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Abstract. We prove a strong maximum principle for Schrödinger op-
erators defined on a class of postcritically finite fractal sets and their
blowups without boundary. Our primary interest is in weaker regularity
conditions than have previously appeared in the literature; in particular
we permit both the fractal Laplacian and the potential to be Radon mea-
sures on the fractal. As a consequence of our results, we establish a
Harnack inequality for solutions of these operators.

1. Introduction

The goal of this note is to prove a strong maximum principle and related
results for Schrödinger operators L = ∆−νwhere ∆ is a fractal Laplacian (to
be defined below) and the potential ν is a non-negative measure on the frac-
tal. When the fractal K is the standard Sierpinski gasket or its unbounded
analogue, Strichartz established strong maximum principles for solutions of
the nonlinear equation ∆u = F(x, u) where F : K × R → R is continuous
and nonnegative in the sense that if u(x) ≥ 0 then F(x, u(x)) ≥ 0, see [8].
We consider algebraically simpler operators because our interest is in weak-
ening the regularity conditions on both the Laplacian ∆ and the potential,
both of which we will permit to be measures.

In Section 2 we recall some basic facts about analysis on fractals and
fractal blowups, details of which may be found in [4, 9]. Section 3 contains
the proof of the maximum principle and some comments on a Hopf-type
lemma, and Section 4 has the proof of a Harnack inequality.

2. Preliminaries

We consider a connected self-similar set K generated by an iterated func-
tion system {F1, . . . , FN} consisting of contractive maps on a complete met-
ric space. To a finite word ω = ω1ω2 · · ·ωn ∈ {1, . . . ,N}n we associate
Fω = Fω1 ◦ · · · ◦ Fωn and a cell Cω = Fω(K). We assume K is post-critically
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finite, whence there is a finite set V0 so that for any words ω,ω′ we have
Cω ∩ Cω′ ⊂ Fω(V0) ∩ Fω′(V0). From the set V0, we inductively define
Vn+1 = ∪N

i=1Fi(Vn) and thereby obtain a countable dense subset V∗ = ∪nVn

of K. The topology of K is generated by cells in the sense that any x < V∗
has a neighborhood base consisting of interiors of cells, while any x ∈ Vn

has a neighborhood base in which each set is a finite union of interiors of
cells adjoined at x. We let µ denote the standard self-similar measure on K.

Following Kigami [4] we make the strong assumption that there is a re-
sistance form E, also called the energy, with domain domE ⊆ L2(K, µ)
that is obtained from a regular self-similar harmonic structure. This means
that there is an irreducible, non-negative, symmetric, quadratic form E0 de-
fined on the (finite-dimensional) vector space of functions on V0, and factors
0 < ri < 1 for each i = 1, . . . ,N, such that setting rω =

∏n
1 rω j we have for

u ∈ domE
En(u, u) :=

∑
ω∈{1,...,N}n

r−1
ω E0(u ◦ Fω, u ◦ Fω)

and E(u, u) = limn En(u, u), where the latter sequence is non-decreasing (see
Sections 2.3 and 2.4 of [4]). Those functions on which En is constant for
n ≥ m are called piecewise harmonic at scale m. It follows that the pair
(E, domE) has the following properties: 1) E is a non-negative symmetric
quadratic form on the linear space domE, 2) E vanishes exactly on the
constants and domE modulo constants is a Hilbert space under E, 3) any
function on a finite subset of K has an extension in domE, 4) for any p, q ∈
K the quantity

(2.1) R(p, q) = sup{|u(p) − u(q)|2/E(u, u) : u ∈ domE and E(u, u) > 0}

is finite, and 5) if u ∈ domE then so is ū = max{0,min{u, 1}} and E(ū, ū) ≤
E(u, u). Moreover, R(p, q) is a metric on V∗ with completion homeomorphic
to (and hence identified with) K, to which the continuous extension of R is
called the resistance metric; any function u ∈ domE satisfies

(2.2) |u(x) − u(y)|2 ≤ E(u, u)R(x, y).

