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We calculate six invariant terms of a gravitational field theory that nonlinearly realizes the conformal/
Poincaré quotient and reduce to the known conformal Galileons in the limit when only the conformal mode
is kept. Five of the six terms are regular coset terms, while the sixth is a Wess-Zumino (WZ) term that gives
the well-known gravitational action for the trace anomaly. The obtained terms can be embedded in a
quantum effective field theory (EFT) without spoiling their key features, although at a cost of certain fine-
tunings. The additional massive modes that appear in the EFT would have been troublesome, however, for
sub-Planckian curvatures their masses are (super)-Planckian, and therefore the respective states are outside
of the EFT regime. We discuss certain novel cosmological solution of this theory and their validity within
the EFT. Furthermore, we show that the obtained 4D terms, except the WZ term, can also be derived from
higher dimensional Lovelock terms by reducing the latter to the genuinely four-dimensional terms

according to a well-defined algorithm.
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I. INTRODUCTION AND SUMMARY

Theories that modify gravity in the infrared, such as
brane-induced gravity [1] or massive gravity [2,3], also
exhibit interesting ultraviolet properties as quantum effec-
tive field theories: the terms that amend the Einstein-Hilbert
(EH) action in these theories—e.g., the covariant graviton
mass term—turn out to contain special higher dimensional
(irrelevant) operators at a scale much below the Planck
mass; while the emergence of this strong interaction scale
is not unlike in massive non-Abelian gauge theories [4],
both the dynamics and open questions due to these higher
dimensional operators in massive gravity are considerably
richer, see, e.g., [5-15].

These irrelevant operators describe nonlinear inter-
actions of helicity-1 and helicity-0 components of a
massive spin-2 graviton. In particular, the helicity-0 inter-
actions are described by the so-called Galileon field
theories [8,16].

In the absence of gravity the Galileon is an interesting
effective field theory by its own. If one were to start with a
Galileon as a stand-alone scalar field theory without
gravity, then we know that massive gravity would provide
gravitational dressing of the Galileon. In the dressed theory
the Galileon appears as a gauge mode of a tensor field.
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In more physical terms, the Galileon particle is a Nambu-
Goldstone (NG) mode that is being absorbed as a longi-
tudinal mode by a massive spin-2 state." Then, nonlinear
interactions of the longitudinal model are restricted
severely by the requirement for the theory to propagate
only 5 physical degrees of freedom of a massive spin-2 on
an arbitrary background, and this requirement selects the
Galileons [2,3,18].

There is another interesting class of derivatively inter-
acting scalar field theories, the conformal Galileons [16].
They have been used in cosmology to describe alternatives
for the early Universe [19-21], where the gravity was
introduced through direct covariantization of the con-
formal Galileon action, with the total action containing
the physical conformal Galileon field alongside with a
massless graviton.

It seems natural to ask [22] whether there exists a
gravitational field theory where the conformal Gallileon
would be a NG mode (gauge mode), like the ordinary
Galileon is in massive gravity.

This question was addressed in [22] in 3D. The approach
used the observation that the conformal Galilleon terms
emerge as coset and Wess-Zumino (WZ) terms in a
nongravitational theory, with the conformal group sponta-
neously broken to the Poincaré subgroup [23]. To obtain
the gravitationally dressed conformal Galileons we con-
sidered a full gravitational conformal/Poincaré coset in 3D.

'Note that this is different from the direct covariantization of
the Galileon [17], where the Galileon is an independent physical
scalar degree of freedom coupled to gravity.

Published by the American Physical Society


https://orcid.org/0000-0002-1791-8876
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.024054&domain=pdf&date_stamp=2020-07-17
https://doi.org/10.1103/PhysRevD.102.024054
https://doi.org/10.1103/PhysRevD.102.024054
https://doi.org/10.1103/PhysRevD.102.024054
https://doi.org/10.1103/PhysRevD.102.024054
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

GREGORY GABADADZE and GIORGI TUKHASHVILI

PHYS. REV. D 102, 024054 (2020)

This led to the well-known action of New Massive Gravity
(NMG) [24] and its generalization [25], both obtained in a
local Weyl invariant form. The conformal Galileon itself
emerged as a NG mode of the broken scale invariance and
as a gauge mode of the local Weyl symmetry.

The next natural question appears to be this: what is a 4D
gravitational theory that contains conformal Galileons as
NG/gauge modes? This seems to be a worthy question to
address since massive gravity cannot give an answer to it,
and a 4D generalization of NMG is not known. Besides, the
sought theory might be expected to inherit some interesting
cosmological solutions of the conformal Galileon.

In the present work we will build such a 4D theory using
the coset construction. The coset will give us six special
terms: the first one is the Weyl invariant version of the
cosmological constant, the second is the Weyl invariant EH
term, the third one is the Gauss-Bonnet (GB) term, the
fourth is a special combination of invariant cubic curvature
terms, the fifth is a special combination of invariant quartic
curvature terms, and, the sixth one emerges as a WZ term
describing the action for the conformal anomaly [26]
(see also [27]). All these terms, except the fourth and fifth,
are well known. Their defining feature is that their
conformal mode exactly reproduces all the known con-
formal Galileons. Hence, the equations of motion of the
theory—once reduced to the conformal mode—are neces-
sarily of the second order. Since the conformal mode is
a scale factor in homogeneous and isotropic cosmology,
this theory gives novel, potentially viable cosmological
solutions, as we will show.

