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We calculate six invariant terms of a gravitational field theory that nonlinearly realizes the conformal/
Poincaré quotient and reduce to the known conformal Galileons in the limit when only the conformal mode
is kept. Five of the six terms are regular coset terms, while the sixth is a Wess-Zumino (WZ) term that gives
the well-known gravitational action for the trace anomaly. The obtained terms can be embedded in a
quantum effective field theory (EFT) without spoiling their key features, although at a cost of certain fine-
tunings. The additional massive modes that appear in the EFTwould have been troublesome, however, for
sub-Planckian curvatures their masses are (super)-Planckian, and therefore the respective states are outside
of the EFT regime. We discuss certain novel cosmological solution of this theory and their validity within
the EFT. Furthermore, we show that the obtained 4D terms, except the WZ term, can also be derived from
higher dimensional Lovelock terms by reducing the latter to the genuinely four-dimensional terms
according to a well-defined algorithm.
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I. INTRODUCTION AND SUMMARY

Theories that modify gravity in the infrared, such as
brane-induced gravity [1] or massive gravity [2,3], also
exhibit interesting ultraviolet properties as quantum effec-
tive field theories: the terms that amend the Einstein-Hilbert
(EH) action in these theories—e.g., the covariant graviton
mass term—turn out to contain special higher dimensional
(irrelevant) operators at a scale much below the Planck
mass; while the emergence of this strong interaction scale
is not unlike in massive non-Abelian gauge theories [4],
both the dynamics and open questions due to these higher
dimensional operators in massive gravity are considerably
richer, see, e.g., [5–15].
These irrelevant operators describe nonlinear inter-

actions of helicity-1 and helicity-0 components of a
massive spin-2 graviton. In particular, the helicity-0 inter-
actions are described by the so-called Galileon field
theories [8,16].
In the absence of gravity the Galileon is an interesting

effective field theory by its own. If one were to start with a
Galileon as a stand-alone scalar field theory without
gravity, then we know that massive gravity would provide
gravitational dressing of the Galileon. In the dressed theory
the Galileon appears as a gauge mode of a tensor field.

In more physical terms, the Galileon particle is a Nambu-
Goldstone (NG) mode that is being absorbed as a longi-
tudinal mode by a massive spin-2 state.1 Then, nonlinear
interactions of the longitudinal model are restricted
severely by the requirement for the theory to propagate
only 5 physical degrees of freedom of a massive spin-2 on
an arbitrary background, and this requirement selects the
Galileons [2,3,18].
There is another interesting class of derivatively inter-

acting scalar field theories, the conformal Galileons [16].
They have been used in cosmology to describe alternatives
for the early Universe [19–21], where the gravity was
introduced through direct covariantization of the con-
formal Galileon action, with the total action containing
the physical conformal Galileon field alongside with a
massless graviton.
It seems natural to ask [22] whether there exists a

gravitational field theory where the conformal Gallileon
would be a NG mode (gauge mode), like the ordinary
Galileon is in massive gravity.
This question was addressed in [22] in 3D. The approach

used the observation that the conformal Galilleon terms
emerge as coset and Wess-Zumino (WZ) terms in a
nongravitational theory, with the conformal group sponta-
neously broken to the Poincaré subgroup [23]. To obtain
the gravitationally dressed conformal Galileons we con-
sidered a full gravitational conformal/Poincaré coset in 3D.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Note that this is different from the direct covariantization of
the Galileon [17], where the Galileon is an independent physical
scalar degree of freedom coupled to gravity.

PHYSICAL REVIEW D 102, 024054 (2020)

2470-0010=2020=102(2)=024054(12) 024054-1 Published by the American Physical Society

https://orcid.org/0000-0002-1791-8876
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.024054&domain=pdf&date_stamp=2020-07-17
https://doi.org/10.1103/PhysRevD.102.024054
https://doi.org/10.1103/PhysRevD.102.024054
https://doi.org/10.1103/PhysRevD.102.024054
https://doi.org/10.1103/PhysRevD.102.024054
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


This led to the well-known action of New Massive Gravity
(NMG) [24] and its generalization [25], both obtained in a
local Weyl invariant form. The conformal Galileon itself
emerged as a NG mode of the broken scale invariance and
as a gauge mode of the local Weyl symmetry.
The next natural question appears to be this: what is a 4D

gravitational theory that contains conformal Galileons as
NG/gauge modes? This seems to be a worthy question to
address since massive gravity cannot give an answer to it,
and a 4D generalization of NMG is not known. Besides, the
sought theory might be expected to inherit some interesting
cosmological solutions of the conformal Galileon.
In the present work we will build such a 4D theory using

the coset construction. The coset will give us six special
terms: the first one is the Weyl invariant version of the
cosmological constant, the second is the Weyl invariant EH
term, the third one is the Gauss-Bonnet (GB) term, the
fourth is a special combination of invariant cubic curvature
terms, the fifth is a special combination of invariant quartic
curvature terms, and, the sixth one emerges as a WZ term
describing the action for the conformal anomaly [26]
(see also [27]). All these terms, except the fourth and fifth,
are well known. Their defining feature is that their
conformal mode exactly reproduces all the known con-
formal Galileons. Hence, the equations of motion of the
theory—once reduced to the conformal mode—are neces-
sarily of the second order. Since the conformal mode is
a scale factor in homogeneous and isotropic cosmology,
this theory gives novel, potentially viable cosmological
solutions, as we will show.
The obtained action should be viewed as part of a certain

quantum effective field theory (EFT) with an infinite
number of other terms. The EFT however, can only contain
additional terms proportional to at least one power of the
Weyl tensor to preserve the above described properties.
This requires fine-tunings of the counterterms in the
standard renormalization procedure. The obtained theory
would harbor additional degrees of freedom due to the
higher derivative terms, but their masses are at or above the
cutoff of EFT for reasonable values of other parameters.
Thus, the theory albeit being fine-tuned, is otherwise a
good EFT.2

