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Preventing undesirable behavior of
intelligent machines
Philip S. Thomas1*, Bruno Castro da Silva2, Andrew G. Barto1, Stephen Giguere1,
Yuriy Brun1, Emma Brunskill3

Intelligent machines using machine learning algorithms are ubiquitous, ranging from simple data analysis
and pattern recognition tools to complex systems that achieve superhuman performance on various
tasks. Ensuring that they do not exhibit undesirable behavior—that they do not, for example, cause harm
to humans—is therefore a pressing problem. We propose a general and flexible framework for
designing machine learning algorithms. This framework simplifies the problem of specifying and
regulating undesirable behavior. To show the viability of this framework, we used it to create
machine learning algorithms that precluded the dangerous behavior caused by standard machine
learning algorithms in our experiments. Our framework for designing machine learning algorithms
simplifies the safe and responsible application of machine learning.

M
achine learning (ML) algorithms are
having an increasing impact on mod-
ern society. They are used by geolo-
gists to predict landslides (1) and by
biologists working to create a vaccine

for HIV (2); they also influence criminal sen-
tencing (3), control autonomous vehicles (4),
and enable medical advances (5). The potential
for ML algorithms to cause harm—including
catastrophic harm—is therefore a pressing
concern (6). Despite the importance of this
problem, current ML algorithms do not pro-
vide their users with an effective means for
precluding undesirable behavior, whichmakes
the safe and responsible use of ML algorithms
difficult. We introduce a framework for de-
signing ML algorithms that allow their users
to easily define and regulate undesirable be-
havior. This framework does not address the
problem of imbuing intelligent machines with
a notion of morality or human-like values (7),
nor the problem of avoiding undesirable be-
havior that the user never considered (8).
Rather, it provides a remedy for the problem
of ML algorithms that exhibit undesirable
behavior because their users did not have an
effective way to specify and constrain such
behavior.
The first step of the current standard ap-

proach for designing ML algorithms, which
we refer to as the standard ML approach, is
to definemathematically what the algorithm
should do. At an abstract level, this defini-
tion is the same across all branches of ML:
Find a solution q*, within a feasible setQ, that
maximizes an objective function f: Q → ℝ.
That is, the goal of the algorithm is to find a
solution in

arg max
q ∈ Q

f ðqÞ ð1Þ

Note that the algorithmdoes not know f(q) for
any q ∈Q (e.g., the truemean squared error); it
can only reason about it from data (e.g., by
using the sample mean squared error).
One problem with the standard ML ap-

proach is that the user of an ML algorithm
must encode constraints on the algorithm’s
behavior in the feasible set or the objective
function. Encoding constraints in the objec-
tive function [e.g., using soft constraints (9)
or robust and risk-sensitive approaches (10)]
requires extensive domain knowledge or ad-
ditional data analysis to properly balance the
relative importance of the primary objective
function and the constraints. Similarly, encod-
ing constraints in the feasible set [e.g., using
hard constraints (9), chance constraints (11), or
robust optimization approaches (12)] requires
knowledge of the probability distribution from
which the available data are sampled, which is
often not available.
Our framework for designingML algorithms

allows the user to constrain the behavior of
the algorithm more easily, without requiring
extensive domain knowledge or additional
data analysis. This is achieved by shifting the
burden of ensuring that the algorithm is well-
behaved from the user of the algorithm to the
designer of the algorithm. This is important
because ML algorithms are used for critical
applications by people who are experts in
their fields, but whomay not be experts in ML
and statistics.
We now define our framework. LetD, called

the data, be the input to theML algorithm. For
example, in the classification setting,D is not a
single labeled training example but rather all
of the available labeled training examples.D is
a random variable and the source of random-
ness in our subsequent statements regarding
probability. AnML algorithm is a function a,
where a(D) is the solution output by the
algorithm when trained on data D. Let Q be
the set of all possible solutions that an ML

algorithm could output. Our frameworkmath-
ematically defines what an algorithm should
do in a way that allows the user to directly
place probabilistic constraints on the solution,
a(D), returned by the algorithm. This differs
from the standard ML approach wherein the
user can only indirectly constrain a(D) by re-
stricting or modifying the feasible set Q or
objective function f. Concretely, algorithms
constructed using our framework are designed
to satisfy constraints of the form Pr(g(a(D)) ≤
0) ≥ 1 – d, where g: Q→ℝ defines a measure
of undesirable behavior (as illustrated later
by example) and d ∈ [0, 1] limits the admissible
probability of undesirable behavior.
Note that in these constraints, D is the only

source of randomness; we denote random
variables by capital noncalligraphic letters to
make clear which terms are random in state-
ments of probability and expectation. Because
these constraints define which algorithms a
are acceptable (rather than which solutions q
are acceptable), they must be satisfied during
the design of the algorithm rather than when
the algorithm is applied. This shifts the burden
of ensuring that the algorithm is well-behaved
from the user to the designer.
Using our framework for designingML algo-

rithms involves three steps:
1) Define the goal for the algorithm design

process. The designer of the algorithm writes
a mathematical expression that expresses a
goal—in particular, the properties that the
designer wants the resulting algorithm a to
have. This expression has the following form,
which we call a Seldonian optimization prob-
lem after a fictional character (13):

arg max
a ∈ A

f ðaÞ

s:t: ∀i ∈f1; :::;ng;Pr
�
giðaðDÞÞ≤0

�
≥1� di

ð2Þ
whereA is the set of all algorithms that will be
considered by the designer, f:A→ℝ is now an
objective function that quantifies the utility of
an algorithm, and we allow for n ≥ 0 con-
straints, each defined by a tuple (gi, di), where
i ∈ {1, …, n}. Note that this is in contrast to
the standard ML approach: In the standard
ML approach, Eq. 1 defines the goal of the
algorithm, which is to produce a solution with
a given set of properties, whereas in our frame-
work, Eq. 2 defines the goal of the designer,
which is to produce an algorithm with a given
set of properties.
2) Define the interface that the user will use.

The user should have the freedom to specify
one or more gi that capture the user’s own def-
inition of undesirable behavior. This requires
the algorithm a to be compatible with many
different definitions of gi. The designer should
therefore specify the class of possible defini-
tions of gi with which the algorithm will be
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compatible, and should provide ameans for the
user to tell the algorithmwhich definition of gi
should be used, without requiring the user to
have knowledge of the distribution ofD or even
the value gi(q) for any q ∈Q. Below, we provide
examples of how this can be achieved.
3) Create the algorithm. The designer creates

an algorithm a, which is a (possibly approxi-
mate) solution to Eq. 2 from step 1 and which
allows for the class of gi chosen in step 2. In
practice, designers rarely produce algorithms
that cannot be improved upon, which implies
that they may only find approximate solutions
to Eq. 2. Our framework allows for this by re-
quiring a to satisfy only the probabilistic con-
straints while attempting to optimize f; we call
such algorithms Seldonian. We call an algo-
rithm quasi-Seldonian if it relies on reason-
able but false assumptions, such as appeals to
the central limit theorem. See (14) for further
discussion regarding the benefits and limita-
tions of quasi-Seldonian algorithms.
Once a Seldonian algorithm has been de-

signed, a user can apply it by specifying one
or more gi (belonging to the class of gi chosen
in step 2 above) to capture the user’s desired
definition of undesirable behavior, and specify-
ing di, the maximum admissible probability of
the undesirable behavior characterized by gi.
To show the viability of our framework, we

used it to design regression, classification, and
reinforcement learning algorithms. Constrain-
ing the behavior of regression and classification
algorithms is important because, for exam-
ple, they have been used for medical appli-
cations where undesirable behavior could
delay cancer diagnoses (15), and because they
have been shown to sometimes cause racist,
sexist, and other discriminatory behavior (3, 16).
Similarly, reinforcement learning algorithms
have been proposed for applications where
undesirable behavior can cause financial losses
(17), environmental damage (18), and even
death (19). The Seldonian algorithms and
applications we present below are illustrations
to show that it is possible and tractable to de-
sign Seldonian algorithms that can tackle im-
portant problems of interest. Note that these
are intended only as proof of principle; the
primary contribution of this work is the frame-
work itself rather than any specific algorithm
or application. Like the common application of
classification algorithms (20) to the Wisconsin
breast cancer dataset (21), the applications val-
idate our ML algorithms as tools that re-
searchers with medical expertise and domain
knowledge could apply (22), but do not imply
that our learned solutions (classifiers or pol-
icies) should be deployed as-is to any particu-
lar real-world problem.
The regression algorithm that we designed

attempts to minimize the mean squared error
of its predictions while ensuring that, with
high probability, a statistic of interest, g(q), of

the returned solution, q = a(D), is bounded.
The definition of this statistic can be chosen
by the user to capture a particular definition
of undesirable behavior (e.g., the expected
financial loss that results from using a given
solution q). The user may not know the value
of this statistic for even a single solution. We
must therefore provide the user with a way to
tell our algorithm the statistic to be bounded,
without requiring the user to provide the
value, g(q), of the statistic for different solu-
tions q (see step 2 above). To achieve this (14),

we allow the user to specify a sample statistic
ĝðq;DÞ, and we define g(q) to be the expected
value of this sample statistic: g(q) =E½ĝðq;DÞ�,
where E denotes expected value.
The creation of a regression algorithm (step

3) with the properties specified during steps
1 and 2 is challenging. This is to be expected
given the shifted burden discussed previous-
ly; see (14) for a detailed description of how
we performed step 3 when designing all of
the Seldonian algorithms that we present.
Figure 1 overviews our regression algorithms.
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Fig. 2. Seldonian regression algorithm applied to GPA prediction. We used five different regression
algorithms to predict students’ GPAs during their first three semesters at university based on their scores
on nine entrance exams. We used actual data from 43,303 students from Brazil. Here, the user-selected
definition of undesirable behavior corresponds to large differences in mean prediction errors (mean predicted
GPA minus mean observed GPA) for applicants of different genders. This plot shows the mean prediction
errors (±SD) for male and female students when using each regression algorithm. We used three standard
ML algorithms—least squares linear regression (LR) (40), an artificial neural network (ANN) (41), and a
random forest (RF) (42)—and two variants of our Seldonian algorithm: QNDLR and QNDLR(l). All shown
standard ML methods tend to notably overpredict the performance of male students and underpredict the
performance of female students, whereas the two variants of our Seldonian regression algorithm do not. In
particular, our algorithms ensure that, with approximately 95% probability, the expected prediction errors for
men and women will be within e = 0.05, and both effectively preclude the sexist behavior that was exhibited
by the standard ML algorithms.

Fig. 1. Overview of Seldonian regression algorithms. The algorithm takes the behavioral constraints ðgi; diÞni¼1

and training data D as input and outputs either a solution qc or NSF (no solution found). First, the data are
partitioned into two sets, D1 and D2. Next, a routine called Candidate Selection uses D1 to select a single solution,
the candidate solution qc, which it predicts will perform well under the primary objective f while also being
likely to pass the subsequent safety test based on knowledge of the specific form of the test. The Safety Test
mechanism checks whether the algorithm has sufficient confidence that gi(qc) ≤ 0 for each constraint i ∈ {1,…, n}. If
so, it returns the candidate solution qc, otherwise it returns NSF. The Safety Test routine uses standard statistical
tools such as Student’s t test and Hoeffding’s inequality to transform sample statistics computed from D2 into
bounds on the probability that g(a(D)) > 0 (i.e., bounds on the probability of undesirable behavior).
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Recent methods designed particularly for al-
gorithmic fairness in regression tasks (23), de-
veloped in parallel to our own, do not give
users the freedom to select their own desired
definitions of undesirable behavior, nor do
they provide guarantees on the avoidance of
such behavior.

We applied a variant of our Seldonian re-
gression algorithm to the problem of pre-
dicting students’ grade point averages (GPAs)
during their first three semesters at university
on the basis of their scores on nine entrance
exams; we used a sample statistic that cap-
tures one form of discrimination (sexism).

Note that our algorithm is not particular to
the chosenmeasure of discrimination; see (14)
for a discussion of other definitions of fairness.
Figure 2 presents the results of this experi-
ment, showing that commonly used regres-
sion algorithms designed using the standard
ML approach can discriminate against female
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Fig. 3. Seldonian classification algorithm applied to GPA prediction.
We applied classification algorithms to predict whether student GPAs will be 
above 3.0. Shaded regions represent SE over 250 trials. The curves labeled 
“Standard” correspond to common classification algorithms designed using the 
standard ML approach; the multiple curves for Fairlearn and Fairness 
Constraints correspond to different hyperparameter settings for each algorithm 
(14). Each row corresponds to a different fairness definition: (A) disparate 
impact, (B) demographic parity, (C) equal opportunity, (D) equalized odds,
(E) predictive equality. The horizontal axes of all plots correspond to the amount

of training data and have logarithmic scale. The left column shows the accuracy of
the trained classifiers, the center column shows the probability that each algorithm
returned a solution (non-Seldonian algorithms always returned solutions), and
the right column shows the probability that each classifier violated a behavioral
constraint. When showing the failure rate of each algorithm, the horizontal
dashed line corresponds to 100d%, where d = 0.05. In all cases, the Seldonian
and quasi-Seldonian algorithms returned solutions using a reasonable amount of
data (center), did so without significant losses to accuracy (left), and were the
only algorithms to reliably enforce all five fairness definitions (right).
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students when appliedwithout considerations
for fairness. In contrast, the user can easily limit
the observed sexist behavior in Fig. 2 using our
Seldonian regression algorithm.
To emphasize that Seldonian algorithms are

compatible with a variety of definitions of fair-
ness and to better situate our research relative
to current state-of-the-art fairness-aware ML
algorithms, we present a Seldonian classifi-
cation algorithm (14). This classification algo-
rithm differs from our regression algorithm in
its primary objective (classification loss rather
than mean squared error) and in its more so-
phisticated interface, which allows the user to
type an expression that defines g(q) in terms of
common statistics (such as the false negative
rate or false positive rate given that the pro-
tected attribute, here gender, takes a specific

value), constants, operators (such as addition,
division, and absolute value), and statistics for
which the user can provide unbiased estimates,
as in the regression example. We applied our
classification algorithm to predicting whether
student GPAs will be above 3.0 using the
dataset described in Fig. 2, while constraining
five popular definitions of fairness for classi-
fication (Fig. 3). The Seldonian classification
algorithm properly limited the specified form
of unfair behavior across all trials. Unlike our
approach, fairness-aware classification algo-
rithms designed using the standard ML ap-
proach do not provide probabilistic guarantees
that the resulting classifier is acceptably fair
when applied to unseen data. We observed
that two state-of-the-art fairness-aware algo-
rithms that we ran for comparison, Fairlearn

(24) and Fairness Constraints (25), each pro-
duced unfair behavior under at least one defi-
nition of fairness.
Next, we used our framework to design a

general-purpose Seldonian reinforcement learn-
ing algorithm: one that, unlike regression and
classification algorithms, makes a sequence of
dependent decisions. In this context, a solu-
tion q is called a policy; a historyH (a random
variable) denotes the outcome of using a pol-
icy to make a sequence of decisions; and the
available data D is a set of histories produced
by some initial policy q0. Because it is Seldonian,
our algorithm searches for an optimal policy
while ensuring that Pr(g(a(D)) ≤ 0) ≥ 1 – d.
The algorithmwe designed is compatible with
g of the form g(q) = E[r′(H)|q0] – E[r′(H)|q],
where the user selects –r′(H) to measure a
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Fig. 4. Seldonian reinforcement learning algorithm for proof-of-principle
bolus calculation in type 1 diabetes. Results are averaged over 200 trials;
shaded regions denote SE. The Seldonian algorithm is compared to an algorithm
built using the standard ML approach that penalizes the prevalence of low
blood sugar. (A) Probability that each method returns policies (solutions) that
increase the prevalence of low blood sugar. The algorithm designed using the
standard ML approach often proposed policies that increased the prevalence
of low blood sugar, violating the safety constraint, even though it used an
objective function (reward function) that penalized instances of hypoglycemia.
In contrast, across all trials, our Seldonian algorithm was safe; it never changed
the treatment policy in a way that increased the prevalence of low blood sugar.
(B) Probability that each method returns a policy that differs from the initial
policy. Our Seldonian algorithm was able to safely improve upon the initial policy

with just 1 to 5 months of data. (C) Box plot (with outliers plotted) of the
distribution of the expected returns (objective function values) of the treatment
policies returned by the standard ML algorithm. The blue line depicts the sample
mean; red lines within the boxes mark the medians. All points below –0.1116
[where the blue curve in (D) begins] correspond to cases where the standard
ML algorithm both decreased performance and produced undesirable behavior
(an increase in the prevalence of low blood sugar). (D) Similar to (C), but
showing results for the Seldonian algorithm. The magenta line is the average
of the performance when the algorithm produced a policy that differed from
the initial policy. Notice that all points have values of at least –0.1116, indicating
that our algorithm never produced undesirable behavior. When boxes appear
to be missing, the boxes have zero width and are obscured by the red line
indicating the median of the box.
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particular definition of how undesirable the
history H is. That is, with probability at least
1 – d, the algorithm will not output a policy q
that increases the user-specified measure of
undesirable behavior. Notice that the user
need only be able to recognize undesirable
behavior to define r′; the user does not need
to know the distributions over historiesH that
result from applying different policies. For
example, the user might define r′(H) = –1 if
undesirable behavior occurred in H, and
r′(H) = 0 otherwise.
Some previous reinforcement learningmeth-

ods are guaranteed to increase the primary
objective with high probability (26–28). These
algorithms can be viewed as Seldonian or
quasi-Seldonian algorithms that are restrict-
ed to only work with one definition of un-
desirable behavior: a decrease in the primary
objective. This restricted definition of un-
desirable behavior precludes their applica-
tion to problems where undesirable behavior
does not align perfectly with the primary
objective (see fig. S31 for an example where
the behavioral constraint and primary ob-
jective are conflicting). Similarly, data-driven
robust optimization (29) has also provided
high-probability guarantees on constraint sat-
isfaction, but only for convex constraints and a
subset of objectives f that do not include the
regression, classification, and reinforcement
learning examples we consider (14).
Of the many high-risk, high-reward applica-

tions of reinforcement learning that have been
proposed, we selected one to show the feasi-
bility of our approach: automatically adjusting
the treatment for a personwith type 1 diabetes
(30, 31). In this application, a policy q (as defined
above) is a bolus calculator, which determines
the amount of insulin that a person should
inject prior to ingestion of a carbohydrate-
containing meal to avoid high blood sugar
levels. To simulate the metabolism of a human,
we used a detailed metabolic simulator (32).
Each historyH corresponds to the outcome of
1 day, and we defined –r′(H) to be a measure
of the prevalence of low blood sugar (with
particularly large penalties for hypoglycemia,
i.e., dangerously low blood sugar levels) in the
history H. Enforcing high-probability safety
constraints on hypoglycemia is important
because of the severe health consequences
caused by hypoglycemia, including alteredmen-
tal status, confusion, coma, and even death
(33–35).
Figure 4 shows the result of applying both

our Seldonian algorithm and a baseline algo-
rithm designed using the standard ML ap-
proach. The baseline algorithmuses a technique
called importance sampling (36) to estimate
the performance of all policies using the data
D generated by the initial policy q0, and it re-
turns the policy predicted to perform best.
This non-Seldonian algorithm (14) closely

resembles our Seldonian algorithm with the
behavioral constraints removed. Neither the
Seldonian algorithm nor the corresponding
standard ML approach algorithm are meant
to be used directly in clinical practice; however,
comparing their behavior provides insight
into the effects of our Seldonian framework.
Note from Fig. 4 that our algorithm does not
propose a new policy until it has high con-
fidence that the prevalence of low blood sugar
will not increase. Our algorithm is not specific
to this particular choice of constraint [see (14)
for implementation of alternative constraints,
such as constraints on the mean time hyper-
glycemic]. Our approach is complementary to
existing work on personalized bolus calcu-
lators that do not use reinforcement learning
but rely on experts or prior data to set critical
parameters (14, 37). These parameters could
be adapted for each individual using a rein-
forcement learning approach, and a Seldonian
reinforcement learning algorithm would en-
sure that it would alter the parameters only
when it is highly confident that the change
would not cause undesirable behavior (e.g.,
increase the prevalence of hypoglycemia) for
the particular individual. Although any clin-
ical application would leverage a more com-
plicated policy thanwhat we consider here, we
use this as an illustration of how a Seldonian
algorithm could be used as part of a broader
effort to provide personalized policies for high-
stakes applications.
Given the recent rise of real-world ML ap-

plications and the corresponding surge of
potential harm that they could cause, it is
imperative that ML algorithms provide their
users with an effective means for controlling
behavior. To this end, we have proposed a
framework for designing ML algorithms and
shown how it can be used to construct algo-
rithms that provide their users with the
ability to easily (that is, without requiring
additional data analysis) place limits on the
probability that the algorithm will produce
any specified undesirable behavior. Algo-
rithms designed using our framework are
not just a replacement for ML algorithms in
existing applications; it is our hope that they
will pave the way for new applications for
which the use ofMLwas previously deemed to
be too risky.
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1 The Standard ML Approach for Designing Machine Learning Algorithms

When designing a machine learning algorithm using the current standard ML approach, the
first step is to mathematically define what the algorithm should try to do—the goal of the
algorithm. At an abstract level, this goal has the same form for almost all machine learning
problems: find a solution θ?, within some feasible set Θ, that maximizes an objective function
f : Θ→ R. That is, the algorithm should search for an optimal solution

θ? ∈ arg max
θ∈Θ

f(θ). (S1)

A simple example is the design of an algorithm to solve a regression problem. Let X
and Y be dependent real-valued random variables. The goal is to estimate Y given X. The
first step is to specify the feasible set Θ to be a set of estimator functions chosen to model
the relationship between X and Y . Each function θ ∈ Θ takes a real number as input and
produces a real number as output, that is, θ : R→ R.

We might then define the objective function to be the negative mean squared error (MSE):

f(θ) := −E
[
(θ(X)− Y )2

]
. (S2)

This completes the specification of what the algorithm should do, and so one can begin
working on how the algorithm should do it. For example, we might have the algorithm
construct an estimate f̂ of f using data consisting of m realizations of (X, Y ), that is, (xi, yi)
for i = 1, . . . ,m. For example, f̂ could be the negative sample MSE :

f̂(θ) := − 1

m

m∑
i=1

(θ(xi)− yi)2, (S3)

and the algorithm could return an element of arg maxθ∈Θ f̂(θ).
Similarly, for a classification problem, Θ would be a set of classifiers and f a notion of

how often the classifier selects the correct labels [43, 44, 45]. For an unsupervised learning
problem, one might define Θ to be a set of statistical models and f(θ) to be a notion of how
similar θ is to a target model [46].

The same steps are required to design an algorithm for a reinforcement learning problem.
In this case, we might define Θ to be a set of policies (functions that map states to probability
distributions over actions) and f to be an objective function such as the expected discounted
return [47]. We might then design an algorithm that searches for a solution θ that maximizes
an estimate f̂(θ) of f(θ) constructed from a sample of state-action-reward trajectories, or we
might design an algorithm like Q-learning [48] that indirectly maximizes f by optimizing a
related function.

2 Limitations of the Standard Approach

Once a machine learning expert has designed a machine learning algorithm, the algorithm
can be used as a component of a larger system, which we will call the agent, that uses one or
more machine learning algorithms for a particular application, or range of applications. We
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call the person designing the agent the user of the machine learning algorithm. The user can
be nearly anyone, from a child working with LEGO Mindstorms, to a businessperson using
Microsoft Excel to fit a line to data points, to a (non-computer) scientist using data analysis
tools to analyze research data, to a machine learning researcher using reinforcement learning
for part of a controller of an autonomous vehicle. The primary limitation of the standard ML
approach to designing a machine learning algorithm is that it does not make it easy for an
algorithm’s user (who may or may not be a machine learning expert) to specify and regulate
the desirable and undesirable behavior of the agent. Although in principle there might be
definitions of Θ and f that prevent the algorithm from leading to undesirable behavior, in
practice there is no way for the user to know these definitions without performing additional
data analysis that can be challenging even for a machine learning expert.

