all of them. Additionally, we will
incorporate the single-ionization continuum states rep-
resented in the hybrid Gaussian-DVR basis (which has
been primarily described in Paper I) in order to extract
the double ionization amplitudes from all other energet-
ically open processes using a computationally efficient
testing function formalism that we have employed previ-
ously for similar double ionization descriptions [23, 33],
including time-dependent implementations for represent-
ing few-photon absoprtions [34]. The one-electron con-
tinuum functions are meant to be constructed using the
hybrid basis in a similar manner to the full two-electron
solution in order to extract the single ionization contin-
uum from the double ionization components via orthogo-
nality, since both represent eigenstates of the same resid-
ual Hamiltonian.

In Section II, we overview the Gaussian-DVR method
and enumerate the six particular classes of two-electron
integrals that must be accurately represented in order
to fully incorporate the electron-electron repulsion that
drives the double photoionization process. In order to
provide a simpler case uncomplicated by the molecular
geometry but that still requires the (otherwise similarly
constructed) electron-electron repulsion to be correctly
represented, we first consider in Section III application
of the hybrid basis to describe double ionization of atomic
helium. This is followed by a brief comparison of results
calculated for H2 double ionization with a few key the-
oretical [21] and experimental benchmarks [13, 16]. We
conclude with brief remarks in Section IV.

II. THEORY

We begin with a brief summary of the key features of
the hybrid Gaussian-DVR description of the electronic
coordinates that will be employed in the double ioniza-
tion problems considered below. Further details of the
method, particularly the construction of one-electron op-
erators and application to single ionization problems can
be found in Papers I and II [29, 30]. Atomic units are
used throughout the following.
Figure 1 illustrates the main concepts of the hybrid

Gaussian-DVR representation. From the origin (either
at the nucleus of an atomic problem, or at the midpoint
of the internuclear distance for H2) the radial coordi-
nates of each electron will be subdivided into regions as
shown in the upper panel of Fig. 1. The innermost re-
gion constitutes the part of physical space that is purely
described by Gaussian type orbitals, Gi(r). Any stan-
dard quantum chemistry package that permits output of
the relevant parameters (e.g., orbital exponents, normal-
ization coefficients, etc.) and matrix elements between
the Gaussian orbitals will suffice. Beyond this Gaussian
region containing the nuclei of the target begins (at a
radial distance r0) a region described by both Gaussians
Gi(r) and FEM-DVR functions φj(r) in the radial co-
ordinate with spherical harmonics encoding the angular
coordinates,

χa
j (r) = r−1φj(r)Yla,ma(r̂) (1)

which overlap with the exponentially decaying tails of the
Gaussian functions centered only within the region bound
by radius r0. It is in this second region that the two dif-
ferent basis function formats overlap and connect to each
other. In particular, the finite element nature of the
FEM-DVR permits flexibility in guaranteeing that the
two portions of the overall basis are sufficiently connected
while simultaneously seeking to avoid linear dependence.
Aside from joining to the inner region via this overlap
with the Gaussians, the FEM-DVR functions extend this
intermediate region substantially further out towards a
boundary where exterior complex scaling (ECS) rotates
the radial coordinates of the ejected electrons into the
complex plane and effectively allows the problem to be
treated on a finite grid by imposing outgoing wave bound-
ary conditions [33]. We note that this approach utilizes
a single FEM-DVR grid primarily to provide the long-
range description of the electron dynamics and is philo-
sophically different from recent multi-center approaches
that feature subgrids of FEM-DVR functions at differ-
ent atomic centers [35], here instead using the Gaussian
functions centered at each atom within the inner region
to connect to the overall FEM-DVR grid.
The lower panel of Fig. 1 shows the sum of the real

part of the wave function for the two most dominant
partial wave terms within the full scattered solution
(ks(1)kp(2) + kp(1)ks(2)) of double photoionization of
He plotted in the r1, r2-plane to illustrate the division
of radial space in the hybrid method. The two colors
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FIG. 1: (Color online) Upper panel: schematic of the radial
coordinate partitioning in a hybrid Gaussian-DVR scheme.
Inside of r0 lie the nuclei of a molecular target and Gaussian
type orbitals (GTOs) are used to describe the electronic co-
ordinates. Beyond this region lie real FEM-DVR functions
that overlap and connect with the Gaussian functions that
decay exponentially well before the exterior complex scal-
ing (ECS) rotation point. Only FEM-DVR functions exist
in this complex-scaled region which imposes the boundary
conditions to produce outgoing-wave solutions. Lower panel:
The two leading components (ks(1)kp(2)+kp(1)ks(2)) of the
full solution wave function (real part) plotted in the radial
(r1, r2) plane. The colors highlight the partitioning of the ra-
dial space, with the green color indicating the portion of the
wave function expanded only in GTOs (where either r1 or r2
is small, here within 1.0 bohr of each radial axis) while the
purple color shows the overlap region where the full solution
is expanded in both GTOs and FEM-DVR functions.