Last but not least, we show that five out of the six new
terms can be obtained from the higher dimensional
Lovelock terms via certain dimensional reduction across
various dimensions. Only the sixth, the WZ term, can not
be obtained through this procedure, since it is not Weyl
invariant.
Interestingly, D. Glavan and Chunshan Lin [28] pro-

posed a certain continuation of the 5D GB term to four-
dimensions. The obtained terms have their merits, however,
are not truly four dimensional [29,30]. Our procedure bears

a formal resemblance to that of [28], but is both concep-
tually and technically different: the reduction of the
Lovelock terms we perform gives local well-defined terms
in lower dimensions; for instance, the 5D GB term reduces
to a 3D local term of NMG, while the 6D Lovelock term to
a pure 4D term belonging to the coset, as shown in Sec. V.
Throughout the paper we use the following conven-

tions and notations: δμ1���μnν1���νn ¼ δμ1ν1 � � � δμnνn � permutations. D
stands for both, the generator of dilatations and covariant
derivative. The Planck mass will be set to one, unless it is
shown explicitly. The sign, ≃, means “equals up to a total
derivative.” The Riemann tensor is Rρ

μσν ¼ ∂σΓ
ρ
μν þ � � �.

Rnþ1
μν ≡ Rρ1

μ R
ρ2
ρ1 � � �Rρnν and ½Rn�≡ Rρ1

ρ2R
ρ2
ρ3 � � �Rρn

ρ1 . The total
derivatives for the helicity-0 mode start with the terms
normalized as LTD

n ¼ ð∂2πÞn þ � � �. The Schouten tensor is
normalized as follows: Sμν ¼ 1

n−2 ðRμ
ν − R

2ðn−1Þ δ
μ
νÞ.

II. SO(n;2) BROKEN TO ISO (n− 1;1)
Let us briefly summarize the coset formalism [31]

adopted for the conformal group [32,33]. One starts in n
space-time dimensions and postulates the conformal group
to be spontaneously broken down to its Poincaré subgroup.
Conformal algebra in n dimensions is realized by the
nðnþ 1Þ=2 Poincaré generators ðPa; JabÞ, plus n gener-
ators of special conformal transformations, Ka, plus one
generator of dilatations, D. These generators satisfy the
following standard commutation relations:

½Pa;D� ¼ Pa; ½D;Ka� ¼ Ka; ð2:1Þ
½Jab; Kc� ¼ ηacKb − ηbcKa; ½Ka; Pb� ¼ 2Jab − 2ηabD;

ð2:2Þ
½Jab; Pc� ¼ ηacPb − ηbcPa;

½Jab; Jcd� ¼ ηacJbd − ηbcJad þ ηbdJac − ηadJbc: ð2:3Þ
Since ½Ka; Pb� ∝ −2ηabD not all the NG fields of the coset
are independent; the inverse Higgs constraint (IHC) [32]
will enable us to eliminate the NG’s related to broken Ka’s
in favor of the NG related to broken D.

A. Flat space-time

As a warm-up we start with a flat space-time metric,
ημν. A convenient parametrization for the SOðn; 2Þ=ISO
(n − 1; 1) coset element is given by

Σ ¼ eπDeξ
aKa : ð2:4Þ

One can construct the Maurier-Cartan one-form as follows:

Σ−1ðdþ δaPaÞΣ ¼ EaPa þ ωa
KKa þ ωDD −

1

2
ωab
J Jab:

ð2:5Þ
2Fine-tuning without symmetry is viewed as a deficiency by

the authors.
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Here δa ≡ δaμdxμ, and the extra piece in the parenthesis on
the left-hand side (lhs) is introduced for further conven-
ience (it can be traded for an extra factor of ex

aPa in the
coset element in an equivalent approach). The expressions
for the one forms in front of the generators on the rhs can be
calculated using conformal algebra given above,

Ea ¼ eπδa; ð2:6Þ

ωD ¼ dπ þ 2Eaξa; ð2:7Þ

ωa
K ¼ dξa − ξ2Ea þ ξaωD; ð2:8Þ

ωab
J ¼ −2Eaξb þ 2Ebξa: ð2:9Þ

Here ξa is a zero form Lorentz vector. We make a
distinction between the Latin and Greek indices in prepa-
ration to introduce a nontrivial metric for a general pseudo-
Riemannian space-time manifold; the Latin indices will be
used for tangent space-times.

B. Dynamical metric

To covariantize the coset in the first order formalism we
gauge the translations and rotations [34]. To gauge trans-
lations we simply replace δa by the field ea on the lhs of
(2.5), but for gauging rotations an extra piece is needed,

Σ−1
�
dþ eaPa −

1

2
ωabJab

�
Σ

¼ EaPa þ Ωa
KKa þΩDD −

1

2
Ωab

J Jab: ð2:10Þ

A straightforward calculation leads to

Ea ¼ eπea; ð2:11Þ

ΩD ¼ Dπ þ 2Eaξa; ð2:12Þ

Ωa
K ¼ Dξa − ξ2Ea þ ξaΩD; ð2:13Þ

Ωab
J ¼ ωab − 2Eaξb þ 2Ebξa: ð2:14Þ

Here the gauge field ea can be interpreted as an n-bein
and ωab as a spin connection of pure spin-2 field, D
corresponds to covariant derivative with respect to ωab,
i.e., D ¼ dþ ω. Since we are working with a dynamical
pseudo-Riemannian manifold it is natural to construct the
curvature two form,

Rab ¼ dΩab
J þΩac

J ∧ ΩJc
b

¼ Rab þ 2Ea ∧ Ωb
K þ 2Ωa

K ∧ Eb; ð2:15Þ

Rab ¼ dωab þ ωac ∧ ωc
b: ð2:16Þ

In the next section we will use some of these elements, but
not all, to build an effective action.

III. 4D CONFORMAL GALILEONS AND
THEIR EMBEDDING

The goal of this section is to show that the 4D conformal
Galileon describes a theory of the conformal mode of a
diffeomorphism invariant gravitational theory, made out of
the conformal/Poincaré coset and WZ terms.