The obtained action should be viewed as part of a certain
quantum effective field theory (EFT) with an infinite
number of other terms. The EFT however, can only contain
additional terms proportional to at least one power of the
Weyl tensor to preserve the above described properties.
This requires fine-tunings of the counterterms in the
standard renormalization procedure. The obtained theory
would harbor additional degrees of freedom due to the
higher derivative terms, but their masses are at or above the
cutoff of EFT for reasonable values of other parameters.
Thus, the theory albeit being fine-tuned, is otherwise a
good EFT.

Last but not least, we show that five out of the six new
terms can be obtained from the higher dimensional
Lovelock terms via certain dimensional reduction across
various dimensions. Only the sixth, the WZ term, can not
be obtained through this procedure, since it is not Weyl
invariant.

Interestingly, D. Glavan and Chunshan Lin [28] pro-
posed a certain continuation of the 5D GB term to four-
dimensions. The obtained terms have their merits, however,
are not truly four dimensional [29,30]. Our procedure bears

2Fine—tuning without symmetry is viewed as a deficiency by
the authors.

a formal resemblance to that of [28], but is both concep-
tually and technically different: the reduction of the
Lovelock terms we perform gives local well-defined terms
in lower dimensions; for instance, the 5D GB term reduces
to a 3D local term of NMG, while the 6D Lovelock term to
a pure 4D term belonging to the coset, as shown in Sec. V.
Throughout the paper we use the following conven-
tions and notations: &§,.}" = §,! - - - §," & permutations. D
stands for both, the generator of dilatations and covariant
derivative. The Planck mass will be set to one, unless it is
shown explicitly. The sign, ~, means “equals up to a total
derivative.” The Riemann tensor is R’,,, = 9,1, +---.
Ri'=RJ'R}---R, ,and [R"] = RJ\R}? - - - R} The total
derivatives for the helicity-0 mode start with the terms
normalized as LI? = (9?x)" + - - -. The Schouten tensor is
normalized as follows: S} = -1 (R} — ﬁﬁ’ﬁ)

II. SO(n.2) BROKEN TO ISO (n-1.1)

Let us briefly summarize the coset formalism [31]
adopted for the conformal group [32,33]. One starts in n
space-time dimensions and postulates the conformal group
to be spontaneously broken down to its Poincaré subgroup.
Conformal algebra in n dimensions is realized by the
n(n+1)/2 Poincaré generators (P,,J,,), plus n gener-
ators of special conformal transformations, K,, plus one
generator of dilatations, D. These generators satisfy the
following standard commutation relations:

[P aD ] =P,

[D’Ka} :Kw (21)

[‘]ab’ KC] = nach - ’/[chav [Ka’ Pb] = 2Jab - 2’7abDa

(2.2)

[Juh’ Pc] = ”acph - ﬂthav

[Jabv ch] = Naedba = Mped ad + Mpad ac — Naal be- (23)

Since [K,, P,] x —21,,D not all the NG fields of the coset
are independent; the inverse Higgs constraint (IHC) [32]
will enable us to eliminate the NG’s related to broken K,’s
in favor of the NG related to broken D.

A. Flat space-time

As a warm-up we start with a flat space-time metric,
.- A convenient parametrization for the SO(n,2)/1SO
(n—1,1) coset element is given by

Y = e™PesKa, (2.4)

One can construct the Maurier-Cartan one-form as follows:

1
Y d+8P,)L = E°P, + 0} K, + wpD — Ew;lb]ab-
(2.5)
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Here 5 = 6;,dx", and the extra piece in the parenthesis on
the left-hand side (lhs) is introduced for further conven-
ience (it can be traded for an extra factor of ¢*'f« in the
coset element in an equivalent approach). The expressions
for the one forms in front of the generators on the rhs can be
calculated using conformal algebra given above,

E® = 759, (2.6)

wp = dr + 2E%¢,, (2.7)
0 = dE — EEY + Ewp, (2.8)
Wi = —2E*h 4 2EP & (2.9)

Here &% is a zero form Lorentz vector. We make a
distinction between the Latin and Greek indices in prepa-
ration to introduce a nontrivial metric for a general pseudo-
Riemannian space-time manifold; the Latin indices will be
used for tangent space-times.

B. Dynamical metric

To covariantize the coset in the first order formalism we
gauge the translations and rotations [34]. To gauge trans-
lations we simply replace 6¢ by the field ¢“ on the lhs of
(2.5), but for gauging rotations an extra piece is needed,

1
- <d +e‘P, — 20)‘”’](,1,) )

=E‘P,+ Q%K,+ QpD — %Qﬁbjab. (2.10)
A straightforward calculation leads to
E* = "¢, (2.11)
Qp = D + 2E%¢,, (2.12)
Q4 = D& — EE* + £9Qp, (2.13)
Qib = w® —2EEP 4 2EP &, (2.14)

Here the gauge field ¢ can be interpreted as an n-bein
and @ as a spin connection of pure spin-2 field, D
corresponds to covariant derivative with respect to @,
ie., D =d+ w. Since we are working with a dynamical
pseudo-Riemannian manifold it is natural to construct the
curvature two form,

R = dQjP + Q4 A QP

= R +2FE* A QL +2Q4 AEP,  (2.15)

R = dw™ + 0* A w,". (2.16)

In the next section we will use some of these elements, but
not all, to build an effective action.

