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Abstract— Advances in integrated sensors and low-power
electronics have led to an increase in the use of wearable devices
for health and activity monitoring applications. These devices
have severe limitations on weight, form-factor, and battery size
since they have to be comfortable to wear. Therefore, they must
minimize the total platform energy consumption while satisfying
functionality (e.g., accuracy) and performance requirements. Op-
timizing the platform-level energy efficiency requires considering
both the sensor and processing subsystems. To this end, this
paper presents a sensor-classifier co-optimization technique with
human activity recognition as a driver application. The proposed
technique dynamically powers down the accelerometer sensors
and controls their sampling rate as a function of the user activity.
It leads to a 49% reduction in total platform energy consumption
with less than 1% decrease in activity recognition accuracy.

Index Terms—Wearable computing, human activity recogni-
tion, IoT, flexible hybrid electronics (FHE), health monitoring.

I. INTRODUCTION

Low-power wearable devices have increasing popularity
since they enable a wide range of applications, such as health
monitoring, activity tracking, and activity recognition. In par-
ticular, health and activity monitoring applications proliferate
through wearable devices that integrate motion sensors and
local processing capabilities. For example, monitoring the
activities of patients with chronic disorders, such as heart
disease and diabetes, helps in tracking the progress of the
disease over time [2]. Similarly, human activity recognition
(HAR) using smartphones and wearable devices enables track-
ing daily activities, including walk, stand, and exercise [13].
This information helps movement disorder specialists in an-
alyzing specific motor functions outside the clinic. Indeed,
the use of smartwatches has sharply risen as they integrate
activity and health monitoring features, such as heart rate
monitor, sedentary alert, and fitness tracking. Hence, wearable
devices facilitate advanced round-the-clock human monitoring,
tracking, and activity recognition.

Wearable devices are severely limited in size, weight, and
form-factor because they are attached to the body. Conse-
quently, large and heavy batteries are prohibitive. Due to these
constraints, the success of wearable devices depends critically
on meeting performance requirements using minimum energy
consumption. For instance, wearable devices used for HAR
must meet minimum recognition accuracy constraint while
minimizing the total platform energy. Hence, designers need
to co-optimize all major platform components that affect
accuracy and energy consumption.

Optimizing the platform-level energy efficiency requires
considering both the sensor and processing subsystems. For
instance, human activity recognition consists of two phases -
(1) data collection from sensors for an activity period ranging
from one to a few tens of seconds, (2) processing the raw
data to recognize the target activity. Data collection offers
significant energy savings potential since sensors stay on
whenever there is user activity. Unlike the sensors, processing
resources can enter sleep states during the data collection
phase. However, the energy consumption can still be signif-
icant despite short active time since the power consumption
during the processing is relatively large compared to the power
consumption of the sensors.

In this paper, we propose two sensor-classifier co-
optimization techniques for wearable IoT devices targeting
human activity recognition. The first technique monitors the
user activity and operates the accelerometer sensors in a low-
power mode (with 50× lower power) until there is a significant
change in the user’s activity. The accelerometer is triggered
to sample the user movements by comparing the change in
the user activity against a parameterized threshold. Decreasing
this threshold leads to higher sensitivity (always-on in the
limit), while increasing it reduces energy consumption. Since
different thresholds affect the quality of feature data, we also
optimize the HAR classifier to match the sensor behavior.
The second technique dynamically controls the accelerometer
sampling rate to optimize the activity in the sensor and
processing requirements in the classifier. Similar to the first
technique, we match the classifier to the sensor data rate to
minimize the loss in the recognition accuracy. Finally, we
combine these two techniques and evaluate them in a custom
hardware prototype.

The major contributions of this work include:
• A framework that co-optimizes sensors and classifiers to

enhance the energy consumption of wearable devices,
• Extensive evaluations using data from user-subject studies

and a custom hardware prototype.

II. RELATED WORK

Human activity recognition has received significant research
attention due to its applications in patient monitoring, fitness
tracking, and patient rehabilitation [4, 10]. Recent approaches
use wearable devices with integrated motion sensors to infer
activities, such as walk and exercise [3, 6]. Wearable devices
continuously collect and process the sensor data to identify
user activity. Due to their small form-factor and limited battery
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capacity, they must minimize energy consumption to extend
the life-time [5, 14]. At the same time, user satisfaction re-
quires high accuracy [11]. Therefore, wearable devices need to
co-optimize the recognition accuracy and energy consumption.