A. Flat background metric

Reference [23] showed that the flat space conformal
Galileons can be constructed using the flat space con-
formal/Poincare coset. For convenience we will briefly
summarize this remarkable result below before introducing
the gravitational field in the next subsection.
Among the three one-forms in (2.6)–(2.8) only two carry

a single local Lorentz index. Therefore only those terms,
(2.6) and (2.8), can be used to construct the four-form
actions without invoking additional covariant derivatives,

A0 ¼
Z
M4

εabcdEa ∧ Eb ∧ Ec ∧ Ed; ð3:1Þ

A1 ¼
Z
M4

εabcdEa ∧ Eb ∧ Ec ∧ ωd
K; ð3:2Þ

A3 ¼
Z
M4

εabcdEa ∧ ωb
K ∧ ωc

K ∧ ωd
K; ð3:3Þ

A4 ¼
Z
M4

εabcdω
a
K ∧ ωb

K ∧ ωc
K ∧ ωd

K: ð3:4Þ

We left out εabcdEa ∧ Eb ∧ ωc
K ∧ ωd

K , since it is a total
derivative.
In addition to the above coset terms, there are Wess-

Zumino terms [23]: they appear as pullbacks of certain five-
forms on a four-dimensional hypersurface. Straightforward
calculations show that only one of the possible five WZ
terms is independent of the coset terms already accounted
above. This independent term reads as follows:

A2 ≡
Z
M5

εabcdωD ∧ Ea ∧ Eb ∧ ωc
K ∧ ωd

K: ð3:5Þ

The above expression for A2 can be written more explicitly
as follows:

A2 ¼
Z
M4

εabcd

�
1

2
Ea ∧ Eb ∧ dξc ∧ dξd −

2

3
ξ2Ea ∧ Eb

∧ Ec ∧ dξd þ 1

4
ξ4Ea ∧ Eb ∧ Ec ∧ Ed

�
: ð3:6Þ

As already noted in the previous section, due to the
commutator ½Ka; Pb� ∝ −2ηabD, not all the NG fields of
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the coset are independent; the inverse Higgs constraint
(IHC) [32] can be invoked to eliminate ξa, related to broken
Ka, in favor of a derivative of π, related to broken D.
Conventionally, this is done by imposing ωD ¼ 0; in our
case, the IHC is a solution of the equations of motion for ξa

[35] that also satisfies ωD ¼ 0,

δξAn ¼ 0; n ¼ 0; 1; 2; 3; 4: ð3:7Þ

Hence, we use IHC to express ξμ ¼ −1=2e−π∂μπ, and
substitute this into the actions An; n ¼ 1, 2, 3, 4, which then
reduce to the conformal Galileons,

A0 ¼
Z

d4xe4π; ð3:8Þ

A1 ≃
Z

d4xe2πð∂πÞ2; ð3:9Þ

A2 ≃
Z

d4xð∂πÞ2
�
LTD
1 þ 1

2
ð∂πÞ2

�
; ð3:10Þ

A3 ≃
Z

d4xe−2πð∂πÞ2
�
LTD
2 −

1

2
ð∂πÞ2LTD

1 þ 1

2
ð∂πÞ4

�
;

ð3:11Þ

A4 ≃
Z

d4xe−4πð∂πÞ2

×

�
LTD
3 − 3ð∂πÞ2LTD

2 þ 5ð∂πÞ4LTD
1 −

11

4
ð∂πÞ6

�
:

ð3:12Þ

As already mentioned, LTD
n denote the total derivative

terms made of π with the convention that ð□πÞn enters with
the unit coefficient, e.g., LTD

1 ¼ □π, LTD
2 ¼ ð□πÞ2 þ…,

etc. Moreover, each term in An contains 2n derivatives, but
the number of fields is different in each of them. Each An is
invariant with respect to the conformal Galilean trans-
formations (consisting of the linearly realized Poincaré
transformations, and nonlinearly realized special conformal
transformations and dilatations of π). Equations of motion
for the Galileons have at most two time derivatives acting
per field.

B. Gravitational dressing of 4D
conformal Galileons

Any local flat-space CFT must be Weyl invariant after it
is embedded covariantly in curved space-time [36].3 Thus,
we expect gravitationally dressed conformal Galileons to

beWeyl invariant. TheWeyl transformations of the relevant
fields are [22]

ea → eσea; ð3:13Þ

π → π − σ; ð3:14Þ

ξa → ξa þ 1

2
e−π∂aσ: ð3:15Þ

Only three of the building blocks found in the previous
section are invariant under these transformations: the one
forms Ea and ΩD, and the two-form Rab.
It is instructive to recall how the construction works in a

simpler, 3D case [22]: the Weyl tensor vanishes identically
in 3D, and one can use the Schouten tensor, Sa, instead of
the curvature two-form, Rab. Then, out of the three one-
forms Ea, ΩD, and Sa, one can build four three-form
actions for the 3D Galileons [22].
In 4D the construction is more involved, the Weyl tensor

is no longer zero, and one has to use the curvature two
form, Rab, as a building block. In addition, one can also
define the Weyl invariant curvature one-form, Ra, and a
zero-form, the Ricci scalarR, by using the interior product,

Ra ¼ iEa
Rab ¼ e−πRb þ 4Ωb

K þ 2ΩKEb;

R ¼ iEb
iEa

Rab ¼ e−2πRþ 12ΩK: ð3:16Þ

Here Ea ¼ Eμ
a∂μ, with Eμ

aEb
μ ¼ δba and ΩK ≡ iEa

Ωa
K .