differentiate where the inner region (lying close to either
radial axis) is expanded in Gaussian basis functions only
and where the FEM-DVR functions begin (typically less
than an atomic length unit a0 from the nearest nuclei).
In practice, the connection between the different types
of basis functions is limited to a few bohr distances from
either axis (i.e., where the large peaks occur at small
radial distances of either electron); this is also where
the contributions to the double ionization wave func-
tion are dominated by components at the total energy
E = (k21 + k22)/2 that are particularly sensitive to the

single-ionization channels open at the same total energy.
This transition from primarily Gaussian basis functions
to FEM-DVR functions occurs rather suddenly and ob-
viates the need for diffuse Gaussian functions in favor of
the FEM-DVR functions that will encode the smaller-
amplitude double ionization component, represented by
the oscillatory fronts moving along the diagonal direc-
tions where both r1 and r2 increase.

A. Two-electron integrals in the hybrid

Gaussian-DVR basis

We turn our focus now to the possible permutations
of two-electron integrals that must be computed to fully
describe the electron repulsion term 1/r12 = 1/|r1 − r2|
that drives the single-photon double ionization process in
both atomic and molecular targets. There are six distinct
permutations requiring a computational strategy that we
enumerate as classes:

• Class 1: 〈Gi(r1)Gj(r2)|Gk(r1)Gl(r2)〉

• Class 2: 〈Gi(r1)Gj(r2)|Gk(r1)χ
d
l (r2)〉

• Class 3: 〈Gi(r1)χ
b
j(r2)|Gk(r1)χ

d
l (r2)〉

• Class 4: 〈Gi(r1)Gj(r2)|χc
k(r1)χ

d
l (r2)〉

• Class 5: 〈Gi(r1)χ
b
j(r2)|χc

k(r1)χ
d
l (r2)〉

• Class 6: 〈χa
i (r1)χ

b
j(r2)|χc

k(r1)χ
d
l (r2)〉 .

We utilize the indices i, j, k and l above to label three-
dimensional Gaussian type orbitals and the radial FEM-
DVR functions χ(r) of the grid-based functions, while
labels a, b, c and d index the angular coordinates of the
latter (the spherical harmonics in Eq. 1). Both Class 1
and Class 6 integrals involve only a single type of basis
function: either purely Gaussian or purely FEM-DVR
functions. Class 1 integrals can be computed analyti-
cally by standard quantum chemistry packages. We have
also extensively reported on Class 6 integrals, computed
by solving Poisson’s equation at each discrete r1, r2 grid
point and refer to Ref. [33] for the full details. We note
the Class 6 formulation particularly informs the compu-
tation of the mixed integrals in Class 4 and Class 5 below.

In what follows, we will frequently utilize a local rep-
resentation of the charge density of the second electron’s
repulsion with the first as,

Ik,l(r1) ≡
∫

Gk(r2)
1

r12
Gl(r2) dr2 . (2)

We begin our discussion of the mixed-integrals with
Class 2, which possesses a single FEM-DVR function,
and allows us to make use of the local repulsion density
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in Eq. 2 to compute this integral as

〈GiGj |Gkχ
d
l 〉 =

∫

(

∫

Gi(r1)
1

r12
Gk(r1) dr1

)

×Gj(r2)χ
d
l (r2) dr2

=

∫

Ii,k(r2)Gj(r2)
φl(r2)

r2
Yℓd,md(r̂2) dr2

= rl
√
wl

∫

Ii,k(rl; r̂2)Gj(rl; r̂2)Yℓd,md(r̂2) dr̂2 .

(3)
where the last line represents an angular integration [36]
along a sphere at the radial distance of the FEM-DVR
grid point rl, as given by the underlying Lobatto quadra-
ture of the FEM-DVR basis function definition [37].
The Class 3 integrals are distinguished by having two

Gaussian functions of the two-electron integral, both rep-
resenting the coordinates of the same electron,

〈Giχ
b
j |Gkχ

d
l 〉 =

∫

(

∫

Gi(r1)
1

r12
Gk(r1) dr1

)

× χb∗
j (r2)χ

d
l (r2) dr2

=

∫

Ii,k(r2)χ
b∗
j (r2)χ

d
l (r2) dr2 ,

(4)

which becomes a diagonal matrix element in the radial
coordinate of electron 2 when integrated using the under-
lying Lobatto quadrature of the FEM-DVR coordinates,
yielding

〈Giχ
b
j |Gkχ

d
l 〉 =

∫

Ii,k(r2)
φj(r2)

r2
Y ∗
ℓb,mb(r̂2)

× φl(r2)

r2
Yℓd,md(r̂2) dr2

= δj,l

∫

Ii,k(rj ; r̂2)Y
∗
ℓb,mb(r̂2)Yℓd,md(r̂2) dr̂2 .