II1. 4D CONFORMAL GALILEONS AND
THEIR EMBEDDING

The goal of this section is to show that the 4D conformal
Galileon describes a theory of the conformal mode of a
diffeomorphism invariant gravitational theory, made out of
the conformal/Poincaré coset and WZ terms.

A. Flat background metric

Reference [23] showed that the flat space conformal
Galileons can be constructed using the flat space con-
formal/Poincare coset. For convenience we will briefly
summarize this remarkable result below before introducing
the gravitational field in the next subsection.

Among the three one-forms in (2.6)—(2.8) only two carry
a single local Lorentz index. Therefore only those terms,
(2.6) and (2.8), can be used to construct the four-form
actions without invoking additional covariant derivatives,

Ay = / EapeaE® N EP N EC A EY, (3.1)
My

A = / EapeaE N EP N EC A 00, (3.2)
My

A = / EapedEC N 0% N 0% A 0, (3.3)
4

Ay = /M Eaped®y N 0% N 0% N 0. (3.4)
4

We left out €,,.4E* A E> A 0% A @, since it is a total
derivative.

In addition to the above coset terms, there are Wess-
Zumino terms [23]: they appear as pullbacks of certain five-
forms on a four-dimensional hypersurface. Straightforward
calculations show that only one of the possible five WZ
terms is independent of the coset terms already accounted
above. This independent term reads as follows:

A, = /M Eapea®@p N EC N EP A 0% A 0. (3.5)
5

The above expression for A, can be written more explicitly
as follows:

1 2
A, = / Eabed <—E“ AEP AdEEAdE—ZEE* N EP
" 2 3
1
A EC A dE? +Z.§4E“ AEP AESA Ed>. (3.6)

As already noted in the previous section, due to the
commutator [K,, Pp] o« —21,,D, not all the NG fields of
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the coset are independent; the inverse Higgs constraint
(IHC) [32] can be invoked to eliminate &%, related to broken
K,, in favor of a derivative of z, related to broken D.
Conventionally, this is done by imposing @wp = 0; in our
case, the IHC is a solution of the equations of motion for &
[35] that also satisfies wp = 0,

0:A, =0, n=0,1,2,3.4. (3.7)
Hence, we use IHC to express & = —1/2¢ 0¥z, and
substitute this into the actions A,, n = 1, 2, 3, 4, which then
reduce to the conformal Galileons,

Ay = / d*xe*,

A, z/d4xez”(8ﬂ)2,

(3.8)

(3.9)
Ay / d4x(87r)2(L1TD+%(87r)2>, (3.10)

Ay~ / d*xe=>"(0rn)? (LQTD - % (Om)2LTP + % (87:)4) ,

(3.11)

11
X <L3TD —3(0r)2LIP + 5(0m)*LTP —Z(an)ﬁ)
(3.12)

As already mentioned, L!P denote the total derivative
terms made of 7 with the convention that ([Jz)" enters with
the unit coefficient, e.g., LT? = Ox, LIP? = (On)* + ...,
etc. Moreover, each term in A,, contains 2n derivatives, but
the number of fields is different in each of them. Each A, is
invariant with respect to the conformal Galilean trans-
formations (consisting of the linearly realized Poincaré
transformations, and nonlinearly realized special conformal
transformations and dilatations of z). Equations of motion
for the Galileons have at most two time derivatives acting
per field.

B. Gravitational dressing of 4D
conformal Galileons

Any local flat-space CFT must be Weyl invariant after it
is embedded covariantly in curved space-time [36].3 Thus,
we expect gravitationally dressed conformal Galileons to

*One could of course break explicitly Weyl symmetry by
adding some breaking terms as long as they vanish in the flat
space limit; however, we will not be including such terms and will
preserve Weyl invariance in the classical action.

be Weyl invariant. The Weyl transformations of the relevant
fields are [22]

e’ — e%e", (3.13)
T—>n-—o, (3.14)

1
g4 gy Ee‘”@“a. (3.15)

Only three of the building blocks found in the previous
section are invariant under these transformations: the one
forms E¢ and Q, and the two-form R%.

It is instructive to recall how the construction works in a
simpler, 3D case [22]: the Weyl tensor vanishes identically
in 3D, and one can use the Schouten tensor, S¢, instead of
the curvature two-form, R?. Then, out of the three one-
forms E“, Qp, and S% one can build four three-form
actions for the 3D Galileons [22].

In 4D the construction is more involved, the Weyl tensor
is no longer zero, and one has to use the curvature two
form, R, as a building block. In addition, one can also
define the Weyl invariant curvature one-form, R¢, and a
zero-form, the Ricci scalar R, by using the interior product,

R =iy R = ™RV + 4Q% + 2Q¢E",

R = l.Ehl.EaRab = e_ZHR + IZQK (316)
Here E, = E40,, with E4E} = 8 and Qg = i, Q.

