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Abstract. Given d,N � 2 and p 2 (0,1] we consider a family of functionals, the p-frame
potentials FPp,N,d, defined on the set of all collections of N unit-norm vectors in Rd. For the
special cases p = 2 and p = 1, both the minima and the minimizers of these potentials have
been thoroughly investigated. In this paper, we investigate the minimizers of the functionals
FPp,N,d, by first establishing some general properties of their minima. Thereafter, we focus
on the special case d = 2, for which, surprisingly, not much is known. One of our main results
establishes the unique minimizer for big enough p. Moreover, this minimizer is universal
in the sense that it minimizes a large range of energy functions that includes the p-frame
potential. We conclude the paper by reporting some numerical experiments for the case
d � 3, N = d+ 1, p 2 (0, 2). These experiments lead to some conjectures that we pose.

Keywords: Potential energy minimization, Frame potential, Sharp configuration, Spherical
designs

1. Introduction

A set of vectors X = {xk}Nk=1 ✓ Rd is a frame for Rd if there exist 0 < A  B < 1 such
that

(1) Akxk2 
NX

k=1

|hx, xki|2  Bkxk2 for all x 2 Rd
,

where k · k denotes the Euclidean norm. If, in addition, each xk is unit-norm, we say that
X is a unit-norm frame. X is called tight if A = B. A tight unit-norm frame is called a
finite unit-norm tight frame (FUNTF). One attractive feature of FUNTFs is the fact that
they can be used to decompose and reconstruct any vector x via the following formula:

(2) x =
d

N

NX

k=1

hx, xkixk.

Frames in general, and FUNTFs in particular, are routinely used in many applications,
especially in signal processing. For more on the theory and the applications of frames we
refer to [10, 18, 19, 20].

A frame X is said to be equiangular if there exists c > 0 such that
���
D

xk

kxkk
,

xl

kxlk

E��� = c for all k 6= l.

If in addition X is tight, then X is called an equiangular tight frame (ETF). It follows from
[8, Proposition 1.2] that the vectors of an ETF have necessarily equal norm. Consequently,

2010 Mathematics Subject Classification. Primary 42C15 52C17 74G65; Secondary 41A05 52A40 .
1



2 X. CHEN, V. GONZALEZ, E. GOODMAN, S. KANG, AND K. A. OKOUDJOU

and without loss of generality, all ETFs considered in the sequel will be unit-norm frames,
i.e., FUNTFs.

Let S(N, d) be the collection of all sets of N unit-norm vectors. For any p 2 (0,1], the
p-frame potential of X = {xk}Nk=1 2 S(N, d) is defined as

(3) FPp,N,d(X) :=

8
>><

>>:

NX

k=1

NX

`6=k

|hxk, x`i|p, when p < 1

max
k 6=`

|hxk, x`i|, when p = 1.

The definition of the p-frame potential above differs from the one given in [15] as (3) excludes
self inner products. As will be seen in Section 2, the present definition will allow us to state
our results in a more concise manner. The subscripts N, d are a little redundant since they
are suggested by the input X, but they will come in handy when we want to emphasize the
dimension or the number of points. We are interested in finding the infimum of the p-frame
potential among all N -point configurations in S(N, d). It is a standard argument to show
that this infimum can be achieved due to the compactness of the sphere and the continuity
of the function, so we can replace infimum by minimum and define

(4) Fp,N,d := min
X2S(N,d)

FPp,N,d(X).

In situations when N, d are both fixed, we will simply use Fp for Fp,N,d, and FPp for
FPp,N,d. Similarly we use the notations FN ,FPN if p and d are fixed. Any minimizer of
(4) will be called an optimal configuration of the p-frame potential. We observe that if
X

⇤ = {x⇤
1, · · · , x⇤

N
} is optimal, then with any orthogonal matrix U , any permutation ⇡, and

any si 2 {1,�1},

{s1Ux
⇤
⇡1
, · · · , sNUx

⇤
⇡N

}

is optimal too. In other words, the optimal configuration is an equivalence class with respect
to orthogonal transformations, permutations or sign switches. So when we say an optimal
configuration is unique, we mean that it is unique up to this equivalence relation.

Note that in the definition of the frame potential, X does not necessarily need to be a
frame of Rd, but we will show in Proposition 2.1 that the minimizers of the p-frame potential
must be a frame, as expected. Therefore problem (4) remains the same if we had restricted
X to be a unit-norm frame with N frame vectors.

The name “frame potential” originates from the special case p = 2,

(5) FP2,N,d(X) =
NX

k=1

NX

l 6=k

|hxk, xli|2

which was studied by Benedetto and Fickus [3]. They proved that X⇤ is an optimal config-
uration of FP2,N,d(X) if and only if X⇤ = {x⇤

k
}N
k=1 is a FUNTF.

Another important special case is p = 1. In this case, the quantity

(6) c(X) := FP1,N,d(X) = max
k 6=`

|hxk, x`i|
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is also called the coherence of X = {xk}Nk=1 2 S(N, d), and its minimizers are called Grass-
mannian frames [4, 5, 9, 23, 26]. The following Welch bound [26] is well known:

(7) FP1,N,d(X) �

s
N � d

d(N � 1)
,

and the equality in (7) holds if and only if X = {xk}Nk=1 is an ETF, which is only possible

if N  d(d+ 1)

2
[13]. The coherence minimization problem corresponds to p = 1 because

it appears to be the limiting case when p grows to infinity; see Proposition 2.2. It is known
that ETFs, when they exist, are minimizers of (3) for p > 2 [15, 7].
When p is an even integer, the minimizers of FPp,N,d have long been investigated in the

setting of spherical designs, see [22, 15, 25]. A set of N points X ⇢ Sd�1 (the unit sphere in
Rd) is called a spherical t-design if for every homogeneous polynomial h of degree t or less,

Z

Sd�1

h(⇠)d�(⇠) =
1

N

X

x2X

h(x),

where � is the normalized surface measure on Sd�1. For example, a spherical 1-design is a
set of points whose center of mass is at the origin. More generally, as shown in [15] or [25,
Theorem 8.1], if p is an even integer and X 2 S(N, d) is symmetric, that is X = �X, then

(8) FPp,N,d(X) � N
2 1 · 3 · 5 · · · (p� 1)

d(d+ 2) · · · (d+ p� 2)
�N,

and equality holds if and only if X is a spherical p-design.
Optimal configurations of (4) are often not symmetric since xi and �xi are considered

the same points as far as frame potential is concerned. However, we can still use (8) by
symmetrizing a frame. Given X = {xi}Ni=1 such that its coherence c(X) < 1 (i.e. no
repeated vectors or opposite vectors), we let

X
sym := {xi}Ni=1 [ {�xi}Ni=1 2 S(2N, d).