As an example, consider a reinforcement learning application where an artificial neural
network is used to control a robot. In this context, the feasible set Θ is a set of neural
networks (typically with the same structure, but different weights), each of which would
cause the robot to behave differently. Reinforcement learning algorithms can be used to
search for an artificial neural network within Θ that performs well in terms of some user-
defined performance measure. The user of a reinforcement learning algorithm might want
to implement Asimov’s first law of robotics, which essentially states that a robot may not
harm a human [49]. However, the user of the algorithm typically does not know whether any
particular artificial neural network θ will cause the robot to harm a human or not. This means
that the user of the algorithm cannot specify Θ to only include artificial neural networks
that produce safe behavior. Additionally, since most reinforcement learning algorithms are
not guaranteed to produce an optimal solution given finite data, simply adding a penalty
into the objective function to punish harming a human does not preclude the algorithm from
returning a suboptimal solution (artificial neural network) that causes harm to a human.
This means that the user of the algorithm has no easy way to constrain the behavior of
the agent—the user of the algorithm must have deep knowledge of the environment that
the robot will be faced with, what each artificial neural network θ ∈ Θ does, and how the
reinforcement learning algorithm works, to ensure that the reinforcement learning algorithm
will not cause the robot (agent) to harm a human.

2.1 An Example

As an illustrative example we consider a problem for which it is difficult to prevent undesirable
behavior. The example concerns the fairness of one of the most widely used and well-studied
data analysis tools: linear regression. While fairness of machine learning algorithms is an
important topic of considerable current interest and research [50, 3, 51], we emphasize that
the new approach we are proposing is not limited to addressing this issue. Here, fairness (or
lack thereof) merely provides an accessible example of an algorithm’s misbehavior that our
approach is designed to mitigate.

The goal in our illustrative example is to predict the aptitudes of job applicants based
on numerical values describing the qualities of their résumés. Although later we consider a
similar problem using advanced regression algorithms and actual data, here we use synthetic
data and only consider linear regression algorithms. We show how linear regression algorithms
designed using the standard ML approach can result in predictions of applicant performance
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that systematically discriminate against a group of people (such as people of one gender or
race).

Let each applicant be in one of two sets, A and B. For example, A could be the set of
all possible female applicants and B could be the set of all possible male applicants.1 We
call the group that the applicant belongs to his or her type. We are given a training set
that contains data describing the résumés of m = 1,000 previous applicants, the applicants’
actual aptitudes (as determined by their observed performances), and their types. For each
i ∈ {1, . . . ,m}, let xi ∈ R be a number describing the quality of the ith applicant’s résumé,
let yi ∈ R be a measure of the applicant’s actual aptitude (which we would like to predict
given xi), and let ti ∈ {0, 1} be an indicator of the applicant’s type: ti = 0 if the applicant is
in A and ti = 1 if the applicant is in B. For simplicity, we assume that all terms, xi and yi,
have been normalized so that they each are in the interval [−3, 3].

We are tasked with using the training set to find a linear estimator (an affine function)
ŷ(x, θ) := θ1x + θ2 that predicts y given x, where x is the number describing the quality
of a new applicant’s résumé, y is the unknown aptitude of this new applicant, and the
vector θ := [θ1, θ2]ᵀ is a weight vector in the feasible set Θ = R2. Although each applicant’s
type is available in the training set, we do not assume that we will know a new applicant’s
type: résumés do not typically include applicants’ genders or ethnicities. If our estimator is
used to filter actual résumés submitted to a company so that only a subset of applications
receive human review, as described by Weber [16] and Miller [52], then to comply with
anti-discrimination laws, we might want to ensure that our estimator does not produce racist
or sexist behavior, meaning that it does not discriminate against people in A or B.

Of many ways that we might choose to define undesirable discrimination behavior, we
choose one for illustrative purposes. We do not suggest that this definition captures all
possible types of discrimination. It is rather one example of behavior that cannot easily be
precluded when using algorithms designed using the standard ML approach to designing
machine learning algorithms. Intuitively, we define undesirable discrimination behavior to
occur when the algorithm produces predictions that are, on average, too high for people of
one type and too low for people of the other type. Importantly, we do not consider it to be
undesirable discriminatory behavior if the algorithm produces larger predictions, on average,
for people of one type, since people of one type might actually have higher aptitudes on
average. However, if the algorithm’s result over-predicts the performance of men by 10% and
under-predicts the performance of women by 10%, on average, then we would say that the
algorithm discriminates against women.

To formalize this notion, we define the following discrimination statistic, d(θ):

d(θ) := E
[
u (ŷ(X, θ)− Y )

∣∣∣T = 0
]

︸ ︷︷ ︸
(a)

−E
[
u (ŷ(X, θ)− Y )

∣∣∣T = 1
]

︸ ︷︷ ︸
(b)

, (S4)

where X, Y, and T are random variables that denote the numerical measure of résumé
quality, actual aptitude, and applicant type, u : R→ R is a utility function, and (a) and (b)
respectively indicate how much the estimator over-predicts on average for people in A and B.
The utility function, u, determines the relative importance of different amounts of over- and
under-prediction. For simplicity here we assume that u is the identity function.

1For simplicity and to match the data that we use later, we consider the simplified binary-gender setting.
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Given a training set that contains data from 1,000 past applicants, we would like to
apply a linear regression algorithm to get accurate predictions of applicant aptitudes while
simultaneously ensuring that the absolute value of the discrimination statistic, |d(θ)|, is small.
Fig. S1 shows an example training set along with the linear estimator produced by least
squares linear regression.

-3 -2 -1 0 1 2 3
Entrance Exam Score

-3
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0
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de

A
B
Least squares linear fit

Fig. S1. An example of a training set from the illustrative example. This figure depicts the
information that the user is given when applying a linear regression algorithm. The user does
not know the true underlying distribution of the data, but rather only has these m = 1,000
samples. The black line is the linear estimator produced by least squares linear regression.

Since the linear regression algorithm’s objective is to make accurate predictions, we might
expect it to be impartial as to whether people are in A or B, and so it should not tend to
produce discriminatory behavior: its impartiality should make it fair to all people. However,
this is not always the case, as we can illustrate using our example. Suppose that the problem
has the following properties, which are unknown to the algorithm’s user: future applicants
are in A and B with equal probability, and the training set has an equal number of applicants
of each type; Y ∼ N (1, 1) if T = 0 and Y ∼ N (−1, 1) if T = 1, where N (µ, σ2) denotes the
normal distribution with mean µ and standard deviation σ; X ∼ N (Y, 1) (an applicant’s
résumé quality is equal to their true aptitude, plus random noise with a standard normal
distribution); the training set, D = {(Xi, Yi, Ti)}mi=1, contains m = 1,000 realizations of X, Y,
and T .

Given these properties, we generated 10,000 independent training sets, each containing
data from m = 1,000 applicants. We computed the least squares linear fits for each data
set and computed the true discrimination statistic, d(θ), for each of the resulting linear
estimators using our (but not the user’s) knowledge of the true distribution of the data. The
mean discrimination statistic was −0.67, which is a large amount of discrimination in favor
of people in group B, given that applicant aptitudes tend to be in the range [−3, 3]. Fig. S2
shows the least squares linear fits for all of the 10,000 trials.
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Fig. S2. Linear fits from least squares regression for 10,000 trials using transparent lines to
show the distribution of the linear estimators. The background contains 5,000 realizations of
(X, Y, T ) to give an idea about the true underlying distribution of the data. The lines tend to
over-predict for red points (people of type T = 1) and under-predict for blue points (people
of type T = 0).

2.2 Potential Remedies

Computers do not have an inherent desire to produce undesirable behavior (for example,
to harm humans or to be racist or sexist) and the user of an algorithm typically will not
provide the algorithm with direct incentives to produce undesirable behavior. It is therefore
tempting to rely on the impartial nature of the machine learning algorithm—the fact that it
was not instructed to produce undesirable behavior. However, as our example illustrates for
the case of discriminatory behavior of linear regression, a lack of direct incentives to produce
undesirable behavior does not preclude undesirable behavior. Since we cannot rely on a
machine learning algorithm designed using the standard ML approach to avoid undesirable
behavior, a number of approaches can be taken in an attempt to remedy this problem. Before
presenting our new approach, we describe a collection of possible cures, highlighting their
shortcomings that our new approach avoids.

2.2.1 Determine and Combat the Root Causes of Undesirable Behavior

When undesirable behavior occurs, it is natural to wonder what the root cause of the behavior
was. Was the undesirable behavior caused by improper use of a machine learning algorithm?
Would a different way of using an algorithm designed using the standard ML approach
preclude the undesirable behavior? In general: what could have been done differently by the
user of the algorithm to cause the agent to not produce the undesirable behavior? This is the
question that we do not want the user of an algorithm to have to answer, since it requires
detailed knowledge of the problem to answer and is prone to being answered incorrectly.
At a high level, our argument in favor of our new approach is that this process places an
undue burden on the user of a machine learning algorithm, a user who may not be a machine

7



learning expert, and this burden should be shifted away from the user.
The severity of this burden is obvious for complicated problems: the user of a complicated

reinforcement learning algorithm that tunes the weights in a neural network controlling a
robot cannot be expected to know which weights or settings of the algorithm would result
in the robot eventually harming a human. Perhaps less obviously, this problem impacts
even simple data analysis algorithms, as illustrated by our linear regression example. What
would be required to understand and mitigate the root causes of undesirable discriminatory
behavior?

One possible cause of discriminatory behavior might be an imbalance in the training
data. If more applicants from group B are observed than applicants from A, then we might
expect the regression algorithm to favor solutions that produce more accurate predictions for
people in B, even if it results in worse predictions for people in A. However, this is not the
cause of discriminatory behavior in our example because we defined the underlying applicant
distribution so that there is no minority group.

Another possible cause of discriminatory behavior might be bias in the data set. If
the training data set was biased so that it over-reported the aptitudes of applicants in A
relative to their true aptitude, then the regression algorithm would also be biased towards
discriminating in favor of applicants in A. However, there is no additional bias in the training
data of our example because the training and testing data come from the same distribution.

Perhaps the choice of a linear estimator is at fault. The least squares estimator may
not be linear, and the closest linear approximation happens to discriminate. This suggests
that using a more appropriate class of estimators might mitigate undesirable discriminatory
behavior. This is straightforward to test in our example because we know the true underlying
distribution of applicants. In the appendix of the supplementary materials we show that,
for any résumé quality, x, the least squares estimate of aptitude (not just the sample least
squares estimate) is ŷ(x) = 2

3
x, given the distributions we assumed. That is, the least squares

estimates for each possible résumé quality x is given by a linear function, and so the optimal
estimator (in terms of MSE) is in our chosen function class.

Another possible cause of discriminatory behavior might be the use of finite data sets.
Since the training set is finite and generated randomly, different data sets will result in
different linear fits. Perhaps all the linear fits are centered around an estimator that does not
discriminate, but the way that they vary about this estimator causes the absolute value of
the mean discrimination statistic to be large. Because we know the underlying distribution
of applicants, we can check this by solving for the single linear estimator that would be
produced if given an infinite amount of data. Because the least squares estimator is linear,
as discussed previously, with infinite data we would obtain the estimator ŷ(x) = 2

3
x (with

probability 1). Using our knowledge of the underlying distribution of applicants again, the
discrimination statistic d(θ) for this estimator is −0.67. Thus, even if there were an infinite
amount of data, the linear least squares regression algorithm still discriminates.

Another possible cause of discriminatory behavior could stem from the decision of whether
the regression algorithm’s predictions can depend on the applicant’s type: whether the
applicant is in A or B. One might think that an algorithm could not possibly discriminate if it
has no access to the applicants’ types, but this is not the case. The linear regression algorithm
in our illustrative example is blind to the type of each applicant, but it still discriminates.
Alternatively, one might expect the opposite: that if applicants’ aptitudes depend on their
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types, then the algorithm should have access of the applicants’ types so that it can make fair
predictions. For example, we could apply the least squares regression algorithm twice, once
to data on applicants in A, and once to data from applicants in B. We could then use the A
estimator to predict the aptitude of a new applicant if they are in A, and the B estimator
otherwise.

Three conditions must be met for this approach to be effective in precluding discrimination.
First, the regression algorithm must have access to new applicants’ types, which may not
be the case. Résumés likely will not include genders or ethnicities. Second, sufficient data
must be available. If the available data is insufficient, then this approach might produce
discriminatory behavior because the training data could be an unlikely sample that does not
reflect the actual distributions of X, Y, and T . Determining the amount of data necessary for
this scheme to limit discrimination with high probability would require the user to perform
additional data analysis. Furthermore, one might conjecture that with small amounts of
data, the expected value of the discrimination statistic will be close to zero. However, this is
not always the case. Fig. S3 provides an example using a distribution of applicants that is
different from the distribution used above. Regression with small amounts of data can still
cause the expected value of the discrimination statistic to be large. The third requirement
for mitigating discriminatory behavior using knowledge of applicants’ types is that the utility
function must be the identity function. For every linear regression problem the estimator that
minimizes the MSE (the actual MSE, not the sample MSE) causes the mean of the unsquared
error to also be zero, and so this scheme results in a discrimination statistic close to zero
given enough data. However, the estimator that minimizes the MSE does not necessarily
cause the mean utility of the error to also be zero, and so utility functions other than the
identity function can result in this scheme producing discriminatory estimators even given
infinite data.

It should now be clear that the root cause of the discriminatory behavior is not obvious
and can easily be overlooked or incorrectly attributed. This is particularly true if the user
of the algorithm is not trained in data analysis methods. In our example, the actual root
cause of discriminatory behavior when using ordinary least squares linear regression arises
from the fact that the objective function calls for minimizing MSE, which is at odds with
minimizing the discrimination statistic. To minimize the discrimination statistic, ideally to
make it zero, requires the machine learning algorithm to return an estimator that does not
minimize the MSE. The estimator that minimizes the (sample) MSE can still have mean
errors that are different for people of different types. In this example the mean error of the
least squares fit tends to be positive for people with low aptitudes and negative for people
with high aptitudes. Because people in B tend to have lower aptitudes, minimizing the MSE
results in discrimination in favor of people in B.

In summary, although it might be possible to determine and combat the root causes of
undesirable behavior, doing so can be difficult, error prone, and can require data analysis,
even for simple well-understood algorithms like linear regression. However, so far we have
discussed algorithms that were not designed with an explicit goal of allowing the user to
control their behavior. We now review variants of algorithms designed using the standard
ML approach that are intended to provide guarantees about the behavior of agents. Below
we argue that our new approach addresses many of the shortcomings of these approaches to
remedying a machine learning algorithm’s undesirable behavior.
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Fig. S3. Different distributions for people of types A (left) and B (right), such that using
independent linear regressors for people of each type, and training data from five people of
each type, results in an average discrimination statistic over 1,000 trials of 0.42.

2.2.2 Potential Remedy: Hard Constraints

Some optimization algorithms allow the user to place constraints on Θ, such as the simplex
algorithm for linear programs, which requires the user to define the feasible set using linear
constraints [53]. Thomas et al. [54] and Le et al. [55] propose reinforcement learning algorithms
that allow the user to specify a “safe” set of policies, and guarantee that the algorithms will
always converge to policies contained in this safe set. However, these authors sidestep the
question of how this safe set of policies can be determined by assuming that it is provided a
priori. Determining which solutions are “safe”—which solutions do not result in undesirable
behavior—can be difficult, requires detailed knowledge of the problem at hand, and can
sometimes be impossible. Although some work has considered how hard constraints can easily
be specified by a user, e.g., by providing examples of desirable and undesirable behavior [56],
these approaches do not provide practical guarantees about the quality of the constraints
that they produce.

Consider again our illustrative example. Without constraints, the feasible set is the set
of all possible pairs of weights that define a line: Θ = R2. We might wish to define the
set of safe solutions S ⊆ R to be all of the solutions that result in discrimination statistics
with magnitude at most some small value ε. That is, S := {θ ∈ R2 : |d(θ)| ≤ ε}. The
resulting least squares algorithm could then be constrained to only consider solutions in S.
The problem here is that we cannot know S without knowledge of the underlying distribution
of applicants: their types, aptitudes, and résumé qualities.

Nevertheless, constraints on the feasible set can be an effective means for precluding some
specific definitions of undesirable behavior, provided that the user has access to detailed
knowledge of the problem. For example, control theoretic algorithms have been developed
that ensure (sometimes with high probability, rather than surely) that a system will never
enter a predefined unsafe set of states [57, 58, 59, 60, 61, 62, 63, 64].

2.2.3 Potential Remedy: Soft Constraints

Rather than constrain Θ, we might consider modifying f (or an estimate f̂ thereof) so that
it penalizes undesirable behavior. These sorts of penalties in the objective function are
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sometimes called soft constraints [9] because the algorithm is driven to satisfy them but has
the freedom to violate them to obtain a large improvement according to the original objective
function. Soft constraints are also sometimes called penalty functions and are related to
barrier functions [65], which penalize solutions that are close to the boundary of a feasible
set.

Although soft constraints can sometimes be effective, they have a significant drawback:
they require a parameter λ ∈ R≥0 that scales the importance of the soft constraint relative
to the primary objective. If λ is set too far to one extreme, the algorithm will ignore the soft
constraint and focus entirely on the primary objective, which means that undesirable behavior
could result. If λ is set too far to the other extreme, the algorithm will ignore the primary
objective and focus solely on ensuring that undesirable behavior does not occur. Properly
selecting λ is not simple and requires additional data analysis that may be unreasonable to
expect from a user not trained in data analysis.

Again consider our illustrative example. Here we might introduce a soft constraint so
that the objective calls for the simultaneous minimization of the MSE and the absolute value
of the discrimination statistic. That is, if Θ = R2 so that each θ ∈ Θ is a possible weight
vector defining a line, then:

f(θ) :=−MSE(θ)− λ|d(θ)| (S5)

=− E
[
(ŷ(X, θ)− Y )2]− λ ∣∣∣E[ŷ(X, θ)− Y

∣∣∣T = 0
]
− E

[
ŷ(X, θ)− Y

∣∣∣T = 1
]∣∣∣ . (S6)

We might then define our data-based estimate of f(θ) to use the sample MSE and sample
discrimination statistic:

f̂(θ) :=− 1

m

m∑
i=1

(ŷ(xi, θ)− yi)2 − λ

∣∣∣∣∣
(

1∑m
i=1(1− ti)

m∑
i=1

(1− ti) (ŷ(xi, θ)− yi)

)
−(

1∑m
i=1 ti

m∑
i=1

ti (ŷ(xi, θ)− yi)

)∣∣∣∣∣. (S7)

Although in some cases it is reasonable to expect the user of a machine learning algorithm
to be able to specify a soft constraint of this form, it is typically not reasonable to expect the
user to be able to select the value of λ properly. As an example, Fig. S4 depicts the mean
discrimination statistic and least squares solutions θ̂? ∈ arg maxθ∈Θ f̂(θ) when using Eq. S7
with various choices of λ. As λ increases, MSE increases as well, since the objective function
places increasing weight on avoiding discrimination at the cost of the error. The left plot of
Fig. S4 depicts the absolute discrimination statistic of the solutions produced using various
λ. As λ increases, the absolute value of the discrimination statistic decreases, as expected.

To ensure that the expected absolute value of the discrimination statistic is at most
some value ε, we can use the plot on the left to find the smallest value of λ that produces
discrimination statistics that are less than ε on average. For ε = 0.1, this is λ ≈ 4.9. However,
in practice these plots are not available to the user. They were generated by additional data
analysis, which required using large amounts of data that would not generally be available in
practice.

Ideally, the machine learning algorithm should use the available data to automatically
optimize the value of λ in such a manner that, when combined with finite sample bounds,
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Fig. S4. Mean discrimination statistic (left) and MSE (right) produced by the solutions
found using various values of λ to specify the importance of a soft constraint. The dotted
blue line is the smallest value of λ for which the absolute value of the mean discrimination
statistic is less than 0.1 (that is, λ ≈ 4.9), and the red and green line are half and double this
value. Both plots are averaged over 1,000 trials (each from a new sampling of the training
set) and the upper and lower standard deviation intervals are shaded. We show standard
deviation because standard error bars are too small to be clearly visible.

provides the user with confidence that the algorithm will not cause discriminatory behavior.
Such an algorithm would be an instance of the type of algorithm that we propose. It shifts
from the user of the algorithm to the algorithm itself the burden of understanding the given
problem well enough to adequately decrease the probability of undesirable behavior.

2.2.4 Potential Remedy: Multiple Objectives

The addition of soft constraints is one way to express the idea that the true objective is
multifaceted: the agent should optimize a primary objective while also optimizing other
objectives that measure the prevalence of undesirable behavior. Multiobjective optimization
algorithms are optimization algorithms designed specifically for problems with multiple, and
typically conflicting, objectives. Modern multiobjective optimization algorithms are usually
based on the concept of the Pareto frontier. A solution is on the Pareto frontier if there does
not exist another solution that causes any of the objectives to increase without decreasing at
least one of the other objectives (assuming that larger values are better for all objectives).
Solutions on the Pareto frontier provide a balance between the different objectives, and an
algorithm should ideally return a solution on the Pareto frontier since any other solution could
be improved with respect to at least one objective function without hindering performance
with respect to any of the other objective functions.

While algorithms exist to compute the Pareto frontier for a wide variety of multiobjective
machine learning problems [66, 67, 68], knowing the Pareto frontier does not provide a
complete solution. One must still decide which solution from the Pareto frontier to use. The
user must still explicitly select a trade-off between the different objective functions. In our
illustrative example we might use two objective functions: the negative MSE of the estimator,
−MSE(θ), and the negative absolute value of the discrimination statistic, −|d(θ)|. Each
estimator that results from using a soft constraint with any value of λ is an element of the
Pareto frontier, and so the user must still effectively determine how to select λ.
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Below we present two linear regression algorithms, NDLR and QNDLR, that were designed
using our framework. Although these algorithms do not have a λ parameter, they do have a
different parameter, ε. Specifically, they guarantee that with high probability the absolute
value of the discrimination statistic will be no larger than ε. The difference between requiring
the user to select λ and requiring the user to select ε is subtle but important. The scale (or
unit) associated with ε is one that can be understood by the user without any problem-specific
data analysis. For the discrimination statistic Eq. S4, ε is the maximum difference in mean
prediction errors, and so its associated scale is the scale of errors. By contrast, the scale (or
unit) associated with λ depends on the MSE of the solution, which typically is not known to
the user, and the estimation of which requires additional data analysis. Thus, we contend
that it is easier for the user to select ε than it is for the user to select λ.

Furthermore, regardless of λ’s value, using a soft constraint can still result in solutions that
discriminate significantly. This is due to the random nature of data. Small data sets may not
accurately represent the true underlying distribution of data. As a result, a soft-constrained
algorithm may select a solution that has a sample discrimination statistic of zero on the
available data, but which actually has a large discrimination statistic (discriminates when
presented with new data). This behavior is evident in our later experiments (cf. Fig. S16b),
in which soft-constrained methods using small amounts of data and large values of λ produce
solutions that discriminate significantly. By contrast, with high probability, the algorithms
that we design using our framework do not discriminate regardless of how much data they are
presented with. This is because they incorporate mechanisms that automatically determine
whether the random nature of data is causing them to draw false conclusions.

This is not to say that our framework for designing machine learning algorithms should
replace multiobjective methods. On the contrary, our framework and multiobjective methods
(1) have different use cases and (2) can be used in conjunction with one another for problems
that satisfy both use cases. Our framework is intended for applications where there is at
least one constraint that is strictly of more importance than others (avoiding undesirable
behavior), but which also cannot be satisfied with certainty. This is particularly true for
applications in which safety is a paramount concern: subject to the constraint that the
algorithm ensures with high probability that its behavior is safe, it is free to optimize some
objective (or multiple objectives). Multiobjective methods, on the other hand, are primarily
suited to applications where there is a trade-off between multiple objectives—there is no one
objective that is of paramount importance.