(5)

The Class 4 integrals are those that have a ”mixed
exchange” nature of a Gaussian and an FEM-DVR for
each of the two electrons, and cannot be accurately rep-
resented simply by using Lobatto quadrature. Instead,
we follow the re-expansion of the density of these mixed
integrals, paralleling the computation of the pure FEM-
DVR two-electron integrals [33]. The strategy is to utilize
a multipole expansion for the electron repulsion,

1

|r1 − r2|
=
∑

λ,µ

4π

2λ+ 1
Yλ,µ(r̂1)

rλ<
rλ+1
>

Y ∗
λ,µ(r̂2) , (6)

along with a single-center expansion to represent the
mixed Gaussian-DVR density,

rGi(r)Yl′,m′(r̂) =
∑

l,m

Ri,l′,m′

l,m (r)Yl,m(r̂) , (7)

where the expansion coefficients are given by

Ri,l′,m′

l,m (r) = r

∫

Gi(r̂; r)Yl′,m′(r̂)Y ∗
l,m(r̂) dr̂ . (8)

With these expansions, the mixed Gaussian-DVR inte-
grals becomes

〈GiGj |χc
kχ

d
l 〉 =

∑

λ,µ

4π

2λ+ 1

∫∫

[

∑

l1,m1

Ri,ℓc,mc

l1,m1
(r1)(−1)m1Y ∗

l1,−m1
(r̂1)

]

φk(r1)Yλ,µ(r̂1)
rλ<
rλ+1
>

Y ∗
λ,µ(r̂2)

×
[

∑

l2,m2

Rj,ℓd,md

l2,m2
(r2)Yl2,m2

(r̂2)
]

φl(r2) dr1 dr̂1 dr2 dr̂2 ,

(9)

which can be simplified using the orthonormality of the spherical harmonics to yield
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〈GiGj |χc
kχ

d
l 〉 =

∑

λ,µ

4π

2λ+ 1

∑

l1,m1

∑

l2,m2

δl1,λδ−m1,µδl2,λδm2,µ

[

(−1)m1

∫

Ri,ℓc,mc

l1,m1
(r1)φk(r1)

rλ<
rλ+1
>

Rj,ℓd,md

l2,m2
(r2)φl(r2) dr1 dr2

]

=
∑

λ,µ

4π(−1)µ
2λ+ 1

∫

Ri,ℓc,mc

λ,−µ (r1)φk(r1)
rλ<
rλ+1
>

Rj,ℓd,md

λ,µ (r2)φl(r2) dr1 dr2 .

(10)

To evaluate the remaining integrations, we will use the
radial density formalism

∫

Ri,ℓc,mc

l1,m1
(r1)φk(r1)

rλ<
rλ+1
>

Rj,ℓd,md

l2,m2
(r2)φl(r2) dr1 dr2

=

〈

ρ1

∣

∣

∣

∣

rλ<
rλ+1
>

∣

∣

∣

∣

ρ2

〉

,

(11)

to recast the integral as a solution of Poisson’s equation
that is re-expanded in the underlying radial basis. Using
the mixed basis two-electron density with the boundary
conditions of the FEM-DVR basis, [r0, rmax], and speci-
fying the surface terms yields the final result

〈

ρ1

∣

∣

∣

∣

rλ<
rλ+1
>

∣

∣

∣

∣

ρ2

〉

= (2λ+ 1)

[

Ri,ℓc,mc

λ,−µ (rk)

rk

Rj,ℓd,md

λ,µ (rl)

rl

]

[

Tλ
k,l

]−1

+

(

r2λ+1
0 − r2λ+1

l

r2λ+1
0 − r2λ+1

max

)

Ri,ℓc,mc

λ,−µ (rk)R
j,ℓd,md

λ,µ (rl)
√
wkwlr

λ
k

rλ+1
l

+

(

r2λ+1
l − r2λ+1

max

r2λ+1
0 − r2λ+1

max

)

Ri,ℓc,mc

λ,−µ (rk)R
j,ℓd,md

λ,µ (rl)
√
wkwlr

2λ+1
0

(rkrl)λ+1
.

(12)

where
[

Tλ
i,l

]−1

is the inverse of the radial kinetic en-

ergy matrix, and wk and wl are the associated Lobatto
quadrature weights for FEM-DVR points rk and rl, re-
spectively [37]. Though computationally demanding,
these Class 4 matrix elements between mixed Gaussian
and DVR functions (and those of the previous classes)
need only be considered for finite elements possessing the
non-zero range of the Gaussian functions, which lacks
rather diffuse functions since the FEM-DVR functions

provide primary coverage of the regions beyond the nu-
clei.

The Class 5 integrals are those that have a single Gaus-
sian type function taken with three FEM-DVR basis
functions. The strategy for their computation mirrors
the multipole expansion of the Class 4 integrals, but is
simplified due to the diagonal nature of the radial elec-
tronic coordinate for electron 2,

〈Giχ
b
j |χc

kχ
d
l 〉 =

∑

λ,µ

[

4π

2λ+ 1

∫

Gi(r1)φk(r1)Yℓc,mc(r̂1)Yλ,µ(r̂1)

(

∫

φj(r2)φl(r2)
rλ<
rλ+1
>

Yℓd,md(r̂2)Y
∗
ℓb,mb(r̂2)Y

∗
λ,µ(r̂2) dr2

)

dr̂1

]

=
∑

λ,µ

(

4π

2λ+ 1

∫

Gi(rk; r̂1)Yℓc,mc(r̂1)Yλ,µ(r̂1)C(ℓdmd|ℓbmb, λµ)Uλ
j,l(rk) dr̂1

)

.