Some straightforward computations result in

(9) FPp,2N(X
sym) = 4FPp,N(X) + 2N

which combined with (8), can be used to prove

Proposition 1.1. Let p be an even integer, then

FPp,N,d(X) =
1

4
(FPp,2N(X

sym)� 2N) � N
2 1 · 3 · 5 · · · (p� 1)

d(d+ 2) · · · (d+ p� 2)
�N,

and equality holds if and only if Xsym is a spherical p-design.

Not only is Proposition 1.1 limited to even p’s, but it is also not trivial to find spherical
t-designs for large t. More generally, and to the best of our knowledge, little is known about
the complete solutions to (4) even in the simplest case d = 2. When N = 3, a solution is
given in [15] for all positive p. See also [6, 21] for related results. For any N and p = 1, it
is shown in [5] that the Grassmannian frame is

(10) X
(h)
N

=

⇢
cos 0
sin 0

�
,


cos ⇡

N

sin ⇡

N

�
,


cos 2⇡

N

sin 2⇡
N

�
, · · · ,


cos (N�1)⇡

N

sin (N�1)⇡
N

��
,
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which can be viewed as N equally spaced points on the half circle. The main result of this
paper establishes that the unique optimal configuration when d = 2, N � 4, and p > 4bN

2 c�2

is X
(h)
N

, where bcc is the largest integer that does not exceed c. Moreover for N = 4, our
result is sharper as we prove this is the case for p > 2. Such a result is expected since
optimal configurations for large p are approaching the Grassmannian frame. Moreover, we
are able to show that X

(h)
N

is the optimal configuration for a big class of kernel functions.
See Theorem 3.5. The phenomenon that a given configuration is the optimal configuration
for a large range of functions is what we call universal. Such a name stems from the work
[12]. In addition to these results, we present numerical results for all other values of p and
N when d = 2. Finally, we also consider the special case of N = d + 1 and d � 3 and state
a conjecture regarding the function Fp for p 2 (0, 2]. Based on the results of the present
paper, Table 1 gives the state of affairs concerning the solutions of (4) and is an invitation
to initiate a broader discussion on the problem. We would like to remark that the case
N = d + 1 has been solved by others during the revision of this manuscript; see Section 4
for more details.

The rest of the paper is organized as follows. Section 2 states some basic results of the p-
frame potential including some asymptotic results as N ! 1. Section 3 presents the results
for d = 2. Section 4 presents conjectures and numerical results for the case N = d + 1.
Throughout the paper, we will use [m : n] for the index set {m,m+ 1, · · · , n}.

Table 1. Optimal configurations for the p-frame potential

R2 Rd

p 2 (0, ln 3
ln 2) N = 3: ONB+ [15] N = d+ 1: ONB+ [17]

p 2 ( ln 3
ln 2 , 2) N = 3: ETF [15] N = d+ 1: see Conjecture 4.5

p 2 (0, 2) N = 2k: k copies of ONB [15] N = kd: k copies of ONB [15]

p = 2 FUNTF [3]

p 2 (4bN

2 c � 2,1) N � 5 : X(h)
N

(Theorem 3.7)
ETF if exists [15, 23]p = 1 Any N : X(h)

N
[5]

p 2 (2,1) N = 4: X(h)
4 (Theorem 3.7)

ONB+ refers to an orthonormal basis with a repeated vector. See Definition 4.1(a).

2. Some basic results

Intuitively, minimizing the frame potential amounts to promoting big angles among vec-
tors. Consequently, it is expected that the optimal configurations will be at least a frame
whose vectors are reasonably spread out in the sphere. If X is not a frame, then one can
always find a vector e that is orthogonal to X, and replacing any vector in X by e won’t
increase the frame potential. In other words, it is trivial to show that problem (4) might
as well be restricted to frames. The following result shows something stronger, that is, it
excludes the possibility that a minimizer doesn’t span Rd.

Proposition 2.1. For p 2 (0,1], any optimal configuration of (4) is a frame of Rd.
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Proof. We first consider the case p 2 (0,1). Suppose not, and say X
⇤ = {x⇤

k
}N
k=1 ⇢ Sd�1

is a minimizer so that spanX⇤ is a strict subset of Rd. Because there are N � d vectors,
it is possible to select two indices k1 and k2 such that |hx⇤

k1
, x

⇤
k2
i| > 0. Finally, select any

unit-norm vector x0 2 (spanX⇤)? and replace x
⇤
k1

with x0; i.e., define Y = {x⇤
k
}k 6=k1 [ {x0}.

A direct computation shows that FPp,M,N(Y ) < FPp,M,N(X⇤).
Now consider the case p = 1 and let X

⇤ = {x⇤
k
}N
k=1 ⇢ Sd�1 be a minimizer of FP1,N,d.

Suppose that the dimension of span(X⇤)  d � 1. Choose a unit vector e 2 (spanX⇤)?.
There could be multiple pairs of vectors that achieve the maximal inner product F1 =
FP1,N,d(X⇤). Without loss of generality, we assume these vectors are among the first K

vectors, that is,

(11) |hx⇤
i
, x

⇤
j
i| < F1, if either i or j does not belong to [1 : K], i 6= j.