To make this difference clear, consider an example that satisfies the use cases of both
approaches: optimizing treatment policies for type 1 diabetes. Later we describe this
application in more detail—here we provide an overview. The goal in this application is to
find treatment policies (which define how much insulin a person with type 1 diabetes should
inject prior to eating a meal) that keep a person’s blood glucose near optimal levels. Thus,
the objective function gives a measurement of how much the person’s blood glucose deviates
from optimal throughout a day. There is also an important safety constraint: some treatment
policies can result in a condition called hypoglycemia that drastically increases the probability
that a person will die within five years [69]. However, hypoglycemia cannot be avoided
with certainty. Thus, if we apply a machine learning algorithm to automatically improve
a treatment policy proposed by a physician, we may wish to include a safety constraint:
our algorithm should guarantee with high probability that it will not change the person’s
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treatment policy to one that increases the prevalence of low blood glucose relative to the initial
treatment policy specified by the physician. This safety constraint should be inalienable—it
should not be sacrificed or traded-off with the objective function.

However, this problem also has a multiobjective component: we should favor treatment
policies that inject less insulin, as there are negative effects associated with long-term
elevated levels of insulin. These effects are minor in comparison to the risks associated with
hypoglycemia, and so we can treat this as a multiobjective problem wherein our goal is to
simultaneously minimize the amount of insulin that is injected and keep blood glucose near
optimal levels. Thus this problem has both a safety component that can be handled using our
framework (precluding increases in the prevalence of low blood glucose), and a multiobjective
component (trading off the competing objectives of maintaining optimal blood glucose levels
and injecting as little insulin as possible).

2.2.5 Potential Remedy: Chance-Constraints

Many applications may not have any solutions that preclude undesirable behavior with
certainty. Requiring undesirable behavior to never occur is too strict in these cases, and so
weaker requirements are called for. This is what the chance-constrained program formulation
does by allowing constraints on the probability that a solution will result in undesirable
behavior. Chance-constrained programs were pioneered by Charnes and Cooper [11], Miller
and Wagner [70], and Prékopa [71], and can be expressed formally as:

arg min
θ∈Θ

f(θ) (S8)

s.t. ∀i ∈ {1, . . . , n}, Pr(gi(θ,Wi) ≤ 0) ≥ 1− δi, (S9)

where f : Θ → R, each gi is a deterministic real-valued function, each Wi is a random
variable, and each δi ∈ (0, 1). Crucially, not only are Θ, gi, and δi all known, but the
distribution of each Wi is known. Also, typically f is a convex function and Θ is a convex
set. Chance-constrained programs have been extensively studied within the machine learning
and optimization communities [72, 73], often with the expressed intent of better controlling
agent behavior [74].

As an example of when chance-constraints might be appropriate, consider the search
for a neural network θ ∈ Θ for controlling a robot. One can think of W as the set of
possible environments (or worlds) in which the robot could find itself in the future, and
Wi ∈ W is a random variable that denotes the actual environment that the robot will be
faced with. There may not exist a neural network θ ∈ Θ that guarantees with certainty
that the robot will never harm a human regardless of which environment Wi ∈ W it faces.
Chance constraints allow one to define a “safe” set of solutions S ⊆ Θ such that each
θ ∈ S ensures that with high probability the robot will not harm a human in the future,
given that the future environment Wi is drawn from some known distribution. That is,
S = {θ ∈ Θ : ∀i ∈ {1, . . . , n},Pr(gi(θ,Wi) ≤ 0) ≥ 1− δi}, where gi(θ, w) > 0 denotes that, if
the future environment is w ∈ W , then the solution θ will result in harm to a human.

Although chance-constrained programs can be useful for many real problems [75, 76, 77],
like approaches based on hard constraints on the feasible set, existing chance-constrained
algorithms are mostly limited in applicability to problems in which the user has significant
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knowledge about the given problem. Specifically, the majority of such algorithms are a
viable problem formulation when the user knows the distribution of each Wi. However, for
many problems these distributions will be unknown. In our illustrative example, the random
variable Wi might denote a single point (X, Y, T ), it might denote a set of points (such as
the entire training set), or it might denote the joint distribution over (X, Y, T ) if we assume
that the distribution of applicants is itself sampled from some meta-distribution. In all of
these cases, the user does not have access to the distribution of each Wi, and therefore cannot
construct S.

Several variants of chance constrained programs weaken the assumption that the distribu-
tion of each Wi is known. For example, ambiguous chance constrained programs allow the
distribution, P , of Wi to be unknown, as long as it is within some set of possible distributions
P that is known [78]. Ambiguous chance constrained programs then require the chance
constraints to hold for all P ∈ P. Scenario approximation methods can apply when P is
neither known nor within a known set, but samples (realizations of Wi) can be generated
from P [79, 80, 81]. In general, stochastic programming methods allow for many variants
of optimization problems wherein there is uncertainty about some of the parameters of the
optimization problem [82]. However, these variants tend to include strong assumptions about
the form of the problem: primarily that the objective function and feasible set are convex, and
that the distributions of random variables are restricted to a specific class (e.g., Gaussians).
To the best of our knowledge, none of the variants are able to handle our illustrative example.
They do not allow for the specification that the objective is to minimize the MSE of the linear
estimator, subject to the constraint that with high probability the absolute discrimination
statistic |d(θ)| of the returned solution θ is bounded by some small constant ε. We discuss
data-driven constrained optimization approaches in Section 6.

2.2.6 Potential Remedy: Robust or Risk-Sensitive Methods

Determining which solutions will produce undesirable behavior is difficult because typically
there is uncertainty about the environment with which an agent will interact. Robust
optimization algorithms address uncertainty about the environment by favoring solutions that
work reasonably well across all of the possible environments, in contrast to seeking a solution
that is expected to be optimal for one particular environment [12]. Robust optimization
algorithms have been proposed as a means for ensuring that machine learning algorithms,
ranging from supervised learning algorithms [83] to reinforcement learning algorithms [84],
are in some way “safe” to use. However, there are several reasons that robust optimization is
not a remedy to the issues of concern to us. Robust methods still require the algorithm’s
user to have detailed knowledge of the given problem to preclude undesirable behavior. Most
robust optimization algorithms perform poorly if the user is unable to define a small set of
environments that contains the actual environment with high probability.

Similarly, risk-sensitive optimization methods (which are sometimes viewed as types of
robust optimization methods) use an objective function f that captures different measures of
the distribution of outcomes that can result from using a solution θ. For example, if each
θ ∈ Θ defines a different controller for a robot, then f(θ) is often chosen to be a measure
of the expected performance of the robot if it uses the controller θ. Risk-sensitive methods
might define f(θ) to also penalize solutions that cause the observed performance of the robot
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to have high variance [85]. Alternatively, risk-sensitive methods might define f(θ) to be the
expected shortfall or conditional value at risk (CVaR) of the solution θ, a measure of the
expected performance of the robot during the worst trials when using controller θ [86, 87].
Although applying risk-sensitive methods typically does not require detailed problem-specific
knowledge, these algorithms do not allow the user to specify undesirable behavior from within
a broad class of possible behavior. Furthermore, standard risk-sensitive methods typically do
not provide practical guarantees about the performances of the solutions that they return.

3 A New Framework for Designing Machine Learning Algorithms

So far we have discussed the standard ML approach for designing machine learning algorithms,
highlighting its limitations. We now turn to defining a framework for designing machine
learning algorithms that allows the user to define and regulate desirable and undesirable
behavior without the need for detailed knowledge of a given problem. The first step in our
framework is not to define the goals of the algorithm, but instead to define the goals of the
designer of the algorithm. Thus, the crux of our framework is a new mathematical problem
formalization, which we call a Seldonian optimization problem (SOP) as an homage to Isaac
Asimov’s fictional character, Hari Seldon, a resident of a universe where Asimov’s three
laws of robotics failed to adequately control agent behavior due to their non-probabilistic
requirements, and who formulated and solved a machine learning problem that would likely
have required probabilistic constraints [13]. Before defining an SOP formally, we discuss the
shortcomings of two potential alternatives that are flawed, but which might at first seem
more reasonable.

3.1 Potential New Approach: Place Constraints on the Probability that a Solution is Safe

One would like to specify that an algorithm should guarantee, with high probability, that
undesirable behavior will not result from its use. Let S ⊆ Θ be the set of safe solutions.
These are the solutions that do not cause undesirable behavior or that cause the probability
of undesirable behavior to be sufficiently small. One might provide the user with a language
for specifying S and then use a problem formulation of the form:

θ? ∈ arg max
θ∈Θ

f(θ) (S10)

s.t. Pr(θ ∈ S) ≥ 1− δ, (S11)

where δ ∈ [0, 1] is a user-specified confidence level. The problem with this approach is that
it is not meaningful to reason about the probability that a particular solution, θ, is in S.
Either θ ∈ S or θ 6∈ S, and so Pr(θ ∈ S) is necessarily either 0 or 1, and the above problem
formulation is equivalent to

θ? ∈ arg max
θ∈S

f(θ), (S12)

which suffers from the problem that we do not know S a priori.
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3.2 Potential New Approach: Place Constraints on the Agent’s Data-Driven Belief that a
Solution is Safe

One way to avoid the problem described in the previous section is to include constraints that
are based on the agent’s data-driven beliefs about whether θ ∈ S, rather than the probability
that θ ∈ S. That is, one might use a problem formulation of the form:

θ? ∈ arg max
θ∈Θ

f(θ) (S13)

s.t. B(θ ∈ S|D) ≥ 1− δ, (S14)

where B(θ ∈ S|D) denotes a measure of the agent’s belief that θ ∈ S given data D.
This approach has two problems. The first is that the feasible set {θ ∈ Θ : B(θ ∈ S|D) ≥

1−δ} is a function of the data, which is a random variable, and so the feasible set is a random
variable. A problem formulation in which the feasible set is a random variable suggests that
the formulation does not adequately capture the algorithm designer’s goals, which are not
likely to be random. The second problem with this approach is more serious. This problem
formulation could result in unsafe solutions with high probability, even when there is only a
single constraint. If we view θ? as a function of the training data D, the probability that θ?(D)
is not in S could be large. It is straightforward to show that (as a consequence of Boole’s
inequality) if using either definition of B proposed above or other definitions of B based on
concentration inequalities, the probability that θ?(D) 6∈ S can be as large as min{1, δ|Θ|},
which will be large for problems in which |Θ| is large. To avoid this, the constraint that one
introduces should not require the feasible set to include only solutions believed to be safe; it
should instead directly require that the solution output by the algorithm be safe with high
probability. This is at the heart of the SOP formulation, which we introduce next.

3.3 Seldonian Optimization Problem (SOP)

The first step of the SOP framework is to mathematically define the goal of the researcher
creating the machine learning algorithm. This results in a problem formulation that describes
a search over algorithms, rather than solutions, with constraints over the set of algorithms,
not over the set of solutions. This means that the constraints, now over algorithms, constrain
the probability that the algorithm will return an unsafe solution. For simplicity, here we
focus on the batch setting, where an algorithm has access to all of the available data from
the start, as opposed to the online setting in which data incrementally arrives over time [88].
We need to define a few terms to precisely state the SOP framework.

A machine learning algorithm a is a function that takes data as input and produces as
output a solution. Let D be the set of all possible data sets that could be given as input
to the algorithm, and let D ∈ D be a random variable that represents all of the data given
to the algorithm (i.e., the training data). Let A be the set of all possible machine learning
algorithms, each of which is a function a : D → Θ. This definition of machine learning
algorithms allows for probabilistic algorithms since the data set can be defined to contain
any random numbers required by the algorithm.

Whereas in the standard ML approach the objective function is a function of possible
problem solutions, in an SOP the objective function is a function of algorithms. That is,
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f : A → R. An SOP allows for n ∈ N≥0 behavioral constraints, which are constraints on
the set of algorithms. Each constraint, indexed using i ∈ {1, . . . , n}, has two components: a
constraint objective gi : Θ → R, and a constraint confidence level δi ∈ [0, 1]. The designer
of the algorithm must ensure that the algorithm he or she creates satisfies the inequalities
Pr(gi(a(D)) ≤ 0) ≥ 1− δi, for all i ∈ {1, . . . , n}. That is, if the user defines gi such that gi(θ)
being greater than zero means that undesirable behavior has occurred, then an algorithm
that satisfies the behavioral constraints will ensure that with high probability (where the user
can specify the necessary probability) it will not return a solution that causes undesirable
behavior.

In summary, an SOP can be written as:

arg max
a∈A

f(a) (S15)

s.t. ∀i ∈ {1, . . . , n}, Pr(gi(a(D)) ≤ 0) ≥ 1− δi. (S16)

Here the designer of the algorithm selects the objective function f , the set A of algorithms
considered, what the data D will include, and a class of allowable constraint objective
functions gi. (For example, gi could be the discrimination statistic in Eq. S4, i.e., the
expected difference in predictions for men and women. Here the expectation is taken with
respect to the distribution of men and women from which the input data D is sampled.
Typically a constraint function gi will be a function of terms including expected values with
respect to a particular distribution over data, such as the distribution of D as in Eq. S4.)
Once a machine learning algorithm has been designed using this framework, the user of the
algorithm can apply it by selecting specific definitions for the gi from within the class chosen
by the researcher who designed the algorithm, and by selecting the desired confidence levels
δi. In some cases, the user might also have the additional freedom to select other terms, such
as the feasible set Θ, or the objective function f .

A common point of confusion is about which terms in Eq. S15 are random. Our guarantees
are similar in spirit to probably approximately correct (PAC) style guarantees. PAC algorithms
provide high probability generalization guarantees on an algorithm’s solution, where the
high probability is with respect to the randomness in the data set to which the algorithm is
applied. Similarly, in our case the data set D is a random variable (the source of randomness
in the behavioral constraints), and so a(D) is therefore also a random variable (the model
returned when training using data D), as is gi(a(D)) (the amount of undesirable behavior
produced by the model that would result from training on data D). The meaning of the
behavioral constraints is therefore that, if one where to sample a large number of complete
training data sets D from the distribution that produces the training data, and one were to
apply algorithm a to obtain a solution (learn a model) for each of these training data sets,
one would expect at most roughly 100δi% of the resulting solutions (models) would produce
undesirable behavior.

Notice also that whether a solution produces undesirable behavior is a deterministic
property of each solution (each model) θ. That is, either gi(θ) ≤ 0 or not. However, one
might define gi(θ) to be less than or equal to zero if and only if applying θ results in the
probability of some undesirable outcome being at most some threshold. For example, if θ
corresponds to the weights in a neural network used to classify whether a tumor is benign or
malignant, one might define gi(θ) ≤ 0 if and only if using weights θ results in the probability
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of a false negative (saying a tumor is benign when it is malignant) being at most 0.1%. The
resulting behavioral constraint ensures that the probability of sampling training data that
results in a learned model, which causes the probability of false positives to be below 0.1%,
is at least 1− δi. This guarantee is enabled not by changing the distribution of training data,
but by careful computation within the algorithm a.

Notice also that, when defining the constraints for an SOP, the term ∀i ∈ {1, . . . , n} is
outside of the Pr(·) term. This means that each behavioral constraint must hold independently
with its associated probability 1− δi. Joint constraints, for example, two different constraints
g′ and g′′ that must hold simultaneously with some probability, can be encoded within a
single constraint in the SOP.

Consider how a linear regression algorithm that is a solution to an SOP could be applied
to our previous illustrative example. The researcher designing the linear regression algorithm
would select f to be an objective function like the MSE, Θ to be the set of all possible linear
(or affine) functions, and D to be the training set as described previously. To apply the
resulting algorithm, the user creating an agent need only specify gi and δi. For our illustrative
example, the user might choose to use a single behavioral constraint g1(a(D)) := |d(a(D))|− ε
to guarantee that, with probability at least 1− δ1, the absolute value of the discrimination
statistic will be at most ε, where ε and δ1 are chosen by the user.

It is important to observe that to apply this algorithm, the user need not know whether
any particular estimator θ ∈ Θ causes g1(θ) ≤ 0. It is left to the algorithm to reason about
this. The user need not know the value of gi(θ) for any particular θ. Instead, the user only
needs to be able to specify gi. As illustrated by our later reinforcement learning example,
the user only needs the ability to recognize undesirable behavior, not which solutions cause
undesirable behavior. The job of analyzing the available data to understand a given problem
well enough to satisfy the constraint is placed entirely on the machine learning algorithm.
Furthermore, notice that although an SOP is more complicated than the problem formulation
used in the standard ML approach, and the job of the researcher using our framework to
design a machine learning algorithm will likely be more difficult than with the standard ML
approach, the job of the user who wishes to constrain the behavior of an agent is dramatically
simplified.

3.4 Seldonian and Quasi-Seldonian Algorithms

An SOP, as defined in Eq. S15, prescribes a principled way to specify constraints on an
algorithm. However, it has shortcomings that we discuss here and in the following sections.
First, finding an optimal algorithmic solution, which is an algorithm that maximizes f subject
to the behavioral constraints, is generally intractable. However, the researcher designing
an algorithm should at least ensure that the algorithms that he or she proposes satisfy the
behavioral constraints, setting aside the goal of also maximizing f . We call an algorithm that
satisfies all the behavioral constraints a Seldonian algorithm.

Although the SOP definition captures what we want in an algorithm, it may not be
feasible to find a Seldonian algorithm, let alone an optimal algorithmic solution. Our ability
to ensure that an algorithm satisfies a behavioral constraint typically requires the use of
concentration inequalities [89] like Hoeffding’s inequality [90]. Because the confidence bounds
produced by these inequalities hold for any distribution (given minor verifiable assumptions),
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they tend to be overly conservative. This means that all Seldonian algorithms for some
problems might require an impractical amount of data before the confidence levels required
by the behavioral constraints can be satisfied.

To remedy this, we propose quasi-Seldonian algorithms, which are algorithms that satisfy
the behavioral constraints of an SOP using approximate concentration bounds. For example,
rather than using Hoeffding’s inequality, one might use Student’s t-test or a bootstrap
confidence bound [91]. These methods produce bounds that are often much tighter than
those of Hoeffding’s inequality, which means that quasi-Seldonian algorithms can be created
for problems for which there is insufficient data to find viable Seldonian algorithms. A
shortcoming of these approximate concentration bounds is that they rely on assumptions that
may not hold for the problem at hand, which means that the resulting confidence bounds
only approximately hold. Despite their shortcomings, the use of approximate concentration
bounds such as Student’s t-test and bootstrap confidence bounds remains commonplace in
the sciences, including high-risk medical research [92, 93].

One limitation of quasi-Seldonian algorithms is that the user of the algorithm might
not know what false assumptions the algorithm relies upon. A researcher could propose
an algorithm with egregious false assumptions that would make it irresponsible to use
the algorithm for many applications. To remedy this, researchers should clearly state the
assumptions upon which quasi-Seldonian algorithms rely, and should strive to ensure that for
most problems the quasi-Seldonian algorithm ensures that ∀i ∈ {1, . . . , n}, Pr(gi(a(D)) ≤
0) & 1 − δi. Furthermore, one should not convert a quasi-Seldonian algorithm into a
Seldonian algorithm by placing assumptions on the problems it can be applied to, when these
assumptions may not hold for the problems to which it will likely be applied. For example,
one should not label a quasi-Seldonian algorithm that relies on Student’s t-test as a Seldonian
algorithm with the condition that it only be applied to problems where the sum of random
variables, the means of which will be bounded using Student’s t-test, are normally distributed,
when for real problems this sum will only be approximately normally distributed.

Even using approximate confidence bounds, there may not be sufficient data for any
algorithm to ensure that the behavioral constraints are met. Rather than require an algorithm
to produce a solution even in such cases, we propose allowing the algorithm to return No
Solution Found (NSF). The algorithm should return NSF when it is unable to find a
satisfactory solution given the available data.

To add NSF to the problem formulation, one need only define Θ such that NSF ∈ Θ and
gi such that gi(NSF) ≤ 0 for all i. This modification is sufficient to ensure that Seldonian
algorithms exist, but it is most applicable for problems for which returning NSF does not
itself cause unsatisfactory agent behavior. This is usually the case for applications in which
an existing mechanism (solution) θ0 is in place for making decisions, and the machine
learning algorithm is used to improve upon this mechanism.2 For these applications, if a
Seldonian algorithm returns NSF, we can revert to using the baseline solution. Still, for some
applications a decision other than NSF must be made, in which cases the Seldonian problem
formulation may not be viable.

Of course, if NSF is included in the SOP, then the algorithm that always returns NSF is

2Petrik et al. [94] discuss a similar setting, wherein improvements must be ensured, but the algorithm is
free to fall back to an existing prior solution.
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trivially Seldonian. If the SOP is properly designed, the objective function f should assign
low utility to this trivial algorithm, and so the researcher designing the algorithm should
attempt to find a better algorithm: a Seldonian algorithm that returns NSF less frequently.

4 Example: A Seldonian Regression Algorithm and its Application

Here we develop algorithms using the SOP framework to show its viability. We begin by
considering the problem of designing a Seldonian linear regression algorithm. Recall that
designing a Seldonian linear regression algorithm will be more difficult than designing a
linear regression algorithm using the standard ML approach to designing machine learning
algorithms, but that it should be easier for the user to constrain an agent’s behavior when
using the Seldonian algorithm.

We assume that there is a real-valued random variable Y that we would like to predict
from a real-vector-valued random variable X. That is, each value x ∈ Rl that X can take is a
vector of l ∈ N>0 real-valued features that we will use to estimate the value of Y . We restrict
the class of estimators that we consider to linear functions, so Θ = Rl and each θ ∈ Θ defines
a linear combination of the features x ∈ Rl, as ŷ(x, θ) = θᵀx. To select the weights θ that
cause ŷ(X, θ) to be a good estimate of Y , we are given m ∈ N>0 realizations of (X, Y ). Each
realization also comes with a sample of another random variable T ∈ {0, 1} that encodes the
type (e.g., gender) associated with the point (X, Y ). Therefore, the training data is a random
variable D = {(Xi, Yi, Ti)}mi=1, where some joint distribution over (X, Y, T ) exists but is not
known. Notice that although Xi, Yi, and Ti are all dependent random variables, the tuples
(Xi, Yi, Ti) and (Xj, Yj, Tj) are independent and identically distributed for all i 6= j.

Given this setup, we can write an SOP that defines our goals when designing the regression
algorithm:

arg max
a∈A

−E
[
(ŷ(X, a(D))− Y )2] (S17)

s.t. ∀i ∈ {1, . . . , n}Pr(gi(a(D)) ≤ 0) ≥ 1− δi. (S18)

Importantly, we should allow the user of the algorithm to specify the functions gi without
knowing their values, gi(θ), for any particular solution θ ∈ Θ. Furthermore, the language
provided to the user for specifying the gi should be as simple as possible, while encompassing
a broad spectrum of possible functions. If our goal is to produce a regression algorithm
that can be applied to many different regression problems, then the resulting SOP could be
defined for a distribution over regression problems—a distribution over joint distributions for
X, Y, and T .

Below we present three algorithms: one Seldonian and two quasi-Seldonian. These are
not likely to produce optimal algorithmic solutions, but all the solutions they produce satisfy
the behavioral constraints while “trying” to maximize the objective function. Although these
algorithms can be extended to allow for a broad class of definitions of gi, we initially restrict
our discussion to a single behavioral constraint given by the following constraint objective:

g(θ) =
∣∣∣E[ŷ(X, θ)− Y

∣∣∣T = 0
]
− E

[
ŷ(X, θ)− Y

∣∣∣T = 1
]∣∣∣− ε. (S19)

Later we present a more general quasi-Seldonian algorithm and derive a quasi-Seldonian
reinforcement learning algorithm that showcase how an algorithm can both allow the user to
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specify gi to encode his or her own definition of undesirable behavior and allow for multiple
behavioral constraints.

4.1 Non-Discriminatory Linear Regression

First, consider the Seldonian algorithm non-discriminatory linear regression (NDLR), pre-
sented in Fig. S9, which relies on the subroutines presented in Figs. S5–S8. NDLR has three
main steps. First, the data set D is partitioned into two sets, D1 and D2, for reasons that we
discuss later. Second, D1 is used to select a single solution, called the candidate solution θc,
that the algorithm considers returning. Third, the algorithm runs a safety test using D2 to
determine whether returning the candidate solution would violate a behavioral constraint.
More precisely, the algorithm computes a high confidence upper bound on the absolute value
of the discrimination statistic of the candidate solution: a high confidence upper bound on
|d(θc)|. If this upper bound is less than ε, then the candidate solution is returned, and if it is
not, then the algorithm returns No Solution Found. Next we discuss in more detail the
two main steps of the algorithm, the safety test and the selection of a candidate solution.