Let us now build the action. At the level of zero
derivatives we can write down only one term,

/M eapedEC N EY A EC A E4 (3.17)
4

This is the Weyl invariant version of the cosmological
constant. In the unitary gauge, where # = 0, and in the
metric formalism,

Ay = / &3 /3. (3.18)

At the level of two derivatives we can write down three
invariants, but only one of them is independent,

/ SadeRab AN EC A Ed. (319)
My

This is a Weyl invariant extension of the Einstein-Hilbert
(EH) term; Weyl symmetry can be fixed by the unitary
gauge, 7 = 0, reducing A, to the EH term,

A = / dx/GR, (3.20)
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(however one should keep in mind the Weyl anomaly,
which we will discuss at the end of this section).

Furthermore, at the level of four derivatives there are
three independent invariants,

/ &'adeRab AN RCd, / gabcdRa VAN Rb N EC A Ed,
My My

/ EapedE* N EP N EC A EYR.

4

Thus, at this level one can write a two parameter action
containing the above three terms. In general, the conformal
mode of this action will not be a Galileon, it would contain
other high derivative terms. To get the Galileon we would
need to tune the two free parameters to one another in such
a way that the term,

4/ Eapea% N EP N EC N E9Qg
My
= / eapeaE? N EP N E€ N EYQ%,
My

has a vanishing coefficient. This constraint reduces the
number of free parameters to one. Furthermore, using IHC
and adopting the unitary gauge, 7 = 0, we can get the
metric form of the sought action,

Ay = / A5 JGl(Ryupo R — 4R + R2)

+ aW,,,,WHee|. (3.21)
The term in the parenthesis is the GB term, it is a total
derivative in 4D, and its integral is the Euler characteristics
of the corresponding manifold. The one parameter freedom
in (3.21) enables us to add the square of the Weyl tensor
that has a trivial conformal structure, and therefore its
coefficient, «, is not fixed by our procedure.

At the level of six derivatives there are five independent
terms that by naive counting of derivatives and fields could
potentially reduce to conformal Galileons,

/ €adeRab AN RCdR, / EabcdRab AREA Rd,
M4 M4

/ Eaped R AR ARE A EY,

4

/ Eapca R A RPN EC N EYR,

4

/ EapcaE N EP N EC AN EIR3.
My

The action containing the above five terms has four
independent parameters, besides its overall multiplier.
Requiring that the action for the conformal mode reduces

to a conformal Galileon, we get two constraints on the four
parameters, ensuring that the following two terms have zero
coefficients:

/ gabch?( A\ QI;( N EC A EdQK,

4

/M Eapedl A EP A EC A EIQ2.
4

Moreover, there are terms containing two powers of the
curvature and two covariant derivatives—schematically
DRDTR and implying various contractions—which would
in general give more derivatives than the conformal
Galileons have; hence we do not include them by fine-
tuning their coefficients to zero. Furthermore, there are
other terms with two covariant derivatives and two powers
of curvature invariants arranged so that they would vanish if
restricted to the conformal mode, e.g., DWDR; such terms
would not modify the action for the conformal mode as a
stand alone field, and will be included in the full effective
theory. They would give new (super)-Planckian mass poles
in the propagators (see more discussions on this point in the
next section).

Thus, we end up with a two parameter action at the level
of six derivatives, which in the metric form and in the
unitary gauge can be written as follows:

A = / d*x\/g[~Rapu RP* R + 12R,,, P RGRY + 24[R’

— 24R[R*] 4 4R® + 1 W, WPH R

+ oW, P RGRY). (3.22)
As before, the terms proportional to the Weyl tensor are
not uniquely determined by our procedure; hence f; and 3,
are arbitrary real parameters. This gives a gravitationally
dressed action for the A; conformal Galileon.

Last but not least, at the level of eight derivatives, there
are six independent invariants which by naive counting of
derivatives and fields could potentially reduce to conformal
Galileons,

/ 8adeRab A RC‘!RZ, / SabcdRab A REA RdR,
My My
/ Eapca R AR ARE AR,
My
/ 8abcdRa AN Rb AREA EdR,
My
/ Eaped R N RPN EC N ETR?,
My

/ EapcaE® N EP N EC A EIRY,
My
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requiring five independent parameters in the initial action.
In addition to these terms there are ones containing three
powers of the curvature and two powers of a covariant
derivative, or two powers of the curvature and four powers
of the covariant derivative. Some of these terms will be
nonzero in the conformal limit (i.e., in the limit when only
the conformal mode is kept) and would have more
derivatives than present in the conformal Galileons—we
do not include such terms by tuning their coefficients to
zero. We will, however, include in the full effective
Lagrangian the terms that vanish when restricted to the
conformal mode. Therefore, the full Lagrangian would
still reduce to the conformal Galileon Lagrangian in the
conformal limit (see next section).

