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ABSTRACT
The use of wearable and mobile devices for health and activity
monitoring is growing rapidly. These devices need to maximize
their accuracy and active time under a tight energy budget imposed
by battery and form-factor constraints. This paper considers energy
harvesting devices that run on a limited energy budget to recog-
nize user activities over a given period. We propose a technique
to co-optimize the accuracy and active time by utilizing multiple
design points with di�erent energy-accuracy trade-o�s. The pro-
posed technique switches between these design points at runtime
to maximize a generalized objective function under tight harvested
energy budget constraints. We evaluate our approach experimen-
tally using a custom hardware prototype and 14 user studies. It
achieves 46% higher expected accuracy and 66% longer active time
compared to the highest performance design point.

1 INTRODUCTION
Wearable low-power internet-of-things (IoT) devices enable health
monitoring, activity tracking, andwide area sensing applications [1–
3]. These devices must stay on for as long as possible to analyze
user activities. At the same time, they have to provide the maxi-
mum quality of service. These two objectives compete with each
other since higher accuracy comes at the cost of larger energy
consumption. Since weight and form-factor constraints prohibit
large batteries, the feasibility of these devices depends critically on
optimizing the energy-accuracy trade-o� optimally at runtime.

Widely used dynamic power management techniques optimize
the power-performance trade-o� by switching between di�erent
power states. High-performance states are used to execute compu-
tationally heavy workloads at the expense of power consumption,
while low-performance states are used to save power. In analogy,
energy-accuracy trade-o� in self-powered devices can be optimized
by utilizing multiple design points. This is a challenging task since
characterizing the accuracy analytically is much harder than devel-
oping power consumption and performance models. For example,
we consider an activity recognition application where a wearable
device infers the user activities, such as jogging, by processing
motion sensor data. The recognition accuracy is a strong function
of the users. Hence, energy-accuracy optimization requires user
studies and optimally chosen design points, in addition to a runtime
optimization algorithm that utilizes multiple design points.
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This paper presents a Runtime Energy-Accuracy oPtimization
(REAP) framework for energy-constrained IoT devices. While our
framework is general, we focus on health and activity monitoring
applications where a wearable device processes sensor inputs to
infer user activities. The recognized activities are sent to a gateway,
such as a smartphone, for further processing. REAP co-optimizes
the accuracy and active time under a tight energy budget. This
optimization is enabled by the following three contributions.
User studies for accuracy evaluation:We perform experiments
with 14 users to recognize the following activities: sit, stand, walk,
jump, lie down and transitions among them. During these experi-
ments, we collect 3-axis accelerometer and stretch sensor data. We
obtain a total of 3553 activity windows from these experiments.
After labeling, we utilize this data for evaluating the accuracy of
the human activity classi�ers used in this work.
Pareto-optimal design points: A common baseline in activity
monitoring applications is to obtain a classi�er with the highest
recognition accuracy [4]. High accuracy is obtained by using a
sophisticated set of sensors, features, and classi�cation algorithms,
all of which imply a larger energy consumption, hence, lower active
time. Other design points can be obtained by reducing the number
of sensors and feature set to save energy. In turn, the energy savings
lead to longer active time under a given harvested energy budget,
albeit with lower accuracy. To enable this work, we implemented
24 design points (DPs) with varying energy-accuracy trade-o�s on
our hardware prototype. Among them, we choose 5 Pareto-optimal
DPs as our primary designs used at runtime. We provide detailed
execution time and power consumption breakdown for sensing,
feature generation and processing steps for each of these 5 DPs.
Runtime optimization algorithm: Given an energy budget, two
fundamental objectives are to maximize the recognition accuracy
and the amount of time the device is on, i.e., the active time. We �rst
formulate this co-optimization problem assuming that there are N
design points with di�erent energy-accuracy trade-o�s. We de�ne
a general objective function that enables us to tune the importance
of active time versus recognition accuracy. Then, we propose an
e�cient runtime algorithm that determines how much each DP
should be used so as to optimize the accuracy-active time trade-o�.