Let us now build the action. At the level of zero
derivatives we can write down only one term,

Z
M4

εabcdEa ∧ Eb ∧ Ec ∧ Ed: ð3:17Þ

This is the Weyl invariant version of the cosmological
constant. In the unitary gauge, where π ¼ 0, and in the
metric formalism,

A0 ≡
Z

d4x
ffiffiffi
g

p
: ð3:18Þ

At the level of two derivatives we can write down three
invariants, but only one of them is independent,

Z
M4

εabcdRab ∧ Ec ∧ Ed: ð3:19Þ

This is a Weyl invariant extension of the Einstein-Hilbert
(EH) term; Weyl symmetry can be fixed by the unitary
gauge, π ¼ 0, reducing A1 to the EH term,

A1 ≡
Z

d4x
ffiffiffi
g

p
R; ð3:20Þ

3One could of course break explicitly Weyl symmetry by
adding some breaking terms as long as they vanish in the flat
space limit; however, we will not be including such terms and will
preserve Weyl invariance in the classical action.
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(however one should keep in mind the Weyl anomaly,
which we will discuss at the end of this section).
Furthermore, at the level of four derivatives there are

three independent invariants,

Z
M4

εabcdRab ∧ Rcd;
Z
M4

εabcdRa ∧ Rb ∧ Ec ∧ Ed;

Z
M4

εabcdEa ∧ Eb ∧ Ec ∧ EdR2:

Thus, at this level one can write a two parameter action
containing the above three terms. In general, the conformal
mode of this action will not be a Galileon, it would contain
other high derivative terms. To get the Galileon we would
need to tune the two free parameters to one another in such
a way that the term,

4

Z
M4

εabcdΩa
K ∧ Eb ∧ Ec ∧ EdΩK

¼
Z
M4

εabcdEa ∧ Eb ∧ Ec ∧ EdΩ2
K;

has a vanishing coefficient. This constraint reduces the
number of free parameters to one. Furthermore, using IHC
and adopting the unitary gauge, π ¼ 0, we can get the
metric form of the sought action,

A2 ¼
Z

d4x
ffiffiffi
g

p ½ðRμνρσRμνρσ − 4½R2� þ R2Þ

þ αWμνρσWμνρσ�: ð3:21Þ

The term in the parenthesis is the GB term, it is a total
derivative in 4D, and its integral is the Euler characteristics
of the corresponding manifold. The one parameter freedom
in (3.21) enables us to add the square of the Weyl tensor
that has a trivial conformal structure, and therefore its
coefficient, α, is not fixed by our procedure.
At the level of six derivatives there are five independent

terms that by naive counting of derivatives and fields could
potentially reduce to conformal Galileons,

Z
M4

εabcdRab ∧ RcdR;
Z
M4

εabcdRab ∧ Rc ∧ Rd;

Z
M4

εabcdRa ∧ Rb ∧ Rc ∧ Ed;

Z
M4

εabcdRa ∧ Rb ∧ Ec ∧ EdR;

Z
M4

εabcdEa ∧ Eb ∧ Ec ∧ EdR3:

The action containing the above five terms has four
independent parameters, besides its overall multiplier.
Requiring that the action for the conformal mode reduces

to a conformal Galileon, we get two constraints on the four
parameters, ensuring that the following two terms have zero
coefficients:

Z
M4

εabcdΩa
K ∧ Ωb

K ∧ Ec ∧ EdΩK;

Z
M4

εabcdΩa
K ∧ Eb ∧ Ec ∧ EdΩ2

K:

Moreover, there are terms containing two powers of the
curvature and two covariant derivatives—schematically
DRDR and implying various contractions—which would
in general give more derivatives than the conformal
Galileons have; hence we do not include them by fine-
tuning their coefficients to zero. Furthermore, there are
other terms with two covariant derivatives and two powers
of curvature invariants arranged so that they would vanish if
restricted to the conformal mode, e.g., DWDR; such terms
would not modify the action for the conformal mode as a
stand alone field, and will be included in the full effective
theory. They would give new (super)-Planckian mass poles
in the propagators (see more discussions on this point in the
next section).
Thus, we end up with a two parameter action at the level

of six derivatives, which in the metric form and in the
unitary gauge can be written as follows:

A3 ¼
Z

d4x
ffiffiffi
g

p ½−RαβμνRαβμνRþ 12Rμν
αβRμ

αRν
β þ 24½R3�

− 24R½R2� þ 4R3 þ β1WαβμνWαβμνR

þ β2Wμν
αβRμ

αRν
β�: ð3:22Þ

As before, the terms proportional to the Weyl tensor are
not uniquely determined by our procedure; hence β1 and β2
are arbitrary real parameters. This gives a gravitationally
dressed action for the A3 conformal Galileon.
Last but not least, at the level of eight derivatives, there

are six independent invariants which by naive counting of
derivatives and fields could potentially reduce to conformal
Galileons,

Z
M4

εabcdRab ∧ RcdR2;
Z
M4

εabcdRab ∧ Rc ∧ RdR;

Z
M4

εabcdRa ∧ Rb ∧ Rc ∧ Rd;

Z
M4

εabcdRa ∧ Rb ∧ Rc ∧ EdR;

Z
M4

εabcdRa ∧ Rb ∧ Ec ∧ EdR2;

Z
M4

εabcdEa ∧ Eb ∧ Ec ∧ EdR4;
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requiring five independent parameters in the initial action.
In addition to these terms there are ones containing three
powers of the curvature and two powers of a covariant
derivative, or two powers of the curvature and four powers
of the covariant derivative. Some of these terms will be
nonzero in the conformal limit (i.e., in the limit when only
the conformal mode is kept) and would have more
derivatives than present in the conformal Galileons—we
do not include such terms by tuning their coefficients to
zero. We will, however, include in the full effective
Lagrangian the terms that vanish when restricted to the
conformal mode. Therefore, the full Lagrangian would
still reduce to the conformal Galileon Lagrangian in the
conformal limit (see next section).
Furthermore, we impose three constraints on the param-

eters to guarantee the absence of following terms:

Z
M4

εabcdΩa
K ∧ Ωb

K ∧ Ωc
K ∧ EdΩK;

Z
M4

εabcdΩa
K ∧ Ωb

K ∧ Ec ∧ EdΩ2
K;

Z
M4

εabcdΩa
K ∧ Eb ∧ Ec ∧ EdΩ3

K;

and as a result end up with a two parameter action
reproducing a conformal Galileon. In the unitary gauge
the action reads

A4 ¼
Z

d4x
ffiffiffi
g

p �
1

6
RμνρσRμνρσR2 − 4Rμν

αβRμ
αRν

βR − 6½R4�

þ 3½R2�2 þ 8

3
½R3�R −

1

27
R4 þ γ1WμνρσWμνρσR2

þ γ2Wμν
αβRμ

αRν
βR

�
: ð3:23Þ

As before, there are two arbitrary real parameters, γ1 and γ2
not fixed by our procedure.
To summarize so far the total coset action is