We will construct Y = {yk}Kk=1 [ {x⇤
k
}N
k=K+1 that will have smaller coherence.

For i = 1, 2, · · · , K, let yi =
p
1� ✏ix

⇤
i
+
p
✏ie, where 0 < ✏i < 1. Define

f(a, b) :=

p
a
p
b

1�
p
1� a

p
1� b

on (0, 1]⇥ (0, 1].

If we choose ✏i, ✏j such that

(12) f(✏i, ✏j) =

p
✏i
p
✏j

1�
p
1� ✏i

p
1� ✏j

< F1,

then

(13) |hyi, yji| = |
p
1� ✏i

p
1� ✏jhx⇤

i
, x

⇤
j
i+

p
✏i
p
✏j| 

p
1� ✏i

p
1� ✏jF1 +

p
✏i
p
✏j < F1.

We will pick ✏i iteratively to satisfy (12):
Step 1: pick 0 < ✏1 < 1 arbitrarily.
Step i: given ✏1, · · · , ✏i�1, pick ✏i > 0 such that f(✏j, ✏i) < F1, for all j = 1, · · · , i� 1. This
is possible because lim✏!0 f(✏j, ✏) = 0 for all j  i� 1.
For convenience, let yk = x

⇤
k
for k = K + 1, · · · , N . The new frame Y = {yk}Kk=1 has a

smaller coherence because for any pair i, j, if i, j 2 [1 : K], then |hyi, yji| < F1 by (13); if
i, j 2 [K + 1 : N ], then |hyi, yji| = |hx⇤

i
, x

⇤
j
i| < F1 by (11); if i 2 [1 : K], j 2 [K + 1 : N ],

then |hyi, yji| = |h
p
1� ✏ix

⇤
i
+
p
✏ie, x

⇤
j
i| =

p
1� ✏i|hx⇤

i
, x

⇤
j
i| < F1.

This is a contradiction, so the optimal configuration must be a frame. ⇤

Now we establish the relationship between large p and p = 1.

Proposition 2.2. limp!1 F1/p
p = F1. Moreover, if X(p) is an optimal configuration for (4)

when p < 1 and X is a cluster point of the set {X(p)}p>0, then X optimizes the coherence
as X = arg min

Y 2S(N,d)
c(Y ).

Proof. On one hand, we have

(14) F1/p
p

=

 
X

i 6=j

|hx(p)
i
, x

(p)
j
i|p
!1/p

� c(X(p)) � F1.
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On the other hand,

(15) F1/p
p


 
X

i 6=j

|hx(1)
i

, x
(1)
j

i|p
!1/p


 
X

i 6=j

Fp

1

!1/p

= F1[N(N � 1)]1/p.

Taking the limit of both inequalities gives us the desired limit.
For the second part of the proposition, let X = limk!1 X

(pk) where pk ! 1 as k ! 1.
Then by (14) and (15),

c(X(pk))  F1/pk
pk

 F1[N(N � 1)]1/pk .

Letting k ! 1, by continuity of the coherence, we get c(X)  F1 which forces c(X) =
F1. ⇤

Next, we establish a continuity result of Fp.

Proposition 2.3. The minimal frame potential Fp is a continuous and non-increasing func-
tion of p 2 (0,1).

Proof. We first prove that the function is non-increasing. Letting p > q, for anyX 2 S(N, d),

FPq(X) � FPp(X) � Fp,

so Fq = FPq(X(q)) � Fp.
For continuity, we have

X

i 6=j,|hxi,xji| 6=0

|hxi, xji|q ln |hxi, xji| 
FPp(X)� FPq(X)

p� q
,

which comes from applying the inequality a
q ln a  a

p � a
q

p� q
for 0 < q < p, a > 0 to every

nonzero term in the frame potential.
So

0  Fq � Fp

p� q

=
Fq � FPp(X(p))

p� q

 FPq(X(p))� FPp(X(p))

p� q


X

i 6=j,|hx(p)
i ,x

(p)
j i| 6=0

|hx(p)
i
, x

(p)
j
i|q ln 1

|hx(p)
i
, x

(p)
j
i|


X

i 6=j,|hx(p)
i ,x

(p)
j i| 6=0

ln
1

|hx(p)
i
, x

(p)
j
i|

:= Cp.

Therefore 0  Fq � Fp  (p� q)Cp, which implies the continuity of F . ⇤
Next, for fixed p, d, we consider the asymptotics of Fp,N,d as the number of points N

grows. In particular, we have that FN ⇠ N
2, see Proposition 2.6. We note that this

behavior was numerically observed in [1]. Such asymptotic result is standard in the minimal
energy literature, and can be found in [16] by Farkas and Nagy in a more general setting. For
the sake of completeness, we reproduce their proof below. We begin by establishing some
preliminary results.



UNIVERSAL OPTIMAL CONFIGURATIONS FOR THE p-FRAME POTENTIALS 7

Lemma 2.4. Given d � 2, and p 2 (0,1), the sequence
n

Fp,N

N(N�1)

o

N�d+1
is a non-decreasing

sequence.

Proof. Let X(N) = {x(N)
i

}N
i=1 be an optimal configuration for FPp,N,d. For each k 2 [1 : N ],

FN = FP(X(N)) = FP
⇣
X

(N)\{x(N)
k

}
⌘
+ 2

X

j 6=k

|hx(N)
k

, x
(N)
j

i|p � FN�1 + 2
X

j 6=k

|hx(N)
k

, x
(N)
j

i|p.
(16)

Summing (16) over k, we obtain

NFN � NFN�1 + 2FN =) (N � 2)FN � NFN�1 =)
FN

N(N � 1)
� FN�1

(N � 1)(N � 2)
.