(13)

The angular integration of the second electron reduces to
a Gaunt coefficient C(jm|j′m′, λµ), expressible in terms

of the perhaps more-familiar 3-j symbol as [38]
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C(jm|j′m′, λµ) =

∫

Yj,m(r̂) Y ∗
j′,m′(r̂) Y ∗

λ,µ(r̂) dΩ

= (−1)m′+µ

√

(2j + 1)(2j′ + 1)(2λ+ 1)

4π

(

j j′ λ
0 0 0

)(

j j′ λ
m −m′ −µ

)

,

(14)

leaving an integral along the shell of electron 1, and where

Uλ
j,l(rk) =

∫

φj(r2)φl(r2)
rλ<
rλ+1
>

dr2

= δj,l

[

(2λ+ 1)

rkrj
√
wkwj

[

Tλ
k,j

]−1
+

(

r2λ+1
0

r2λ+1
0 − r2λ+1

max

)(

rλk
rλ+1
j

+
rλj

rλ+1
k

−
rλkr

λ
j

r2λ+1
0

− r2λ+1
max

rλ+1
k rλ+1

j

)]

.

(15)

The final result restricts the sum to running over nonzero
Gaunt coefficients and includes quadrature integrations

of the Gaussian basis function evaluated at the k-th Lo-
batto point, as was done for Class 2 and Class 3 integrals.

〈Giχ
b
j |χc

kχ
d
l 〉 =

ℓb+ℓd
∑

λ=|ℓb−ℓd|

4π

2λ+ 1
Uλ
j,l(rk)

[

λ
∑

µ=−λ

C(ℓdmd|ℓbmb, λµ)

(

∫

Gi(rk; r̂1)Yℓc,mc(r̂1)Yλ,µ(r̂1) dr̂1

)]

. (16)

With the mixed integrals specified above, the full elec-
tron repulsion operator can be constructed for all combi-
nations that are required in a product basis of each elec-
tron’s coordinates represented by these hybrid Gaussian-
DVR basis functions. We note that where complex con-
jugations are required if bra and ket labels are reversed,
care must be taken to conjugate only the angular func-
tions if the radial coordinates have been complex-scaled.
The Gaussian basis is defined to be purely real and ap-
preciably overlaps only the real portion of the FEM-DVR
radial profile (middle area in the upper panel of Fig. 1).

B. Ionization of two electrons by a single photon

The electronic Hamiltonian for describing two elec-
trons in the Born-Oppenheimer approximation is

H = T1 + Vnuc(r1) + T2 + Vnuc(r2) +
1

r12
, (17)

where T + Vnuc = h is the one-electron Hamiltonian in-
cluding the kinetic energy and nuclear attraction poten-
tial (either Vnuc = −2/r in the case of atomic helium or

Vnuc = −1/|r−R/2|−1/|r+R/2| for the case of H2 with
a fixed internuclear distance R).

The double ionization amplitudes can be computed
from the full scattering solution with outgoing wave
boundary conditions that solves the first-order driven
Schrödinger equation

[E0 + ~ω −H] Ψ+
sc(r1, r2) = ~ǫ · ( ~µ1+ ~µ2)ϕ0(r1, r2) , (18)

where E = E0 + ~ω is the total excess energy above the
double ionization potential E0 available to the system
after photoabsorption (in the dipole approximation) from
the initial state ϕ0(r1, r2). The amplitudes for double
ionization ejecting electrons with momenta k1 and k2

can be evaluated as a volume integral

f(k1,k2) = 〈Φ(−)(k1, r1)Φ
(−)(k2, r2)|

E − h(r1)− h(r2)|Ψ+
sc(r1, r2)〉 ,

(19)

where Φ(−)(k, r) is the incoming continuum wave func-
tion related to the outgoing version by Φ(−)(k, r) =
[

Φ(+)(−k, r)
]∗

that satisfies

[

T + Vnuc −
k2

2

]

Φ(+)(k, r) = 0 . (20)
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In the case of an atomic helium, Φ(+)(k, r) is a Coulomb
scattering solution constructed in a partial-wave expan-
sion

Φ(+)
c (k, r) =

(

2

π

)1/2
∑

l,m

ileiηl(k)Y ∗
l,m(k̂)

φ
(c)
l,k(r)

kr
, (21)

using the hybrid Gaussian-DVR basis. For molecular H2,
Φ(−)(k, r) is a continuum state of the residual molecular
geometry, i.e. a scattering state of H+

2 ,

Φ(+)(k, r) = ξ(k, r) + g(r)Φ(+)
c (k, r) , (22)

which we have partitioned as the same atomic Coulomb
wave in Eq. 21 plus a short-range correction and where
g(r) is an arbitrary smooth function that approaches
unity at large r and cuts off the Coulomb function for
smaller r. For both the atomic and molecular geome-

tries, the radial Coulomb waves φ
(c)
l,k(r) behave asymp-

totically as sin
(

kr + (Z/k) ln 2kr − πl/2 + ηl(k)
)