Furthermore, we impose three constraints on the param-
eters to guarantee the absence of following terms:

/ Eapeay N Qb A Q6 A EIQy,

4

/ Eapea N Qb A EC A EQZ,

4

/ EapcaQ N EP N EC N EQY,

4
and as a result end up with a two parameter action

reproducing a conformal Galileon. In the unitary gauge
the action reads

1
Ay = / d*x\/g (—R RAPPR* — 4R, P RGR4R — 6[R"]

6 HUPOC
212 8 3 1 4 06 P2
+ 3[R?] +§[R }R—ﬁR + 71 Wpe WHP°R
+ 7 WM,,"/’R’;R;.R> ) (3.23)

As before, there are two arbitrary real parameters, y; and y,
not fixed by our procedure.
To summarize so far the total coset action is

Acoset = oo + c1 Ay + Ay + c3A;3 + g Ay, (3.24)
with ¢’s being real dimensionful coefficients, ¢, setting the
vacuum energy density and c¢; defining the Planck scale
square. The initial Weyl invariance of the action, which so
far was gauge fixed for simplicity, can easily be restored by
a substitution, g — ge>*. While in the classical theory such
field transformations are harmless, this is not the case
in the full quantum theory due to the well-known scale
anomaly.

In that regard we note that, (3.21) is not the only term

in the second order in curvature; one can write a Wess-
Zumino term,

.A;VZ = / gabchD AN Rab AN RCd
Ms

32
= / Eabed (8E“ A EP A DE A DE — ?sza
M,

A EP N ECADE+AEEC N EP A EC A E?
+8E® A DEP A R4 — 4£2E* A EP A R?
+ 7R? A R““’). (3.25)
The equation of motion for & gives IHC; substituting it into
AYZ we recover the effective action for the scale anomaly
derived in [26] (see also [27], where the a-theorem has been

proven and [30,37], where it was derived from a different
approach),

AV ~ / d*x\/q [-;;(RW,,RWM —4[R*] + R?)

1
+ 40t w0 n <R/w - EQW/R) + 4(0r)*0x + 2(0n)*|.
(3.26)

The latter action, unlike A..(ge>*), is not Weyl invariant.
Its Weyl transformation gives a functional the variation of
which, taken at 7 = 0, gives the trace anomaly.4

Thus, the total action of the theory is A, in which the =
field should be restored via the substitution, g — ge?”, plus
the anomalous action AYZ,

Atotal = -Acoset(gezjr) + CWZAEVZ(Q’ ”)’ (327)

with A defined in (3.24). The value of the constant ¢y,
is in general determined by the number of degrees of
freedom coupled to gravity, and since we have not
introduced any matter degrees of freedom in our case
it’s only z that contributes to cy,. As noted above, the 7
field can no longer be gauged away, because of the
anomalous term. If one were to introduce additional fields
in the above action, they would couple to gravity via the
Weyl invariant couplings; i.e., they would couple to ge>”.
The flat space conformal Gallileons can be recovered
from Ay, via the substitution g, =7,: the term
Acoser(7€77) produces a weighted sum of the Ag, A;, As,
A, conformal Galileons of the previous subsection, while
AYZ(n, 7) yields the A, conformal Galileon, which was
obtained as a WZ term in the flat space case [23].

“We note that the analogous considerations in 2D would have
given a 3D WZ term,

/ £,y Qp A RD / Px\/G-nR — (97)?),
Ms

which reduces to the 2D Polyakov action.
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IV. EFFECTIVE FIELD THEORY
AND COSMOLOGY

The key property of the action (3.27) is that the equation
of motion—when restricted to the conformal mode—
has no more than two derivatives acting on each field,
and hence, no new degrees of freedom emerge in the
conformal sector.

This is important for cosmology, where the background
evolution of a homogeneous and isotropic universe is
described by the conformal mode, the scale factor.

However, the existence of the higher powers of the
curvatures in the action suggests that the tensor mode
propagator will in general have additional poles on curved
backgrounds. Such poles, in a fundamentally Lorentz
invariant theory, describe ghosts that invalidate the theory,
unless the mass of these modes are above the cutoff of the
effective field theory (EFT) that (3.27) is part of.

Indeed, the potentially problematic modes in (3.27)
have in general a super-Planckian masses as long as
the background curvatures are sub-Planckian [this fea-
ture is not necessarily specific to the choice of the
coefficients between the various terms in (3.27)]. To see
this, consider perturbations %, = g,, — g5, where ¢’
stands for the background metric. For simplicity, we will
focus only on the R’ terms, ignore all the tensorial
indices, and assume that the background curvature, R,
is constant. Then, in the leading order the Lagrangian
for small perturbations within any locally flat small
neighborhood of a space-time point would take the
following schematic form:

cR
L = ho*h + M—f (h&*h + R,hO*h).
P

(4.1)

The inverse of the propagator for 4 would read, p?(1 +
(cR;/M3) — (cR,p*/M3})), which guarantees a massless
and massive poles in the propagator. In a fundamentally
Lorentz invariant theory that we are dealing with the
massive pole is necessarily a ghost if the massless one is
not. For reasonable values of the parameter ¢ ~ O(1),
and for a sub-Planckian background, R, < M2, the

ghost mass is super-Planckian, My, ~ M, (M}/cR,),
and this is outside the effective field theory regime.