Optimization of wearable devices has been an active re-
search area. For example, Williamson et al. characterize en-
ergy consumption of sensing, processing and wireless data
communication in wearable devices [15]. Then, they present
potential solutions such as compressive sensing, FIFO and
power gating to reduce energy consumption in wearable de-
vices. Liu et al. selectively identify the best sampling points
to maintain high accuracy while reducing sensing and analysis
energy overheads [9]. Similarly, Krause et al. propose variable
sampling rates and selective sampling to utilize the accuracy-
power consumption tradeoff in HAR [8]. However, they do
not put the sensors into low-power states during low-intensity
activities to minimize energy consumption. In contrast to
these approaches, we propose a framework to co-optimize the
sensors and classifiers to reduce energy consumption in HAR
applications. We evaluate the proposed approach on a custom
prototype using data from 22 user studies.

III. DYNAMIC SENSOR-CLASSIFIER CO-OPTIMIZATION

Recognition accuracy is one of the most important design
considerations in HAR applications. Higher sampling frequen-
cies for sensors and classifiers leads to higher recognition
accuracy. However, this comes at the cost of higher energy
consumption that can reduce the operating lifetime of the
device. As a result, wearable devices have to co-optimize
accuracy and energy consumption per activity.

Energy consumption in HAR applications consists of two
major components: the sensor and processor energy consump-
tion. The sensor energy is typically a significant part of the
total energy consumption as the sensors stay powered on
continuously. However, this may not be necessary when the
user is not active (e.g., during sitting or standing). Operating
the sensors in low-power mode during such activities can
lead to significant energy savings. Similarly, the sampling
frequency of the sensors can be reduced as a function of the
activity to enable further energy savings. Furthermore, signif-
icant processor energy savings can be achieved by tailoring
the classifiers to the behavior of the sensor. However, the
HAR accuracy can reduce significantly unless these techniques
are co-optimized with the activity classifier. In what follows,
we utilize these insights to enable two sensor-classifier co-
optimization techniques that minimize the energy consumption
of HAR while maintaining high accuracy.

A. Dynamic Sensor Power Gating
We can achieve significant energy savings by operating the

sensors in low-power mode during low-intensity activities. For
instance, sensor outputs do not change significantly when the
user is not active, e.g., during sitting or standing. One can
detect significant changes in user activity by monitoring the
sensor output before transmitting it to the processor. We use
this behavior and a threshold for changes in sensor data to
reduce the energy consumption of the device.

Figure 1 illustrates the proposed dynamic power gating
approach. The HAR engine uses the accelerometer data to
determine the current activity. Our specific implementation
uses a 3-axis accelerometer and passive stretch sensor [6]. The
inputs to the proposed dynamic sensor control technique are
the current activity and accelerometer readings. The dynamic
sensor control block uses these inputs to set the power state
of the accelerometer sensor [7]. If the change in the sensor
values is small, it puts the accelerometer into the ultra-low-
power mode. This power state measures the 3-axis acceleration
at a low frequency. The accelerometer continues to operate in
this mode until the dynamic sensor control block detects that
the change in the sensor value is greater than a threshold δth.
Specifically, for each new sample we calculate the absolute
changes in the x-, y-, and z-axis of the accelerometer δx, δy ,
and δz as:

δx = |ax[n]− ax[n− 1]|, δy = |ay[n]− ay[n− 1]|
δz = |az[n]− az[n− 1]|, δ = max(δx, δy, δz) (1)

where ax[n], ay[n], and az[n] denote the accelerometer read-
ings normalized to the unit of gravity at time instance n
for the x-,y- and z-axis, respectively. Similarly, ax[n − 1],
ay[n − 1], and az[n − 1] denote the previous values of the
accelerometer. The accelerometer is turned on only if the
maximum of δx, δy , and δz exceeds the set threshold δth,
i.e. δ > δth. This optimization reduces the sensor energy
consumption significantly, as we demonstrate in Section IV.