Acoset ¼ c0A0 þ c1A1 þ c2A2 þ c3A3 þ c4A4; ð3:24Þ

with c0s being real dimensionful coefficients, c0 setting the
vacuum energy density and c1 defining the Planck scale
square. The initial Weyl invariance of the action, which so
far was gauge fixed for simplicity, can easily be restored by
a substitution, g → ge2π. While in the classical theory such
field transformations are harmless, this is not the case
in the full quantum theory due to the well-known scale
anomaly.
In that regard we note that, (3.21) is not the only term

in the second order in curvature; one can write a Wess-
Zumino term,

AWZ
2 ≡

Z
M5

εabcdΩD ∧ Rab ∧ Rcd

¼
Z
M4

εabcd

�
8Ea ∧ Eb ∧ Dξc ∧ Dξd −

32

3
ξ2Ea

∧ Eb ∧ Ec ∧ Dξd þ 4ξ4Ea ∧ Eb ∧ Ec ∧ Ed

þ 8Ea ∧ Dξb ∧ Rcd − 4ξ2Ea ∧ Eb ∧ Rcd

þ πRab ∧ Rcd

�
: ð3:25Þ

The equation of motion for ξ gives IHC; substituting it into
AWZ

2 we recover the effective action for the scale anomaly
derived in [26] (see also [27], where the a-theorem has been
proven and [30,37], where it was derived from a different
approach),

AWZ
2 ≃

Z
d4x

ffiffiffi
g

p �
−πðRμνρσRμνρσ − 4½R2� þ R2Þ

þ 4∂μπ∂νπ

�
Rμν −

1

2
gμνR

�
þ 4ð∂πÞ2□π þ 2ð∂πÞ4

�
:

ð3:26Þ
The latter action, unlike Acosetðge2πÞ, is not Weyl invariant.
Its Weyl transformation gives a functional the variation of
which, taken at π ¼ 0, gives the trace anomaly.4

Thus, the total action of the theory isAtotal in which the π
field should be restored via the substitution, g → ge2π , plus
the anomalous action AWZ

2 ,

Atotal ¼ Acosetðge2πÞ þ cWZAWZ
2 ðg; πÞ; ð3:27Þ

withAcoset defined in (3.24). The value of the constant cWZ
is in general determined by the number of degrees of
freedom coupled to gravity, and since we have not
introduced any matter degrees of freedom in our case
it’s only π that contributes to cWZ. As noted above, the π
field can no longer be gauged away, because of the
anomalous term. If one were to introduce additional fields
in the above action, they would couple to gravity via the
Weyl invariant couplings; i.e., they would couple to ge2π .
The flat space conformal Gallileons can be recovered

from Atotal via the substitution gμν ¼ ημν: the term
Acosetðηe2πÞ produces a weighted sum of the A0, A1, A3,
A4 conformal Galileons of the previous subsection, while
AWZ

2 ðη; πÞ yields the A2 conformal Galileon, which was
obtained as a WZ term in the flat space case [23].

4We note that the analogous considerations in 2D would have
given a 3D WZ term,

Z
M3

εabΩD ∧ Rab ≃
Z

d2x
ffiffiffi
g

p ½−πR − ð∂πÞ2�;

which reduces to the 2D Polyakov action.
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IV. EFFECTIVE FIELD THEORY
AND COSMOLOGY

The key property of the action (3.27) is that the equation
of motion—when restricted to the conformal mode—
has no more than two derivatives acting on each field,
and hence, no new degrees of freedom emerge in the
conformal sector.
This is important for cosmology, where the background

evolution of a homogeneous and isotropic universe is
described by the conformal mode, the scale factor.
However, the existence of the higher powers of the

curvatures in the action suggests that the tensor mode
propagator will in general have additional poles on curved
backgrounds. Such poles, in a fundamentally Lorentz
invariant theory, describe ghosts that invalidate the theory,
unless the mass of these modes are above the cutoff of the
effective field theory (EFT) that (3.27) is part of.
Indeed, the potentially problematic modes in (3.27)

have in general a super-Planckian masses as long as
the background curvatures are sub-Planckian [this fea-
ture is not necessarily specific to the choice of the
coefficients between the various terms in (3.27)]. To see
this, consider perturbations hμν ¼ gμν − gbμν, where gb

stands for the background metric. For simplicity, we will
focus only on the R3 terms, ignore all the tensorial
indices, and assume that the background curvature, Rb,
is constant. Then, in the leading order the Lagrangian
for small perturbations within any locally flat small
neighborhood of a space-time point would take the
following schematic form:

L ¼ h∂2hþ cRb

M4
p
ðh∂4hþ Rbh∂2hÞ: ð4:1Þ

The inverse of the propagator for h would read, p2ð1þ
ðcR2

b=M
4
pÞ − ðcRbp2=M4

pÞÞ, which guarantees a massless
and massive poles in the propagator. In a fundamentally
Lorentz invariant theory that we are dealing with the
massive pole is necessarily a ghost if the massless one is
not. For reasonable values of the parameter c ∼Oð1Þ,
and for a sub-Planckian background, Rb ≪ M2

p, the
ghost mass is super-Planckian, M2

ghost ≃M2
pðM2

p=cRbÞ,
and this is outside the effective field theory regime.
On the other hand, if the action (3.27) is just part of an

EFT with an infinite number of other terms of growing
dimensionality, then the additional terms may spoil the key
property of the conformal mode in (3.27)—the facts that
this mode is a conformal Galileon. There is a way to deal
with this issue as discussed below.
Since the higher order conformal Galileons do not

exist, the conformal structure would be maintained only
if all the additional terms in EFT vanish for the
conformal mode. One way to realize this is to have
all the higher order terms be proportional to at least one

power of the Weyl tensor.5 In this case, the total effective
field theory action would take the form,

AEFT ¼ Atotal þ
Z

d4x
ffiffiffī
g

p X∞
k¼1

X∞
l¼0

X∞
m¼1

bklmWkD̄lR̄m;