⇤

It follows that ⌧ := limN!1
Fp,N

N2 exists. In fact, in the minimal energy literature, ⌧ is called
the transfinite diameter due to Fekete. Furthermore, ⌧ is related to the continuous version
of the frame potential, which is introduced in [15]. More specifically, given a probabilistic
measure µ on the sphere, the probabilistic p frame potential is defined as

(17) PFPp,d(µ) :=

Z

Sd�1

Z

Sd�1

|hx, yi|pdµ(x)dµ(y).

Let M(Sd�1) be the collection of all probabilistic measures on the sphere. Simple compact-
ness and continuity arguments show that

(18) Pp,d := min
µ2M(Sd�1)

PFPp,d(µ)

exists.
Given any N point configuration X, its normalized counting measure is defined as

⌫X :=
1

N

X

x2X

�x.

We have

(19) PFPp,d(⌫X) =

Z Z
|hx, yi|pd⌫X(x)d⌫X(y) =

1

N2

NX

i=1

NX

j=1

|hxi, xji|p =
FPp,N,d(X) +N

N2
.

Consequently, if X is an optimal configuration, i.e., Fp,N = FPp,N,d(X), then by (19), it is
plausible that ⌧ = Pp,d.

Lemma 2.5. Given d � 2 and p 2 (0,1), ⌧ = lim
N!1

Fp,N,d

N2
 Pp,d.

Proof. Let µ⇤ be the optimal probabilistic measure, that is,
Z Z

|hx, yi|pdµ⇤(x)dµ⇤(y) = Pp,d = PFPp,d(µ
⇤).

Consequently,
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Fp,N,d =

Z
· · ·
Z h

min
X

FP(X)
i
dµ

⇤(x1) · · · dµ⇤(xN)


Z

· · ·
Z

FP(X)dµ⇤(x1) · · · dµ⇤(xN)

=
X

i 6=j

Z
· · ·
Z

|hxi, xji|pdµ⇤(x1) · · · dµ⇤(xN) =
X

i 6=j

Pp,d = N(N � 1)Pp,d.

The result follows by dividing N
2 on both sides and taking the limit. ⇤

Proposition 2.6. Given d � 2 and p 2 (0,1), we have ⌧ = lim
N!1

Fp,N,d

N2
= Pp,d. Moreover,

if {XN}N�d+1 is a sequence of N-point configurations such that limN!1
FPN (XN )

N2 = ⌧ , then
every weak star cluster point ⌫

⇤ of the normalized counting measure ⌫XN = 1
N

P
x2XN

�x

solves (18), that is PFPp,d(⌫⇤) = Pp,d. In particular, this holds for any sequence of the
optimal configurations of FPN .

Proof. By weak star convergence and (19),

Pp,d  PFPp,d(⌫
⇤) = lim

N!1
PFPp,d(⌫XN ) = lim

N!1

FPp,N,d(XN) +N

N2
= ⌧.

In view of Lemma 2.5, we have ⌧ = Pp,d and ⌫
⇤ is an optimal probabilistic measure. ⇤

The exact value of ⌧ can be found in many cases. We list two examples in the following
corollary.

Corollary 2.7. (a) When d � 2 and p 2 (0, 2], we have lim
N!1

Fp,N,d

N2
= Pp,d =

1

d
.

(b) When d = 2 and p is an even integer, we have lim
N!1

Fp,N,2

N2
= Pp,2 =

1 · 3 · 5 · · · (p� 1)

2 · 4 · 6 · · · p .

Proof. (a) By [15, Theorem 3.5] we know that whenN = kd, the frame potential is minimized
by k copies of orthonormal basis. So limN!1

Fp,N,d

N2 = limk!1
Fp,kd,d

(kd)2 = limk!1
(k�1)kd
(kd)2 = 1

d
.

Note that this recovers [15, Theorem 4.9], which states that Pp,d =
1
d
.

(b) In dimension d = 2, it is known that 2N equally spaced points on the unit circle are
spherical (2N�1)-design ([25, Section 4]), so Proposition 1.1 implies that X(h)

N
is an optimal

configuration if p  2N � 2 is an even integer. In other words, with fixed even integer p,
when N is large enough,

⇣
X

(h)
N

⌘sym
is going to be a (2N � 1)-design (hence p-design), so the

equality in Proposition 1.1 holds and we get the desired result. ⇤

3. Optimal configurations in dimension 2

This section focuses on the case d = 2, when the points are on the unit circle S1 ⇢ R2.

3.1. A class of minimal energy problems. We recall that when N = 2k is even and
0 < p < 2, the solution to (4) was given in [15, Theorem 3.5], where it was established that
the minimizers are k copies of any orthonormal basis of R2. The case p = 2 was settled by
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Benedetto and Fickus [3]. In order to address other values of p, we will consider a more
general problem

(20) min
X⇢Cr,|X|=N

X

i 6=j

f(kxi � xjk2),

where f : (0, 4r2] ! R is a nonnegative and decreasing function, and Cr is a 1�dimensional
circle with radius r. This circle Cr does not need to be centered at 0 and could be in any
dimension. It will become clear later why we require points on a general circle instead of the
usual S1.

The first result only requires f to be convex, but it only works for up to 4 points.

Theorem 3.1. Given r > 0, let f : (0, 4r2] ! R be a decreasing convex function. Any
configuration X

⇤
4 of 4 equally spaced points on Cr is an optimal configuration of (20) with

N = 4. If in addition, f is strictly convex, then no other 4-point configuration is optimal.

Proof. Let X4 = {xi}4i=1 be an arbitrary configuration with xi ordered counter clockwise.
Let ↵ik 2 [0, 2⇡) be the angle between xi and xi+k for any k 2 [1 : 3]. The index of the
vectors is cyclic as xi = xi�4. Then kxi � xi+kk2 = 2r2 � 2r2 cos↵ik = 4r2 sin2 ↵ik

2 . It is
evident that

P4
i=1 ↵ik = 2⇡k. Using the convexity of f ,

X

i 6=j

f
�
kxi � xjk2

�
=

3X

k=1

4X

i=1

f
�
kxi � xi+kk2

�
= 4

3X

k=1

1

4

4X

i=1

f
�
kxi � xi+kk2

�
(21)

� 4
3X

k=1

f

 
1

4

4X

i=1

kxi � xi+kk2
!