, with
Z = 2 and possessing Coulomb phase shift ηl(k) =
arg Γ(l + 1 + iZ/k).
The short-range distortion ξ(k, r) due to the nonsper-

hical molecular geometry in Eq. 22 is also to be expanded
in the hybrid Gaussian-DVR basis for each incoming par-
tial wave channel l0

ξ(r)l0,m

r
=
∑

Γ

cl0,mΓ GΓ(r) +
∑

i,l

cl0,mil

φi(r)

r
Yl,m(r̂)

(23)
where the index Γ labels the Gaussian basis functions
coupled to l0, and the cylindrical symmetry of either He
or H2 renders m a good quantum number. This partial
wave decomposition leads to a set of driven equations for
each incoming l0,m Coulomb wave channel,

(k2

2
−(T + Vnuc)

)ξl0,m(r)

r

=

(

(T + Vnuc)−
k2

2

)

g(r)
φ
(c)
l0,k

(r)

r
Yl0,m(r̂) .

(24)

As we have previously employed [21, 33], the six-
dimensional volume integral in Eq. 19 is operationally
converted to a surface integral using Green’s theorem
along a constant hyper-radius ρ0 to give the double ion-
ization amplitudes,

f(k1,k2) =

∫

dΩ1

∫

dΩ1

∫

dρ

∫ π/2

0

dα
ρ5 sin2 α sin2 α

2

× Φ(−)(k1, r1)
∗Φ(−)(k2, r2)

∗

[←−
∂

∂ρ
δ(ρ− ρ0)− δ(ρ− ρ0)

−→
∂

∂ρ

]

Ψ+
sc(r1, r2),

(25)

where ρ =
√

r21 + r22, and tanα = r2/r1. Also, the arrows
above the partial derivatives with respect to ρ indicate
the direction they should operate and the delta functions

confine the integral to a particular hyper-radius inside
of the ECS scaling point rECS. This testing function
formalism reduces to an integration of the quantity in
Eq. 25 along a quarter-circle arc at sufficiently large ρ0
in the r1, r2 plane (see the lower panel of Fig. 1) and
eliminates all energetically open contributions from the
full solution Ψ+

sc(r1, r2) that are not double ionization by
orthogonality; we have previously utilized this method
to compute double ionization amplitudes provided the
testing functions Φ(−)(k, r) are continuum solutions of
the residual one-body Hamiltonian that appears in the
correlated full Hamiltonian (Eq. 17) [34, 39–42].

III. RESULTS

In what follows we present a few results to compare
with benchmark theory calculations and experimental
measurements. The examples we present here are rep-
resentative of some of the key features that have been
previously explored in double photoionization of He and
H2; they permit us to evaluate the accuracy of the hy-
brid Gaussian-DVR basis and highlight the advantages of
the method, primarily requiring fewer partial wave terms
in the outer FEM-DVR region to yield accurate results
compared to pure grid-based calculations by utilizing the
Gaussian basis to describe the region of physical space
containing the nuclei [31].
The most-detailed information to be studied in a dou-

ble photoionization event is the fully-differential cross
section, given in the length gauge by

dσ

dE1dΩ1dΩ1
=

4π2ω

c
k1k2|f(k1,k2)|2 (26)

where, for what follows on molecular H2 in the Born-
Oppenheimer approximation, we have made the reason-
able approximation that a transition via the photoab-
sorption occurs vertically at the equilibrium internuclear
distance Req = 1.4 a.u. and the Coulomb explosion of
the bare protons proceeds without deposition of signif-
icant energy from the photon. Observing these events
in the molecular frame also requires consideration of the
molecular geometry relative to the photon polarization
direction, here taken to be linear and horizontal in the
figures that follow. For H2, this establishes three pho-
toionization amplitudes: one of Σu symmetry and two
equivalent Πu contributions reflecting the possible final
magnetic quantum states, M = m1 + m2 that can be
populated by a linearly-polarized photon from the 1σ2