Experimental results using a custom prototype based on TI Sen-
sortag [5] IoT board show that REAP outperforms all static design
points under a range of energy budget constraints. REAP achieves
both 46% higher expected accuracy and 66% longer active time com-
pared to the highest performance DP. REAP also achieves compara-
ble active time to the lowest energy design points while providing
signi�cantly higher expected accuracy. This makes REAP suitable
for use in a wide range of energy harvesting pro�les.

The major contributions of this paper are as follows:
• A runtime technique to co-optimize the accuracy and active

time of energy-harvesting IoT devices.



• Pareto-optimal design pointswith varying energy-accuracy
trade-o�s for human activity recognition (HAR).

• Experiments on a custom prototype with 14 user studies
that show signi�cant improvements both in expected ac-
curacy and active time compared to static design points.

2 RELATEDWORK
Energy harvesting for IoT devices has received signi�cant attention
due to their small form factor and low capacity batteries [6, 7].
These devices can be broadly categorized into two classes. The
�rst class of devices rely solely on harvested energy and turn o�
when no energy is harvested [8]. The second class of devices uses
a small battery as a backup to extend the active time [9–11]. These
approaches manage the power consumption of the device such that
the total energy consumed over a �nite horizon is equal to the
harvested energy [12]. This ensures a long device lifetime without
battery replacement or manual charging. REAP is applicable to all
devices that operate under a �xed energy budget.

Using ambient energy sources necessitates the development of
energy allocation and duty cycling algorithms [10, 11, 13]. For ex-
ample, the work in [9] uses linear programming to determine the
duty cycle of the application as a function of the harvested energy.
Similarly, the algorithm in [10] uses a linear quadratic controller to
assign the duty cycle of the device while maintaining a set battery
level. There are also algorithms for dynamic energy management
of energy-harvesting devices for long-term energy-neutral opera-
tion [11, 12]. However, these approaches choose between on and o�
power states leading to sub-optimal operation. They also lack the
notion of accuracy or any concrete application unlike this work.

Human activity and health monitoring using wearable devices
have signi�cant impact potential to sports, patients with move-
ment disorders and the elderly [2, 14, 15]. A recent work presents a
wearable system for mobile analysis of running using motion sen-
sors [1]. The authors selectively identify the best sampling points
to maintain high accuracy while reducing sensing and analysis
energy overheads. The work in [14] presents a framework to de-
tect falls by using a wearable device equipped with accelerometers.
Authors in [3] design a classi�er that detects physical activity us-
ing a body-worn accelerometer. It o�ers an accurate classi�er for
human activity recognition, but it cannot sustain operation under
tight energy budget constraints. Based on this observation, we �nd
Pareto-optimal design points for the HAR application that o�er
varying levels of accuracy and energy consumption. Then, we use
these design points to maximize the expected accuracy of HAR.

In summary, we present a unique combination of (1) a runtime
energy-accuracy optimization technique, and (2) experimental eval-
uation with 5 concrete design points for HAR. We released the
experimental data to public to stimulate research in this area [16].

3 RUNTIME ENERGY-ACCURACY OPTIMIZATION
3.1 Preliminaries
We consider human activity monitoring applications implemented
on energy-constrained IoT devices. We denote the period over
which the total energy budget is provided as TP , as summarized
in Table 1. REAP computes the energy allocations at runtime with
a period of TP , which is set to one hour in our experiments. If
the energy consumption over this period exceeds the amount of

Table 1: Summary of symbols used in the optimization problem.

Symbol Description Symbol Description
TP Activity period � (t ) Objective function
Eb Energy budget ti Active time of DPi

ai
Recognition accuracy

of DPi
�

Accuracy-active time
trade-o� parameter

Po�
Power consumption

in the o� state Pi
Power consumption

of DPi

harvested energy and remaining battery level, the device powers
down and misses user activity. Hence, our goal is to maximize the
active time and the expected accuracy over a given period TP .