= 4
3X

k=1

f

 
4r2

4

4X

i=1

sin2 ↵ik

2

!
.

Next, let �ik = ↵ik/2. In order to minimize the right hand side of (21), we solve

max
4X

i=1

sin2
�ik subject to �ik � 0,

4X

i=1

�ik = ⇡k.

When k = 1, we let �i = �i1 for short. Using Lagrange multipliers, we have 0 =
@

@�j
[
P4

i=1 sin
2
�i + �(

P4
i=1 �i � ⇡)] = sin 2�j + �, which implies that

sin 2�i = sin 2�j =) 2�i = 2�j, or 2�i + 2�j = ⇡,

since
P4

i=1 �i = ⇡.
If we are in the case that �1 + �2 = ⇡/2 (or any pair i 6= j with �i + �j = ⇡/2), thenP4
i=1 sin

2
�i = sin2(�1) + sin2(⇡/2 � �1) + sin2(�3) + sin2(⇡/2 � �3) = 2. If we are in the

other case that �1 = �2 = �3 = �4, then
P4

i=1 sin
2
�i = 4 sin2 ⇡

4 = 2. So for k = 1,
4X

i=1

sin2
�i1  4 sin2 ⇡

4
,

and the equality holds when �i1 + �j1 = ⇡/2 for some i 6= j.
When k = 2, it is obvious that

4X

i=1

sin2
�i2  4 = 4 sin2 ⇡

2

with equality at �i2 = ⇡/2, for all i 2 [1 : 4]. This implies that �i1 + �i+1,1 = ⇡/2 for some i.
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When k = 3,
P4

i=1 sin
2
�i3 =

P4
i=1 sin

2(⇡��i1) =
P4

i=1 sin
2
�i1 which reduces to the k = 1

case.
In summary, for any k = 1, 2, 3,

4X

i=1

sin2 ↵ik

2
 4 sin2 ⇡k

4
,

and the equality holds simultaneously when ↵i1 + ↵i+1,1 = ⇡, or equivalently x1 + x3 =
0, x2 + x4 = 0.

Following (21), we have

X

i 6=j

f
�
kxi � xjk2

�
� 4

3X

k=1

f

⇣4r2

4

4X

i=1

sin2 ↵ik

2

⌘
� 4

3X

k=1

f

⇣
4r2 sin2 ⇡k

4

⌘
= 8f(2r2) + 4f(4r2).

(22)

It is easy to check that four equally spaced points on Cr achieve this minimum.
If f is strictly convex, then the inequality of (21) becomes equality if kxi � xi+kk =

kxj � xj+kk for every i 6= j, which only holds for equally spaced points. ⇤

Remark 3.2. The proof of Theorem 3.1 breaks down for N � 5 because
P

N

i=1 sin
2
�i1 is not

maximized at equally spaced points.

Our second result regarding (20) is a variation of the main result of the work by Cohn and
Kumar [12, Theorem 1.2]. Let m be a positive integer. An m-sharp configuration X ⇢ Sd�1

is a spherical (2m � 1)-design with m inner products between its distinct points. It was
proven in [12] that sharp configurations are the unique universal optimal configurations of
the problem

(23) min
X2S(N,d)

X

i 6=j

f(kxi � xjk2),

for completely monotonic functions f . A C
1 function f : I ! R is called K-completely

monotonic if (�1)kf (k)(x) � 0 for all x 2 I and all k  K, and strictly K-completely mono-
tonic if strict inequality always holds in the interior of I. The notion1-completely monotonic
is simply called completely monotonic as traditionally defined, which means (�1)kf (k)(x) � 0
for all x 2 I and all k � 0. A list of known sharp configurations was given in [12]. For ex-
ample, N equally spaced points on S1 is an bN/2c-sharp configuration.

Another notion that we will need is that of absolutely monotonic functions. A C
1 function

f : I ! R is called K-absolutely monotonic if f (k)(x) � 0 for all x 2 I and all k  K.
Similarly, 1-absolutely monotonic means the inequality is true for all nonnegative integers
k, and will be simply referred to as absolutely monotonic. It is straightforward that f(t)
being completely monotonic is equivalent to f(�t) being absolutely monotonic.

As remarked by [12], the complete monotonicity on f can be weakened slightly. To ensure
a good flow of the paper, the proof of the next result which is a variation of [12, Theorem
1.2] will be given in the appendix.

Theorem 3.3. Fix a positive integer m and let f : (0, 4] ! R be a function such that
(�1)kf (k)(t) � 0 for all t 2 (0, 4], k  2m. Then an m-sharp configuration is an optimal
configuration of (23). Furthermore, if (�1)kf (k)(t) > 0 for all t 2 (0, 4), k  2m, then the
m-sharp configuration is the unique optimal configuration of (23).
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A direct consequence of Theorem 3.3 for dimension d = 2 is that equally spaced points are
optimal configurations if the energy kernel function f is completely monotonic up to certain
order. But notice that

P
i 6=j

f(kxi � xjk2) only depends on the relative distances between
xi’s so the result should be true for any circle Cr (whose radius is r) if we rescale f properly.

Corollary 3.4. For N � 4, let m = bN/2c. For r > 0, suppose that f : (0, 4r2] ! R
is completely monotonic up to 2m. Then N equally spaced points on Cr is an optimal
configuration of (20). Moreover, if f is strictly completely monotonic up to 2m, then the
equally spaced points is the unique optimal configuration of (20).