It follows that any u ∈ domE is continuous with respect to the resistance
metric; and E is a Dirchlet form on L2(K, µ), see [3]. From the general
theory of Dirichlet forms (see, for example, [1]) one then defines a non-
positive definite, self-adjoint (Dirichlet) Laplacian operator ∆ for which u ∈
dom ∆ and ∆u = f ∈ C(K) by requiring

E(u,w) = −

∫
K

f w dµ

for all w ∈ domE such that w|V0 = 0. If we only assume that f ∈ Lp(K, µ),
then we say that u ∈ domLp ∆. We will primarily work with an extension
of the above definition in which ∆u is a finite signed Radon measure (see
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[10, Definition 4.1] and [5, Definition 6.7]): we say that u ∈ domM ∆ and
∆Mu = σ if u ∈ domE and

E(u,w) = −

∫
K

w dσ

for all w ∈ domE such that w|V0 = 0. Of course, we can view any function
f ∈ L1(K, µ) as the measure f dµ. We assume that the Laplacian is self-
similar in the sense that

∆M(u ◦ Fω) = rωµω(∆Mu) ◦ Fω,

for allω ∈ {1, . . . ,N}n and n ≥ 1, where µi are the weights of the self-similar
measure µ and µω =

∏n
j=1 µω j and rω is defined similarly (see the comments

following Definition 4.2 of [10] why the definition of the localization of the
measure valued Laplacian to a cell is not as straightforward as it may seem).

Our main results are also valid on bounded subsets of the fractal blowups
considered by Strichartz [7]. An infinite blow-up without boundary points
of the p.c.f. fractal K is defined using a sequence α ∈ {1, . . . ,N}N such that
α is not eventually constant. For n ≥ 1 set Kn = F−1

α1
F−1
α2
. . . F−1

αn
(K). Then

{Kn} is an increasing sequence of sets and the infinite blow-up is defined
to be K∞ =

⋃∞
n=1 Kn. Both the energy E and the measure µ extend to K∞

in the obvious fashion, and we write E∞ and µ∞ for these extensions. The
Laplacian ∆∞ is defined weakly as before.

3. Maximum principle

Let ν be a finite non-negative Radon measure. The Schrödinger operator
L with potential ν is defined on domM ∆ by

(3.1) Lu := ∆u − uν.

The main result of this section is a maximum principle for the operator
L. The proof goes via a result on subharmonic functions that relies on an
argument of Kigami [3, Theorem 5.8(2)]; it has been used in various forms
by other authors (for example, in [8, Theorem 2.1], [6, Lemma 4.3]). For
the purposes of exposition we first prove a weak and then a strong maximum
principle, though of course the former is a consequence of the latter.

Proposition 1. Let u ∈ domM ∆ on K. If C = Cω is a cell on which ∆u is
a non-negative measure then maxC u ≤ max∂C u. Moreover, if u attains its
maximum at an interior point of C then u is constant on C.

Proof. Self-similarity of ∆ ensures there is no loss of generality in taking
C = K. For any n and a point p ∈ Vn \ V0 there is a piecewise harmonic
function at scale n called hp that is harmonic on K \ Vn with hp(p) = 1 and
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hp(q) = 0 if q ∈ Vn \ {p}. The maximum principle for harmonic functions
([4, Theorem 3.2.5]) implies 0 ≤ hp ≤ 1, and since hp|V0 = 0 we have

(3.2) 0 = E(hp, u)+
∫

K
hp∆u ≥ E(hp, u) = En(hp, u) =

∑
q∼n p

cpq
(
u(p)−u(q)

)
,

where the cpq > 0 are constants depending only on En and q ∼n p means
that q and p are neighbors in Vn (this is established in a similar manner as [4,
Lemma 3.5.1]). Using this inductively beginning at n = 1 and considering
each point in Vn, we deduce that u is bounded on V∗ by maxV0 u, whence the
desired inequality follows by continuity of u.

Now suppose u attains an interior maximum at x. We distinguish two
cases according to whether x ∈ V∗ or x < V∗.

If x ∈ V∗ then it is in Vn for some n. Let q ∼n x and from (3.2) and
u(x) ≥ u(q) deduce both that u(q) = u(x) and that

∫
hx∆u = 0. Since hx > 0

on the interiors of the n-cells containing x, we conclude that ∆u has no mass
on these cells and thus that u is harmonic on them. As u is harmonic and all
its boundary values on these cells equal u(x) it is a constant function, and
hence u ≡ u(x) on a neighborhood of x.