On the other hand, if the action (3.27) is just part of an
EFT with an infinite number of other terms of growing
dimensionality, then the additional terms may spoil the key
property of the conformal mode in (3.27)—the facts that
this mode is a conformal Galileon. There is a way to deal
with this issue as discussed below.

Since the higher order conformal Galileons do not
exist, the conformal structure would be maintained only
if all the additional terms in EFT vanish for the
conformal mode. One way to realize this is to have
all the higher order terms be proportional to at least one

power of the Weyl tensor.” In this case, the total effective
field theory action would take the form,

Agrr = Ao + / d*x\/5 Z Z Z bW D'R™,

k=1 =0 m=1
(4.2)

where by, are some coefficients, § = ge?*, W* denotes
powers of the Weyl tensor, and R and D denote
respectively the Riemann tensor and covariant derivative
for g, with all possible contractions done by the inverse
of the metric g. Terms such as WD?R would introduce
new poles on the flat space, but their masses are (super)-
Planckian for reasonable values of the parameters in front
of such terms.

In each order of EFT in (4.2) there could in general be
other terms with more derivatives, such as, RD*R, or
R2D2R, and so on; the coefficients of such terms have
been set to zero to guarantee the properties of the conformal
sector that we desired. We are not aware of a universal
principle that would guarantee such cancellations in the full
quantum theory. Such a principle could have emerged due
to a theory that would complete the present one at and
above the Planck scale. Until that theory is known, our
procedure should be regarded as a order-by-order fine-
tuning of the coefficients of counterterms to render the
renormalized EFT action free of the higher derivative terms,
when it reduced to the theory of the conformal mode only.

The conformal mode is not a physical propagating mode
in the EH action. Moreover, its kinetic term has a ghost
sign. Nevertheless, it is the mode that describes evolution
of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe. Making sure that no extra derivatives emerge
in this sector, i.e., that no Ostrogradski instabilities appear
for the conformal mode, is the first stepping stone toward a
potentially viable cosmology in any theory with additional
terms in the action.

Equipped with the above knowledge we can briefly
consider cosmology in a minisuperspace approximation
simply to see what novel features might be introduced by
the higher curvature terms, and how those novelties play
out in the context of EFT. In what follows in this section we
set 7 = 0 as an ansatz, and assume the FLRW metric,

FLRW [kt ¥ — 1 dr a’(1) dr — (D2 do>
g/“/ Xraxw = nz—([) 1~ — m r-—a (t)r
— a®(t)r? sin® Gdg¢?. (4.3)

These substitutions nullify all the terms in the EFT action
(4.2) that are proportional to the Weyl tensor. Furthermore,

>The trace of the variation of the Weyl tensor is proportional
to the Weyl tensor, so one power on W is already acceptable for
our goals.
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all the curvature invariants are straightforwardly express-
ible in terms of the scale factor, a, and the inverse lapse, n.
What remains of the full EFT action (4.2) is the following
expression:

1

FLRW
R —
( 24p

FLRW) _

12 d*x g g -A3(9FLRW)

_ L FLRW
45, A", (44)

where we also set the cosmological constant to zero, and
renamed the arbitrary coefficients in front of the cubic and
quartic order terms as f# and y. The respective minisuper-
space Lagrangian reads (up to a total derivative)

Via o _ oy L 2:213
2L(k n*a®) a3nﬂ(k+na)

6 2 1 1
+— | K*@®n +Zka*n® + -a®n® | + —— (k + n*a®)*
nasy

ey 3 5
8 (13,2 123:4 Sy 5.6, 1 7.8

—— | Kna’> + kn’a* + Zkn’d® +on'd® )| (4.5)
a’y 5 7

Here V stands for the volume of the space: V = 2z for
k=1, V=00 for k=0 and kK = —1. By construction,
there are no second and higher time derivatives of the scale
factor appearing in the Lagrangian above. Furthermore, let
us introduce the notations,

y=H>+ (4.6)

a*(t)’

Then, the modified Friedmann equation for an empty
space-time reads

1 1
y——y3+;y4:O. (4.7)

p

The cubic and quartic terms in y are suppressed by the
respective powers of the cutoff scale (Planck scale). Thus,
these terms would modify conventional solutions of the
ordinary Friedmann equation by small corrections, as long
as the physical scales involved in those solution are
significantly lower than the Planck mass scale.

Note however that there are new solutions to the
modified Friedmann equation (4.7) which do not exist
for the conventional equation. Such solutions could be
looked for by finding the zeros of the spacial quartic
polynomial in (4.7). To see explicitly some of these
solutions let us drop the quartic term in y by taking the
limit, y — oo. Then, putting k = 1 and n» = 1 one finds a
Starobinski-like solution for a closed universe, which in
this case describes a contracting and then reexpanding
universe,

o (4.8)

a(t) = Lcosh (B'/41).
p

There is a similar solution for a spatially flat, as well as
open universes, all three representing the de Sitter space-
time. Furthermore, there is also a static solution corre-
sponding to the negative root of the quadratic equation,
y> =, with an open spatial section, k = —1, and a
constant scale factor a = 1/8'/*. Weather any of these
solutions can be stable with respect to small perturbations is
an interesting open question. We only point out that all
these solutions invoke curvatures at the cutoff of EFT and
are likely to be strongly modified if one were to include
other derivative terms in the same order that do not reduce
to conformal Galileons. Therefore, the above solutions, and
their extensions, require certain fine-tunings of the param-
eters, as it was done in (4.2).