3.2. A lifting trick. How do Theorem 3.1 and Corollary 3.4 help to solve the frame potential
problem? On the unit circle, we have |hxi, xji|p =

���2�kxi�xjk2
2

���
p

= h(kxi � xjk2), where
h(t) =

��2�t

2

��p. Unfortunately neither result can be applied because the function h(t) is not
differentiable at t = 2 unless p is an even integer; worse, it is not even decreasing on [0,4].
This should not come as a surprise since the frame potential does not distinguish between
antipodal points. Consequently, rather than analyzing the frame potential in terms of the
distance between vectors, we should consider it in terms of the distance between lines, as
was done in [11].

Define P : Sd�1 ! M(d, d) as P (x) = xx
⇤
, where M(d, d) is the space of d⇥ d symmetric

matrices endowed with the Frobenius norm. P (Sd�1) identifies antipodal points, and is the
projective space embedded in M(d, d). We write P (x) as Px and list some of the properties.

(24)
⇢

hPx, Pyi = |hx, yi|2
kPx � Pyk2 = 2� 2|hx, yi|2.

When d = 2, we can explicitly write the embedding as P : S1 ! M(2, 2)(= R3),

P (x) = Px = xx
⇤ =


x
2
1 x1x2

x1x2 x
2
2

�
 ! (x2

1,
p
2x1x2, x

2
2).

It is not hard to see that P (S1) is a circle in R3 centered at (12 , 0,
1
2) with radius r = 1p

2
, and

this is where we can apply Theorem 3.1 or Corollary 3.4. One can verify that equally spaced
points on the circle P (S1) are precisely X

(h)
N

, equally spaced points on the half circle, so we
have the following theorem.

Theorem 3.5. Let g : [0, 1) ! R and consider

(25) min
X2S(N,2)

X

i 6=j

g(|hxi, xji|2),

Then the following statements hold.
(a) If g is convex and increasing, then X

(h)
4 is an optimal configuration of (25) when

N = 4. Moreover if g is strictly convex, then X
(h)
4 is the unique optimal configuration.

(b) If g is absolutely monotone up to 2bN/2c, then X
(h)
N

is an optimal configuration of
(25). Moreover if g is strictly absolutely monotone up to 2bN/2c, then X

(h)
N

is the
unique optimal configuration.

Proof. As defined, Pxi = xix
⇤
i
. Denote Pxi by Pi for simplicity. By (24),

g(|hxi, xji|2) = g(1� kPi � Pjk2/2) =: f(kPi � Pjk2),
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where f(t) = g(1 � t/2) is defined on (0, 2]. As discussed earlier, view the points Pi on a
circle in R3 with radius 1/

p
2, so solving (25) is equivalent to solving (20) with r = 1/

p
2.

If g is convex and increasing, then f is convex and decreasing. Applying Theorem 3.1
gives equally spaced Pi, which is equally spaced points on the half circle. This is part (a).

If g is absolutely monotone up to 2bN/2c, then f is completely monotone up to 2bN/2c.
Applying Corollary 3.4 gives part (b).

⇤
Remark 3.6. Observe that in Theorem 3.5, the assumption of (b) is much stronger than
(a). If g is twice differentiable, then g being convex and decreasing is equivalent to g being
absolutely monotone up to 2. Furthermore, Theorem 3.5 is a very general result that goes
beyond frame potentials. Indeed, it cover the cases where the energy can be expressed as
a function of squares of the inner products. We expect to pursue this line of investigations
elsewhere, with the goal of analyzing other energy kernels suitable for finding certain well
conditioned frames.

Finally we are ready to state the promised frame potential result as a special case of
Theorem 3.5.

Theorem 3.7. Let X(h)
N

be the equally spaced points on half of the circle S1 as in (10). The
following statements hold.

(a) If N = 4 and p > 2, then X
(h)
4 is the unique optimal configuration of (4).

(b) If N � 5 and p >

⇢
2N � 2, N is even
2N � 4, N is odd , then X

(h)
N

is the unique optimal configu-

ration of (4).

(c) If N � 5, and 2 < p 
⇢

2N � 2, N is even
2N � 4, N is odd is an even integer, then X

(h)
N

is

an optimal configuration of (4), but it is unclear whether there are other optimal
configurations.

Proof. The p-frame potential kernel |hxi, xji|p = gp(|hxi, xji|2) with gp(t) = t
p/2. The function

gp is strictly convex and increasing on [0,1) if p > 2.
(a) This part is due to Theorem 3.5(a).
(b) We notice that gp is strictly absolutely monotone up to dp/2e, where dce is the

smallest integer that is no less than c. In order to apply Theorem 3.5(b), we require
dp/2e � 2bN/2c, which is equivalent to p > 2N � 2 if N is even and p > 2N � 4 if
N is odd.

(c) Finally, this part is true because gp is absolutely monotone when p is an even integer.
⇤

Remark 3.8. By Proposition 2.6, we can let p go to infinity in Theorem 3.7 and get that
X

(h)
N

is the Grassmannian frame, as was shown in [5].
As seen, the 1-dimensional projective space is isomorphic to a circle. It is well known that

higher a dimensional projective space is not a higher dimensional sphere. This is why the
main result Theorem 3.5 is limited to d = 2.

At this point, we summarize the p-frame potential results in S1 as the following remark.

Remark 3.9. Let d = 2.l
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(a) When N = 4 we have completed the characterization of Fp,4,2.
(b) When N � 6 is even, then [15, Theorem 3.5] and parts (b) and (c) of Theorem 3.7

give the value of Fp,N,2 when p 2 (0, 2][{4, 6, · · · , 2N�2}[ (2N�2,1). We further
know that the minimizer is unique for p 2 (0, 2) [ (2N � 2,1). It is still open for
p 2 (2, 2N � 2] though we expect X

(h)
N

to be a minimizer. The numerical result is
displayed in Figure 1 for N = 6.