Suppose that the IoT device can operate at N distinct DPs. The
recognition accuracy achieved by design point i is denoted by ai ,
while the corresponding power consumption is given as Pi for
1  i  N . In addition to these design points, we denote the time
that the device remains o� as to� . Finally, the power consumption
during the o� period, which is due to the energy harvesting and
the battery charging circuitry, is denoted by Po� .

3.2 Optimization Problem Formulation
In a given activity period, the system may operate at di�erent de-
sign points, resulting in varying levels of active time and accuracy.
Let ti denote the amount of time DP i is utilized during TP . The
active time of the device is simply given by the sum of the active
times of each DP:

PN
i=1 ti . Likewise, the expected accuracy over

the activity period can be expressed as E{a} = 1
TP

PN
i=1 ai ti . The

expected accuracy is a useful metric that incorporates both active
time and accuracy, but it does not allow emphasis of one over the
other. Therefore, we de�ne a generalized cost function and solve
the following optimization problem:

maximize � (t ) =
1
TP

NX

i=1
a�i ti (1)

subject to to� +

NX

i=1
ti = TP (2)

and Po� to� +

NX

i=1
Pi ti  Eb (3)

ti � 0 0  i  N (4)
Objection function � (t ): The parameter � in Equation 1 enables
a smooth trade-o� between the active time and accuracy. When
� = 1, the objective function reduces to the expected accuracy.
Similarly, when � = 0, the objective function reduces to total active
time. In general, the objective function gives a higher weight to
the accuracy when � > 1, and to active time when � < 1.
Constraints: The constraint given in Equation 2 states that the
sum of the active times and o� period is equal to the activity
period TP . Similarly, Equation 3 speci�es the energy budget con-
straint. The left-hand side gives the sum of the energy consumed
in the o� state and active states. The energy budget Eb on the
right-hand side is determined by energy allocation techniques
using the expected amount of harvested energy and battery ca-
pacity [9]. Finally, Equation 4 ensures that all active times are
non-negative.



3.3 Runtime Optimization Algorithm
The solution to the optimization problem formulated in Section 3.2
gives the active times of each design point that maximize the
objective function in Equation 1. We must solve this problem
at runtime because the available energy budget is not known at
design time. Furthermore, the importance given to accuracy versus
active time (i.e., � ) may change due to user preferences.

The optimization objective and the constraints in Equations 1-
3 are linear in the decision variables ti and to� . Thus, we use
a procedure based on the simplex algorithm [17], as outlined in
Algorithm 1. The inputs are the energy budget Eb , Pareto-optimal
DPs, and the maximum number of iterations. The output is a
vector with the values of decision variables ti 1  i  N and to�
that maximize the objective. We start the optimization process by
constructing a tableau with the initial conditions. The �rst row
of the tableau describes the objective function, while the other
rows describe the constraints. In each iteration of the procedure,
we �nd the pivot column by �nding the column with the largest
value in the last row of the tableau. Using the pivot column, we
next �nd the pivot row in the tableau in Line 8 of the algorithm.
Then, we update the tableau using the pivot column and row. The
procedure terminates when all the entries in the last row are non-
positive. In this case, the pivot column is set as negative and the
optimal solution is returned. Our implementation takes 1.5 ms on
our prototype. Since the optimization algorithm runs every hour, it
takes a negligible portion of the activity period and energy budget.

Algorithm 1: The REAP Procedure
Input :Design points, energy budget Eb , max. iterations
Output : Time allocated to each design point

1 Initialize the tableau with objective function and constraints
2 Add slack variables for inequality constraints
3 while iter  max. iterations do
4 Pi�otCol  f indPi�otCol (tableau)
5 if Pi�otCol < 0 then
6 return Optimal Solution
7 end
8 Pi�otRow  f indPi�otRow (tableau, Pi�otCol )
9 Update the tableau using the Pi�otCol and Pi�otRow

10 end

4 HUMAN ACTIVITY RECOGNITION CASE STUDY
REAP is broadly applicable to energy-harvesting IoT devices that
operate under a �xed energy budget. To illustrate the optimization
results on a real example, we employ human activity recognition,
i.e., HAR, as a driver application [4].