Altering the power-states of the accelerometer affects the
sensor values input to the HAR engine since there are fewer
samples from the accelerometer. This results in a change in
the inputs features fed to the classifier in the HAR engine.
The change can cause significant degradation in accuracy
of activity classification, which is an undesirable outcome.
Hence, it is necessary to co-optimize sensor power manage-
ment techniques and classifiers. To this end, we propose to
retrain classifiers with the sensor data for each threshold. At
run-time, we can choose the appropriate classifier as a function
of the threshold. With this approach, we can achieve significant
reduction in energy consumption with little to no effect on
classification accuracy.

Human Activity 
Recognition Engine

Current
Activity

Dynamic 
Sensor Control

Accel. on/off
Sampling frequency

Accel. value Accel. on/off,
Sampling freq.

3-axis Accelerometer
Stretch Sensor

Fig. 1: Overview of dynamic sensor-classifier co-optimization

B. Dynamic Sampling Rate Control

Dynamic sampling rate control of sensors is an efficient
technique to minimize energy consumption. Let PLP and
PMax be the power consumption of the accelerometer in
the low-power state and while is it operating at the highest
sampling frequency fMax, respectively. We can model the
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power consumption of the accelerometer as a function of
sampling frequency fs as:

P (fs) = PLP + PMax(fs/fMax)
α (2)

The parameter α models the non-linearity of power consump-
tion as a function of the frequency. In our experiments, we use
α = 1 and employ the analytical sensor power models [7, 12].

In low-intensity activities, such as sitting or lying down,
the outputs of the sensor do not change significantly. Since
the power consumption decreases with frequency as shown
in Equation 2, we employ lower sampling frequencies can be
used to reduce energy consumption. However, using a smaller
sampling frequency also changes the input features of the
classifier and reduces the classification accuracy. Therefore,
we retrain the classifier for each possible sampling frequency
to retain the accuracy. The baseline classifier used for activity
classification is trained with datasets obtained by running
the accelerometer at 250 Hz. Then, we analyze the energy-
accuracy trade-off to choose the right sampling frequency
during low-intensity activities.

The results of energy-accuracy analysis are utilized by
the dynamic sensor control block shown in Figure 1. The
HAR engine classifies activity based on inputs from the ac-
celerometer and feeds the classification output to the dynamic
sensor control block. The sensor control block scales down the
frequencies during low-intensity activities supervised by the
energy-accuracy analysis with varying sampling frequencies.

IV. EXPERIMENTAL RESULTS

Experimental setup: We evaluate the proposed dynamic sen-
sor power management techniques using our custom prototype
shown in Figure 2. The prototype integrates a Texas Instru-
ments (TI) CC2650 MCU [1] for computation and Invensense
MPU-9250 accelerometer (motion sensor). In addition, the
prototype includes power measurement points. We use the
wake-on-motion feature in the accelerometer to set a threshold
to wake up the accelerometer, as described in Section III-A.
Specifically, the accelerometer operates in low-power mode
until it detects motion that exceeds the set threshold. We also
use a passive stretch sensor (Figure 2) attached to a knee
sleeve. The data from this sensor is used to divide the activities
into distinct windows (1–3 s duration) for feature extraction
and classification using deep neural network (DNN) with two
hidden layers [6]. Using this setup, we validate the proposed
techniques on an extensive dataset comprising of activities
from 22 users, 7 activities and the transitions between them.

A. Evaluation and Analysis of Sensor Power Gating Technique

We first analyze the effect of the accelerometer power gating
on recognition accuracy and power consumption. Figure 3
shows the accuracy of classification as we increase the thresh-
old for waking up the accelerometer. The x-axis of the figure
is normalized to the unit of gravity. Therefore, a value of 1
indicates that the change in accelerometer value is at least
9.8 m/s2. We compare the accuracy under two scenarios. In
the first scenario, there is a single classifier trained with a

Fig. 2: Custom hardware prototype and the stretch sensor

threshold of zero, i.e. the accelerometer is assumed to be
always on. The single classifier stores only a single neural
network and does not have to switch between classifiers as
the value of the threshold changes. In the second scenario, the
DNN classifier is trained separately for each threshold. Then,
these DNNs are stored on the device such that the appropriate
classifier can be chosen at runtime.