(c) When N � 5 is odd, we know Fp,N,2 for p 2 {2, 4, · · · , 2N � 4} [ (2N � 4,1). We
suspect that for p 2 (2, 2N � 4], X(h)

N
will still be the minimizer. The case p 2 (0, 2)

seems rather intriguing as demonstrated in Figure 1 for N = 5.

Figure 1 displays the numerical experiment for d = 2 and N = 5, 6. According to the
numerical experiment, Fp,6,2 is achieved by X

(h)
6 for p 2 (2, 10]. The N = 5 case is more

complex. It appears that for p from 0 to about 1.78, the optimal configuration is two copies
of ONB plus a repeated vector; for p 2 (1.78, 2), the optimal configuration has the structure
{x, x, y, y, z} whose angles vary as p changes; for p 2 (2, 6), the optimal configuration is X(h)

5

0 2 4 6 8 10 12
value of p

0

2

4

6

8

10

12
Minimal p-frame potential for d=2

N=6
N=5

Figure 1. The top curve represents Fp,6,2 while the lower one represents Fp,5,2.
The solid portion indicates proven cases as commented in Remark 3.9.

4. Special case of N = d+ 1 points in dimension d.

In this last section, we report on some numerical experiments and the resulting conjectures
when minimizing the p-frame potential withN = d+1 vectors in Rd, and p 2 (0,1). Observe
that the case p = 2 is a special case of the work by Benedetto and Fickus [3]. Additionally,
the case p > 2 is handled by Ehler and Okoudjou [15, Proposition 3.1], for which the simplex
is the optimal configuration. To be specific, the simplex is an ETF of d + 1 vectors for Rd.
Therefore, the focus in this section are values p < 2. The following definition will be used
through the rest of this section.
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Definition 4.1. l

(a) X is an ONB+ if X is formed by an orthonormal basis of Rd with one of the vectors
repeated.

(b) Given n � 2, the simplex of Rn is denoted by ETFn. An explicit construction of ETFn

is to project e1, e2, · · · , en, en+1, the canonical basis of Rn+1, onto the orthogonal
complement of

P
n+1
i=1 ei.

4.1. Embedded ETFs. From numerical tests, we have noticed that minimizers for Fp,d+1,d

take forms similar to ETFs. In particular, they take the form of ETFs that have been
embedded to higher dimensions.

Definition 4.2. For 1  k  d, the frame

Ld

k
=


ETFk 0
0 Id�k

�
=

2

664

ETFk 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

3

775 2 S(d+ 1, d)

is called an embedded ETF.

Remark 4.3. l

(a) The Ld

k
frames are not tight, except for the case k = d, and we have Ld

d
is ETFd.

(b) In addition to considering ETFd as an Ld

d
configuration, ONB+ is the Ld

1 frame.

Example 4.4. The ETF in R2 can be embedded to R3 as

Figure 2. The L3
2 frame

L3
2 =

2

4
1 �1/2 �1/2 0
0

p
3/2 �

p
3/2 0

0 0 0 1

3

5 .

We see that this frame is neither tight nor equiangular by computing the frame operator and
Grammian,

S =

2

4
3/2 0 0
0 3/2 0
0 0 1

3

5 G =

2

664

1 �1/2 �1/2 0
�1/2 1 �1/2 0
�1/2 �1/2 1 0
0 0 0 1

3

775 .
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More generally, the Grammian of the Ld

k
frame is

2

66666666666664

1 �1/k �1/k · · · �1/k 0 0 · · · 0
�1/k 1 �1/k · · · �1/k 0 0 · · · 0
�1/k �1/k 1 · · · �1/k 0 0 · · · 0

...
...

... . . . ...
...

... . . . ...
�1/k �1/k �1/k · · · 1 0 0 · · · 0
0 0 0 · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0
...

...
... . . . ...

...
... . . . ...

0 0 0 · · · 0 0 0 · · · 1

3

77777777777775

(26)

indicating that each Ld

k
frame is a two-distance set (see [14, 2]) with inner products �1/k

and 0; note, however, that Ld

d
, or the ETFd configuration, will have only one inner prod-

uct, �1/d.

4.2. Embedded ETFs as the Conjectured Minimizers. Numerical computations sug-
gest that the Ld

k
frames are minimizers of FPp,d+1,d.

Conjecture 4.5. Suppose d � 2 and for every natural number 1  k  d� 1, let

pk =
log(k + 2)� log k

log(k + 1)� log k
.

We also define p0 = 0. The following configurations minimize the p-frame potential FPp,d+1,d:
• when p 2 (pk�1, pk], the Ld

k
configuration, k = 1, 2, · · · , d� 1;

• when p 2 (pd�1,1], the ETFd, or Ld

d
configuration.

Certain cases have been known for some time. The case d = 2 is completely established
in [15]. For d � 3, the statement that ETFd is the minimizer follows from [3] when p = 2,
from [15, Proposition 3.1] when p > 2, and from [23] for p = 1. A. Glazyrin [17] recently
established that the ONB+, or Ld

1 is the optimal configuration for p 2 (0, 2( ln 3
ln 2 �1)], leading

to the fact that Fp,d+1,d = 2 for all p in this range and all d � 2. The number 2( ln 3
ln 2 � 1)

is approximately 1.17 and is less than p1. While revising this manuscript we became aware
of the work by Zhiqiang Xu and Zili Xu [27], where they prove the rest of the conjecture.
Figure 3 visualizes this conjecture prior to the work [27].

The values pk may be found by using the p-frame potentials of the Ld

k
frames. By (26),

FPp,d+1,d(Ld

k
) =

�
(k + 1)2 � (k + 1)

�✓1

k

◆p

= (k + 1)k

✓
1

k

◆p

.

We find pk so that the p-frame potentials of Ld

k
and Ld

k+1 are equal at the value pk, so

(k + 1)k

✓
1

k

◆pk

= (k + 2)(k + 1)

✓
1

k + 1

◆pk

leads to pk =
log(k+2)�log k
log(k+1)�log k .