4.1 Background and Baseline Implementation
There is a steady increase in the use of wearable and mobile
devices for the treatment of movement disorders and obesity-
related diseases [15]. This technology enables data collection while
the patients perform their daily activities. The �rst step in this
e�ort is to understand what activity the user is performing at a
given time. For example, the gait quality of the patient cannot be
checked unless we know the user is walking. Therefore, HAR on
mobile devices has recently attracted signi�cant attention [2].

Activity 
Classification

Transmit 
to phone

Feature
Generation

Sensor
Data

Figure 1: Overview of the human activity recognition application.

We implement a HAR application on a custom prototype based
on the TI-Sensortag IoT board [5] and a passive stretch sensor, as
outlined in Figure 1. It starts with sampling of the accelerometer
and stretch sensors. The streaming sensor data is processed using
the TI-CC2650 MCU to generate the feature vector. This feature
vector is then processed by a parameterized neural network to
infer the activity of the user. Finally, the inferred activity is trans-
mitted to a host device, such as a phone, using the Bluetooth Low
Energy (BLE) protocol.

The energy consumption and recognition accuracy of HAR de-
pends on the types of sensors used, active time of the sensors, the
type of features and the complexity of the classi�er. The left side
of Figure 2 shows the di�erent con�gurations available for the
sensors. For instance, we can use all three axes of the accelerom-
eter or turn o� selected axes to lower the energy consumption.
In the extreme case, we can turn o� the accelerometer to com-
pletely eliminate its energy consumption. Once we choose the
con�guration of the sensors, we can choose the sensing period,
i.e. the time for which sensors are active, for each activity dura-
tion. By default, the sensors are turned on during the full activity
duration. Turning o� the sensors early, such as after 50% of the
activity duration, provides energy savings at the cost of missed
data points, hence, accuracy. We can also control the complexity of
the features to trade o� accuracy and energy consumption. Com-
plex features, such as Fast Fourier Transform (FFT) and Discrete
Wavelet Transform (DWT), o�er higher accuracy at the expense
of higher energy consumption. In contrast, statistical features have
lower energy consumption, albeit with lower accuracy. Finally,
the structure and depth of the NN classi�er can be controlled to
obtain further energy-accuracy trade-o�, as illustrated in Figure 2.

We exploit this trade-o� between energy and accuracy to design
24 di�erent DPs implemented on the TI-Sensortag based prototype,
as described in the following section.

Sensors Computation

Accel. 
axes Stretch Sensing 

period (%) Signal features NN 
structure

X, Y, Z

Yes

No

100 DWT of accel.
4×12×7

4×8×7

4×7

X, Y 75 16-FFT of stretch
X or Y 50 Statistics of accel.

None 40 Statistics of stretch

A
ccuracy

Energy

Figure 2: The knobs used to obtain design points with di�er-
ent energy-accuracy trade-o�s.

4.2 Pareto-Optimal Design Points
We design a total of 24 DPs by exploiting the energy-accuracy
trade-o� illustrated in Figure 2. We start by using all the axes
of the accelerometer, generating complex features, and using an
NN classi�er with 2 hidden layers, which provide the highest
recognition accuracy. Then, we progressively reduce the number of
axes of the accelerometer and sensing period to reduce the energy
consumption of the DPs. We always use the passive stretch sensor
in our DPs, since it has a low energy consumption. There is a need



Table 2: Accuracy, execution time, power and energy consumption of di�erent human activity recognition application design points.