ð4:2Þ

where bklm are some coefficients, ḡ ¼ ge2π , Wk denotes
powers of the Weyl tensor, and R̄ and D̄ denote
respectively the Riemann tensor and covariant derivative
for ḡ, with all possible contractions done by the inverse
of the metric ḡ. Terms such as WD̄2R̄ would introduce
new poles on the flat space, but their masses are (super)-
Planckian for reasonable values of the parameters in front
of such terms.
In each order of EFT in (4.2) there could in general be

other terms with more derivatives, such as, R̄D̄2R̄, or
R̄2D̄2R̄, and so on; the coefficients of such terms have
been set to zero to guarantee the properties of the conformal
sector that we desired. We are not aware of a universal
principle that would guarantee such cancellations in the full
quantum theory. Such a principle could have emerged due
to a theory that would complete the present one at and
above the Planck scale. Until that theory is known, our
procedure should be regarded as a order-by-order fine-
tuning of the coefficients of counterterms to render the
renormalized EFTaction free of the higher derivative terms,
when it reduced to the theory of the conformal mode only.
The conformal mode is not a physical propagating mode

in the EH action. Moreover, its kinetic term has a ghost
sign. Nevertheless, it is the mode that describes evolution
of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe. Making sure that no extra derivatives emerge
in this sector, i.e., that no Ostrogradski instabilities appear
for the conformal mode, is the first stepping stone toward a
potentially viable cosmology in any theory with additional
terms in the action.
Equipped with the above knowledge we can briefly

consider cosmology in a minisuperspace approximation
simply to see what novel features might be introduced by
the higher curvature terms, and how those novelties play
out in the context of EFT. In what follows in this section we
set π ¼ 0 as an ansatz, and assume the FLRW metric,

gFLRWμν dxμdxν ¼ 1

n2ðtÞ dt
2 −

a2ðtÞ
1 − kr2

dr2 − a2ðtÞr2dθ2

− a2ðtÞr2 sin2 θdϕ2: ð4:3Þ

These substitutions nullify all the terms in the EFT action
(4.2) that are proportional to the Weyl tensor. Furthermore,

5The trace of the variation of the Weyl tensor is proportional
to the Weyl tensor, so one power on W is already acceptable for
our goals.
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all the curvature invariants are straightforwardly express-
ible in terms of the scale factor, a, and the inverse lapse, n.
What remains of the full EFT action (4.2) is the following
expression:

−
1

12

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gFLRW

p
RðgFLRWÞ − 1

24β
A3ðgFLRWÞ

−
1

48γ
A4ðgFLRWÞ; ð4:4Þ

where we also set the cosmological constant to zero, and
renamed the arbitrary coefficients in front of the cubic and
quartic order terms as β and γ. The respective minisuper-
space Lagrangian reads (up to a total derivative)

V
2

�
a
n
ðk − n2 _a2Þ − 1

a3nβ
ðkþ n2 _a2Þ3

þ 6

a3β

�
k2 _a2nþ 2

3
k _a4n3 þ 1

5
_a6n5

�
þ 1

na5γ
ðkþ n2 _a2Þ4

−
8

a5γ

�
k3n _a2 þ k2n3 _a4 þ 3

5
kn5 _a6 þ 1

7
n7 _a8

��
: ð4:5Þ

Here V stands for the volume of the space: V ¼ 2π2 for
k ¼ 1, V ¼ ∞ for k ¼ 0 and k ¼ −1. By construction,
there are no second and higher time derivatives of the scale
factor appearing in the Lagrangian above. Furthermore, let
us introduce the notations,

H ≡ n _a
a
; y≡H2 þ k

a2ðtÞ : ð4:6Þ

Then, the modified Friedmann equation for an empty
space-time reads

y −
1

β
y3 þ 1

γ
y4 ¼ 0: ð4:7Þ

The cubic and quartic terms in y are suppressed by the
respective powers of the cutoff scale (Planck scale). Thus,
these terms would modify conventional solutions of the
ordinary Friedmann equation by small corrections, as long
as the physical scales involved in those solution are
significantly lower than the Planck mass scale.
Note however that there are new solutions to the

modified Friedmann equation (4.7) which do not exist
for the conventional equation. Such solutions could be
looked for by finding the zeros of the spacial quartic
polynomial in (4.7). To see explicitly some of these
solutions let us drop the quartic term in y by taking the
limit, γ → ∞. Then, putting k ¼ 1 and n ¼ 1 one finds a
Starobinski-like solution for a closed universe, which in
this case describes a contracting and then reexpanding
universe,

aðtÞ ¼ 1

β1=4
cosh ðβ1=4tÞ: ð4:8Þ

There is a similar solution for a spatially flat, as well as
open universes, all three representing the de Sitter space-
time. Furthermore, there is also a static solution corre-
sponding to the negative root of the quadratic equation,
y2 ¼ β, with an open spatial section, k ¼ −1, and a
constant scale factor a ¼ 1=β1=4. Weather any of these
solutions can be stable with respect to small perturbations is
an interesting open question. We only point out that all
these solutions invoke curvatures at the cutoff of EFT and
are likely to be strongly modified if one were to include
other derivative terms in the same order that do not reduce
to conformal Galileons. Therefore, the above solutions, and
their extensions, require certain fine-tunings of the param-
eters, as it was done in (4.2).

V. LOWER DIMENSIONAL DESCENDANTS
OF LOVELOCKS

In this section we will rederive the coset action from
the higher dimensional Lovelock terms, by using certain
identities [38,39]. This method allows us to see familiar
results from a different perspective.