g

ground state of H2.
It is noteworthy that for H2 at the photon energy

ω = 75 eV considered here, the M = ±1 contributions
are generally larger in magnitude than the M = 0 ampli-
tudes, and can often dominate the fully-differential cross
section. In our first example of the body-frame triple
differential cross section (TDCS) calculated using the hy-
brid Gaussian-DVR method for comparison with a pure
grid-based calculation [21], we again choose a case where
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the Σu and Πu amplitudes contribute roughly equally.
Figure 2 shows the TDCS for a second electron ejected
from an equilibrium geometry H2 molecule rotated at an
angle of θmol = 20◦ relative to the polarization of the
light with the first electron carrying 80% of the available
excess energy and with a direction of θ1 = 40◦. The
present results, calculated with an inner-region Gaus-
sian basis consisting of 36 basis functions of s,p, and
d angular momenta centered on the nuclei and at the
molecular center, and FEM-DVR functions beginning at
r0 = 0.8 bohr containing up to lmax = 5 for each elec-
tron are compared to pure FEM-DVR calculations with
up to lmax = 6 and lmax = 7. The latter pure FEM-DVR
calculation is also computed in the velocity gauge, while
the hybrid results and smaller grid-based calculation are
computed in the length gauge. Evaluation of the dipole
terms in the hybrid basis is more straightforward in the
length gauge, but we note that the results presented here
agree well with both the length and velocity forms of
the pure FEM-DVR calculations. These results illustrate
very good agreement between the present results and the
benchmark grid-based calculations (of both gauges), with
the most visible differences arising in the valley between
primary and secondary lobes around θ2 ∼ 220◦, as well as
the very slight differences in the peak heights. Compari-
son of these results reveal that the present representation
of the bound and continuum states are fairly well con-
verged to resolve the significant features and accurately
compute the TDCS that results from incorporating the
various polarization-dependent amplitudes.

A. Helium double photoionization at ω = 99 eV

Because it is a well-studied problem [1–8] with many
theoretical calculations and experimental measurements
in good agreement while still providing a system for
which the correlation introduced via the electron repul-
sion term (and, thus, the two-electron matrix elements of
Sec. IIA) must be accurately represented, we utilized the
hybrid Gaussian-DVR basis to compute TDCS results for
double photoionization of helium at a photon energy of
99 eV and present a few representative results. We note
that this problem is the united atom limit of the molec-
ular H2 double ionization, and, thus we can expect the
M = ±1 amplitudes and M = 0 to become equivalent as
the internuclear distance approaches zero and the target
becomes spherically symmetric.
Figure 3 shows the co-planar geometry TDCS results

for double ionization of helium with the fixed electron at
θ1 = 0◦ along the polarization direction (upper panels)
and with θ1 = 90◦ relative to the polarization (lower pan-
els). These results were computed with an inner-region
basis of 12 total Gaussian functions of type s and p cen-
tered at the origin. The s-type Gaussian exponents are
those of the first six from Huzinagas 10s expansion of
the hydrogen 1s function in Gaussians [43], while those
of the p-type orbitals have exponents of α = 2.0 and 0.5.
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FIG. 2: (Color online) Triple differential cross section (TDCS)
results for double photoionization of H2 at a photon energy
of 75 eV; the left panel shows the absolute cross section in
the co-planar geometry, the right panel provides a polar plot
of the same. Directions are measured relative to the linear
polarization vector (horizontal in the right panel). The fixed
electron (black arrow) is held at θ1 = 40◦ and the internuclear
axis is at θN = 20◦. For this case, the contributions of the
relevant dipole-allowed amplitudes of Σu and Πu symmetry
contribute approximately equally. The present results calcu-
lated using the hybrid Gaussian-DVR basis (black solid line)
agree well with the benchmark pure grid-based FEM-DVR
results [23] for different angular momentum maximum values
of each electron, lmax = 6 and lmax = 7 (red long-dash and
blue short-dash, respectively).

The FEM-DVR functions begin at a radius of r0 = 1.0
bohr from the origin, and use six real finite elements with
15th-order DVR in each, up to the ECS scaling point of
rECS = 45.0 a.u. The region for evaluation of the mixed
two-electron integrals over which the Gaussians are con-
sidered sufficiently non-zero extends up to r = 15.0 a.u.
In the FEM-DVR region, all angular terms are computed
with up to lmax = 3 for each electron. The energy shar-
ing of the excess energy delivered by the photon is split
equally between the two electrons, (E1 = E2 = 10 eV)
Figure 4 shows the same co-planar geometry and equal
energy sharing for helium, but now with the fixed elec-
tron going out in directions of θ1 = 30◦ and θ1 = 60◦,
respectively. Again, the agreement between the present
results calculated with the hybrid Gaussian-DVR basis
and previous benchmark calculations [6–8] is excellent.

Included with the present results (black curves) in both
of these figures are results computed using a pure grid-
based FEM-DVR calculation with similar numerical pa-
rameters (but beginning at the origin). Comparison of
these results for the two calculations reveals excellent
agreement in both magnitude and angular profile of the
lobed structure, indicating an accurate representation of
the electron-electron repulsion mixed integrals that prop-
erly encodes the physics that drives the double ioniza-
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FIG. 3: (Color online) Triple differential cross section (TDCS)
results for double photoionization of atomic helium at a pho-
ton energy of 99 eV with equal energy sharing (E1 = E2); the
left panels show the absolute cross section in the co-planar
geometry and right panel show polar plots of the same. The
fixed electron (black arrow) is held at θ1 = 0◦ (upper panels)
and at θ1 = 90◦ (lower panels). Hybrid Gaussian-DVR results
(solid black line) again agree well with benchmark FEM-DVR
results (red dashed line). As one approaches this united-atom
extreme, the Σu and Πu amplitudes become equivalent.

tion process. Both of these figures also exhibit angular
distributions influenced by a parity selection rule which
prevents both electrons from exiting in back-to-back di-
rections with equal energy [44].