The safety test (lines 4–6 of Fig. S9) is the component of the algorithm that ensures that
it is Seldonian. Regardless of which candidate solution θc is chosen, this step ensures that
the behavioral constraint is satisfied. It ensures that with high probability an estimator with
absolute discrimination statistic larger than ε is not returned. The key component of this
step is a method for producing high confidence upper bounds on the absolute discrimination
statistic given the data set D2.

To compute these upper bounds, we use HoeffdingDiscrimUpperBound (Fig. S8),
which relies on one form of Hoeffding’s inequality [90], which is provided in Fig. S5,
HoeffdingUpperBound. Hoeffding’s inequality is not directly applicable due to the
absolute value in the absolute discrimination statistic. To remedy this, we replace the
single behavioral constraint that the absolute discrimination statistic is less than ε with two
behavioral constraints that ensure that d(a(D)) ≥ −ε and d(a(D)) ≤ ε with high probability.
Because these two constraints must hold simultaneously with probability 1− δ, we require
each to hold with probability 1− δ/2.

1 return 1
m

(
∑m

i=1 Zi) + b
√

ln(1/δ)
2m

;

Fig. S5: HoeffdingUpperBound(Z, b, δ): Apply Hoeffding’s inequality to upper
bound the mean of a random variable. Z = {Z1, . . . , Zm} is the vector of samples of
the random variable, b ∈ R≥0 is the range of the random variable, and δ ∈ (0, 1) is the
confidence level of the upper bound.
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1 return 1
m

(
∑m

i=1 Zi) + b
√

ln(1/δ)
2k

;

Fig. S6: PredictHoeffding(Z, b, δ, k): Predict what would be returned by
HoeffdingUpperBound(Z ′, b, δ) if given a new array of samples Z ′ with k elements.
We use a conservative prediction (an over-prediction) because under-predictions can
cause NDLR to frequently return No Solution Found when it could safely return
a solution.

1 Input: 1) Solution θ, 2) data set D = {(Xi, Yi, Ti)}mi=1, 3) confidence level δ ∈ (0, 1),
4) maximum level of discrimination ε ∈ R>0, 5) an upper bound b on the
range of possible prediction errors, 6) a number of samples k.

2 m1 ←
∑m

i=1 Ti, m0 ← m−m1;
3 Let (X0

i , Y
0
i ) be the ith data point of type zero, and (X1

i , Y
1
i ) be the ith data point of

type one;
4 Create array Z of length min{m0,m1}, with values Zi = (θᵀX0

i − Y 0
i )− (θᵀX1

i − Y 1
i );

5 ub =
max {PredictHoeffding(Z, b, δ/2, k),PredictHoeffding(−Z, b, δ/2, k)};

6 if ub ≤ ε then
7 return 1

m

∑m
i=1(θᵀXi − Yi)2;

8 return b2 + ub− ε;
Fig. S7: HoeffdingCandidateObjective(θ,D, δ, ε, b, k): The objective function
maximized by the candidate solution when using Hoeffding’s inequality. Here k is the
number of data points that will be used in the subsequent safety test in NDLR—the
cardinality of D2.

1 Input: 1) Solution θ, 2) data set D = {(Xi, Yi, Ti)}mi=1, 3) confidence level δ ∈ (0, 1),
4) maximum level of discrimination ε ∈ R>0, 5) an upper bound b on the
range of possible prediction errors.

2 m1 ←
∑m

i=1 Ti, m0 ← m−m1;
3 Let (X0

i , Y
0
i ) be the ith data point of type zero, and (X1

i , Y
1
i ) be the ith data point of

type one;
4 Create array Z of length min{m0,m1}, with values Zi = (θᵀX0

i − Y 0
i )− (θᵀX1

i − Y 1
i );

5 return
max{HoeffdingUpperBound(Z, b, δ/2),HoeffdingUpperBound(−Z, b, δ/2)};

Fig. S8: HoeffdingDiscrimUpperBound(θ,D, δ, ε, b): Compute a high-proba-
bility upper bound on the discrimination statistic using Hoeffding’s inequality.
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1 Input: 1) Data set D = {(Xi, Yi, Ti)}mi=1, 2) confidence level δ ∈ (0, 1), 3) maximum
level of discrimination ε ∈ R>0, 4) an upper bound b on the magnitude of a
prediction error.

2 Partition D into D1 (20% of data) and D2 (80% of data);
3 θc ∈ arg minθ∈Θ HoeffdingCandidateObjective(θ,D1, δ, ε, b, |D2|);
4 if HoeffdingDiscrimUpperBound(θc, D2, δ, ε, b) ≤ ε then
5 return θc;

6 return No Solution Found;

Fig. S9: Non-Discriminatory Linear Regression (NDLR, “endler”).

Next consider the selection of the candidate solution, θc, in more detail (line 3 of Fig. S9).
Poor choices of θc will result in the algorithm returning No Solution Found. Good
choices of θc will be solutions that will be returned by the third step of NDLR, which are
solutions whose discrimination statistics will be successfully bounded below ε when using
D2. Furthermore, good choices of θc should also minimize the MSE of their predictions. The
goal is not just to satisfy the behavioral constraint, but also to optimize the objective, in this
case to minimize the MSE. Consequently, NDLR (Fig. S9) selects the candidate solution that
it predicts (on the basis of D1) will have the lowest MSE subject to the constraint that it
is predicted that the candidate solution will be returned. To accomplish this optimization,
NDLR relies on HoeffdingCandidateObjective (Fig. S7), which uses a boundary
function to constrain the search to solutions that are predicted to be returned in the third
step.

Notice that the selection of the candidate solution and the safety test use different
and statistically independent data sets, D1 and D2. This is necessary to ensure statistical
independence of the random variables used by Hoeffding’s inequality when computing high
confidence bounds on the discrimination statistic. Partitioning the data ensures that the
candidate solution makes no use of the data that will be used to test its safety. Access to
this data could bias the results of the safety test.

4.2 Quasi-Non-Discriminatory Linear Regression

Next consider the quasi-Seldonian regression algorithms quasi-non-discriminatory linear
regression (QNDLR) and QNDLR(λ) (Fig. S14), which rely on the subroutines presented
in Figs. S10–S13. QNDLR and QNDLR(λ) are modifications of NDLR that use Student’s
t-test, TTestUpperBound in Fig. S10, rather than Hoeffding’s inequality when computing
high confidence upper bounds.

Both NDLR and QNDLR attempt to minimize the MSE while ensuring that the discrim-
ination statistic is at most ε with high probability. Given large amounts of data (e.g., as
m→∞), they tend to converge to solutions with discrimination statistics slightly less than
ε. However, the actual goal is not to produce solutions with discrimination statistics close
to ε; the goal is to avoid discrimination as much as possible. That is, this problem is really
a multiobjective problem: the ideal solution should simultaneously minimize MSE and the
discrimination statistic.
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1 Z̄ ← 1
m

∑m
i=1 Zi, σ ←

√
1

m−1

∑m
i=1(Zi − Z̄)2;

2 return Z̄ + σ√
m
t1−δ,m−1;

Fig. S10: TTestUpperBound(Z, δ): Apply Student’s t-test to a vector of samples
of a random variable. Z = {Z1, . . . , Zm} is the vector of samples and δ ∈ (0, 1) is the
confidence level.

1 Z̄ ← 1
m

∑m
i=1 Zi, σ ←

√
1

m−1

∑m
i=1(Zi − Z̄)2;

2 return Z̄ + 2 σ√
k
t1−δ,k−1;

Fig. S11: PredictTTest(Z, δ, k): Predict what TTestUpperBound(Z, δ) would
return if given a new array of samples Z with k elements, and err on the side of
over-estimating. We use a conservative prediction (an over-prediction) because under-
predictions can cause NDLR to frequently return No Solution Found.

1 Input: 1) Solution θ, 2) data set D = {(Xi, Yi, Ti)}mi=1, 3) confidence level δ ∈ (0, 1),
4) maximum level of discrimination ε ∈ R>0, 5) a number of samples k, 6) a
constant λ ∈ R≥0 that balances the trade-off between MSE and
discrimination.

2 m1 ←
∑m

i=1 Ti, m0 ← m−m1;
3 Let (X0

i , Y
0
i ) be the ith data point of type zero, and (X1

i , Y
1
i ) be the ith data point of

type one;
4 Create array Z of length min{m0,m1}, with values Zi = (θᵀX0

i − Y 0
i )− (θᵀX1

i − Y 1
i );

5 ub = max {PredictTTest(Z, b, δ/2, k),PredictTTest(−Z, b, δ/2, k)};
6 if ub ≤ ε then

7 return 1
m

∑m
i=1(θᵀXi − Yi)2 + λ 1

|Z|
∑|Z|

i=1 |Zi|;

8 return b2 + ub + (λ− 1)ε;

Fig. S12: TTestCandidateObjective(θ,D, δ, ε, k, λ): The objective function
maximized by the candidate solution.

1 Input: 1) Solution θ, 2) data set D = {(Xi, Yi, Ti)}mi=1, 3) confidence level δ ∈ (0, 1),
4) maximum level of discrimination ε ∈ R>0.

2 m1 ←
∑m

i=1 Ti, m0 ← m−m1;
3 Let (X0

i , Y
0
i ) be the ith data point of type zero, and (X1

i , Y
1
i ) be the ith data point of

type one;
4 Create array Z of length min{m0,m1}, with values Zi = (θᵀX0

i − Y 0
i )− (θᵀX1

i − Y 1
i );

5 return max {TTestUpperBound(Z, δ/2),TTestUpperBound(−Z, δ/2)};
Fig. S13: TTestDiscrimUpperBound(θ,D, δ, ε): Compute a high-probability up-
per bound on the discrimination statistic using Student’s t-test.
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1 Assumptions: This quasi-Seldonian algorithm assumes that the sample
discrimination statistic computed using all of the data is normally distributed, and
also uses the minimum MSE estimator of variance within Student’s t-test rather than
the unbiased estimator.

2 Input: 1) Data set D = {(Xi, Yi, Ti)}mi=1, 2) confidence level δ ∈ (0, 1), 3) maximum
level of discrimination ε ∈ R>0, 4) a hyperparameter λ ∈ R≥0.

3 Partition D into D1 (20% of data) and D2 (80% of data);
4 θc ∈ arg minθ∈Θ TTestCandidateObjective(θ,D1, δ, ε, |D2|, λ);
5 if TTestDiscrimUpperBound(θc, D2, δ, ε) ≤ ε then
6 return θc;

7 return No Solution Found;

Fig. S14: Quasi-Non-Discriminatory Linear Regression (QNDLR) if λ = 0 and
QNDLR(λ) if λ > 0.

This is an example of a problem for which multiobjective methods can be combined with
the SOP framework. QNDLR(λ) is a modification of QNDLR to allow for a multiobjective
approach while maintaining the high-probability guarantees of a quasi-Seldonian algorithm.
Specifically, QLDNR(λ) is a variant of QNDLR that includes a soft constraint parameterized
by λ in the objective function as in Eq. S7. QNDLR(λ) is therefore a solution to the Seldonian
optimization problem in Eq. S17, modified so that the MSE objective includes a penalty
proportional to the sample discrimination statistic. QNDLR(λ) is a quasi-Seldonian algorithm
that ensures with high probability that the discrimination statistic will be at most ε, and
subject to this constraint, it simultaneously optimizes MSE and the discrimination statistic.

Recall that selecting λ is a difficult process that often requires additional data analysis,
and that values of λ that are too small will result in a standard soft-constrained method
producing a solution with discrimination statistic larger than ε. Crucially, because QNDLR(λ)
is a quasi-Seldonian algorithm, even if the user selects a λ that would result in discrimination
statistics larger than ε if using a standard soft-constrained method, QNDLR(λ) will, with
high probability, not return a solution with discrimination statistic larger than ε. This
effectively eliminates the risk associated with selecting a value for λ that would make
standard soft-constrained methods unsafe,

Lastly, it is clear that NDLR, QNDLR, and QNDLR(λ) have significantly higher compu-
tational complexity than ordinary least squares linear regression and many multiobjective
methods. The primary computational bottleneck in our algorithms is the search for the
solution θc that optimizes the candidate objective function (lines 3 and 4 in Fig. S9 and
Fig. S14, respectively). This optimization includes hard constraints, which we transformed
into soft constraints using boundary functions. In general, solving optimization problems
with hard constraints is more challenging than solving problems with soft constraints (a
computational benefit of soft-constrained and multiobjective methods). Different choices
of methods for performing the search for θc result in different computational complexities.
In our experiments we performed the search using gradient descent with error-based termi-
nation conditions. Although the higher computational complexity of the (quasi-)Seldonian
algorithms that we present was not an issue in our experiments, for big-data applications it
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could be a concern. Thus it remains an important open question whether the search for a
candidate solution can be further optimized computationally.

4.3 NDLR and QNDLR Discussion

NDLR, QNDLR, and QNDLR(λ) are instances of a more general algorithm that allows the
user to 1) select any objective function (e.g., MSE alone as used by NDLR and QNDLR,
or MSE with a penalty proportional to the discrimination statistic as used by QNDLR(λ)),
and 2) bound any statistic for which the user can provide data-based unbiased estimates.
That is, the user provides 1) a function f̂ , such that f̂(θ,D) ∈ R is an estimate of the utility
of the solution θ, computed using data D and 2) a function ĝ, such that ĝ(θ,D) ∈ R|D| is a
vector of i.i.d. unbiased estimates of the desired behavioral constraint function g(θ) (thus,
g(θ) := E[ĝ1(θ,D)]). This more general quasi-Seldonian algorithm, presented in Fig. S15, is
an approximate solution to the Seldonian optimization problem:

arg max
a∈A

E
[
f̂(a(D), D′)

]
(S20)

s.t. Pr(ED′ [ĝ1(a(D), D′)] ≤ 0) ≥ 1− δ, (S21)

where the D and D′ data sets are independent and identically distributed random variables
and ED′ denotes that the expected value is taken only over D′ (not D).

Intuitively, the quasi-Seldonian algorithm presented in Fig. S15 is similar to QNDLR—it
partitions the data set, uses one partition to compute a candidate solution, and uses Student’s
t-test with the second partition to test whether the candidate solution can be returned. In
fact, QNDLR is a special case of this algorithm, where f̂ is the negative sample MSE and ĝ is
the vector of sample discrimination statistics denoted by Z in Fig. S13. It is straightforward
to extend the algorithm in Fig. S15 to allow for multiple behavioral constraints and to allow
for functions ĝ that produce variable numbers of outputs.

Notice that this more general algorithm could be used to bound other notions of discrim-
ination. For example, one could define ĝ to be the difference in predictions (rather than
prediction errors) to require the mean predictions to be similar for people of each type. In
this sense, users are free to select the definitions of discrimination that they each desire.
Moreover, users need not know the true values of the statistics that they wish to ensure are
bounded. As an example of this, notice that specifying the ĝ function used by QNDLR does
not require knowledge of the true discrimination statistic of any solutions.

Lastly, consider what would happen if the user asked for the impossible: what if the user
desired the difference in mean predictions for people of each type, as well as the difference
in mean prediction errors for people of each type, to both be small? For our illustrative
example it is straightforward to show that this is not possible. As a result, any Seldonian
algorithm, including the one in Fig. S15, should return No Solution Found with high
probability—that is, a (quasi-)Seldonian algorithm can effectively say “I cannot do that.”

We now discuss a different point: given small amounts of data, both NDLR and QNDLR
may often return No Solution Found. This raises the question: what should one do if
faced with a problem where there is not sufficient data to guarantee (even using approximate
concentration bounds) that the resulting solution will not produce discriminatory behavior?
One tempting solution is to argue that, in this case, one should ignore the behavioral
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1 Input :• Feasible set Θ, data set D, and probability 1− δ.
• Function f̂ such that f̂(θ,D) ∈ R is an estimate of the utility of the
solution θ, computed using data D.
• Function ĝ, such that ĝ(θ,D) ∈ R|D| is a vector of unbiased estimates of
g(θ).

2 Output :A solution, θ ∈ Θ, or No Solution Found.
3 Partition D into two data sets, D1 and D2;

4 θc = arg maxθ∈Θ f̂(θ,D1) s.t. µ(ĝ(θ,D1)) + 2σ(ĝ(θ,D1))√
|D2|

t1−δ,|D2|−1 ≤ 0;

5 if µ(ĝ(θc, D2)) + σ(ĝ(θc,D2))√
|D2|

t1−δ,|D2|−1 ≤ 0 then

6 return θc;
7 return No Solution Found;

Fig. S15: An example of a general-purpose quasi-Seldonian algorithm. Here µ(v)
denotes the average of the elements of the vector v and σ(v) denotes the sample
standard deviation of the elements of the vector v including Bessel’s correction.

constraints and simply use ordinary least squares linear regression. However, we contend that
insufficient data does not require us use methods that do not provide guarantees about their
behavior.

Instead, one might use algorithms that relax the behavioral constraints even more than
quasi-Seldonian algorithms. Intuitively, Seldonian algorithms ensure that the probability of
undesirable behavior is at most δ, while quasi-Seldonian algorithms ensure that the probability
of undesirable behavior will be less then or approximately equal to δ. One might go a step
further and define even weaker variants of quasi-Seldonian algorithms with other properties.
For example, one might require the algorithm to produce solutions in a way such that a third
party could not show negligence—so that someone else could not use the data available to
the algorithm to show with high confidence that the algorithm produced a solution whose
discrimination statistic has magnitude greater than ε. However, here we focus primarily on
quasi-Seldonian algorithms. Seldonian algorithms like NDLR can require too much data to
be practical, and while weaker variants of quasi-Seldonian algorithms can produce solutions
with any amount of data, they do not provide satisfying guarantees about their behavior.
Quasi-Seldonian algorithms like QNDLR provide a nice middle-ground between these two
extremes—they can produce solutions given practical amounts of data, and they also provide
the user with practical insights into the probability that undesirable behavior might occur.

4.4 Related Work on Fairness for Supervised Learning

Our NDLR, QNDLR, and QNDLR(λ) are not the first supervised learning algorithms that
have been proposed as a means to preclude discriminatory behavior or ensure fairness.
However, to the best of our knowledge, they are the first to provide the user with a practical
guarantee about the probability of undesirable behavior (discrimination). In particular,
although some existing fairness-aware methods provide upper bounds on the severity of
unfair behavior [24, 51], they do not bound the probability that they will return models
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which produce unfair behavior in excess of a user-defined tolerance level, which is the
guarantee provided by our Seldonian algorithms. As we discuss later, the bounds the existing
fairness-aware methods do provide could be used when creating Seldonian algorithms.

Kamiran and Calders [95] provide classification algorithms that aim to ensure that when,
e.g., making predictions for people, the probability of a desired prediction is similar regardless
a person’s type. In the context of linear regression, this would be similar to using a different
definition of the discrimination statistic that considers the difference between the mean
predictions for people of each type, rather than the difference between the mean prediction
errors :

d(θ) := E [ŷ(X, θ)|T = 0]− E [ŷ(X, θ)|T = 1] . (S22)

There have been many extensions and adaptations of that approach [96, 97, 98, 50, 99, 100,
101], and there is an extensive history of related game-theoretic efforts [102, 103, 104].

There have also been recent efforts to solve the related problem of determining whether a
deployed machine learning algorithm is producing discriminatory behavior (as opposed to
designing non-discriminatory algorithms). For example, research has proposed means for
determining how sensitive a black-box supervised learning algorithm is to each feature in
a vector of features used to represent the input [105, 106], which can be used to determine
the impact of features, such as race and gender [107]. Automated testing can similarly be
applied to software systems that rely on learned models to measure fairness [108].

Our work allows for a large number of different definitions of undesirable behavior,
including many definitions of fairness or discrimination. However, the primary difference
between our work and prior related work is not our differing definitions of discrimination. We
selected the discrimination statistic presented in Eq. S4 as an example, which we used to create
NDLR and QNDLR as simple first examples of (quasi-)Seldonian algorithms. Both NDLR
and QNDLR are special cases of the more general (quasi-)Seldonian algorithm presented
in Fig. S15, which allows its users to specify their own definitions of undesirable behavior
(in this case, discrimination). That is, the algorithm in Fig. S15 allows the user to select
the definition of discrimination that is most suitable for an application. This is in stark
contrast to the aforementioned methods for algorithmic fairness that each only allow the user
to mitigate a particular form of discrimination.

To further clarify this point, consider again our illustrative example. For this example, it
is straightforward to verify that there does not exist a single estimator that bounds both
the difference in mean predictions (see Eq. S22) and the difference in mean prediction errors
(see Eq. S4) to both be small. However, the user of the algorithm in Fig. S15 could define
behavioral constraints to require that both of these statistics be bounded below a small
constant with high probability. All (quasi-)Seldonian algorithms, including the one in Fig. S15,
should return No Solution Found with high probability in this case. This is effectively
the algorithm’s way of stating “I cannot do what was requested.” Existing methods for
algorithmic fairness do not have this capability because they do not give their users the
freedom to select their own desired definitions of undesirable behavior (discrimination) from
within a sufficiently broad class.
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4.4.1 Fairness for Classification

The algorithmic fairness community has been rapidly growing and evolving. Part of this
growth has been an increased focus on classification algorithms. While the linear regression
setting provides an easily accessible example of how undesirable behavior can occur and be
mitigated, fairness can also be measured by considering the impact of decisions that are
influenced by the predictions made by classifiers. The classification setting is the same as
the previously defined regression setting, with random variables X, Y , and T , but where
Y is restricted to being in a (typically small) discrete set. Here, we will focus on binary
classification, wherein Y ∈ {−1,+1}. We refer to X as the feature vector and we refer to Y
as the label.

There have emerged numerous definitions of algorithmic fairness [109]. While each of these
definitions is appropriate in a given context, many are impossible to satisfy simultaneously [110,
111]. This section reviews recent work on defining fairness, and on developing fair classification
algorithms. Later, to show the generality of our approach, we apply our Seldonian regression
algorithms (modified to perform classification rather than regression) to enforce several
different definitions of fairness, and we present empirical comparisons to some of these related
fair classification algorithms.

We explain fairness definitions in terms of a classification model that classifies feature
vectors as either a member of the positive (+1) or the negative (−1) class. For example, a
model that predicts recidivism [3] may classify each individual as either likely to be a repeat
offender (+1) or unlikely to be a repeat offender (−1). We consider the model’s fairness
with respect to the protected attribute, T ∈ {0, 1}, as before. Although our methods extend
to definitions of fairness across non-binary protected attributes, this extension is beyond
the scope of this paper. We refer to the set of all feature vectors with the same value for
the protected attribute as a group. We use the notation Pr(ŷ(X, θ)=+1|T=τ) to mean the
fraction of feature vectors in a group that the model classifies as members of the positive
class. We now enumerate definitions of fairness (all of which a Seldonian algorithm could
enforce).

• Disparate treatment, a concept of legal origins, has been interpreted by the machine
learning community in a way that does not always align with the legal definition.3 For
a model to satisfy the machine learning community’s definition of disparate treatment
with respect to a set of attributes, it must have been learned without access to those
attributes [25]. Unfortunately, because data attributes are often correlated, e.g., age
correlates with savings, race correlates with name, and, in the United States, race
correlates with zip code, models trained without access to a set of attributes can still
effectively act unfairly with respect to those attributes [113, 114].