Design point description MCU exec. time distribution (ms) Per activity summary

DP
no. Features Accuracy

(%)
Accel.
features

Stretch
features

NN
classi�er Total

MCU
energy
(mJ)

Sensor
energy
(mJ)

Energy
(mJ)

Power
(mW)

1 Statistical acceleration,
16-FFT stretch 94 0.83 3.83 1.05 5.71 2.38 2.10 4.48 2.76

2 Statistical y-axis accel.,
16-FFT stretch 93 0.27 3.83 1.00 5.10 2.29 1.43 3.72 2.30

3 Statistical x- and y-axis
accel. (0.8 s), 16-FFT stretch 92 0.27 3.83 0.90 5.00 2.10 0.84 2.94 1.82

4 Statistical y-axis
accel. (0.6 s), 16-FFT stretch 90 0.14 3.83 1.00 4.97 2.09 0.57 2.66 1.64

5 16-FFT stretch 76 0.00 3.83 0.88 4.71 1.85 0.08 1.93 1.20
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Figure 3: The energy-accuracy trade-o� of various design points.
The dashed line connects the selected 5 design points.

for detailed accuracy and energy consumption characterization of
each DP to obtain the Pareto-optimal design points. To �nd the
accuracy of each design point, we performed experiments with
14 di�erent users. We use a total of 3553 activity windows from
the experiments and labeled each window with the corresponding
activity. Each DP is designed using 60% of this data for training,
20% for validation and the remaining 20% for testing.

All 24 design points are implemented on our prototype to pro-
�le the execution time and measure the power consumption using
the test pads on our prototype. Figure 3 shows the recognition
accuracy and energy per activity for each design point. As ex-
pected, each DP o�ers a unique energy-accuracy trade-o�. For
example, DP1 shows the highest accuracy with the highest energy
consumption while DP5 shows the lowest recognition accuracy
and energy consumption. However, some design points do not
o�er any bene�t in the energy-accuracy trade-o�. For example,
the design point marked with a red rectangle is dominated by DP2,
DP3, and DP4. Hence, we consider 5 Pareto-optimal design points
shown using black diamonds (DP1 to DP5) to validate the REAP
framework. Table 2 summarizes the details of the con�guration,
accuracy, execution time and energy for 5 Pareto-optimal DPs.
Design Point-1 (DP1): DP1 o�ers the highest accuracy by uti-
lizing all three axes of the accelerometer for the entire activity
window of 1.6 s. It uses 16-FFT of the stretch sensor data and
statistical features of the accelerometer, such as the mean and
standard deviations. DP1 has the highest accuracy of 94% at the
cost of highest energy consumption of 4.48 mJ per activity. The

Figure 4: Energy consumption distribution of DP1 over one-
hour activity period TP . Total energy consumption is 9.9 J.

energy breakdown in Figure 4 shows that about 47% of the en-
ergy consumption is due to the sensors. Thus, reducing the sensor
activity is an e�ective mechanism to save energy.
Design Point-2 (DP2): DP2 reduces the sensory energy by utiliz-
ing only the y-axis of the accelerometer along with the stretch
sensor. As depicted in Table 2, the energy consumption of the
sensor reduces from 2.10 mJ to 1.43 mJ. It achieves an accuracy of
93%, which is 1% lower than DP1.
Design Point-3 (DP3): As shown in Figure 2, reducing the sens-
ing period leads to a lower energy consumption. DP3 exploits this
by sampling the x- and y-axes of the accelerometer for 50% of each
activity window, i.e., 0.8 s. As a result, the energy consumption of
the sensor reduces to 0.84 mJ and the total energy consumption of
DP3 becomes 2.94 mJ per activity, while the recognition accuracy
drops to 92%.
Design Point-4 (DP4): DP4 is similar to DP3, except that the
sensing period of the accelerometer is further reduced to 40% (0.6
s). This reduces the energy consumption of DP4 to 2.66 mJ per
activity with recognition accuracy of 90%.
Design Point-5 (DP5): DP5 uses only the stretch sensor for data
features to minimize energy consumption. The energy consump-
tion reduces to 1.93 mJ per activity, the lowest energy consump-
tion among all our design points. However, it also has the lowest
recognition accuracy of 76%.
O�loading to a host: Finally, we note that the raw sensor data
can be directly sent to a host device, such as a smartphone or
server, for processing. To assess the viability of this alternative, we
implemented and measured its energy consumption. Sending the
raw sensor data over BLE consumes 5.5 mJ per activity without
any signi�cant increase in the recognition accuracy. In contrast,
transmitting just the recognized activity consumes only about 0.38
mJ per activity. Hence, o�oading is not an energy-e�cient choice.