B. H2 double photoionization at ω = 75 eV

Of course, the motivation for designing the hybrid
Gaussian-DVR basis is not to treat spherical targets (as
grid-based single-center expansions are well-suited for
atoms), but to treat molecular targets with off-center ge-
ometries. For H2, we construct the inner-region basis
by duplicating the hydrogen-atom basis from the united
atom limit above onto each hydrogen nuclei at the equi-
librium internuclear distance of R = 1.4 bohr. The geo-
metric center provides the origin of our coordinate system
with the internuclear axis marking the z-direction in the
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FIG. 4: (Color online) Same as Fig. 3, but with the fixed
electron (black arrow) held at θ1 = 30◦ (upper panels) and at
θ1 = 60◦ (lower panels).

body frame. In addition to this basis, d-type Gaussian
functions are added to each hydrogen atom center with
exponent α = 0.75 and, to provide sufficient coverage of
the internuclear region, we augmented this inner region
with a few non-diffuse (i.e., smallest exponent α = 0.5)
s-, p-, and d-type Gaussian functions at the center of the
molecule. The remaining radial FEM-DVR grid param-
eters are unchanged from those above, except for begin-
ning the FEM-DVR region at r0 = 0.8 bohr from the in-
ternuclear center and including angular terms containing
up to lmax = 5, which is less that the maximum single-
electron angular momentum used to calculate converged
pure FEM-DVR results for comparison (lmax = 7). The
starting point for the radial FEM-DVR grid excludes the
nuclei from the overlap region, keeping them exclusively
within the inner Gaussian region where higher partial
wave contributions at the nuclear cusps can be encoded
in the Gaussian basis expansion.

We begin our examination of the hybrid basis results
by considering double photoionization from H2 at a pho-
ton energy of ω = 75 eV. Integrating the body-frame
triple differential cross sections (TDCS) given by Eq. 26
over the directions of the electrons gives the single dif-
ferential cross section (SDCS), which reflects the energy
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FIG. 5: (Color online) Upper panel: single differential cross
section (SDCS) results for double photoionization of equilib-
rium geometry H2 at a photon energy of 75 eV by unique M

components, Σu (dashed line) and Πu (dotted line), as well as
the total from addition of these two contributions (solid line).
Also shown are pure grid-based results (symbols), again show-
ing nearly graphically indistinguishable agreement with the
benchmark calculations. Lower panel: molecular asymmetry
parameter, β(E1) as a function of the energy sharing. The
present results agree substantially with the pure FEM-DVR
results (circles).

sharing of the ejected electrons carrying the (vertical) en-
ergy above the double ionization potential. Both unique
components of Σu and Πu symmetry (reflecting the po-
larization direction relative to the molecular axis) are
plotted in the upper panel of Fig. 5, along with the to-
tal SDCS. We note that for the non-spherical molecular
geometry, these distinct contributions are now substan-
tially different in magnitude, whereas they are identi-
cal (accounting for the double degeneracy of Πu) in the
united atom limit of the previous helium results. From
these relative magnitudes, we anticipate that the ampli-
tudes containing Πu components will dominate those of
the weaker Σu contributions for most molecular orienta-
tions that mix them. Also shown is the comparison with
a pure FEM-DVR calculation [23], with (lmax = 7) for
which the agreement is excellent.

The lower panel of Fig. 5 shows the molecular asym-

metry parameter, β(E1), given by

β(E1) =
2
(

dσ(Σ)

dE1
− dσ(Π)

dE1

)

(

dσ(Σ)

dE1
+ 2dσ(Π)

dE1

) (27)

for different energy sharings of the available excess en-
ergy. Again, comparison of the present results is very
good with the converged pure FEM-DVR grid-based
calculation and with experimental results measured at
equal-energy sharing: β = −0.78 in the present results
compared with the value of β = −0.75±0.1 measured by
Gisselbrecht, et.al [16].
To demonstrate the agreement of the hybrid basis

TDCS with converged benchmark calculations for a few
representative results, Figure 6 shows the in-plane TDCS
for unequal energy sharing, with the fixed electron car-
rying 20% of the available excess energy and fixed in a
direction perpendicular to the (horizontal) polarization
direction. Each panel shows the angular distribution as
the molecule is rotated relative to the polarization. The
upper-left and lower-right panels show cases where the
cross section only contains non-zero components from
the Σu and Πu continua, respectively. Comparison with
the converged pure FEM-DVR results [23] reveals superb
agreement. Examination of these TDCS reveals that for
the geometries that involve only pure Σu and Πu config-
urations, the dominant feature is two lobes directed away
from the fixed electron with no significant cross section
in the back-to-back direction and can be characterized as
atomic-like in that they resemble the angular distribution
from the similar geometry of the fixed electron perpen-
dicular to the polarization direction (see lower panel of
the helium results in Fig. 3), though the Πu cross sec-
tion is several times the magnitude of the pure Σu cross
section.
Because of this discrepancy between the magnitude of