• Disparate impact, also a legal concept that has been adapted by the machine learning
community, captures the notion that a model that does not consider a set of attributes
may still act unfairly with respect to those attributes (e.g., because of correlations
among attributes). Such practices could appear to be fair on their face, but, nonetheless,

3Kim [112] discusses the subtleties that arise when applying the existing legal doctrines of disparate
treatment and disparate impact to decisions made by machine learning agents.
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have adverse effects on the involved groups [115, 116, 25]. To measure disparate impact,
the US Supreme Court applied the The 80% Rule (previously developed by the Technical
Advisory Committee on Testing assembled by the State of California Fair Employment
Practice Commission in 1971), which states that an employer’s hiring rates for protected
groups may not differ by more than 80%. For example, if an employer hires 1/2 of
its male applicants, then that employer must hire at least 80% · 1

2
= 2

5
of its female

applicants [115]. Formally, a classifier that is fair with respect to this disparate impact
proxy if

min

(
Pr(ŷ(X, θ)=+1|T=0)

Pr(ŷ(X, θ)=+1|T=1)
,
Pr(ŷ(X, θ)=+1|T=1)

Pr(ŷ(X, θ)=+1|T=0)

)
≥ p

100
, (S23)

where typically p = 80, per the 80% rule.

• Delayed impact is concerned with the fact that making seemingly fair decisions can,
in the long term, produce unfair consequences [117]. For example, to make up for
a disparity in recidivism predictions by race, a model may, at random, decrease its
predictions for one race. While on its face, this may improve the situation for members
of that race, if this results in more visibility for repeat offenders of that race, the
public’s perception may have a more negative effect toward that race, producing delayed
negative impact. Measuring delayed impact requires temporal indicator data, of, for
example, long-term improvement, stagnation, and decline in variables of interest [117].

• Demographic parity, also called statistical parity and group fairness, requires
that the model’s predictions are statistically independent of the attribute with respect
to which the model is fair [50, 96]. For example, for a model that predicts an individual’s
recidivism to be fair with respect to race, it should predict the same fraction of the
individuals of each race as likely to be repeat offenders. Formally, demographic parity
is satisfied if

Pr(ŷ(X, θ)= +1|T=0) = Pr(ŷ(X, θ)= +1|T=1). (S24)

• Predictive equality requires that false positive rates are equal among groups [116, 118].
Formally, predictive equality is satisfied if

Pr(ŷ(X, θ)= +1|T=0, Y=−1) = Pr(ŷ(X, θ)= +1|T=1, Y=−1). (S25)

Note that this definition only considers feature vectors whose true label is −1.

• Equal opportunity requires that false negative rates are equal among groups [119, 116].
Formally, equal opportunity is satisfied if,

Pr(ŷ(X, θ)=−1|T=0, Y= +1) = Pr(ŷ(X, θ)=−1|T=1, Y= +1). (S26)

Note that this definition only considers feature vectors whose true label is +1.

• Equalized odds, a combination of predictive equality and equal opportunity, requires
that both false positive and false negative rates are equal among groups [119]. Conse-
quently, the equalized odds criterion can be viewed as the conjunction of the predictive
equality and equal opportunity criteria.
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• Treatment equality requires that the ratio of the false-positive rate to the false-
negative rate is the same for each group [120]. Formally, treatment equality is satisfied
if

Pr(ŷ(X, θ)=−1|T=0, Y= +1)

Pr(ŷ(X, θ)= +1|T=0, Y=−1)
=

Pr(ŷ(X, θ)=−1|T=1, Y= +1)

Pr(ŷ(X, θ)= +1|T=1, Y=−1)
. (S27)

• Causal fairness, also called counterfactual fairness, is based on the counterfactual
causal relationship between variables. To be causally fair, a classifier must predict the
same label for all feature vectors that are the same except for those attributes. In
other words, if two contexts differ only in T , and are otherwise identical, this definition
requires classifiers to predict the same outcome for both individuals [108, 121]. For
example, a recidivism model is causally fair with respect to race only if it predicts
identical labels for all pairs of individuals identical in every way except race.

• Metric fairness requires that, given a distance metric to compare two feature vectors,
the model should predict similar labels for similar feature vectors, on average [50]. Roth-
blum and Yona [122] extended this definition by introducing approximate metric
fairness, which incorporates a tolerance parameter, γ, to obtain PAC-style generaliza-
tion bounds on metric fairness.

• Representation disparity limits the error for all subgroups [51]. Formally, the
amount of representation disparity is the maximum loss for any particular group, i.e.,

max
τ∈{0,1}

E[`(X, θ)|T=τ ], (S28)

where `(X, θ) is the loss associated with the parameter vector, θ. This could be converted
into a constraint by requiring representation disparity to be below a threshold.

• Conditional use accuracy equality requires that precision (the probability that the
model is correct when it predicts the label, +1) is the same for all groups, and that the
negative predictive value (the probability that the model is correct when it predicts the
label, −1) is the same for all groups [120]. Formally, conditional use accuracy equality
is satisfied if

Pr(Y= +1|T = 0, ŷ(X, θ)= +1) = Pr(Y= +1|T = 1, ŷ(X, θ)= +1) (S29)

and

Pr(Y=−1|T = 0, ŷ(X, θ)=−1) = Pr(Y=−1|T = 1, ŷ(X, θ)=−1). (S30)

• Overall accuracy equality requires that the accuracy of the classifier (fraction of
the feature vectors that the model correctly classifies) is equal for each group [120].
Formally, overall accuracy equality is satisfied if

Pr(Y = ŷ(X, θ)|T=0) = Pr(Y = ŷ(X, θ)|T=1). (S31)
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Using the above definitions, researchers have aimed to build classifiers that make fair
decisions. Several methods have emerged for enforcing specific definitions of fairness. However,
unlike our approach, these methods do not provide probabilistic guarantees that the resulting
classifier is acceptably fair when applied to unseen data. For example, logistic-regression-
based classification, support vector machines, and hinge loss classifiers can enforce a convex
surrogate for disparate impact by introducing constraints related to the covariance between T
and the model’s predictions ŷ(X, θ) [25]. This approach is guaranteed to be fair with respect
to the surrogate definition, but by contrast to our approach, cannot guarantee fairness with
respect to the actual definition of disparate impact.

Similarly, for decision trees, constraining the splitting criteria using T can improve
demographic parity [123], as can balancing, removing, and repeating some training data, and
flipping output labels of feature vectors close to the decision tree’s decision boundaries, which
introduces noise around those critical boundaries [124]. Balancing the training data and
introducing noise by flipping the labels of some feature vectors and repeating some training
data can improve demographic parity for näıve Bayes classifiers as well [125]. More generally,
training separate classifiers for each group can limit several types of unfair behavior, including
violations of demographic parity [126]. Notably, this requires knowledge of group membership
for each feature vector, violating the definition of disparate treatment. In addition, this
approach incorporates fairness by augmenting the classification loss with a term that measures
unfair behavior, and thus does not guarantee that the returned solution will meet the user’s
fairness requirements. Directly minimizing the violation of demographic parity through the
use of a specialized regularizer is also effective for enforcing fairness [98]. By contrast to our
approach, these methods do not guarantee fairness of the classifiers they produce.

While many classifiers are tailored to enforce specific definitions of fairness, there has
been recent interest in developing more general methods. For example, one such method,
Fairlearn, is able to enforce all fairness constraints that can be formulated as linear functions
of conditional moments, such as false-positive rates for specific values of T [24]. This method
provides probabilistic upper bounds on the severity of unfair behavior—it can estimate how
unfair the classifier is. However, it does not use these bounds to constrain the probability
that it creates unfair classifiers. Fairlearn, and the bounds that it does provide, could be
used as components of a more advanced Seldonian algorithm that rejects solutions that are
predicted to exhibit unfair behavior in excess of the user’s tolerance.

Finally, the problem of enforcing fairness has been investigated in several other problem
settings besides regression and classification. While there are significant differences between
these settings and the ones we consider here, there are some shared concepts. For example,
fairness has been formulated in the multi-armed bandit setting by associating each bandit
arm with a population, and stating that an algorithm is unfair if it preferentially chooses
less-qualified (i.e., lower value) arms [101]. While this definition of fairness is distinct to the
setting of multi-armed bandits, the use of confidence intervals to provide high-probability
bounds on unfair behavior is similar to our approach.

Other recent work has evaluated fairness in the context of repeated interactions with
a classification system [51]. Specifically, disparity amplification may arise for services that
retrain an underlying model iteratively, over time. When such a service exhibits bias against
a group, and individuals interact with such a service, members of that group may self-select
to discontinue using the service. When the service retrains its model iteratively, a smaller
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portion of the training data represents that group, and the bias may increase. While a similar
effect could be achieved using our approach by defining fairness based on the predicted
outcome of repeated interactions with the classifier, we do not investigate this in the current
work. In addition, this approach uses upper bounds on the severity of unfair behavior, which,
while distinct from the bounds we provide, might be used to design a related Seldonian
algorithm. Finally, other work has introduced definitions of fairness that are tailored to
specific applications, such as for use in evaluating recommendation systems [127]. Because
these definitions are specialized, we do not list them here. However, our framework could be
used to enforce these constraints as well.

4.5 Application to the Illustrative Example

We now present empirical results from the application of Seldonian and non-Seldonian
algorithms. We begin with the application of SCLR, NDLR, and QNDLR to the illustrative
example, using δ = 0.05, ε = 0.1, and using different amounts, m, of training data. The results
are summarized in Fig. S16. Notice that NDLR is extremely conservative—not once did it
return a solution with discrimination statistic larger than ε. The main limitation of NDLR is
that it requires a large amount of data (around m = 300,000) before it begins to return a
solution more often than not. QNDLR is not quite as conservative as NDLR, although it
still maintains an error probability less than δ, and requires only around m = 10,000 training
points before it begins to return a solution more often than not. This is an example where
QNDLR provides a nice balance of the trade-off between data efficiency (the amount of data
needed to find solutions) and how much its probabilistic guarantees can be trusted. Notice
also that both NDLR and QNDLR produce solutions that have higher MSE than the ordinary
least squares fit. This is because, as discussed previously, minimizing MSE and the absolute
discrimination statistic are at odds—the algorithms must balance the trade-off between error
and discrimination.

We also provide empirical comparisons to a few other algorithms. First, we include soft
constrained linear regression (SCLR), which includes soft constraints as described previously
using various settings of λ (we write SCLR(λ) to denote SCLR applied with a specific value
of λ). Notice that larger values of λ result in smaller magnitude discrimination statistics,
and that the magnitude of the discrimination statistic is sensitive to the choice of λ—if it is
selected to be too large, the MSE is unnecessarily high, while if it is too small, it will result
in too much discrimination. Furthermore, notice that even when using the setting of λ that
results in the mean absolute discrimination statistic being approximately ε, SCLR always
returns a solution, and so given small amounts of data it can often produce solutions that
discriminate too much.
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(a) The probability that a solution was re-
turned for various training set sizes, m.
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(e) Examples of the lines found by several of the
algorithms given m = 500,000 training points.

Fig. S16. Results of applying various linear regression algorithms to the illustrative example.
All results are averaged over 200 trials. LR denotes ordinary least squares linear regression.
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4.6 Application of NDLR and QNDLR to Real-World Data

The illustrative example provides an easily reproduced and understood example of how
discriminatory behavior can manifest when using machine learning algorithms designed
using the standard ML approach, and how it can be mitigated when using (quasi-)Seldonian
algorithms. However, it is a simple synthetic example, which raises the question: does this
sort of discriminatory (racist or sexist) behavior actually occur when using machine learning
algorithms designed using the standard ML approach with real data? Recent research has
suggested that the answer is affirmative: machine learning algorithms designed using the
standard ML approach that were applied to important problems have acted in racist and
sexist ways. For example, Datta et al. [105] showed that standard classification algorithms
including logistic regression, support vector machines, and random forests can all produce
racist and sexist behavior when used to predict whether or not a person is likely to commit
a crime in the future. Similarly, Datta et al. [107] showed that Google’s online advertising
system is more likely to show advertisements for a high paying job to men than it is to show
it to women, and Kay et al. [128] found that “image search results for occupations slightly
exaggerate gender stereotypes and portray the minority gender for an occupational [sic] less
professionally.” This real-world discrimination is not limited to gender: Sweeney [113] found
that Google AdSense was more likely to generate advertisements suggestive of an arrest
record when searching for names associated with black people when compared to searches
for names associated with white people. In another example, machine learning algorithms
have been used to predict whether convicts will be likely to commit crimes in the future, and
these machine predictions were considered during sentencing. A recent investigation into the
behavior of these algorithms suggests that they may be twice as likely to incorrectly predict
that a black person is likely to commit a crime than they are to incorrectly predict that a
white person is likely to commit a crime [3].

In this section we present another example of how regression algorithms designed using the
standard ML approach can be applied to real data, how this results in sexist behavior, and
how (quasi-)Seldonian algorithms can be used to preclude sexist behavior. Whereas in our
illustrative example we predicted the aptitude of job applicants based on their résumé, here
we predict the aptitude of students applying to a university. Specifically, we use applicants’
scores on nine exams taken as part of the application process to a university to predict what
their grade-point averages (GPAs) will be during the first three semesters at university. Our
training set consisted of data from 43,303 students. For each student, we are given three
terms: X, Y, and T , as in the illustrative example. Here, X ∈ R9 is a vector of the student’s
9 exam scores, Y is the student’s mean GPA during the first three semesters of university
(using the letter-to-number system A = 4.0, B = 3.0, C = 2.0, D = 1.0, and F = 0.0), and T
is a binary value that indicates if the student is female or male.

For these experiments, we used leave-one-out cross-validation. That is, we predicted the
performance of the ith student after training using the data from all of the other students,
and measured the resulting sample MSE and discrimination statistic when using various
regression algorithms. We applied QNDLR and QNDLR(λ) using δ = 0.05 and ε = 0.05,
as well as four algorithms designed using the standard ML approach: least squares linear
regression (LS), an artificial neural network with ten neurons in its hidden layer (ANN) [129],
a random forest (RF) [42], and soft-constrained linear regression (SCLR). For the first three
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machine learning methods designed using the standard ML approach (LS, ANN, and RF)
we used the standard implementations provided by Matlab R2017b, and we implemented
SCLR by performing gradient descent on the objective function provided in Eq. S7. We
applied SCLR with λ = 0.1 and λ = 1.0, which we denote by SCLR(0.1) and SCLR(1.0)
respectively, and we used these same values of λ when running QNDLR(λ).

Fig. S17 depicts the result of applying LS, ANN, RF, SCLR(0.1), SCLR(1.0), QNDLR,
QNDLR(0.1), and QDNRL(1.0). In all trials (all 43,303 folds of leave-one-out cross-validation)
QNDLR, QNDLR(0.1), and QNDLR(1.0) all always returned solutions (not NSF). Notice
that the algorithms designed using the standard ML approach discriminate against female
applicants (they produce large discrimination statistics), while QNDLR and QNDLR(λ) do not
(they succesfully bound the discrimination statistic so that it is less that ε = 0.05). The sample
discrimination statistics (computed using leave-one-out cross-validation and rounded to two
significant figures) when using the standard methods are −0.28 (LR), −0.27 (ANN), −0.27
(RF), −0.26 (SCLR(0.1)), and −0.04 (SCLR(1.0)), while the sample discrimination statistics
of QNDLR, QNDLR(0.1), and QNDLR(1.0) are 0.03, 0.03, and 0.01, respectively. Although
seemingly small numbers, the discrimination statistics for the standard methods (other than
SCLR(1.0), which we discuss later) correspond to massive systematic discrimination against
female applicants. To put into context the magnitude of a discrimination statistic of −0.27,
consider Fig. S18, which provides a histogram of the GPAs of all 43,303 students, and notice
that due to the clustering of GPAs towards the upper end of the spectrum, a difference of
0.27 is significant.

Notice that SCLR(λ) is capable of precluding significant discrimination when λ is properly
tuned. Earlier we argued that selecting appropriate values for λ a priori (before observing the
data from the problem at hand) is difficult. Notice that using λ = 0.1 results in significant
discrimination against female applicants. Furthermore, the standard error bars in Fig. S17
indicate that even using λ = 1.0 resulted in solutions with discrimination statistics above
0.05 with probability greater than δ. By contrast, QNDLR(λ) combines a soft-constrained
multiobjective approach with our framework. Even when using values for λ that would produce
significant discrimination (e.g., λ = 0.1), QNDLR(λ) still ensures that the discrimination
statistic will be below ε with probability at least 1− δ. Also, notice that the mean prediction
error for male applicants when using QNDLR(0.1) is above ε/2 = 0.025. This does not
mean that QNDLR(0.1) violates the behavioral constraint since the mean error for female
applicants is not below −ε/2 = −0.025. That is, the difference in mean prediction errors
remains well below 0.05.

A common misconception about Fig. S17 is that it shows that QNDLR and QNDLR(λ)
produced more accurate predictions for all students—they did not. To emphasize this point,
in Fig. S19 we provide additional information about the estimators of GPA produced by each
method. Notice that, just like in the illustrative example, the non-discriminatory algorithms
tend to produce estimates with slightly higher MSE than the algorithms designed using the
standard ML approach, but significantly less discrimination. This slightly higher MSE is the
cost associated with precluding significant discrimination when applying a quasi-Seldonian
algorithm for this application.
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Fig. S17. Empirical results using various regression algorithms to predict student GPAs
based on entrance exam scores. Results are averaged over all 43,303 folds when using
leave-one-out cross-validation, and standard error bars are provided.

4.7 Application Using Other Definitions of Fairness

Since the Seldonian framework is a framework for designing machine learning algorithms,
not a particular algorithm, it can be used to create classification algorithms. Furthermore, a
primary benefit of Seldonian algorithms is that they are not tied to a specific definition of
undesirable behavior—they allow the user to define what he or she considers to be undesirable
behavior. In the context of ensuring fairness, this means that Seldonian algorithms allow the
user of the algorithm to define the definition of fairness that is appropriate for the application
at hand. This generality is critical because users may not use fair machine learning algorithms
if the provided fairness guarantees do not align with the users’ goals.

To provide supporting evidence for the claim that Seldonian algorithms can allow the user
to specify a variety of different definitions of undesirable behavior, we used the algorithm
in Fig. S15 (using CMA-ES [130] to solve for θc on line 4) to perform classification using
multiple modern definitions of fairness defined by other researchers in recent related literature.
The transition from regression to classification involves replacing the objective function f
(MSE) with a classification loss function, and defining g to encode other definitions of fairness.
Specifically, we use the indicator loss function as our objective: f(θ) := Pr(ŷ(X, θ) = Y ).
Because some definitions, such as disparate impact, cannot be estimated without bias, and
the concentration inequalities we use require unbiased estimates, we construct high-confidence
bounds for these definitions by first constructing suitable confidence intervals for the terms
that they depend on (which we call base variables), and then combining these intervals
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Fig. S19. The MSE and absolute mean discrimination statistic (AMDS)—the absolute
value of the sample mean discrimination statistic over all trials—for the various regression
algorithms.

into a confidence interval for g. For example, when computing the bound when g encodes
disparate impact, we construct separate confidence intervals for Pr(ŷ(X, θ)=1|T=0) and
Pr(ŷ(X, θ)=1|T=1), which we then use to bound g. Recall from our earlier discussion that we
use the machine learning community’s definitions of disparate impact and disparate treatment,
which, at times, may not align with their legal counterparts.

To convert the GPA prediction problem into a classification problem, we used a GPA
threshold of 3.0 to group students into “high performance” and “low performance” groups.
We considered the task of predicting whether a student falls into the low- or high-performance
group, while not discriminating based on sex. We defined Y= −1 to denote membership
in the low-performance group (GPA < 3.0) and Y= + 1 to denote membership in the
high-performance group (GPA ≥ 3.0). To demonstrate the generality of our approach, we
repeated our experiment five times, each time using a different definition of discrimination:
disparate impact, demographic parity, equal opportunity, equalized odds, and predictive
equality. Because these definitions were originally formulated as hard constraints rather than
real-valued metrics, we converted them to metrics by measuring the degree to which they
are violated, and introduced a definition-specific tolerance parameter ε. For example, since
demographic parity requires that the rate of positive predictions be equal for each type, we
applied a constraint objective that measures the absolute difference between these rates, with
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a tolerance εDP :

gDP (θ) := |Pr(ŷ(X, θ)= +1|T=0)− Pr(ŷ(X, θ)= +1|T=1)| − εDP . (S32)

The tolerance for each definition will typically be determined by the application; for illustrative
purposes, we used tolerances of −0.80, 0.15, 0.2, 0.35, and 0.2, respectively, for disparate
impact, demographic parity, equal opportunity, equalized odds, and predictive equality.

For our experiments, we evaluate linear models trained using a variety of classification
algorithms. We refer to our Seldonian approaches as Seldonian classification (SC) and
quasi-Seldonian classification (QSC). To establish baseline performance, we compare to two
standard classification algorithms and two algorithms that are specifically formulated to
enforce certain definitions of fairness. First, we compare to linear models trained using
stochastic gradient descent using the logistic loss, perceptron loss, and hinge loss, as well as
logistic regression and linear support vector classification [131]. Because the performance
of these baselines individually is not important to our results, we group these approaches
together in our results, and refer to them as the standard approaches. While these methods
are not designed to enforce fairness, we also evaluate two recently-proposed state-of-the-art
fairness-aware algorithms, Fairlearn and Fairness Constraints.

As described previously, Fairlearn (FL) can enforce definitions of fairness that can be
written as a set of linear constraints on conditional moments, such as confusion rates [24]. It
includes a tolerance parameter that determines the maximum amount by which fairness can be
violated, analogous to ε in our formulation. We used the implementation provided by Agarwal
et al. [24], which includes code to enforce demographic parity and equalized odds. For other
definitions of fairness, we set Fairlearn to enforce equalized odds as a surrogate fairness
definition, and tested several settings of the tolerance parameter to assess the performance of
the approach. When applying FL to definitions besides demographic parity and equalized
odds, we evaluate FL using tolerance values of 0.01, 0.1, and 1.0.

In addition, we evaluate the approach of Zafar et al. [25], which we refer to as Fairness
Constraints (FC). FC is designed to simultaneously enforce disparate treatment and disparate
impact. However, because an objective based on disparate impact is non-convex and therefore
difficult to optimize, FC uses a relaxed version that limits the covariance between the protected
attributes and the model’s predictions. Because there is not a simple correspondence between
this covariance and the parameter p of disparate impact [25], we provide results for several
parameter settings. As with FL, we evaluate performance using covariance parameter values
of 0.01, 0.1, and 1.0.

When performing our evaluation, we trained each model to make predictions using non-
sensitive features only—that is, all predictions were made using X, but not T . As a result, all
of the models we evaluate satisfy the principle of disparate treatment. Also, notice that FC
was only designed to limit disparate impact, FL was not designed to limit disparate impact,
and the standard approaches were not designed to limit any of these definitions of fairness.
Still, we report the performance of all of these methods for all definitions of fairness to show
when they do and do not happen to successfully limit different definitions of fairness and to
emphasize that only the (quasi-)Seldonian methods successfully ensure every type of fairness.

Fig. 3 (main text) presents results showing the behavior of these Seldonian and non-
Seldonian algorithms when predicting the performance group for students while precluding
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disparate impact (first row), demographic parity (second row), equal opportunity (third row),
equalized odds (fourth row), and predictive equality (fifth row). For each algorithm, we
evaluate how three metrics vary with the amount of data used for training: classification
accuracy (left), solution rate (the probability with which each algorithm returns a solution,
center), and failure rate (the frequency with which each algorithm violates the fairness
constraint, right). The goals of varying the amount of training data are to expose the
tendency for some algorithms to exhibit unfair behavior when smaller data sets are available
and to show how little data our algorithm requires to frequently return solutions. For each
position on the horizontal axis (number of training samples), we conducted 250 trials. For
each trial, we resampled a training set with the specified number of training samples without
replacement, and a larger data set without replacement from the remaining data points. We
used this larger data set to evaluate the classifiers produced by the algorithms.

For all definitions of fairness, the failure rates for both our Seldonian and quasi-Seldonian
classification algorithms are consistently below 100δ% and therefore satisfy the behavioral
constraints. While other methods that consider fairness were also fair to use in some settings,
each violated the behavioral constraints provided by our approach for some definitions and
data set sizes. In particular, even when used with the fairness definitions for which they
were designed, such as using FC to enforce disparate impact or FL to enforce demographic
parity, these approaches often returned unfair solutions when trained on small data sets.
The standard classification algorithms, which ignore fairness and optimize accuracy alone,
typically return unfair solutions for all data set sizes. This evaluation shows that our approach
is general enough to apply to a variety of meaningful fairness definitions, while remaining fair
even when applied in configurations that cause other fairness-aware methods to fail.