5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup
IoT device: We use a custom prototype based on the TI-Sensortag
IoT platform [5] to implement the proposed design points. The
prototype consists of a TI CC2650 MCU, Invensense MPU-9250
motion sensor unit, a stretch sensor and energy harvesting cir-
cuitry. Sensors are sampled at 100 Hz and the MCU runs at 47 MHz
frequency. Power measurements from the prototype and data from
14 user subject studies are used to obtain the 24 design points.
Energy harvesting data: We use the solar radiation data mea-
sured by the NREL Solar Radiation Research Laboratory to ob-
tain the energy harvesting pro�le from January 2015 to October
2018 [18]. We use the pro�le for each hour within this data to
generate the energy budget. These energy budgets are then used
to evaluate REAP and the static design points in Section 5.4.

5.2 Expected Accuracy and Active Time Analysis
We �rst analyze the results of the proposed optimization approach
as a function of the allocated energy over one-hour activity period
TP . In the most energy-constrained scenario, the minimum energy
required to run the energy harvesting and monitoring circuitry is
0.18 J. In the opposite extreme, 9.9 J energy is su�cient to run DP1,
the most power-hungry design point, throughout TP . Therefore,
we sweep the allocated energy starting with 0.18 J, and �nd the
optimal active time of each DP using the proposed approach.

Figure 5(a) shows the expected accuracy (� = 1) as a function
of the energy budget. The expected accuracy of all the design
points approaches to zero when the energy budget is close to
0.18 J, since the device is almost always o�. As the energy budget
increases (Region 1), the accuracy of all DPs starts growing since
they can become active. None of the design points can a�ord
to stay 100% active under the energy budget in Region 1. We
observe that design point with the lowest energy consumption
(DP5) achieves signi�cantly higher accuracy because it can stay
in the active state much longer. REAP successfully matches or
exceeds the accuracy of DP5 under the most energy constrained
scenario. When the energy budget goes over 4.3 J, DP5 can remain
active throughout the activity period but its recognition accuracy
saturates. The other DPs bene�t from more energy in Region 2,
while REAP outperforms all by utilizing them optimally. At 5 J
energy budget, for example, REAP utilizes DP4 42% of the time
and DP5 for 58% of the time to optimize the expected accuracy.
Finally, all design points can remain active throughout the activity
period when the energy budget is larger than 9.9 J. Hence, their
accuracy saturates, and REAP reduces to DP1 beyond this point. In
summary, REAP consistently outperforms or matches the accuracy
of all individual DPs by utilizing multiple DPs optimally.

The active time of each DP normalized to REAP is plotted in
Figure 5(b). DP5 is expected to have the longest active time since it
has the least energy consumption. REAP successfully matches its
active time in all the regions. In Region 1, REAP also achieves 2.3⇥
larger active time compared to DP1 while providing signi�cantly
better accuracy. REAP consistently provides longer active times
compared to DP1, DP2, and DP3 until the energy budget becomes
large enough to sustain them throughout the activity period TP .

(a)

50

60

70

80

90

100

Ex
pe

ct
ed

 A
cc

ur
ac

y 
(%

)

REAP DP1 DP2 DP3 DP4 DP5

3 4 5 6 7 8 9 10
Allocated Energy (J)

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
ct

iv
e 

Ti
m

e

(b)

Region 1 Region 2

R
eg

io
n 

3

2.3×
1.4×

" = $

" = $

Figure 5: (a) Expected accuracy of REAP and design points.
(b) Active time of each DP normalized to REAP.
5.3 Accuracy – Active Time Trade-o� Analysis
Next, we analyze how REAP can exploit the trade-o� between the
accuracy and active time using the parameter � in objective func-
tion � (t ) in Equation 1. Since Section 5.2 considered the expected
accuracy (�= 1), this section considers � > 1, which gives more
emphasis for higher accuracy.