A. 3D example

In [22] we showed that 3D conformal Galileon could be
viewed as the Stückelberg field restoring the local Weyl
symmetry in NMG [24], and its extension [25]. Here, we
will obtain the same 3D action by dimensionally reducing
higher dimensional Lovelock terms. The next subsection
will deal with the 4D case.
Let us begin with the following four Lovelock expres-

sions in space-time of dimensionality n ≥ 3, which will be
relevant for our construction in 3D,

AnD
0 ¼ −

Z
Mn

εa1���anE
a1 ∧ � � � ∧ Ean; ð5:1Þ

AnD
1 ¼ −

Z
Mn

εa1���anE
a1 ∧ � � � ∧ Ean−2 ∧ Ran−1an ; ð5:2Þ

AnD
2 ¼ −

Z
Mn

εa1���anE
a1 ∧ � � � ∧ Ean−4

∧ Ran−3an−2 ∧ Ran−1an ; ð5:3Þ

AnD
3 ¼ −

Z
Mn

εa1���anE
a1 ∧ � � � ∧ Ean−6 ∧ Ran−5an−4

∧ Ran−3an−2 ∧ Ran−1an : ð5:4Þ

These also happen to be the terms of the conformal/
Poincaré coset; hence they realize nonlinearly the special
conformal and dilatation symmetries. Moreover, all of these
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terms have the desired conformal structure; i.e., the con-
formal mode is a conformal Galileon in n dimensional
space-time. The IHC is a solution to the corresponding
equations of motion, so we will use ξμ ¼ −1=2e−π∂μπ. [It
is convenient to work in the unitary gauge (π ¼ 0), and
if needed, one can recover the π interactions by making a
field redefinition gμν → e2πgμν in the unitary gauge
classical action.]
Let us rewrite the above expressions in the metric form,

AnD
0 ¼ n!; ð5:5Þ

AnD
1 ¼

Z
dnx

ffiffiffi
g

p �
1

2
ðn − 2Þ!δμ1μ2ν1ν2R

ν1ν2
μ1μ2

�
; ð5:6Þ

AnD
2 ¼

Z
dnx

ffiffiffi
g

p �
1

22
ðn − 4Þ!δμ1���μ4ν1���ν4R

ν1ν2
μ1μ2R

ν3ν4
μ3μ4

�
;

ð5:7Þ

AnD
3 ¼

Z
dnx

ffiffiffi
g

p

×

�
1

23
ðn − 6Þ!δμ1���μ6ν1���ν6R

ν1ν2
μ1μ2R

ν3ν4
μ3μ4R

ν5ν6
μ5μ6

�
:

ð5:8Þ
Note that AnD

0 and AnD
1 are both regular for n ¼ 3, the

problems arise with AnD
2 and AnD

3 , both of which contain
products ∞ × 0. The infinity comes from the factorial and
zero from the generalized Kronecker symbol (the latter is
zero in n ¼ 3 because it contains more than three anti-
symmetrised indices). One needs to regularize the above
expressions to make sense of them. Regularization of AnD

2

is relatively easy, one can assume that for n < 4 the Weyl
tensor Wμν

αβ vanishes identically; obviously, the Weyl
tensor vanishes for n ¼ 3, but the assumption is that it
also vanishes for 3 ≤ n < 4 as we analytically continue the
parameter n. This enables us to express the Riemann tensor
for 3 ≤ n < 4 as follows:

Rμν
αβ ¼

1

n − 2
ðRμ

αδνβ − Rμ
βδ

ν
α þ δμαRν

β − δμβR
ν
αÞ

−
1

ðn − 2Þðn − 1ÞRðδ
μ
αδνβ − δμβδ

ν
αÞ: ð5:9Þ

We can now substitute this relation into the Lovelock action
(5.7) to express the latter as follows:

AnD
2 ¼

Z
dnx

ffiffiffi
g

p �
−4

ðn − 3Þ!
n − 2

�
½R2� − n

4ðn − 1ÞR
2

��
:

ð5:10Þ
This expression is regular for n ¼ 3, and upon this
substitution gives the action of NMG [24].
The above procedure—referred as the method of higher

dimensional reduction (HDR)—defines formal analytic

continuation of Lovelocks from n > 3, down to n ¼ 3.
We will use now HDR for other terms.6

To regularize AnD
3 we have to take more steps down the

ladder of dimensionalities. First we regularize (5.8) in 5D,
then in 4D, and only after in 3D; hence we have a cascade
of regularizations,

6D → 5D → 4D → 3D:

The first step in this cascade consists of adopting the
following identity for n < 6:

δμ1���μ6ν1���ν6W
ν1ν2

μ1μ2W
ν3ν4

μ3μ4W
ν5ν6

μ5μ6 ¼ 0: ð5:11Þ

As soon as this is used, the action (5.8) for AnD
3 takes

the form,
Z

dnx
ffiffiffi
g

p ðn − 5Þ!
n − 2

�
3ðnþ 2Þ
n − 1

Rαβ
μνRμν

αβR

þ 24Rμν
αβRβρ

μνRρ
α þ 24n

n − 2
Rμν

αβRμ
αRν

β

þ 16nðn − 1Þ
ðn − 2Þ2 ½R3� − 12ðn3 − 2n2 þ 6n − 8Þ

ðn − 1Þðn − 2Þ2 ½R2�R

þ n4 − 3n3 þ 10n2 þ 4n − 24

ðn − 1Þ2ðn − 2Þ2 R3

�
;

which is now regular in 5D. The next step is to descend to
4D. The expression in the square brackets is zero in n ¼ 4,
while the overall multiplier is diverging; hence further
regularization is needed. The latter can be achieved by
means of the following identity:

Rμ
νδ

νλρσω
μαβγδWλρ

αβWσω
γδ ¼ Rμ

ν · 0 ¼ 0: ð5:12Þ

Using the above, the regularized AnD
3 for n < 5 can be

written as follows:

AnD
3 ¼

Z
dnx

ffiffiffi
g

p ðn − 4Þ!
n − 2

�
−

3

n − 1
RαβμνRαβμνR

þ 24

n − 2
Rμν

αβRμ
αRν

β þ
16n

ðn − 2Þ2 ½R
3�

−
12n2

ðn − 1Þðn − 2Þ2 ½R
2�Rþ nðn2 þ nþ 2Þ

ðn − 1Þ2ðn − 2Þ2 R
3

�
:

ð5:13Þ

6An equivalent method of regularization in this case is to
subtract the term δμ1���μ4ν1���ν4W

ν1ν2
μ1μ2W

ν3ν4
μ3μ4 from the original n

dimensional action with an appropriate coefficient to eliminate
the maximal tensorial structure (in this case RαβμνRαβμν). The two
methods are equivalent. It turns out that in more complicated
cases the latter method is more convenient; also the subtraction
does explain the emergence of an additional massive spin-2 mode
in the lower dimensional actions, while this mode does not exist
in the starting Lovelock action.
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It is straightforward to check that the action is regular for
n ¼ 4. For the last step of the cascade we use (5.9) to get a
perfectly regular expression for n < 4,

AnD
3 ¼

Z
dnx

ffiffiffi
g

p ðn − 3Þ!
ðn − 2Þ3

×

�
16½R3� − 12n

n − 1
½R2�Rþ n2 þ 4n − 4

ðn − 1Þ2 R3

�
:

ð5:14Þ

Substituting n ¼ 3 in the above expression we get the
action that extends NMG to the cubic order [25]. The fact
that there is a connection between the Lovelock terms and
NMG was already shown in Ref. [25] on the basis of
equivalence between their dual CFTs (see also [40,41]).
Our method is complementary.