V. LOWER DIMENSIONAL DESCENDANTS
OF LOVELOCKS

In this section we will rederive the coset action from
the higher dimensional Lovelock terms, by using certain
identities [38,39]. This method allows us to see familiar
results from a different perspective.

A. 3D example

In [22] we showed that 3D conformal Galileon could be
viewed as the Stiickelberg field restoring the local Weyl
symmetry in NMG [24], and its extension [25]. Here, we
will obtain the same 3D action by dimensionally reducing
higher dimensional Lovelock terms. The next subsection
will deal with the 4D case.

Let us begin with the following four Lovelock expres-
sions in space-time of dimensionality n > 3, which will be
relevant for our construction in 3D,

ASD - _/ €a1~~~a,,Eal A N ES (5'1)
Mn
AELD = _/ gal.-.anEul Ao N Ef2 A Ran—lun, (52)
MH
AgD - _/ ‘Eal"'anE'a1 A A Ea"74

A Ran,3a,,,2 A Rdnq“n’ (53)

Ang = _/ £a1~..a,1Eu' A oo A E9n6 A RAn-59n-4
A Ran—San—Z A Ran—lan_ (54)

These also happen to be the terms of the conformal/
Poincaré coset; hence they realize nonlinearly the special
conformal and dilatation symmetries. Moreover, all of these
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terms have the desired conformal structure; i.e., the con-
formal mode is a conformal Galileon in n dimensional
space-time. The THC is a solution to the corresponding
equations of motion, so we will use & = —1/2e™"0*x. It
is convenient to work in the unitary gauge (z = 0), and
if needed, one can recover the 7 interactions by making a
field redefinition g,, — ¢*"g,, in the unitary gauge
classical action.]

Let us rewrite the above expressions in the metric form,

AP = g, (5.5)

1 .
AP = / d"x\/g[5 (n-2) !55;5§RVI”zﬂlﬂz], (5.6)

1
AgD - / dnx\/.a |:? (n a 4) !5¢"‘1"'ij”]UzlllﬂzRy3y4ﬂ3"4] ’

(5.7)
AP = /d”x\/ﬁ
3
1
X {? (n—06) !(%'f...fg’R”‘”2”]”2R”3”4M3”4R”5”6M5ﬂ6] .
(5.8)

Note that AP and A'P are both regular for n = 3, the
problems arise with A5” and A%P, both of which contain
products oo x 0. The infinity comes from the factorial and
zero from the generalized Kronecker symbol (the latter is
zero in n = 3 because it contains more than three anti-
symmetrised indices). One needs to regularize the above
expressions to make sense of them. Regularization of A3P
is relatively easy, one can assume that for n < 4 the Weyl
tensor W*,; vanishes identically; obviously, the Weyl
tensor vanishes for n = 3, but the assumption is that it
also vanishes for 3 < n < 4 as we analytically continue the
parameter n. This enables us to express the Riemann tensor
for 3 <n < 4 as follows:

1
R oy = —— (Radfy — RS, + GaRjy = 5R:)
1

~ T2 =T R — ).

(5.9)

‘We can now substitute this relation into the Lovelock action
(5.7) to express the latter as follows:

(5.10)

This expression is regular for n =3, and upon this
substitution gives the action of NMG [24].

The above procedure—referred as the method of higher
dimensional reduction (HDR)—defines formal analytic

continuation of Lovelocks from n > 3, down to n = 3.
We will use now HDR for other terms.’

To regularize A% we have to take more steps down the
ladder of dimensionalities. First we regularize (5.8) in 5D,
then in 4D, and only after in 3D; hence we have a cascade
of regularizations,

6D — 5D — 4D — 3D.

The first step in this cascade consists of adopting the
following identity for n < 6:

Fsewe, Wb, Wt =0, (5.11)

HsHe —

As soon as this is used, the action (5.8) for Ang takes
the form,

/d”x\/ﬁ (r:l—_52)‘ {3(11;1—12)

,  24n
+ 24R,, Ry, Ry + 3 R, RGRY

R 5" Rﬂy"’ﬁ R

n_
len(n—1) .. 12(n* —2n*+ 6n—38)
2 [R]_ 2
(n—=2) (n=1)(n-2)
n* —=3n3 4+ 1012 +4n - 24R3
(n=1)*(n—-2)? ’

[R?IR

which is now regular in 5D. The next step is to descend to
4D. The expression in the square brackets is zero in n = 4,
while the overall multiplier is diverging; hence further
regularization is needed. The latter can be achieved by
means of the following identity:

R;;(Svipﬂwwlpaﬁwawﬁ =R/ -0=0.

aprs (5.12)

Using the above, the regularized A%P for n <5 can be
written as follows:

u " (n—4)! 3 aBuv
A3D:/dx\/§ p—) —n_lRaﬁWRﬂﬂR
24 16n
——R,"RhRY R3
T2 ﬁ+(n—2)2[ ]
12n? 2 2
_ n IRIR+ n(n*+n+2) R