As a representative example, Figure 6 shows the comparison of
objective values of the 5 design points with REAP when � is set
to 2. REAP always achieves higher performance than the lowest
energy design DP5, since accuracy is given higher weight. The dif-
ference between REAP and DP5 increases further as alpha grows.
When the energy budget is less than 6 J, DP4 outperforms all the
other DPs, while REAP successfully matches it. In contrast, DP1,
DP2, and DP3 have a very low performance, since they are mostly
in the o� state. When the energy budget exceeds 6 J, there is su�-
cient energy to provide a higher accuracy, but DP4 cannot exploit
it. Hence, the higher accuracy design points become a�ordable
and start outperforming DP4 one by one. Notably, REAP consis-
tently outperforms or matches the static DPs, as we have also
observed in Figure 5. For example, DP3 is able to provide the
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Figure 6: The objective value � (t ) of static design points
(Equation 1) normalized to � (t ) of REAP with �= 2.



same performance as REAP when the energy budget is 6.5 J. As
the energy allocation increases beyond 6.5 J, REAP starts outper-
forming DP3 by optimally switching between DP1, DP2 and DP3.
This trend continues until the energy allocation reaches 9.9 J, be-
yond which there is su�cient energy to support DP1 alone. Thus,
REAP reduces to DP1 in this region. In summary, REAP exceeds
or matches the performance of any individual DP.

5.4 Case Study using Real Solar Energy Data
In this section, we evaluate REAP under real solar radiation data
measured by NREL Solar Radiation Research Laboratory at Golden,
Colorado. This data is used to calculate the amount of energy that
can be harvested by a �exible solar cell [19] on our prototype.
Using the harvested energy budget, we compare the performance
of REAP against the static DPs over an entire month. Figure 7
shows the performance of REAP normalized to DP1, DP3, and
DP5 as a function of � . Due to space limitation, we plot the DPs
with the highest performance (DP1), lowest energy (DP5), and
best trade-o� (DP3). Our gains with respect to DP2 and DP4 are
larger than that of DP3.

When active time is emphasized in the objection function (� =

0.5), REAP outperforms DP1 by 1.4⇥–2.2⇥ with an average im-
provement of 1.6⇥ across the month. DP1 su�ers the most in this
case as it has the largest energy consumption among all the DPs.
Since accuracy becomes more important with larger � , the im-
provement of REAP over DP1 reduces. However, we still obtain
1.1⇥–1.3⇥ improvement even for � = 8. We observe a similar
trend in improvements for REAP over DP3 as well. The improve-
ment is 1.1⇥–1.4⇥ for � = 0.5, and it gradually decreases with
larger � . The improvements over DP3 are relatively lower, since
DP3 o�ers the best trade-o� between energy consumption and
accuracy among our Pareto-optimal design points.

Finally, we see that the improvements over DP5 follow the op-
posite trend. When � = 0.5, DP5 is able to match the active time of
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Figure 7: Performance (i.e., � (t )) achieved by REAP normal-
ized to DP1, DP3, and DP5 during the month of September
2015. Error bars represent the range of improvement.

REAP due to its lower energy consumption. However, the perfor-
mance of DP5 diminishes severely with increasing � . In summary,
REAP can provide higher performance than any individual design
point under any optimization objective. If the user needs higher
accuracy, REAP can successfully adapt to new requirements. This
can be utilized by the IoT device to tune its performance as user
needs change.

6 CONCLUSIONS
This paper presented a runtime accuracy-active time optimiza-
tion technique for energy-constrained IoT devices. The proposed
approach dynamically chooses design points with di�erent energy-
accuracy trade-o�s to co-optimize the accuracy and active time
under energy budget constraints. To demonstrate the e�ectiveness
in a realistic setting, we implemented a human activity recognition
application on a custom IoT prototype. We presented 5 Pareto-
optimal design points with di�erent energy-accuracy trade-o�s.
We achieve 46% higher expected accuracy and 66% longer active
time compared to the highest performance design point, and 22%
to 29% higher accuracy than low-power design points without
sacri�cing the active time.
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