If x < V∗ we fix an n and the n-cell Cn containing x. Let h be harmonic
on Cn with h = u on the boundary ∂Cn. We use another result of Kigami [4,
Proposition 3.5.5 and Theorem 3.5.7] and [5, Theorem 6.8], namely that
there is a non-negative Green kernel g that inverts −∆ on Cn with Dirichlet
boundary data. Thus, for y ∈ Cn,

(3.3) u(y) = h(y) +

∫
K

g(y, z)(−∆u(dz)) ≤ h(y),

which simply says u is subharmonic. However we then have

u(x) ≤ h(x) ≤ max
∂Cn

h(y) = max
∂Cn

u(y) ≤ u(x)

where the first inequality is (3.3), the second is the maximum principle for
harmonic functions, the equality is u = h on ∂Cn, and the final inequality
is that u(x) is the maximum of u. Since equality must hold throughout we
conclude u = u(x) on ∂Cn. However (3.3) must also be an equality, and
since g(y, z) > 0 unless z ∈ ∂C we find that ∆u has no mass on the interior
of C whence u is harmonic and therefore constant. Again we have found
u ≡ u(x) on a neighborhood of x.

We conclude by noting {y : u(y) = u(x)} is closed by continuity of u, open
by the preceding reasoning, and contains x, so by connectivity it is K. �

The preceding argument extends readily to our class of Schrödinger op-
erators. For u a function on K or K∞ let u+(x) = max{u(x), 0}.
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Theorem 2 (Maximum Principle for Schrödinger operators). Let ν be a
non-negative Radon measure on K∞. Suppose E ⊂ K∞ is open and bounded,
and consider u ∈ domM ∆∞. If Lu = ∆u − νu is a non-negative measure on
E then

max
x∈E

u(x) ≤ max
p∈∂E

u+(p).

Moreover, if u achieves a positive maximum at an interior point x ∈ E then
u is constant on the connected component of E containing x.

Proof. Observe that the asserted inequality is trivial if u ≤ 0. Accordingly
we may assume U := {x ∈ E : u(x) > 0} , ∅. Then ∆u is a non-negative
measure on U, so Proposition 1 is applicable to each cell contained in U.
Moreover the proof of Proposition 1 implies there cannot be a strict maxi-
mum at p ∈ V∗ if there is a scale n such that all neighbors q ∼n p are in U.
Thus the maximum of u cannot only occur at an interior point to U because
every such point has a neighborhood in U that is a cell or finite union of
cells at a single scale. Since u = 0 at any point p ∈ ∂U that is interior to
E, the maximum must be achieved on ∂U ∩ ∂E, which implies the stated
inequality.

If a positive maximum occurs at an interior point x of E it must also
be that x ∈ U, which is open. If x < V∗ it is contained in the interior
of a cell contained in U and from Proposition 1 u is constant on this cell.
If x ∈ V∗ then there is neighborhood of x in U consisting of x and the
interiors of some cells meeting at x and lying in U, but in this case the
reasoning in the proof of Proposition 1 implies u is constant on these cells.
In summary, u = u(x) on a neighborhood of x. However this implies the set
Y = {y : u(y) = u(x)} is open in E because every such y is necessarily in
the open set U, and Y is obviously closed because u is continuous, so u is
constant on the connected component of E containing x. �

In the classical setting of a Euclidean space, one standard approach to
obtaining the strong maximum principle from the weak maximum principle
is to use the Hopf lemma. It is perhaps interesting to note that in the fractal
setting we can prove a Hopf-type lemma at points in V∗ but have no corre-
sponding results at points of K \ V∗ and therefore cannot use this approach
to obtain a strong maximum principle.

To state our Hopf-type lemma we recall that the normal derivative [4,
Definition 3.7.6] of a function at a point p ∈ V0 may be written using the
scale m piecewise harmonic function h(m)

p which is 1 at p and zero on Vm\{p}
as

(3.4) ∂nu(p) = lim
m→∞
E(h(m)

p , u)
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Lemma 3. Let ν be a non-negative Radon measure on K and suppose u ∈
domM ∆ satisfies Lu = ∆u − uν is also non-negative measure. If there is
p ∈ V0 such that u(p) > u(x) for all x ∈ K \ {p} and also u(p) > 0 then
∂nu(p) > 0.

Proof. If n < m the difference k(n,m) = h(n)
p − h(m)

p is zero at p and the points
q ∼n p, and is equal to h(n)

p (q) > 0 at each q ∼m p; it is otherwise harmonic,
so the minimum principle for harmonic functions implies it is non-negative.
Now u(p) > 0 and u is continuous so there is n such that u is positive on the
support of k(n,m). For this n and any m > n we see ∆u ≥ uν is a non-negative
measure on the support of k(n,m) and therefore

E(h(n)
p − h(m)

p , u) = −

∫ (
h(n)

p − h(m)
p

)
∆u ≤ 0

which gives ∂nu(p) = limm→∞ E(h(m)
p , u) ≥ E(h(n)

p , u) =
∑

q∼n p cpq(u(p)−u(q))
for some values cpq > 0 depending on En. The fact that u(p) > u(q) for all
q concludes the proof. �

4. Harnack Inequality

In the classical setting the strong maximum principle for Lu ≥ 0 implies
a Harnack inequality for solutions of Lu = 0, see [2, Section 8.8]. We show
that this is the case in our setting.