The ability of our Seldonian algorithms to satisfy the behavioral constraints comes at a
cost, reflected in Fig. 3 by the, in some cases, low accuracy and solution rates. This is not
unexpected—it is unreasonable to assume that arbitrary fairness constraints can be enforced
without a loss of accuracy—and when provided with sufficient data, SC and QSC consistently
return fair solutions that achieve comparable accuracy to the best-performing alternative
methods, which are often unfair.

It is important to note that SC and QSC are preliminary classification algorithms that
fit within the Seldonian framework; given the performance of these algorithms, we consider
the development of more sophisticated Seldonian methods to be an exciting direction for
future work. In essence, SC and QSC show that Seldonian classification algorithms can be
effectively applied to significant problems of interest, but they can be improved in several
ways. For example, using concentration inequalities other than Hoeffding’s, such as Maurer
and Pontil’s empirical Bernstein bound [132], could provide tighter confidence intervals, which
would increase the rate with which our methods return solutions, especially when little data
is available for training. Bounds derived from bootstrap confidence intervals [91], despite
only holding approximately, could also be used to produce quasi-Seldonian classification
algorithms that are more likely to return solutions and that achieve higher classification
accuracy compared to QSC. Furthermore, there are several existing fairness-aware methods
that provide upper bounds on the severity of unfair behavior which could be adapted to
produce Seldonian algorithms that perform well for particular definitions of undesirable
behavior [24]. Alternatively, improvements to the candidate selection process used by our
methods could yield Seldonian classification algorithms that pass the safety test more often
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while achieving higher classification accuracy. In particular, Seldonian algorithms that use
improved methods for balancing the objectives of attaining low classification accuracy and
being likely to pass the safety test could be much more data-efficient than SC and QSC.
These directions for future research show the generality of the Seldonian framework, and
highlight the fact that the results presented here should not be taken as limits of what the
framework can achieve, but as a proof-of-concept of what is possible.

In summary, we have applied our Seldonian and quasi-Seldonian algorithms for regression
and classification to enforcing a variety of behavioral constraints that capture different notions
of fairness. These examples highlight that the design of Seldonian algorithms that function
with a realistic amount of data is tractable (i.e., the theoretical guarantees are not impractical),
and also show that Seldonian algorithms are general enough to constrain many types of
undesirable behavior. In the following section, we show how a quasi-Seldonian algorithm
can be used to solve a reinforcement learning problem. This application further highlights
how Seldonian algorithms can provide an interface that enables a broad class of behavioral
constraints and further emphasizes that the Seldonian framework is about precluding all
types of undesirable behavior, not just unfair behavior.

5 Example: A Seldonian Reinforcement Learning Algorithm and its Applica-
tion to Diabetes Treatment

So far we have focused on (quasi-)Seldonian algorithms that solve the relatively simple
problem of fitting a line to data to provide an easily accessible and broadly interesting
example. We now show that the ideas we have presented are not limited to this simple setting.
Specifically, we propose a (quasi-)Seldonian batch reinforcement learning (RL) algorithm.
RL algorithms allow machines to learn by trial and error without the need for an oracle or
teacher to provide correct decisions for a set of training examples. RL has been applied to a
variety of challenging problems [133, 134, 135]. For an introduction to RL, see the work of
Sutton and Barto [47].

In our prior work we developed Seldonian and quasi-Seldonian batch RL algorithms [136,
137], but we had not yet developed the Seldonian optimization framework and therefore
did not generalize our methods to handle a broad class of behavioral constraint functions.
The methods presented in those publications only allow for the following single behavioral
constraint: with high probability the performance (expected return) of the solution (policy)
proposed by our algorithm should attain at least some user-specified baseline. Still, the
algorithm, safe policy improvement (SPI), that we proposed could be extended to provide
the user with the ability to select behavioral constraints from within a broad class of possible
constraints.

Rather than directly extend our previous work, which would result in an algorithm
similar to the one in Fig. S15, here we propose a new quasi-Seldonian algorithm that takes
a non-standard, but not uncommon [138, 139, 140, 141], approach to RL: we propose an
algorithm that searches the space of probability distributions over policies rather than an
algorithm like SPI that directly searches the space of policies. This decision simplifies the use
of importance sampling [142] by removing the product over time that usually appears when
using importance sampling for RL [143]. It also makes it easier for the user to understand
what policies our algorithm could feasibly deploy.
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Let P be a set of (stochastic or deterministic) policies of interest for an episodic Markov
decision process [144, MDP]. Each p ∈ P denotes one way that the agent could make decisions
as a function of the input it receives. Let H be the set of possible outcomes that could occur
during one episode of an MDP: each h ∈ H is a sequence of states (observations), actions
(decisions), and rewards that describes the agent’s interactions with its environment during
one episode. We refer to each h ∈ H as the history of an episode. Each policy, p ∈ P , induces
a distribution over H. We write H ∼ p to denote that the history-valued random variable H
will be generated using the policy p. Let r : H → R be the return function, where r(h) ∈ R
is the return of the history h, which is a measure of how “good” h is, with larger values being
preferable. The goal in RL is typically to find an optimal policy p?: a policy that maximizes
the expected return:

p? ∈ arg max
p∈P

E[r(H)|H ∼ p]. (S33)

We modify this goal to be the following: find an optimal distribution over policies (within
a feasible set of distributions over policies). This allows for the application of our algorithm to
control problems where the user can specify an initial distribution over (possibly deterministic)
policies based on prior beliefs about which policies will perform well. Let µθ be a distribution
over P for all solutions, θ. We write P ∼ µθ to denote that the policy-valued random variable
P will be sampled from µθ. The expected return when using solution θ can then be written
as E[r(H)|P ∼ µθ, H ∼ P ].

We assume that m policies P1, . . . , Pm were sampled independently from some behavior
distribution µb and we assume that each of these policies was used to generate a history,
yielding m histories H1, . . . , Hm. This historical data, formally defined as the random variable
D = {(Hj, Pj)}mj=1, will be the input to our algorithm. Notice that D is a random variable
because each Hj and Pj is a random variable. As before, let D be the set of all possible
historical data sets, D. We can now state our goal as an SOP:

arg max
a∈A

E[r(H)|P ∼ µa(D), H ∼ P ] (S34)

s.t. ∀i ∈ {1, . . . , n} Pr(gi(a(D)) ≤ 0) ≥ 1− δi, (S35)

where the expectation is taken with respect to the MDP representing the user’s task, and
where A is the set of functions, a ∈ A, where a : D → Θ (where Θ is the set of possible
solutions, which we discuss later).

The algorithm that we propose is likely not an optimal algorithmic solution (espe-
cially given that we do not know the MDP representing the user’s task), although it is
(quasi-)Seldonian. However, it allows for a broad class of behavioral constraint functions
and provides the user with an expressive language with which to define these constraint
functions. Specifically, to specify the ith behavioral constraint function gi, the user must select
an additional return function ri : H → R, which is used to implicitly define the behavioral
constraint:

gi(θ) := E[ri(H)|P ∼ µb, H ∼ P ]− E[ri(H)|P ∼ µθ, H ∼ P ]. (S36)

That is, our algorithm must ensure that with probability at least 1− δi, it will not change
the distribution over policies to one that decreases the expected return, computed using the
return function ri.
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Notice that this means the algorithm’s user need not know which policies could cause
desirable or undesirable behavior. For example, if the user can only recognize when a history,
h ∈ H, has an undesirable outcome, then he/she could define ri(h) = −1 if h is an undesirable
outcome, and ri(h) = 0 otherwise. This would specify that with probability at least 1−δi, the
returned distribution over policies should cause undesirable outcomes to occur with probably
no more than it was under the behavior distribution.

We will focus on designing a quasi-Seldonian algorithm rather than a Seldonian algorithm.
In our earlier work we found that Seldonian batch RL algorithms often require large amounts
of data. Although practical when large amounts of data are available, as in problems involving
“big-data” [145], for many problems it is difficult to obtain the needed amount of data. By
contrast, quasi-Seldonian methods using Student’s t-test or bootstrap confidence bounds
produced solutions given relatively small amounts of historical data, while still providing
useful information about the probability that the behavioral constraints will be satisfied [137].
We therefore focus here on a quasi-Seldonian algorithm that uses confidence intervals based on
Student’s t-test. However, the approach taken here can be extended to use other confidence
bounds, and proper use of a confidence bound like those produced by Hoeffding’s inequality
could produce a Seldonain algorithm.

To simplify the algorithm that we propose here, we assume that the set of solutions
is small and finite; that is, θ ∈ {1, . . . , l} for some small l. This assumption allows us to
avoid partitioning the training data into two sets, one of which is used to select a single
candidate solution, and the other to determine whether this one solution satisfies the necessary
probabilistic bounds. Instead, since l is small, we are able to use the union bound to ensure that
our probabilistic bounds hold across all possible solutions simultaneously. This assumption
means that the algorithm that we propose is viable mainly when the user has a few ideas
about how the initial distribution, µb, might be improved. Again, SPI [26] (extended to allow
for more general behavioral constraints) is an example of how Seldonian and quasi-Seldonian
algorithms can be designed without this assumption (by partitioning the training data as
described above).

The algorithm we propose has two steps. Unlike the (quasi-)Seldonian regression and
classification algorithms presented above, which compute a single candidate solution from
data, this algorithm assumes that l candidate solutions have been provided. During the first
step, it uses high confidence off-policy policy evaluation (HCOPE) methods [136, 146] to test
whether each of the l solutions satisfies the behavioral constraints. Since these tests use the
same data set when testing each of the potential policies, to avoid the problem of multiple
comparisons [147], the bounds are each constructed to hold with probability at least 1− δ/l,
so that all hold simultaneously with probability at least 1− δ, by Boole’s inequality. In the
second step, the algorithm that we propose searches through the set of solutions that were
deemed safe in the first step and returns the single solution that it predicts will have the best
performance. If none of the first-step solutions are deemed safe, the algorithm returns No
Solution Found.

We now describe these steps in more detail. First, for each of the l possible solutions,
each of the n behavioral constraints, and each of the m trajectories of historical data, we use
importance sampling [142, 148] to construct an unbiased estimate ρ̂i,j,k (where i ∈ {1, . . . , l},
j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}), of E[rj(H)|P ∼ µi, H ∼ P ], where µi is shorthand for
µθi . For importance sampling to provide unbiased estimates, we require the assumption that
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supp(µi) ⊆ supp(µb) for all i ∈ {1, . . . , l}, which is standard in off-policy policy evaluation
research [143, 136, 149]. However, if for some i ∈ {1, . . . , l}, supp(µi) 6= supp(µb), we
can leverage our knowledge of µb and µi to improve the ordinary importance sampling
estimates [146]. In our algorithm we use this modified importance sampling estimator to
construct each ρ̂i,j,k (in the event that this modified importance sampling estimator returns
fewer than m estimators for each i, j pair, we select k ∈ {1, . . . ,m′} for some m′ ≤ m).

Once ρ̂i,j,k has been computed for all values of i, j, and k, we use Student’s t-test to
obtain high confidence approximate lower-bounds on E[rj(H)|P ∼ µi, H ∼ Pµ] for all
i ∈ {1, . . . , l} and j ∈ {1, . . . , n}. We also use Student’s t-test to compute high confidence
approximate upper-bounds βj on E[rj(H)|P ∼ µb, H ∼ Pµ] for all j ∈ {1, . . . , n}. We use
δj/(l + 1) so that the high-probability approximate upper- and lower-bounds for all solutions
hold simultaneously. Next, our algorithm checks which solutions, that is, which values of
i ∈ {1, . . . , l}, produced high confidence approximate lower-bounds that were all above their
respective baseline values βj. Those solutions are deemed safe because our algorithm could
return any of them and it would be quasi-Seldonian. If no solutions are deemed safe, the
algorithm returns No Solution Found (NSF).

If at least one solution is deemed safe, then our algorithm searches within the safe set of
solutions, for the solution that it predicts will produce the largest expected return on the
MDP. The predictions of expected returns are once again constructed using the modified form
of importance sampling. Pseudocode for our algorithm is provided in Fig. S20. For simplicity,
this pseudocode assumes that each distribution over policies is a probability density function
and uses Riemann integrals.

5.1 On the Ease of Using Our Quasi-Seldonian Reinforcement Learning Algorithm

Algorithms designed using our framework should be easier for a user to deploy responsibly
than algorithms designed using the standard ML approach. Above we have shown how
difficult it can be to include probabilistic constraints on the behavior of an algorithm designed
using the standard ML approach. Here we point out that our quasi-Seldonian RL algorithm
is a strong example of a new type of algorithm that makes it easy for the user to place
probabilistic constraints on the algorithm’s behavior.

To ensure with high probability that undesirable behavior does not occur, when using
our algorithm the user does not need to perform additional data analysis, does not need to
have training in statistics and data mining, and does not need to have detailed knowledge of
the problem at hand (such as knowledge about the true transition or return functions of the
relevant MDP). Instead, the user only needs to be able to recognize undesirable behavior
to define ri(H), a measure of how much undesirable behavior occurred in the outcome H.
Other than the auxiliary return functions ri and their corresponding confidence levels δi, our
algorithm has no additional hyper-parameters that the user must tune. As a result of these
properties, our new algorithm can be applied more easily to a variety of batch RL problems
for which the user can define what constitutes undesirable behavior without knowing which
policies cause undesirable behavior.
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1 Input: 1) Data set D = {(Hj , Pj)}mj=1, 2) behavior distribution µb, 3) MDP return function
r : H → R, 4) n behavioral constraint return functions r1, . . . , rn, where each ri : H → R, 5)
n behavioral constraint confidence levels δ1, . . . , δn, where each δi ∈ (0, 1), and 6) l candidate
distributions over policies µ1, . . . , µl, where supp(µi) ⊆ supp(µb) for all i ∈ {1, . . . , l}.

2 Assumptions: This algorithm assumes that the sum of roughly m i.i.d. random variables (the
importance weighted returns) is normally distributed.
/* Upper bound the expected returns if µb and each rj were to be used.

*/
3 for j = 1 to n do
4 βj ← 1

m

∑m
k=1 rj(Hk) + 1√

m
stddev([rj(H1), rj(H2), . . . , rj(Hm)]) tinv(1− δj/(l + 1),m− 1);

/* Determine which solutions, θ ∈ {1, . . . , l} are safe. Loop over each
solution and test whether it should be removed from safe. */

5 safe← {1, 2, . . . , l}; // Set of integers.
6 for i = 1 to l do
7 ci ←

∫
supp(µi)

µb(p) dp; // Scalar.

/* Check whether the ith solution satisfies the jth behavioral
constraint. */

8 for j = 1 to n do
/* Load ρ̂ with all of the importance weighted returns. */

9 Create empty list, ρ̂, of floating point numbers;
10 for k = 1 to m do

11 if µi(Pk) 6= 0 then append cµi(Pk)
µb(Pk)

rj(Hk) to the list ρ̂;

/* Check whether the lower bound is less than the baseline, βj,
and if it is, then mark the ith solution as unsafe. */

12 if ρ̂ = ∅ or mean(ρ̂)− stddev(ρ̂)√
length(ρ̂)

tinv(1− δj/(l + 1), length(ρ̂)− 1) < βj then

safe← safe \ {i};

/* The set ‘‘safe’’ now holds the set of safe solutions. If it is empty,
return NSF. If it is not empty, search for the solution predicted to
maximize expected return. */

13 if safe = ∅ then return No Solution Found (NSF);
14 for idx = 1 to length(safe) do
15 i← safe[idx]; // Scalar integer.

16 curPerf←
(
ci
∑m
k=1

µi(Pk)
µb(Pk)

r(Hk)
)
/
(∑m

k=1 1(µi(Pk) 6=0)

)
; // Scalar.

17 if idx = 1 or curPerf > bestPerf then
18 bestPerf← curPerf; // Scalar.
19 bestIdx← idx; // Scalar integer.

20 return safe[bestIdx];

Fig. S20: Quasi-Seldonian Reinforcement Learning Algorithm.

5.2 Application of Quasi-Seldonian Reinforcement Learning Algorithm to Diabetes Treatment

We applied the quasi-Seldonian RL algorithm in Fig. S20 to a simplified simulation of providing
personalized improvements to bolus insulin dosing for people with type 1 diabetes. This is an
example of an important application where safe machine learning methods can complement
existing approaches. While we use a fairly detailed metabolic simulator [32, T1DMS Version
3.2], this example is intended only as an illustration of the potential applications of our
proposed framework and methods. The simulator is not a perfect model, and we consider
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only a simple set of dosage recommendation policies. In Section 5.4, titled Additional
Considerations for Clinical Applications, we discuss additional considerations that should be
made prior to a real clinical application.

Often machine learning algorithms are evaluated using real-world examples to show
the viability of the algorithm. For example, Grabczewski and Duch [20] were some of the
first machine learning researchers to use the popular Wisconsin breast cancer data set [21]
when evaluating a machine learning algorithm. These experimental results validate the
proposed algorithm, but do not imply that the resulting classifier should be used by medical
professionals. Rather, the papers by Grabczewski and Duch [20] and subsequent machine
learning researchers provided tools that researchers with the appropriate domain knowledge
and medical expertise could apply properly to cancer treatment [22, 150, 151, 152].

Similarly, in this section we show how a Seldonian RL algorithm could be applied to an
important medical problem: optimization of insulin dosing for type 1 diabetes treatment.
This experiment shows that the design of (quasi-)Seldonian RL algorithms is tractable and
that these algorithms do not require an impractical amount of data when applied to realistic
problems. Furthermore, this application presents a clear example of how (quasi-)Seldonian
reinforcement algorithms can enforce safety guarantees that standard RL algorithms would
violate. Just as Grabczewski and Duch [20] did not intend for their results on the breast
cancer data set to result in the direct application of their classifier, these experiments should
not be misinterpreted as a proposal for our quasi-Seldonian RL algorithm (with the return
function, policy representation, and behavioral constraints that we select) to be deployed
as-is to diabetes treatment.

Briefly, type 1 diabetes is the condition in which one’s body does not produce sufficient
insulin, a hormone that promotes uptake of glucose from the blood into muscle and liver,
which lowers the blood glucose concentration. People with untreated diabetes tend to have
high blood glucose levels, a condition called hyperglycemia, which can have significant negative
consequences [153]. One treatment for diabetes is the subcutaneous injection of insulin using
multiple daily injections with a syringe or an insulin pen, or a continuous infusion using an
insulin pump.

If too much insulin is injected, blood glucose levels can become too low, a condition called
hypoglycemia. Controlling hyperglycemia is important to prevent the long-term consequences
of diabetes, and hypoglycemia is a common severe unintended consequence. Hypoglycemia
can cause symptoms ranging from palpitations, sweating, and hunger, to altered mental status,
confusion, coma, and even death [33, 34, 69]. Moreover, severe instances of hypoglycemia
can triple the five-year mortality rate [69], and recurrent moderate hypoglycemia causes
brain adaptations that impair a person’s ability to detect future potentially severe instances
of hypoglycemia [35]. Such hypoglycemia unawareness is clinically important because it
impairs a person’s ability to make informed decisions prior to a hypoglycemic episode, such
as whether it is safe to drive.

Due to the severity of poorly regulated blood glucose levels, a critical decision is how much
insulin a person should inject to mitigate hyperglycemia without inducing hypoglycemia.
In addition to basal insulin, which regulates blood glucose between meals, an important
challenge is to determine dosages of bolus insulin, which counteracts the increase in blood
glucose that results from eating meals. A bolus calculator, which can range from software
within an insulin pump to a cell phone application, tells a person how much bolus insulin
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they should inject prior to eating a meal. Here, we show how our Seldonian RL algorithm
can be applied to personalizing the parameters of a bolus calculator. While the basal dosing
may or may not also be adapted in a clinical application [154], in our simulations the basal
dose is held constant.

Since the amount of bolus insulin to inject depends on many factors, there has been
significant interest in adaptive or intelligent bolus calculators, particularly using control
theoretic methods, that can use data from the outcomes of previous injections to adapt
treatments to each patient. Examples include model predictive control algorithms [155, 156,
157, 158], proportional derivative controllers [159, 160, 161], proportional integral derivative
controllers [162, 163, 164], and Mamdani type fuzzy logic controllers [165]. These control
algorithms, as well as other intelligent insulin delivery systems, have seen strong clinical
success in deployed systems such as the Medtronic 670G, Space GlucoseControl system,
and zone-MPC, among others [166, 167, 168, 169, 170, 171, 172]. For a history of bolus
calculators, see the work of Schmidt and Nørgaard [31], and for a review of early insulin
delivery controllers, see the work of Hovorka [173].

Another notable control-based approach to calculation of insulin dosage is the Run-to-Run
(R2R) approach first proposed by Sachs et al. [174]. R2R is a control approach related to
iterative learning control and repetitive control [175] wherein a controller is used to control a
system for a sequence of runs (cf. RL’s episodes). In the context of an adaptive bolus calculator,
each run corresponds to a day (24 hours), and each day is broken into a set of segments. The
amount of insulin given during each segment is based on a performance measure calculated
for that segment of the previous day. R2R controllers for insulin dosing have promising
stability properties under mild linearity assumptions [176, 177] and have obtained promising
empirical results both in silico [178, 179, 180, 176, 181, 177, 182, 180, 183, 184, 37, 185] and
clinically [186]. Another recent approach combines adaptive updating of the insulin parameters
with case-based reasoning [187], showing promising preliminary clinical results [188].

These existing methods often use a patient dynamics model that includes a gain parameter
and patient-specific values for the target maximum and minimum blood glucose values
at certain points during the day. This gain parameter is typically either estimated for
the population or requires tuning for individuals based on existing data. Our proposed
reinforcement learing approach is complementary to these approaches, as it could be used
to improve the gain for a particular patient based on that patient’s own data, and in a way
that provides guarantees on the adaptive bolus calculator’s performance for that individual.
In addition, while existing R2R algorithms work well if the gain is well specified and the
proposed target glucose levels are achievable, it is unclear what their behavior will be if it
is not possible to achieve the desired target glucose levels for a particular patient (e.g., will
the resulting behavior satisfy one target value but not the other, or will some other behavior
result). In contrast, our framework allows a medical expert to specify a constraint on the
desired behavior, such as that the insulin dosage policy may not be altered in a way that
increases hypoglycemia relative to the current policy for this particular patient.

Despite the potential benefits of using supervised learning [189] or RL algorithms to create
personalized adaptive bolus calculators [30] or adaptive basal and bolus therapies [190, 191],
their use has not yet seen the successes of other approaches. This may be in part because
these existing approaches have used RL algorithms designed using the standard ML approach
and which therefore lack meaningful safety guarantees. Whereas the stability properties of
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conventional control algorithms are well understood, most RL algorithms have only asymptotic
convergence guarantees [192] and in practice are sensitive to the setting of hyperparameters
like step sizes, exploration rates, trace decay rates, policy representations, and value function
representations [47]. So, although RL algorithms attempt to maximize the expected return,
as a consequence of the random nature of data, or due to imperfectly tuned hyperparameters,
in practice they often return policies that decrease the expected return both during and after
learning.

One might wonder if one could regulate undesirable behavior by changing the reward
function to further penalize undesirable behavior. Because RL algorithms can return policies
that decrease the expected return relative to the initial policy, this is not sufficient to ensure
that undesirable behavior will not occur. Furthermore, it is often unclear how much to
penalize an undesirable outcome, such as hypoglycemia, to ensure that it is avoided, while
still ensuring that the approach optimizes a desired primary objective, for example, minimizing
the frequency of hyperglycemia. Existing RL algorithms do not provide a straightforward
mechanism to allow users to insert safety constraints on behavior that are separate from the
primary objective (maximizing the expected return). For example, they do not provide a
means for ensuring that the policy (or distribution over policies) will not be changed in a
way that increases the prevalence of low blood glucose for a particular patient (increases
the prevalence of undesirable behavior), while increasing the primary objective function
that trades off hypoglycemia and hyperglycemia (increasing the expected return). Thus, as
an application of machine learning (reinforcement learning) held back by a lack of safety
guarantees, creation of a personalized adaptive bolus calculator presents a clear example of
the benefits of Seldonian RL algorithms over standard RL algorithms.