We observe that the accuracy of activity recognition reduces
as the value of the threshold is increased when we use a single
classifier. Specifically, as the threshold increases from zero
to about 0.2, the accuracy decreases rapidly to about 40%.
Then, the decrease in accuracy is slower until it reaches an
accuracy of 10%. The reduction in accuracy is expected since
the feature vectors seen at the time of training may differ
from the features observed after using the threshold value.
In contrast, the drop in accuracy is significantly lower when
we train a classifier for each threshold. The accuracy drops
gradually to 81% until the threshold increases to 0.2. Beyond
this point, the loss in accuracy is negligible. Furthermore,
when the threshold is 1 (i.e., the accelerometer is always off),
the classifier uses data from only the stretch sensor. This leads
to an accuracy of about 76%. The accelerometer data exhibits
similar patterns for multiple activities. The accuracy decreases
with increasing threshold because the features are unable to
differentiate between activities easily.

Next, we compare the energy consumption per activity
window as a function of the threshold. The left y-axis of
Figure 4 shows the energy per activity when we change the
threshold for waking up the accelerometer. We observe that
the energy per activity rapidly reduces by 46% for a threshold
of 0.025 and very gradually reduces thereafter. Furthermore,
we compare a combined metric of energy per accuracy to
analyze energy consumption and accuracy together. The right
y-axis in Figure 4 shows the energy per accuracy metric as
a function of the threshold. We observe that the energy per
accuracy decreases up to a threshold of 0.025 and increases
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Fig. 3: Classification accuracies with sensor power gating
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Fig. 4: Comparison of energy per activity and energy per
accuracy with sensor power gating

thereafter. This shows that a threshold of 0.025 achieves the
best trade-off between accuracy and energy consumption. In
summary, sensor-classifier co-optimization enables 46% lower
energy per activity with less than 1% reduction in recognition
accuracy at a power gating threshold of 0.025.

B. Evaluation and Analysis of Sampling Rate Control

This section analyzes the accuracy and energy consumption
of the HAR classifier as a function of the sampling frequency
of the accelerometer. We focus on controlling the sampling
frequency of the accelerometer since it accounts for a large
portion of the energy consumption in the HAR application.
We first sub-sample our HAR data set to obtain data sets with
lower sample frequencies. Then, we analyze the effect of lower
sampling frequencies on accuracy and energy consumption.
Similar to the case of power gating, the classification accuracy
is analyzed with and without retraining the classifier. There
is a significant drop in accuracy when we use a single
classifier for the full range of sampling frequencies, as shown
in Figure 5. In contrast, retraining the classifier for each
sampling frequency leads to lower loss in accuracy even when
the sampling frequency is lowered. In particular, we observe
that the classifier is able to achieve an accuracy greater than
90% for sampling frequencies as low as 8 Hz. Unlike the case
of dynamic sensor power gating, the energy consumption is
linearly proportional to the sampling frequency and the energy
consumption reduces by 48% when the sampling frequency is
8 Hz, as we see in Figure 6. Therefore, the optimal decision
is to choose a sampling frequency that meets the accuracy
requirements.

Finally, we combine the two techniques together using the
optimal threshold value of 0.025 from energy per accuracy
curve in Figure 4 with varying sampling frequencies. The
combination of both techniques enables 49% reduction in
energy per activity with less than 1% loss in classification
accuracy. In summary, the proposed sensor-classifier optimiza-
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Fig. 5: Classification accuracies with sampling rate control
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Fig. 6: Energy per activity with sampling rate control

tion techniques can achieve significant energy savings with
minimal loss in accuracy.

V. CONCLUSION

Advances in low-power sensors and processors have fueled
an increase in the use of wearable devices for health and activ-
ity monitoring. With tight form-factor and weight constraints,
these devices must operate with limited energy budgets and
small batteries. To this end, this paper presented a sensor-
classifier co-optimization technique for wearable devices using
human activity recognition as a driver application. We dynam-
ically power down the accelerometer and lower the sampling
frequency when the user is performing low-intensity activities.
Using these optimizations, the proposed approach achieves up
to 49% reduction in total platform energy consumption with
less than 1% decrease in the accuracy.
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