B. 4D theory

By now one should perhaps expect that the gravitation-
ally dressed conformal Galileons are certain descendants of
higher dimensional Lovelock terms. This point of view will
be reinforced below by obtaining the coset action of Sec. III
from the Lovelock terms, using the method of HDR.
Let us first briefly summarize the rules of HDR:
(i) To descend from m dimensions down to (m − 1)

dimensions we use identities involving the symbol
δμ1���μmν1���νm contracted with curvature tensors.

(ii) Each identity must involve at least one Weyl tensor;
otherwise the identity should not use the Riemann
tensor.

(iii) At every step there are a finite number of the
identities to be used, and usually one needs all
of them.

After using the identities one gets ðm − 1Þ × Lk, where Lk

is the analogue of the kth order Lovelock in ðm − 1Þ < 2k
dimensions (i.e., it has the same conformal structure as the
Lovelock). If the rules described above are not sufficient
to extract the factor of (m − 1), then the corresponding
Lovelock does not have an analogue in (m − 1) dimensions
(i.e., there are no terms with the conformal structure of the
Lovelock). Note that this definition of an “analogue” leaves
a room for degeneracy (as we will see below), but the terms
we get through the above described procedure are guar-
anteed to be the most general ones.
Let us now apply HDR in 4D. Among the terms (5.5)–

(5.8) only AnD
3 needs regularization in 4D; however, this

was already done in (5.13) en route to the 3D expression.
Hence, substituting n ¼ 4 into (5.13) we get

A4D
3 ¼

Z
d4x

ffiffiffi
g

p 1

2

�
−RαβμνRαβμνRþ 12Rμν

αβRμ
αRν

β

þ 16½R3� − 16½R2�Rþ 22

9
R3

�
:

This action coincides with A3 that we’ve derived in (3.22)
by using the coset construction.7

Let us now see how A4 of (3.23) comes along in this
formalism. For this we look at an eight derivative Lovelock
term in n dimensions,

AnD
4 ¼ −

Z
Mn

εa1���anE
a1 ∧ � � � ∧ Ean−8 ∧ Ran−7an−6

∧ Ran−5an−4 ∧ Ran−3an−2 ∧ Ran−1an : ð5:15Þ

In the unitary gauge and in the metric formulation the above
expression becomes

AnD
4 ¼

Z
dnx

ffiffiffi
g

p 1

24
ðn − 8Þ!δμ1���μ8ν1���ν8R

ν1ν2
μ1μ2

× Rν3ν4
μ3μ4R

ν5ν6
μ5μ6R

ν7ν8
μ7μ8 : ð5:16Þ

Regularization of this expression is a tedious task. We will
not fully describe the process but rather give the necessary
identities for each step of HDR,

8D→ 7D δμ1���μ8ν1���ν8W
ν1ν2

μ1μ2W
ν3ν4

μ3μ4W
ν5ν6

μ5μ6W
ν7ν8

μ7μ8 ¼ 0;

7D→ 6D δμ1���μ7ν1���ν7W
ν1ν2

μ1μ2W
ν3ν4

μ3μ4W
ν5ν6

μ5μ6R
ν7
μ7 ¼ 0;

6D→ 5D δμ1���μ6ν1���ν6W
ν1ν2

μ1μ2W
ν3ν4

μ3μ4W
ν5ν6

μ5μ6R¼ 0;

δμ1���μ6ν1���ν6W
ν1ν2

μ1μ2W
ν3ν4

μ3μ4R
ν5
μ5R

ν6
μ6 ¼ 0;

5D→ 4D δμ1���μ5ν1���ν5W
ν1ν2

μ1μ2W
ν3ν4

μ3μ4R
ν5
μ5R¼ 0;

δμ1���μ5ν1���ν5W
ν1ν2

μ1μ2R
ν3
μ3R

ν4
μ4R

ν5
μ5 ¼ 0:

The result of this lengthy procedure is the regularized
action valid for 4 ≤ n < 5,

AnD
4 ¼

Z
dnx

ffiffiffi
g

p ðn − 4Þ!
ðn − 1Þ3ðn − 2Þ4

× ½6ðn − 2Þ2ðn − 1ÞRμνρσRμνρσR2

− 96ðn − 2Þðn − 1Þ2Rμν
αβRμ

αRν
βR − 96ðn − 1Þ3½R4�

þ 48ðn − 1Þ3½R2�2 þ 64ðn − 2Þðn − 1Þ2½R3�R
− 24nðn − 4Þðn − 1Þ½R2�R2

þ ðn3 þ 11n2 − 78nþ 56ÞR4�: ð5:17Þ

Substituting n ¼ 4 into the above expression we get the 4D
action in the unitary gauge,

7It corresponds to the case of β1 ¼ β2 ¼ 0, but the latter terms
can always be added since they do not affect the conformal
structure and are part of the degeneracy we mentioned in the
previous paragraph.
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A4D
4 ¼

Z
d4x

ffiffiffi
g

p �
1

6
RμνρσRμνρσR2 − 4Rμν

αβRμ
αRν

βR

− 6½R4� þ 3½R2�2 þ 8

3
½R3�R −

1

27
R4

�
: ð5:18Þ

This coincides with A4 in (3.23), with γ1 ¼ γ2 ¼ 0. This
completes the derivation of all the 4D coset terms from the
higher dimensional Lovelock terms.
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