5.2.1 Simulation Design

We now describe our experimental setup for comparing Seldonian RL algorithms with classical
RL algorithms for simulated adaptive bolus calculation. Our aim is to illustrate how a domain
expert might use an algorithm designed using our new framework to improve the policy
(controller) for a particular patient, while ensuring that, with high probability, the controller
will not be modified in a way that violates safety constraints specified by the domain expert.
We focus on safety constraints pertaining to hypoglycemia due to the large negative clinical
implications of this condition, but our approach is applicable to many alternate constraints,
as we illustrate below.

To simulate a patient we used a newer version of the simulator used by Bastani [30]:
Version 3.2 of the type 1 diabetes metabolic simulator (T1DMS) [32]. T1DMS is a metabolic
simulator that has been approved by the US Food and Drug Administration as a substitute
for animal trials in pre-clinical testing of treatment policies for type 1 diabetes, and is often
used to evaluate adaptive bolus calculators [176, 181, 182]. For an initial illustration we
selected subject adult#003 within T1DMS.

One strength of our approach is that it provides per-subject guarantees. That is, standard
ML approaches to constructing and evaluating adaptive bolus calculators often measure
performance across a population of individuals and argue that new bolus calculators work
better for the population (with arguments of statistical significance over the entire population).
These arguments of statistical significance provide a form of safety guarantee about the
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performance of the new adaptive bolus calculator for the population. We instead focus on
providing a personalized guarantee—that the controller for an individual subject will not
be changed in a way that is worse for that one individual. We therefore perform multiple
simulations of a particular individual, with each simulation using different random meal
times and random samples within the learning algorithm. Although initially we focus on
the individual adult#003 within T1DMS, later we show that this individualized approach is
effective for personalizing treatments for all ten simulated adults within T1DMS.

Following the experimental setup proposed by Bastani [30], the subject is provided with
three meals of randomized sizes at randomized times. Due to these random meal sizes and
times, applying the same policy parameters for two different days can result in different
outcomes. Also following previous work, we largely adopt the experimental design proposed
by Bastani [30], which adapts a relatively simple type of bolus calculator that does not
include a dependence on insulin on board—a statistic that tracks how much insulin has been
injected previously. In this experimental setup, the amount of insulin (measured using insulin
units) that a person with diabetes is instructed to inject prior to eating a meal is given by:

injection =
blood glucose− target blood glucose

CF
+

carbohydrate content of meal

CR
, (S37)

where blood glucose is an estimate of the person’s current blood glucose (measured from a
blood sample and using milligrams per deciliter of blood, i.e., mg/dL), target blood glucose
is the desired blood glucose (also measured using mg/dL), which is typically specified by
a physician, the carbohydrate content of meal is an estimate of the size of the meal to be
eaten (measured in grams of carbohydrates), and CR and CF are two real-valued parameters
that, for each person, must be tuned to make the treatment policy effective. CR is the
carbohydrate-to-insulin ratio, and is measured in grams of carbohydrates per insulin unit,
while CF is called the correction factor or insulin sensitivity, and is measured in insulin units
per mg/dL. Following the prior work on which we based our experimental design [30], where
a target blood glucose of 6 mmol/L was used, we select a target blood glucose of 108 mg/dL
(a close approximation to 6 mmol/L).

In the RL context, CR and CF are the parameters of a parameterized policy for an
MDP in which actions correspond to recommended injection sizes and the state is a complete
description of the subject at the current time.4 The parameterized policy uses function
approximation—it depends only on an observation (the blood glucose estimate acquired from
a blood sample) that depends on the current state of the person.5

Intuitively, the return function should penalize deviations of blood glucose from optimum
levels (with larger penalties for blood glucose levels that are too low). Precisely defining a
return function of this sort is difficult because there are two conflicting goals: 1) keep blood
glucose levels from becoming too high, and 2) keep blood glucose levels from becoming too
low. Because hypoglycemia can have more severe consequences than hyperglycemia, the goal

4Note that the complete state of the subject is not likely to be observable, but as we will define next, the
policy will only depend on an available observation, even though the dynamics underlying how insulin doses
impact a person may be much more complex and depend on other aspects of the patient’s health and context.

5Alternatively, this problem could be modeled as a partially observable Markov decision process (POMDP).
However, since we focus on state-free policies [193, Section 7], the MDP framework with function approximation
is sufficient.
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is typically to minimize the time that a person is hyperglycemic, subject to the constraint
that hypoglycemia never occurs. In practice, however, hypoglycemia cannot be completely
precluded [69]. This means that the return function must be selected to trade-off between
hyperglycemia and hypoglycemia, a problem described in detail by Bastani [30, Section 1.3.6].

Here the user of our quasi-Seldonian RL algorithm (Fig. S20) would have to make a decision:
what return function quantifies their personal view of the trade-off between hypoglycemia
and hyperglycemia, and what auxiliary return functions capture their view of undesirable
behavior? Because our aim is to evaluate our Seldonian approach, not to advocate a particular
answer to these questions, we adopt the return function used in previous work [30]. To this
end, we let the history from each day contain a record of blood glucose levels at each minute,
i.e., h = (g0, g1, g2, . . . , g1440), where gt denotes the blood glucose measurement t minutes
after midnight, in mg/dL. The return function is then given by:

r(h) :=
1

1441

1440∑
t=0

{
− (gt−108)2

1623
if gt < 108 mg/dL

− (gt−108)2

3246
if gt ≥ 108 mg/dL.

(S38)

These seemingly peculiar constants arise because Bastani [30] presented their reward function
using mmol/L rather than mg/DL. This return function effectively computes a reward at
each minute of the day, and the return for the day is then the average reward during the day.

The second decision that the user of our quasi-Seldonian RL algorithm must make is how
to define the behavioral constraints through the auxiliary return function. Again, because
our goal is not to promote a particular mapping of the diabetes management problem to the
Seldonian framework, here we present one possible definition of the auxiliary return function
r1, and later we present results using this and other potential definitions that could capture
the safety restrictions desired by different diabetes management experts. Precisely, we define
an r1 that penalizes low blood glucose levels:

r1(h) :=

{
1

1441

∑1440
t=0 −

(gt−108)2

1623
if gt < 108 mg/dL

0 if gt ≥ 108 mg/dL.
(S39)

Setting the policy parameters CR and CF to specify the insulin dosage policy that yields
the best results for an individual based only on basic knowledge about a person (age, weight,
etc.) is difficult, and perhaps impossible. Here we consider the case in which a physician
initially proposes ranges of possible values for CR and CF for a particular individual. The
parameter values for any insulin dosage policy considered should lie within these ranges. We
refer to E[r1(H)] as the prevalence of low blood glucose hereafter. Below we also discuss the
mean-time-hypoglycemic-per-day, a different possible measure of the prevalence of low blood
glucose.

Our aim is to evaluate how a batch RL algorithm can take in a series of previously applied
policies (settings of CR and CF ) for a patient, collected across m ∈ N>0 days, and output a
new distribution over policies that, for this particular patient, increases the expected return
as defined by Eq. S38. Furthermore, this algorithm must ensure that the safety constraint
is satisfied; that is, it must ensure that with high probability the distribution over policies
will not be changed in a way that increases the prevalence of low blood glucose. As an
additional safety measure, we might also require the hard constraint that the RL algorithm
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will never deploy values of CR and CF outside the range specified by the physician. This
application therefore combines aspects of a multiobjective problem (the return function
trades-off hypoglycemia and hyperglycemia), a problem with hard constraints (that the
values for CR and CF will always be within the window specified by the physician), and
the high-probability behavioral constraints allowed by the Seldonian framework (that the
prevalence of low blood glucose will not be increased).

Batch RL algorithms for this problem can proceed by taking in all prior data for that
person for each day, and evaluating it to determine if it is possible to output a better policy
for that individual. For simplicity we assume that data is gathered from values of CR and
CF sampled from a uniform distribution µb over the specified input range of CR and CF
for that individual, and each pair of policy parameters is used for one day. Note that some
amount of variability over time in the policy parameters is essential for any improvement
to be possible. If only a single pair of CR and CF parameters are used at all times, our
algorithm will not be able to evaluate the potential performance of any other policy. In RL
this variability is referred to as exploration. Although here we consider a simple form of
exploration to illustrate our method, our approach can be combined with other methods of
providing variable insulin dosage recommendations, including stochastic adaptive policies
such as those considered in prior RL applications in this setting [30], or with other adaptive
bolus calculator methods that vary the insulin dosage policy parameters over time.

These desired properties of a batch policy search algorithm are captured by the Seldonian
optimization problem presented in Eq. S34, where the set of algorithms, A, is restricted to
contain only those algorithms that will never return values of CR and CF outside a specified
input range, and where there is a single behavioral constraint (n = 1), with auxiliary return
function r1, as defined in Eq. S39. That is, a (quasi-)Seldonian algorithm must ensure that
with high probability the prevalence of low blood glucose (measured using r1) will not increase,
and should try to maximize the expected return (using the MDP return function) otherwise.
Because safety is critical, we selected a small constraint confidence level: δ1 = 0.05.

Our quasi-Seldonian RL algorithm (Fig. S20) is a viable quasi-Seldonian algorithm for this
problem, which allows for the specification of a set of possible distributions over policies that
will be considered. We selected 27 such distributions, each of which is a uniform distribution
over ranges for CR and CF that are subsets of the support of µb. Furthermore, each of
the 27 distributions contains 1/4 the support of µb. The 27 distributions were generated
by an automatic tiling scheme to sample various ratios of the range of CR to the range of
CF within the support of µb. Examples of the ranges of three of these 27 distributions are
provided in Fig. S23 as blue, black, and white boxes.

We modified the algorithm in Fig. S20 to include a model-based control variate in the
importance sampling estimate [194, 149, 195]. The approximate model used to construct
the control variate was a different setting of T1DMS that produces similar responses to
adult#003, but which is not the same. Importantly, the optimal values of CR and CF under
the approximate model cause frequent episodes of hypoglycemia: the model cannot be trusted
to select values for CR and CF . However, the approximate model does provide an effective
control variate, which decreases the variance of importance sampling estimates. Furthermore,
we observed similar, although not quite as strong, results without the use of this model-based
control variate.
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5.2.2 Specifying the Initial Input Range of Policy Parameters.

For our in silico subject (adult#003), we assume that the physician specifies the initial ranges
of CR and CF to be the intervals [8.5, 11] and [10, 15] respectively, as shown by the blue
box in Fig. S21. That is, the initial distribution over policies, µb, is the uniform continuous
distribution over this range. Fig. S23 provides a zoomed in view of the objective function
over this range. Notice that this range contains near optimal policies, where CR ≈ 10, as
well as some undesirable policies, e.g., when CR ≈ 8.5. Furthermore, notice that we observe
the same trend as Bastani [30]: when CR is selected properly, performance is robust to
the value of CF . We selected this range after performing a broader computation of the
expected returns (undiscounted sums of rewards) that results from using either the MDP
return function or the auxiliary return function, and using various values of CR and CF
within a reasonable range, CR ∈ [5, 50] and CF ∈ [1, 31]. These estimates are depicted in
Fig. S21. When CR is too small, hypoglycemia occurs often: the mean returns using the
auxiliary return function or MDP return function are both large negative values. When CR
is too large, instances of hypoglycemia decrease (the mean return using the auxiliary return
function plateaus at zero), but instances of hyperglycemia increase (the mean return using
the MDP return function decreases). Thus, the goal of an algorithm is to identify values for
CR and CF that lie along the ridge of the objective function that occurs around CR ≈ 10,
erring towards values of CR that are too large.

Notice that these plots are typically not available to the physician selecting initial values
for CR and CF , nor are they available to an algorithm that might try to improve upon a
physician’s initial educated guess as to what values of CR and CF will work for the subject.
Furthermore, it is difficult for any agent (a physician or RL agent) to accurately estimate
these plots from data: each plot is the result of 44,000 simulations. To visualize the difficulty
of estimating the expected return for a single CR and CF pair, consider Fig. S22, which
shows the result of applying two different CR and CF pairs, one that lies just beyond the
ridge resulting in frequent hypoglycemic episodes, and the other that is near-optimal and lies
near the top of the ridge. Notice the high variance of the returns relative to the differences
between the expected returns using different values of CR and CF (cf. Fig. S21). This
high variance means that it is difficult to determine from small amounts of data which of
these two CR and CF pairs is better, let alone search the uncountably infinite space of CR
and CF pairs for their optimal settings. Thus, one might expect that the high confidence
guarantees required of (quasi-)Seldonian algorithms might be impractical. Our results show
that quasi-Seldonian algorithms can be effective even for this challenging problem.

5.2.3 Experimental Results and Discussion

We applied our quasi-Seldonian RL algorithm (Fig. S20) and a non-Seldonian algorithm, each
for 200 trials. The non-Seldonian algorithm used importance sampling (with the model-based
control variate) to estimate the expected return for each of the 27 possible policy distributions
used, and output the distribution that it predicted will result in the largest return (in terms
of the MDP return function). This corresponds to our quasi-Seldonian RL algorithm, but
without any behavioral constraints.

Fig. S24 (left) shows that the quasi-Seldonian algorithm was able to return solutions
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Fig. S21. The mean returns using the reward function of the MDP, which penalizes both
hyperglycemia and hypoglycemia (top row), and the mean returns using the auxiliary reward
function r1, which only penalizes hypoglycemia (bottom row). The blue box in the plots in
the left column depict an initial range of CR and CF values that might be selected by a
physician. The values of CR were tested at intervals of 5 while the values of CF were tested
at intervals of 3. Each CR and CF pair was evaluated using Monte Carlo sampling—500
days worth of data. Values between the grid of sampled points are interpolated using linear
interpolation.

(other than NSF, in which case the physician’s policy would not be changed) given as little
as one month of data. Given 5 months of data (roughly 180 days), the quasi-Seldonian
algorithm always returned a new distribution for CR and CF that was different from the
initial distribution.6 While the quasi-Seldonian algorithm sometimes did not return a new
policy distribution, the RL algorithm designed using the standard setting always did, but at
the cost of often deploying policies that result in increased prevalence of low blood glucose, as
shown in Fig. S24 (right). By contrast, across all trials, the quasi-Seldonian algorithm never
returned a distribution over policies that increased the prevalence of low blood glucose—much
less than the 5% limit required of the algorithm.7 That is, the algorithm designed using the
standard ML approach would not be safe to deploy for adult#003, unlike the quasi-Seldonian

6Recall from earlier that each plot in Fig. S23 was generated using a large number of simulations. This
large number of simulations was to illustrate how different CR and CF values perform, while Fig. S24 shows
the performance of our algorithm.

7Without the control variate, the quasi-Seldonian algorithm returned distributions over policies that
increased the prevalence of low blood glucose more frequently, but still with probability well below 0.05.
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Fig. S22. Examples of 300 different days using CR = 8.5, CF = 10 (top row) and CR = 10,
CF = 12.5 (bottom row). The former results in frequent hypoglycemia, while the latter is
a near optimal policy. The plots on the left show the blood glucose throughout the day,
with the black lines denoting a desirable range of blood glucose levels [30], and the red line
denoting optimal levels. The three increases in blood glucose correspond to the times when
the subject eats breakfast, lunch, and dinner. The plots on the right show histograms of the
resulting returns (sum of rewards) computed using the MDP reward function (returns less
than −0.5 occur but are not shown).

algorithm, which meets the specified safety constraints.
Notice also that Fig. S24 shows that the costs associated with providing high probability

safety guarantees are relatively minor. Specifically, given roughly 75 days of data, these results
suggest that with probability at least 95%, the non-Seldonian algorithm returned policies
that would not increase the prevalence of low blood glucose (when applied to adult#003).
Similarly, the quasi-Seldonian algorithm began returning solutions frequently given roughly
75 days of data. This lack of significant lag between when the non-Seldonian algorithm
began to act in a safe manner and when our quasi-Seldonian algorithm began returning
solutions (when it was able to automatically determine that returning solutions would be
safe) shows that there is little cost associated with requiring a safety guarantee in this case.
If the quasi-Seldonian algorithm were not data efficient, then it would not begin returning
solutions frequently until long after the non-Seldonian algorithm tended to return solutions
that do not increase the prevalence of low blood glucose.

Fig. S25 presents box plots of the expected returns of the policies produced by the
Seldonian and non-Seldonian algorithms when run using different amounts of data. To obtain
the box in the left plot at the horizontal mark at 50, the non-Seldonian algorithm was trained
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Fig. S23. A zoomed in view of Fig. S21. The boundaries of these plots are the range of
CR and CF used by the initial distribution over policy parameters, µb. The plots on the
right show a side view, which shows the difference between the reward function of the MDP
(which penalizes both hyperglycemia and hypoglycemia) and the auxiliary reward function,
r1, which only punishes hypoglycemia. For all of these plots, CR was varied by increments of
0.25 and CF was varied by increments of 0.5, each CR and CF pair was evaluated using
Monte Carlo sampling with 500 days of data, and values between sampled CR and CF values
are interpolated using linear interpolation. The blue, black, and white boxes in the plots on
the left are discussed later in the text.

using data collected from 50 days. The policy distribution that it returned was then evaluated
for 500 simulated days to estimate the expected return that would result if it were to be used.
We repeated this process 200 times, and the distribution of the resulting expected return
estimates from these 200 trials is depicted by the box at the 50-mark on the horizontal axis.
The left plot, which presents results for the non-Seldonian algorithm, shows that with small
amounts of data, policies that were worse than the initial policy distribution were sometimes
returned. This shows why modifying the rewards or returns to punish hypoglycemia more
is not a solution because the algorithm does not always increase the expected return. By
contrast, the Seldonian algorithm always increased the expected return (even though, in
this case, the behavioral constraint only required improvement with respect to the expected
auxiliary return). This plot therefore shows that the Seldonian algorithm succeeded at
optimizing the primary objective, while Fig. S24 shows that it did so subject to the behavioral
constraint.

In this study the quasi-Seldonian algorithm was provided with a range of admissible
values for CR and CF for adult#003, i.e., CR ∈ [8.5, 11] and CF ∈ [10, 15], which is a

56



50 100 150 200 250 300 350
Amount of Data (days)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 S

ol
ut

io
n

non-Seldonian Algorithm
quasi-Seldonian Algorithm

50 100 150 200 250 300 350
Amount of Data (days)

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y 

of
 U

nd
es

ira
bl

e 
B

eh
av

io
r

non-Seldonian Algorithm
quasi-Seldonian Algorithm

Fig. S24. (Left) The probability that a solution other than No Solution Found (NSF)
is returned as the number of days of data is varied. (Right) The probability that a new
distribution over policies was returned that increases the prevalence of low blood glucose
(defined using r1) over the initial dosage policy distribution. The shaded region depicts
standard deviation over 200 trials.

subset of the reasonable ranges for these parameters (CR ∈ [5, 50] and CF ∈ [1, 31]), as
depicted in Fig. S21. This admissible set of values for CR and CF is a hard constraint, i.e.,
the specification of a feasible set. We provided our Seldonian algorithm with this feasible
set, which limits the solutions that the algorithm can return because it is reasonable in
this application to assume that a physician could provide this initial range of reasonable
parameters.

This raises the following question: Was the safety of our quasi-Seldonian algorithm due to
our providing it with this feasible set? We contend that the answer to this question is “no.”
The feasible set that we used contains dangerous policies, that is, policies that cause frequent
instances of hypoglycemia for adult#003. Consequently, our example is one in which the
physician selected a region of policy space (range for CR and CF ) that is dangerous and
suboptimal. In cases in which the physician correctly identifies optimal settings for CR and
CF , there is no need for tuning, and most algorithms would be safe. The crucial setting
is that where the initial range contains suboptimal policies and should be adjusted. Given
that the initial range of values for CR and CF that we used includes dangerous policies, it is
important that an algorithm that automatically adjusts the treatment policy does not deploy
a new treatment policy (within the window specified by the physician) that increases the
prevalence of low blood glucose. Fig. S24 shows that this could happen: the non-Seldonian
algorithm returned solutions that frequently increased the prevalence of low blood glucose
even though it too was restricted to only return solutions within the feasible set specified by
the physician.

Figures S24 and S25 show that the algorithm behaved as desired. However, these results
are not those typically reported when evaluating the efficacy of an adaptive bolus calculator.
Maahs et al. [196] suggest several performance metrics for evaluating the efficacy of a diabetes
management system. Of the many proposed metrics, we select three to present here: percent
of time hypoglycemic (blood glucose at or below 70 mg/dL), percent of time hyperglycemic
(blood glucose at or above 180 mg/dL), and mean blood glucose over the day. Because these
statistics are not what the Seldonian algorithm was tasked with optimizing or constraining,
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Fig. S25. Left: For different numbers of days of data (in intervals of 5), a box-plot of the
distribution of expected returns of the solutions produced by the algorithm designed using
the standard ML approach. Outliers are shown as black dots, the blue line is the mean return,
and red lines within the boxes mark the medians. All points below −0.1116 (where the plot
on the right begins) correspond to cases in which the standard algorithm both decreased
performance and produced undesirable behavior (an increase in the prevalence of low blood
glucose). Right: The same as the left plot, but for the quasi-Seldonian algorithm. The blue
line is the mean return, where the initial distribution over policies is used if the algorithm
returns NSF, and the magenta line is the mean return given that a solution other than NSF
is returned.

reporting these statistics does not quantify the success of the Seldonian algorithm; instead
it quantifies the quality of the initial policy distribution, return function, and behavioral
constraint that we chose.

Figures S26, S27, and S28 present box plots of the percent time hypoglycemic, percent
time hyperglycemic, and mean glucose, respectively. The process for producing these plots
was the same as the process described for Fig. S25, except computation of the expected
return was replaced with computation of the specified statistic. Fig. S26 shows that the
Seldonian algorithm was always effective at reducing the percent of time spent hypoglycemic
(when using any amount of data, from 5 days to one year, and across all 200 trials). This is
evident by the lack of any boxes denoting outliers above the initial value (which corresponds
to the percent of time hypoglycemic per day when using the initial policy distribution).
Fig. S27 shows that both algorithms increased the percent of time hyperglycemic per day,
as expected, since changes to CR and CF that decrease the time spent hypoglycemic or
hyperglycemic cause the other statistic to increase, a property resulting from the combination
of this simulated patient, the form of the controller, and the initial ranges for CR and CF .
Fig. S28 shows that the Seldonian algorithm produced slightly higher mean glucose.

5.3 Additional Experiments

5.3.1 Different Behavioral Constraints

Fig. S27 shows that our method often increased the percent time spent hyperglycemic.
Although this behavior is undesirable, it is not the behavior that we instructed the Seldonian
algorithm to avoid. The Seldonian algorithm was instructed to constrain hypoglycemia; not
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Fig. S26. Box plots showing the percent time hypoglycemic (blood glucose at or below
70 mg/dL) when using the algorithm designed using the standard ML approach (left) and
our quasi-Seldonian algorithm (right). The time hypoglycemic per day is measured in days,
so that values correspond to the percent of the day spent hypoglycemic. The percent time
hypoglycemic of the initial policy distribution is 1.02%.
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Fig. S27. Box plots showing the percent time hyperglycemic (blood glucose at or above
180 mg/dL) when using the algorithm designed using the standard ML approach (left) and
our quasi-Seldonian algorithm (right). The percent time hyperglycemic of the initial policy
distribution is 0.0583%.

hyperglycemia. If the user of the Seldonian algorithm had different views of the constraints
that should be applied, he or she could apply the algorithm with a different auxiliary
return function that better captures his/her desired definitions of undesirable behavior of
an adaptive bolus calculator. To show this, we re-ran these same experiments, but using
different definitions of −r1(h) that the user of the algorithm might select, and using fewer
trials (32 trials rather than 200).