(n— 1(n—2)?
(5.13)

(n—1D)(n-2)

®An equivalent method of regularization in this case is to
subtract the term &, JiW*2,  W¥, - from the original n
dimensional action with an appropriate coefficient to eliminate
the maximal tensorial structure (in this case RaﬂwR"/’””). The two
methods are equivalent. It turns out that in more complicated
cases the latter method is more convenient; also the subtraction
does explain the emergence of an additional massive spin-2 mode
in the lower dimensional actions, while this mode does not exist
in the starting Lovelock action.
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It is straightforward to check that the action is regular for
n = 4. For the last step of the cascade we use (5.9) to get a
perfectly regular expression for n < 4,

- ot

n?+4n -4
(n—1)?

12
”1 [R?|R +

X {16[R3] - R3|.
(5.14)

Substituting » = 3 in the above expression we get the
action that extends NMG to the cubic order [25]. The fact
that there is a connection between the Lovelock terms and
NMG was already shown in Ref. [25] on the basis of
equivalence between their dual CFTs (see also [40,41]).
Our method is complementary.

B. 4D theory

By now one should perhaps expect that the gravitation-
ally dressed conformal Galileons are certain descendants of
higher dimensional Lovelock terms. This point of view will
be reinforced below by obtaining the coset action of Sec. I11
from the Lovelock terms, using the method of HDR.

Let us first briefly summarize the rules of HDR:

(i) To descend from m dimensions down to (m — 1)
dimensions we use identities involving the symbol
8,1 contracted with curvature tensors.

(i) Each identity must involve at least one Weyl tensor;
otherwise the identity should not use the Riemann
tensor.

At every step there are a finite number of the
identities to be used, and usually one needs all
of them.

After using the identities one gets (m — 1) x LK, where L*
is the analogue of the kth order Lovelock in (m — 1) < 2k
dimensions (i.e., it has the same conformal structure as the
Lovelock). If the rules described above are not sufficient
to extract the factor of (m — 1), then the corresponding
Lovelock does not have an analogue in (m — 1) dimensions
(i.e., there are no terms with the conformal structure of the
Lovelock). Note that this definition of an “analogue” leaves
aroom for degeneracy (as we will see below), but the terms
we get through the above described procedure are guar-
anteed to be the most general ones.

Let us now apply HDR in 4D. Among the terms (5.5)—
(5.8) only A’3’D needs regularization in 4D; however, this
was already done in (5.13) en route to the 3D expression.
Hence, substituting n = 4 into (5.13) we get

(iii)

1
A = / d'x\/g5 (_RaﬁuvRaﬁWR + 12R,, P RaR;

+ 16[R?] — 16[R2]R+29—2R3>.

This action coincides with A5 that we’ve derived in (3.22)
by using the coset construction.”

Let us now see how A, of (3.23) comes along in this
formalism. For this we look at an eight derivative Lovelock
term in n dimensions,

_AZD = _/ €a1~--anEal Ao A EW-8 A Rn-1n-6
M

n

A Rn-5dn-4 A Rn-34n-2 A PR 4n-1n (515)

In the unitary gauge and in the metric formulation the above
expression becomes

1
AP = /d”xx/gﬁ(” — )G LR,

V3ly VUslg 1%
xR ﬂ3M4R HsHe R

(5.16)

g
HiHg*®

Regularization of this expression is a tedious task. We will
not fully describe the process but rather give the necessary
identities for each step of HDR,

8D - 7D &0 Wy W W50 s WP
7D — 6D SLIWI, W, W, Ry =0,
6D — 5D LW, W, W, R =0,
51;11566 Wylbzﬂlﬂz Wy3b4ll3ﬂ4RD5ﬂ5 Rl/s% = 0’
5%11555 Wylbzﬂ]ﬂz WD3U4I¢3/¢4RD5145R = 0’
6/:11555 WUIDZMMZRDSMRMMRDSMS =0.

07

Haby —

5D — 4D

The result of this lengthy procedure is the regularized
action valid for 4 <n < 5,

n—4)!
A= [

n
x [6(n —2)%(n - 1)R,,,,R*’°R?

—96(n—2)(n— 1)*R,,PR4RLR — 96(n — 1)[R*]
+48(n —1)*[R?*)? + 64(n —2)(n — 1)?[R*|R
—24n(n —4)(n - 1)[R*R?

+ (n® + 1102 = 78n + 56)RY). (5.17)

Substituting n = 4 into the above expression we get the 4D
action in the unitary gauge,

Tt corresponds to the case of f; = f, = 0, but the latter terms
can always be added since they do not affect the conformal
structure and are part of the degeneracy we mentioned in the
previous paragraph.
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1
AP = / d*x\/g (6 RypoR¥“P7R* — 4R, P RGRSR

—6[R*) + 3[R +§[R3]R_iR4>. (5.18)

3 27
This coincides with A, in (3.23), with y; = y, = 0. This
completes the derivation of all the 4D coset terms from the
higher dimensional Lovelock terms.
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