Remark 4.6. l
(a) The value pk, where the p-frame potential of the Ld

k+1 frame drops below the p-frame
potential of the Ld

k
frame, does not depend on d, the overall dimension.
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Fp,d+1,d

2

p0 1.5 1.6 1.7 1.8 1.9 22( ln 3
ln 2 � 1)

Ld
1

p1

Ld
2

p2

Ld
3

p3

Ld
4

p4 pd�1

Ld
d/ETFd

Figure 3. Optimal configurations for Fp,d+1,d as p increases from 0 to 1
according to Conjecture 4.5. The black lines are cases proven before [27].

(b) Following Conjecture 4.5, we will call the values pk the switching points as these
are the values of p where the minimizing configuration seems to change. The final
switching point is approaching to 2:

lim
d!1

pd�1 = lim
d!1

log
�
d+1
d�1

�

log
�

d

d�1

� = 2.

4.3. Description of the Numerical Computations. Numerical computations in Sage
[24] were used to test Conjecture 4.5 numerically for d + 1 vectors in Rd. For each d =
3, 4, 5, 6, 7 and each k = 1, 2, . . . , d, the program checked numerically whether Ld

k
is the

minimizer on the regions [pk�1, pk]. For p = pk�1 and for p = pk specifically, along with
some random values p in [pk�1, pk], it used a basic gradient descent to numerically minimize
the p-frame potential of several randomly chosen frames and then it compared these to the
appropriate Ld

k
frame. The only lower frame potential found seemed within the realm of

numerical error (<1e-15). The number of comparisons was not selected rigorously; rather
we only use the program as a guide. More details and the code may be found online at
https://www.math.umd.edu/~okoudjou/.

5. Appendix: Proof of Theorem 3.3

We now give a proof of Theorem 3.3. Let f be a smooth function. Given a polynomial g
with deg(g) � 1, let H(f, g) denote the Hermite interpolating polynomial of degree less than
deg(g) that agrees with f at each root of g to the order of that root. The following fact is
proven in the proof of [12, Proposition 2.2].

Lemma 5.1. Let a be differentiable up to K on a subset of [�1, 1), and g1, g2 be two poly-
nomials such that deg(g1) + deg(g2)  K, then H(a, g1g2) = H(a, g1) + g1H(Q(a, g1), g2)
where

Q(a, g) :=
a�H(a, g)

g
.

We provide a variation of [12, Proposition 2.2] below. The proof is also similar.

Proposition 5.2. Let c, d 2 R. If a is (strictly) K-absolutely monotone on (c, d), then
given any nonconstant polynomial g, Q(a, g) = a�H(a,g)

g
is (strictly) absolutely monotone up

to K � deg g on (c, d).
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Proof. By [12, Lemma 2.1],

(27) Q(a, g)(t) =
a(t)�H(a, g)(t)

g(t)
=

a
(deg g)(⇠)

deg g!

for some ⇠ 2 (c, d).
A direct consequence of Lemma 5.1 is that Q(a, g1g2) = Q(Q(a, g1), g2). For n 2 [1 :

K � deg(g)], s0 2 (c, d), there exists ⇠0 2 (c, d) such that

(28)
Q(a, g)(n)(s0)

n!
= Q (Q(a, g), (t� s0)

n) (s0) = Q(a, (t� s0)
n
g)(s0) =

a
(n+deg g)(⇠0)

(n+ deg g)!
.

The right hand side of (28) is nonnegative due to the absolute monotonicity of a. ⇤
We also need to define a different version of conductivity here.

Definition 5.3. A nonconstant polynomial g with all its roots in [�1, 1) is K-conductive if
for any K-absolutely monotone function a on [�1, 1), H(a, g) is positive definite.

The following Lemma is a variation of [12, Lemma 5.3].

Lemma 5.4. If g1 and g2 are K-conductive and g1 is positive definite, then g1g2 is (K +
deg g1)-conductive.

Proof. Let a be (K + deg g1)-absolutely monotone, then Q(a, g1) is K-absolutely monotone
according to Proposition 5.2. Consequently, H(Q(a, g1), g2) is positive definite due to the
conductivity of g2. Finally, H(a, g1g2) = H(a, g1) + g1H(Q(a, g1), g2) is positive definite
because all three functions are positive definite and positive definite functions are closed
under taking products. ⇤
Proof of Theorem 3.3. Let �1  t1 < t2 < · · · < tm < 1 be the m distinct inner products of
the m-sharp configuration.

Let a(t) = f(2�2t) be defined on [�1, 1) and h(t) be the Hermite interpolating polynomial
that agrees with a(t) to order 2 at each ti (i.e. h(ti) = a(ti) and h

0(ti) = a
0(ti)). Then using

our notation, h = H(a, F 2) where F =
Q

m

i=1(t� ti).
For r 2 [�1, 1), l(t) = t�r is K-conductive for any K � 0 since H(a, l) is the nonconstant

polynomial a(r). It is also proven in [12, Section 5] that
Q

j

i=1(t�ti) is strictly positive definite
for all j  m.

For any K � 0, g1 = t� t1, g2 = t� t2 are both K-conductive and g1 is positive definite,
then Lemma 5.4 implies that g1g2 is (K + 1)-conductive. Using Lemma 5.4 repeatedly on
g1 = t� tj, g2 =

Q
j�1
i=1 (t� ti), we get that F 2 is K-conductive for any K � 2m. In particular

F
2 is 2m-conductive and it follows that h = H(a, F 2) is positive definite.
It is also clear that h(t)  a(t) by applying (27) with g = F

2. By [12, Proposition 4.1],
the energy has a lower bound that is achieved by the m-sharp configuration.

If further f is strictly 2m-completely monotone, the uniqueness is the same as in [12,
Section 6] where only a

(deg h+1)(t) > 0 is needed. This is true since deg h+ 1  2m.
⇤
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