Before stating the Harnack inequality, we note that the equation Lu =

0 for L as in (3.1) has solutions for sufficiently small measures ν on K,
because with boundary data a harmonic function h, the operator defined
using the continuous non-negative Green kernel g(x, y) by

u 7→ h +

∫
g(x, y)u(y)ν(dy)

is contracting in the uniform norm provided
∫

g(x, y)ν(dy) < 1. More-
over, on the cell Fω(K) the Green kernel is rωg(F−1

ω (x), F−1
ω (y)) where rω =∏|ω|

j=1 rω j by [4, Proposition 3.5.5]. It follows for any ν that we can take |ω|
sufficiently large so that contractivity of the analogous operator on Fω(K) is
valid, ensuring local solutions exist everywhere. This argument extends to
the case when one has a finite union of cells.

Theorem 4 (Harnack Inequality). On K, fix a non-negative finite Radon
measure ν. Suppose u ∈ domM(∆) satisfies both u ≥ 0 and Lu = 0, where
L is as in (3.1) and the latter is an equality of measures. If E is a compact
subset of a connected component of K \ V0 then there is a constant A that
depends only on E such that maxE u ≤ A minE u.
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The proof makes use of the following result, which may be of indepen-
dent interest.

Proposition 5. For ν a non-negative finite Radon measure on K let

A = {u ∈ domM(∆) : Lu = 0 as measures and 0 ≤ u ≤ 1}.

ThenA is compact in the uniform norm.

Proof. For any u ∈ A with u|V0 = 0 we have

E(u, u) = −

∫
u∆u = −

∫
u2dν

so that |u| ≤ 1 implies |E(u, u)| ≤ ν(K) = M < ∞. Applying the estimate
(2.2) we have

(4.1) |u(x) − u(y)|2 ≤ E(u, u)R(x, y) ≤ MR(x, y).

If instead, u|V0 , 0, then choose a harmonic function h so (u − h)|V0 = 0
and since |h| ≤ 1 on V0 we have |h(x)− h(y)|2 ≤ 2R(x, y), so (4.1) holds with
M replaced by M + 2. However an estimate of the type (4.1) implies A is
equicontinuous, and since the definition ofA implies it is equibounded, an
application of the Arzela-Ascoli theorem then yields that it is precompact
in the uniform norm.

Now suppose {un} ⊂ A and un → u uniformly. If w ∈ dom(E) and w|V0 =

0 we know w is continuous and therefore bounded so Hölder’s inequality
provides∣∣∣E(un − um,w)

∣∣∣ =
∣∣∣∣∫

K
w∆(un − um)

∣∣∣∣ =
∣∣∣∣∫

K
w(un − um)dν

∣∣∣∣ ≤ M‖un − um‖∞,

and therefore un is Cauchy in dom(E). However dom(E) is a Hilbert space
under the norm E + ‖ · ‖∞, so we conclude that u ∈ dom(E) and E(u,w) =

−
∫

wudν, whence ∆u = uν. This implies u ∈ A, so A is closed, and in
light of our Arzela-Ascoli argument, compact in the uniform norm. �

Proof of Theorem 4. Let

A = {u ∈ dom(∆) : Lu = 0, 0 ≤ u ≤ 1 and max
V0

u = 1}.

Evidently this is a closed subset of the space of functions considered in
Proposition 5 and is therefore compact in the uniform norm. Hence the
quantity a = infAminx∈E u(x) is achieved by some ũ ∈ A. Either a = 1
or ũ is non-constant and the hypothesis ũ ≥ 0 implies a > 0 by the strong
minimum principle.

Now take u as in the statement of the theorem. It is continuous and the
strong maximum principle is applicable, so it achieves its maximum on V0.
Accordingly, u/(maxV0 u) ∈ A and has minimum at least a on E. The result
follows with A = 1/a. �
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Remark 6. The above immediately implies the corresponding result in the
setting of a bounded subset of K∞ because such a set is contained in a (suf-
ficiently large) copy of K, and we can transfer the theorem directly to this
setting using the self-similarity of the energy.
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