the Σu and Πu contributions, it is noteworthy that when
comparing with experimental measurements where finite
angular resolution must be accounted for, the theoretical
results for measuring the body-frame position relative to
the polarization must also be averaged over a range of
acceptance angles. This is particularly most sensitive for
measurements that would seemingly probe the Σu am-
plitudes, since including other molecular geometries that
move the body-frame z-axis away from the polarization
quickly introduces substantial contributions from the Πu

that can swamp the M = 0 components. In Fig. 7, we
provide a comparison of the theoretical TDCS calculated
with the hybrid Gaussian-DVR basis and a pure FEM-
DVR calculation, and also with experimental results [16]
at equal energy sharing (E1 = E2). The averaging angles
for this in-plane geometry with the fixed electron perpen-
dicular to the photon polarization are those of Ref. [16]:
∆θ1 = ±15◦ and ∆θN = ±20◦ in the first 3 panels;
∆θ1 = ±20◦ and ∆θN = ±30◦ in the final (lower-right)
panel. The thin lines represent the unaveraged calcula-
tions (including the benchmark results for Ref. [23]) while
the thicker black line is the result of the present hybrid
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ε

FIG. 6: (Color online) Molecular frame triple differential cross
section (TDCS) results for double photoionization of H2 at a
photon energy of 75 eV and with fixed electron (black arrow)
held at θ1 = 90◦ and carrying 20% of the available excess
energy. Each panel shows a different molecular orientation
relative to the linear polarization vector (horizontal): left col-
umn has θN = 0◦, 10◦, and 20◦; right column has θN = 30◦,
60◦, and 90◦. In all panels, the present hybrid Gaussian-DVR
results (black solid lines) agree excellently with the pure FEM-
DVR results (red dashed lines). These theoretical results are
computed at the precise angles denoted and, thus, feature no
averaging (see text below).

results averaged over the acceptance angles of the exper-
iment. We can see the result of the averaging produces
good agreement with the experimental results and sub-
stantially alters the magnitude of the major features of
the unaveraged cross sections at all of the internuclear
orientations considered.

IV. CONCLUSIONS

In this work, we have overviewed and applied a hybrid
basis of Gaussian type functions combined with grid-
based methods to describe molecular double photoion-
ization. The enumeration and strategy to evaluate each
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FIG. 7: (Color online) Molecular frame TDCS results for dou-
ble photoionization of H2 at a photon energy of 75 eV and
with fixed electron (black arrow) held at θ1 = 90◦ and car-
rying 50% of the available excess energy (equal energy shar-
ing). Each panel shows a different molecular orientation rel-
ative to the linear polarization vector (horizontal), as indi-
cated: Unaveraged theoretical results calculated with the hy-
brid Gaussian-DVR basis (thin blue line) and with the pure
FEM-DVR treatment (dashed violet line) again show good
agreement with each other; Comparison with the experimen-
tal measurements (red circles) of Ref. [16] requires an averag-
ing of the hybrid results over the experimentally determined
acceptance angles (thick black lines, see text). Magnitudes of
the cross sections (in b eV−1 sr−2) are shown in each panel
denoting the radii of each polar plot.

class of ”mixed” two-electron integrals has been estab-
lished to describe the double ionization event which re-
lies on the correlation being properly represented. Sev-
eral results computed with this hybrid Gaussian method,
both for atomic helium and for molecular H2 and com-
pared with benchmark theoretical calculations and ex-
perimental measurements reveal excellent agreement of
the hybrid Gaussian-DVR results with the existing data.
Atomic helium results help establish the accuracy of the
electron-electron repulsion encoded in the present for-
mulation while the angle-resolved triple differential and
(single) energy-differential cross sections for H2 at the
equilibrium internuclear geometry highlight the richness
of the results that are particularly sensitive to the molec-
ular frame environment.

Having established sufficient agreement with several
key results for H2, it is hoped that this hybrid Gaussian-
DVR method can be used to treat other diatomic
molecules and, eventually, polyatomic molecule where a
pure grid-based single-center expansion might be diffi-
cult to converge. In particular, being able to sufficiently
treat the ejection of two valence electrons by represent-
ing them in a hybrid basis, and in the presence of addi-
tional core electrons of the molecular target that would
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remain bound to the fragments is one avenue for explo-
ration that we hope to further consider. Such a descrip-
tion of a multi-electron molecule possessing occupancy
of core molecular orbitals constructed with GTOs in the
inner region would allow for an accounting of these core
electrons’ influence on the electrons that do become pho-
toejected. Having utilized approximations to consider
multi-electron targets in atomic double ionization [39–
42] and illustrated the hybrid basis ability to construct
closed-shell core and valence molecular orbitals for single
ionization [31], the next step to consider is double ion-
ization of a many-electron molecule with a frozen-core
occupancy. The results presented here provide a neces-
sary confirmation of the hybrid Gaussian-DVR method
towards describing two electrons in the non-trivial molec-
ular continuum and strongly hint at the utility of expand-
ing this method for treating more complicated and exper-

imentally relevant molecular targets in double ionization
studies.
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[4] H. Bräuning, R. Dörner, C. L. Cocke, M. H. Prior,
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