Specifically, we experimented with three alterantive definitions of −r1. We refer to the
original definition in Eq. S39 as the “Hypoglycemic-Return” constraint. The three alternative
definitions that we considered are:

• Time-Hypoglycemic: the fraction of time per day that the subject was hypoglycemic
(blood glucose below 70 mg/DL):

r(h) :=
1

1441

1440∑
t=0

{
−1 if gt ≤ 70 mg/dL

0 otherwise.
(S40)
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Fig. S28. Box plots showing the mean blood glucose (in mg/dL) of the policies produced
by the algorithm designed using the standard ML approach (left) and our quasi-Seldonian
algorithm (right). The mean glucuse produced using the initial policy distribution is 111.63
mg/dL.

• Time-Hyperglycemic: the fraction of time per day that the subject was hyper-
glycemic (blood glucose above 180 mg/DL):

r(h) :=
1

1441

1440∑
t=0

{
−1 if gt ≥ 180 mg/dL

0 otherwise.
(S41)

• Expected Return: the auxiliary return was defined to be the same as the return
defined by Eq. S38. Because the return trades-off hypoglycemia and hyperglycemia, this
definition of the auxiliary function allows some increase in hypoglycemia if it results in
a sufficiently large decrease in the prevalence of hyperglycemia, and vice versa.

The key messages from these additional experiments are that 1) the algorithm was again able
to return solutions using reasonable amounts of data, when safe solutions exist, and 2) when
instructed to bound a particular statistic, the Seldonian algorithm did so without fail in all
cases.

Consider first the experiment using the time-hypoglycemic constraint. The results from
this experiment are reported in Figures S29 and S30. Fig. S29 shows that, although the
Seldonian algorithm still returned solutions using a reasonable amount of data, more data
was required than when the original definition of r1 was used. This is likely because the
original definition of r1 produced non-zero values for a wider range of blood glucose levels,
thereby providing a less sparse signal. Fig. S29 also shows that the Seldonian algorithm
successfully enforced the behavioral constraints, with the probability of undesirable behavior
remaining well below the specified 5% threshold.

Next we repeated our experiments using the time-hyperglycemic constraint. The results of
these experiments are reported in Figures S31 and S32. Although our original system resulted
in changes to the policy distribution that increased the prevalence of hyperglycemia, this
example shows the behavior of our algorithm when it is explicitly required (via a behavioral
constraint) to ensure that the time spent hyperglycemic is not increased. This is a particularly
interesting example because, due to the experimental design (the type of controller, initial
ranges for CR and CF , and the chosen simulated subject), policies that increase the expected
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Fig. S29. Results using the time-hypoglycemic constraint. (Left) The probability that a
solution other than No Solution Found (NSF) is returned as the number of days of data is
varied. (Right) The probability that a distribution over policies was returned that increased
the prevalence of undesirable behavior (increased the expected time hypoglycemic) relative to
the initial distribution over policies. The shaded region depicts standard deviation, measured
over 32 trials.
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Fig. S30. Results using the time-hypoglycemic constraint. Box plots showing the percent
time hypoglycemic (blood glucose at or below 70 mg/dL) when using the algorithm designed
using the standard ML approach (right) and our quasi-Seldonian algorithm (left). The percent
time hypoglycemic of the initial policy distribution is 1.02%.
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Fig. S31. Results using the time-hyperglycemic constraint. (Left) The probability that a
solution other than No Solution Found (NSF) was returned as the number of days of
data was varied. (Right) The probability that a distribution over policies was returned that
increased the prevalence of undesirable behavior (increased the expected time hyperglycemic)
relative to the initial distribution over policies. The shaded region depicts standard deviation,
measured over 32 trials.
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Fig. S32. Results using the time-hyperglycemic constraint. Box plots showing the percent
time hyperglycemic (blood glucose at or above 180 mg/dL) when using the algorithm
designed using the standard ML approach (left) and our quasi-Seldonian algorithm (right).
The standard algorithm still increased the percent time hyperglycemic per day, even when
using a year of data, because the return function (primary objective) was not modified—only
the behavioral constraint was modified from the original experiment. The percent time
hyperglycemic of the initial policy distribution is 0.0583%.
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return (the primary objective) all also increase the prevalence of hyperglycemia. This is a
result of the fact that the return function penalizes hypoglycemia more than hyperglycemia.
For this case, we verified that all 27 possible distributions over policies that the RL agent
could return would either violate this safety constraint or decrease the expected return. Our
algorithm therefore exhibited ideal behavior in this example: it returned NoSolutionFound
on every trial.

Finally, we repeated our experiments using the expected return constraint. The results from
this experiment are reported in Figures S33 and S34. While the standard algorithm sometimes
returns policies that decrease the expected return, the Seldonian algorithm successfully ensures
that (with probability at least 95%) it only changes the policy distribution when the expected
return will increase.

5.3.2 Reducing Hypoglycemia and Hyperglycemia Given a Different Initial Policy Distribution

In some scenarios our algorithm can reduce the frequency of both hypoglycemia and hyper-
glycemia relative to an initial policy distribution: whether this is possible or not depends on
the initial policy distribution and the chosen behavioral constraint. To illustrate this, we
consider a case where the initial policy distribution is defined over a different and wider range:
CR ∈ [20, 30] and CF ∈ [5, 10] rather than CR ∈ [8.5, 11] and CF ∈ [10, 15]. Referring
back to Fig. S22, it is clear that this larger window contains worse initial values for CR
and CF , which cause both hypoglycemia and hyperglycemia. This example reflects the case
where a clinician initially has more uncertainty about which parameter values will work well
for a patient, and where improvement with respect to both time hypoglycemic and time
hyperglycemic is possible.

We repeated our experiment with adult#003, and the initial definition of −r1 that
penalizes hypoglycemia proportional to its severity, but with this modified initial range for
CR and CF . The results of this experiment are presented in Fig. S35, which shows that the
Seldonian algorithm was able to return solutions using a small amount of data, and that these
solutions decreased the percent time hypoglycemic as well as the percent time hyperglycemic.
In other words, when a reduction in both hypoglycemia and hyperglycemia is possible, the
Seldonian algorithm is capable of reducing both while enforcing a behavioral constraint (here
on hypoglycemia).

5.3.3 Different Simulated Subjects

Because our method improves personalized treatment, our discussion above focused on running
multiple trials using an individual patient. However, Version 3.2 of T1DMS includes ten
simulated adult subjects. We repeated our experiments using all ten of these simulated adults.
The goal of this experiment was to provide further evidence that our algorithm can return
solutions given a reasonable amount of data, and that it properly ensures that the prevalence
of undesirable behavior (in whatever manner it is specified) is not increased.

We did not change the initial values for CR and CF . This provides variability across
our experiments because these ranges for CR and CF are poor choices for some simulated
patients. As shown by the results to be described here, this variability had no impact on our
algorithm’s behavior, regardless of which simulated patient was used and how “good” the
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Fig. S33. Results using the expected return constraint. (Left) The probability that a
solution other than No Solution Found (NSF) was returned as the number of days of
data was varied. (Right) The probability that a distribution over policies was returned that
increased the prevalence of undesirable behavior (decreased the expected return) relative to
the initial distribution over policies. The shaded region depicts standard deviation, measured
over 32 trials.
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Fig. S34. Results using the expected return constraint. Box plots showing the expected
returns that result when using the algorithm designed using the standard ML approach
(left) and our quasi-Seldonian algorithm (right). The expected return of the initial policy
distribution is −0.1116.

64



50 100 150 200 250 300 350
Amount of Data (days)

0

0.2

0.4

0.6

0.8

1
P

ro
ba

bi
lit

y 
of

 S
ol

ut
io

n

non-Seldonian Algorithm
quasi-Seldonian Algorithm 1.5

2

2.5

3

3.5

4

4.5

5

P
er

ce
nt

 T
im

e 
H

yp
og

ly
ce

m
ic

Amount of Data (days)

5 50 10
0

15
0

20
0

25
0

30
0

35
0

36
5

Mean (all)
Mean (when policy changed)

2

3

4

5

6

P
er

ce
nt

 T
im

e 
H

yp
er

gl
yc

em
ic

Amount of Data (days)

5 50 10
0

15
0

20
0

25
0

30
0

35
0

36
5

Mean (all)
Mean (when policy changed)

Fig. S35. Results using the different initial range for CR and CF , averaging over 32 trials.
The left plot shows the probability a solution other than NSF was returned. We omit the
plot showing the probability of undesirable behavior because in this example undesirable
behavior never occurred. The middle and right plots show the percent time hypoglycemic and
percent time hyperglycemic when using the quasi-Seldonian algorithm (compare to Figures
S26 and S27 respectively). This differs from previous plots: here both box plots are for the
quasi-Seldonian method, but present different metrics.

initial ranges for CR and CF were, our algorithm reliably found policies that increased the
expected return (when such policies existed) while enforcing the chosen behavioral constraints.
We note that this variability implies that the magnitudes of the reported statistics, such as
time hypoglycemic, time hyperglycemic, and mean glucose, are not meaningful because these
statistics depend heavily on the quality of the initial range for CR and CF for each particular
patient. However, the relative magnitudes of these statistics before and after the distribution
over policies is changed remain meaningful. Our algorithm should increase expected return
while ensuring that the behavioral constraints are enforced, even if this means only requiring
improvement relative to a poor initial distribution over policies, e.g., one that causes frequent
hypoglycemia.

The results of these experiments are summarized in Figures S36 through S39. Each
of these figures presents the probability of a solution being returned on the left, and the
probability of undesirable behavior being produced on the right. Each curve in each figure
panel corresponds to a different simulated adult patient, and all panels show ten curves using
both the quasi-Seldonian and non-Seldonian algorithm (although some curves are obscured
by other curves). For each possible behavioral constraint and each simulated adult, 32 trials
were run and standard deviation error bars are included.

Fig. S36 depicts the results when using the original definition of the auxiliary return
function, −r1, which limits the prevalence of low blood glucose by punishing hypoglycemia in
proportion to its severity. Fig. S37 depicts the results when using the time-hypoglycemic
definition of the auxiliary return function, which limits the fraction of time per day that the
person is hypoglycemic while not taking into account the severity of the hypoglycemia beyond
the 70 mg/dL threshold. Fig. S38 depicts the results obtained using the time-hyperglycemic
definition of the auxiliary return function, which limits the fraction of time per day that the
person is hyperglycemic. Fig. S39 depicts the results obtained using the expected return
definition of the auxiliary return function, which requires improvement with respect to the
primary return function that trades-off hyperglycemia and hypoglycemia.

A salient feature of these results is that regardless of the simulated subject and the chosen
definition of the behavioral constraint, the quasi-Seldonian algorithm behaved precisely as
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Fig. S36. Results on ten in silico subjects using the original definition of r1.
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Fig. S37. Results on ten in silico subjects using the time-hypoglycemic definition of r1.
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Fig. S38. Results on ten in silico subjects using the time-hyperglycemic definition of r1.
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Fig. S39. Results on ten in silico subjects using the expected return definition of r1.

desired. It returned solutions using a reasonable amount of data when possible,8 and in
all cases the probability that the quasi-Seldonian algorithm produced undesirable behavior
was well below the required 5% limit. In contrast, the non-Seldonian algorithm frequently
produced policy distributions that produced undesirable behavior.

5.4 Additional Considerations for Clinical Applications

New machine learning algorithms are often validated by applying them to mockups of real
applications. Our example application of a Seldonian RL algorithm to a mockup of the
adaptive bolus calculation problem shows the feasibility of creating and using Seldonian
algorithms. This example also suggests that an interdisciplinary team of computer scientists
and medical researchers could pursue the actual use of (Seldonian) RL algorithms for
adaptive bolus calculation. An actual application of this sort would require several additional
considerations, some of which we review here.

First, recall that our experimental design mimics that of prior work applying standard
RL algorithms to bolus insulin calculation [30]. An actual deployment of RL to this problem
would likely involve a more sophisticated and modern approach. For example, the RL
algorithm could treat the target blood glucose as an adaptable parameter of the policy
and it could modify the basal rate in conjunction with the bolus dose. Similarly, a more
sophisticated policy class (expression for the bolus calculator) would consider insulin on
board and estimates of past and anticipated future physical activity [197, 198].

Second, notice that the Seldonian framework is a framework for designing algorithms, not
a particular algorithm. As such, there are many possible Seldonian RL algorithms. While the
one that we used here provided promising results with our experimental design, a different
experimental design might be better paired with a different Seldonian algorithm. For example,
if a more sophisticated policy representation is used, e.g., an artificial neural network, then
an algorithm like the one in Fig. S15 might be better suited, since it does not assume that
there is a small set of possible policies to consider.

Furthermore, in an effort to keep our algorithm simple, we considered distributions over

8For all but two simulated subjects, performance with respect to the chosen definition of the primary
return function is not possible without increasing the percent time hypoglycemic, and so solutions are typically
not returned in Fig. S38.
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deterministic policies that can be viewed as rectangles in CR and CF space, as depicted in
Figures S21 and S23. The behavior of the resulting controllers is therefore easily interpretable:
each day the CR and CF parameters will be sampled uniformly randomly from the specified
range. A more conventional RL approach would be to maintain a single stochastic policy,
perhaps using the Fourier basis [199] and softmax action selection [47], rather than a
distribution over deterministic policies. This would provide a more expressive policy class
and would result in a more conventional RL formulation that allows for the use of more
advanced off-policy evaluation techniques than the basic importance sampling estimator that
we used [149, 195]. However, the solution output by the RL algorithm using this approach
would be far less interpretable—a large vector of real-valued numbers. Hence, practitioners
must decide between the interpretability of the approach that we have taken and the possibly
improved performance of a more conventional (yet still Seldonian) RL approach.

Next, recall that in Eq. S38 we adopted the primary objective function used in prior
work [30]. This objective function penalizes deviations of blood glucose from the target blood
glucose level, with a non-linear relationship between blood glucose deviation and the resulting
penalty. The precise shape of this objective function defines optimal behavior, and therefore
has a significant impact on the policies that are returned. Alternatives might vary the rate
at which the penalty grows, or might provide no penalty as long as blood glucose is within
some range of the target blood glucose.

Like the choice of the primary objective function, practitioners must decide what definition
of undesirable behavior is appropriate for this application. Should the algorithm guarantee
that the mean time hypoglycemic is not increased? Should the mean time hypoglycemic
be weighted by the severity of the hypoglycemia as in what we called the prevalence of low
blood glucose? Should slight increases in the mean time mildly hypoglycemic be allowed if
there is a significant decrease in time hyperglycemic? If so, how should the terms “slight”,
“mildly”, and “significant” be quantified? While Seldonian algorithms provide the user with
an interface to define undesirable behavior, it is still up to the practitioner to make these
decisions about what consistutes undesirable behavior for their application.

Finally, a clinical application should likely be preceded by further simulation studies that
more closely model the clinical application. These simulations should use the policy class,
Seldonian algorithm, primary objective function, and definitions of undesirable behavior
chosen for the clinical application. Furthermore, these simulations might include additional
details not included in our study. For example, the simulation might incorporate physical
activity, which can have a significant impact on blood glucose levels in a person with type 1
diabetes [200], or could incorporate more accurate simulations of the delay between when
insulin is injected and when the insulin pump measures a change in blood glucose. These
additional simulations would provide insight into how the chosen Seldonian algorithm could
be expected to perform in the intended clinical application.

The complete enumeration of how each possible change to the experimental design can
be expected to influence the performance of a Seldonian RL algorithm is closely tied to
the particular algorithm that is chosen, and is beyond the scope of this work. For further
information regarding when RL algorithms are and are not effective, we refer the reader to
texts on RL [47, 193]. For further information regarding when Seldonian RL algorithms are
and are not effective, we refer the reader to work regarding challenges with (high-confidence)
off-policy evaluation—the component of our Seldonian RL algorithms that is most sensitive
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to the experimental design [136, 201, 202, 203].

6 Other Seldonian Algorithms

There has been growing interest in ensuring that machine learning algorithms are safe to
use [8, 7, 64]. Given the practical nature of the guarantees provided by Seldonian algorithms,
it would be surprising if there were not already some algorithms that can be viewed as
(quasi-)Seldonian algorithms for specific Seldonian optimization problems. Here we discuss
some existing (quasi-)Seldonian algorithms and the problems that they solve. However, to
the best of our knowledge, the framework of Seldonian optimization problems has not been
proposed as a general problem formulation for machine learning, nor has its benefits been
thoroughly discussed previously.

One example of both Seldonian and quasi-Seldonian algorithms is our prior work to
create reinforcement learning algorithms for digital marketing applications [136, 26, 137].
These algorithms observe a vector of features describing the information that is known
about a person visiting a webpage, and they decide which advertisement, or which type of
advertisement, to display on the webpage. The deployment of a policy that is worse than
existing policies would result in fewer clicks on the advertisements. This in turn could be
costly both in terms of lost advertisement revenue and lost customers for a digital marketing
product.

In the context of digital marketing, we proposed Seldonian and quasi-Seldonian batch
reinforcement learning algorithms that guarantee that with probability at least 1− δ, their
performance (in terms of the expected return of the MDP) will be at least some constant,
ρ−, where the user of the algorithm is free to select δ and ρ−. Although this prior work was
a steppingstone towards this work, it lacked several important features. First, we did not
allow for any other behavioral constraints; the only constraint we considered was to ensure
that the expected return was increased with high probability. Second, we only considered
the reinforcement learning setting; we did not observe that behavioral constraints could be
important for other branches of machine learning.

Others have considered the problem of guaranteeing policy improvement with high
confidence [204, 28], sometimes in the context of determining how the complexity of (ap-
proximately) solving MDPs grows with different MDP parameters, such as the number of
possible states [205]. Also considered by others is how to construct confidence intervals
around performance estimates on the basis of counterfactual reasoning [206]. This approach
is similar to, and precedes, our own prior work [136]. As in our earlier work, these examples
address only one special case of SOPs, specifically, SOPs that model reinforcement learning
(or bandit) problems and contain the single behavioral constraint that performance (in terms
of the standard objective function) should be increased with high probability. This single
behavioral constraint is common and not unique to reinforcement learning. The problem of
bounding the generalization error of a supervised learning algorithm has been extensively
studied [88].

Another example of a (quasi-)Seldonian algorithm is the algorithm presented by Berkenkamp
et al. [207], which was developed in parallel with, and independently of, our present approach.
Berkenkamp et al. [207] propose a special case of the Seldonian optimization problem frame-
work in which the goal is to tune the hyperparameters of a control algorithm to ensure that,
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with high probability, the controller will avoid unsafe regions of state space. These authors
propose a quasi-Seldonian algorithm that uses Gaussian processes to approximate both the
objective function and behavioral constraint functions, and which then acts conservatively
with respect to the confidence bounds produced by the Gaussian process. This example is
another instance supporting the utility and practicality of the Seldonian optimization problem
formulation, though Berkenkamp et al. [207] do not discuss how their problem framework
can be generalized to other applications.

Yet another example of Seldonian algorithms are data-driven robust optimization al-
gorithms [208, 29, 209, 210]. Whereas we present desired properties of a safe algorithm
and allow the designer of an ML algorithm freedom with respect to how to satisfy these
properties, the data-driven robust optimization framework presents one particular way that
these properties could be enforced. So far these algorithms have been restricted to convex
constraints and assume that the primary objective has a particular structural form, making
them unsuitable for the example applications presented in this work. Furthermore, none of
the Seldonian algorithms that we have presented take the particular approach prescribed by
the data-driven robust optimization framework. However, data-driven robust optimization
algorithms provide powerful and particularly computationally efficient Seldonian algorithms
for problems that satisfy the assumptions of these approaches, and an interesting area of
future work is to extend such approaches towards weaker assumptions on the problem setting.

In addition, one might view many algorithms as solutions to specific Seldonian optimization
problems. For example, many of the state-avoidant algorithms we discussed when describing
hard constraints, e.g., the algorithms proposed by Akametalu et al. [63], ensure that with
high probability they will not allow a system to enter a pre-specified undesirable state. These
algorithms can therefore be viewed as (quasi-)Seldonian algorithms for an SOP that includes
the behavioral constraint that, with high probability, the agent will never enter an undesirable
state (which requires that at least some prior knowledge about the system dynamics is
available). In fact, it is fair to say that since the Seldonian optimization framework subsumes
the standard machine learning optimization framework, most existing machine learning
algorithms can be viewed as instances of (quasi-)Seldonian algorithms.

7 Future Work

We have presented a framework for designing well-behaved machine learning algorithms,
called Seldonian algorithms. These Seldonian algorithms provide their users with an interface
for defining undesirable behavior in a way that is appropriate for the task at hand, e.g.,
unsafe behavior, unfair behavior, or unprofitable behavior, and also allow the user to specify
δ, the maximum admissible probability of this undesirable behavior. A Seldonian algorithm
then guarantees that the probability that it will return a solution that produces undesirable
behavior is at most δ. This shifts much of the difficulty of ensuring that a machine learning
algorithm is well-behaved from the user of the machine learning algorithm to the designer of
the machine learning algorithm, thereby making it easier for the user of a machine learning
algorithm to control its behavior.

The purpose of this paper is to introduce the Seldonian framework, provide motivation
for their adoption, and present examples showing that the design of practical Seldonian
algorithms is tractable. Critically, while the Seldonian algorithms that we have presented
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achieve impressive results, they remain simple algorithms that could be improved in many
ways. In this section we discuss possible directions of future work, including both algorithmic
improvements and possible extensions of our framework.

7.1 Algorithmic Improvements

When designing our example Seldonian algorithms, we encountered many new research
questions that might be studied by machine learning researchers. Principled answers to these
questions would result in algorithms that return solutions other than NSF given less data,
algorithms that better optimize the primary objective function while satisfying the behavioral
constraints, faster run times, and improved interfaces for defining undesirable behavior.

For the algorithm in Fig. S15 these open questions include: 1) can the split of D into D1

and D2 be phrased as an optimal stopping problem wherein points are incrementally moved
from D2 to D1? 2) Is the doubling of the confidence interval during the computation of θc
(notice that we double the confidence interval from Student’s t-test) sufficient to ensure that,
if there exists a solution θ such that g(θ) ≤ −ε for some small positive constant ε, then in
the limit as the number of points in D goes to infinity, the probability that the algorithm
returns NSF goes to zero? 3) Is the decision to select and test a single candidate solution
optimal, or is it better in practice to select and test multiple candidate solutions, perhaps
using techniques like the reusable holdout [211]? 4) Can concentration inequalities that
are robust to covariate shift [212] provide guarantees when the distribution of data in the
future may differ slightly from the distribution from which the training data was sampled?
5) Do there exist optimization algorithms that are particularly well-suited to approximating
a solution to the constrained global maximization problem that defines θc?

Beyond the algorithm in Fig. S15, open questions include: 1) how can the interface
for defining undesirable behaviors be extended to enable users with less experience with
machine learning and computers? For example, can the interface be extended to allow
undesirable behavior to be defined using natural language? 2) When is the approach used in
our regression and classification algorithms, where one solution is selected and then tested,
superior to the approach used in our reinforcement learning algorithm, where all solutions
are tested, and then one of the passing solutions selected? 3) In our Seldonian classification
algorithm, where confidence intervals on base variables are propagated through an analytic
expression to obtain confidence intervals on g(θ), can the decisions about when to use one or
two-sided confidence intervals on the base variables be optimized using some of the available
data? 4) How can a Seldonian algorithm produce both human-interpretable solutions and
a human-interpretable presentation of the evidence that the returned solution is safe? 5)
How can a Seldonian algorithm explain to the user why it returned NSF, e.g., do constraints
appear to be conflicting, or is there just not enough data?

7.2 Framework Extensions

There are many possible extensions of our framework. For example, it might be extended
to replace the single primary objective with multiple primary objectives, resulting in a
multi-objective variant, it might be modified to use a Bayesian approach, or it might be
extended to use verification techniques [213].
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One extension stands out: the extension to the online (sequential) setting, wherein
additional data becomes available over time, and the machine learning algorithm is tasked
with improving the solution that it returns as more data becomes available. Simply applying
a batch Seldonian algorithm (the type we have presented in this paper) multiple times ensures
that the probability of a solution that produces undesirable behavior is at most δ each time
the algorithm is run. Hence, if the algorithm is run k times, the probability that it returns
a solution that produces undesirable behavior will be at most min{1, kδ}. An alternative
extension to the sequential setting would require the probability of a solution being deployed
that produces undesirable behavior to be at most δ, even if the algorithm is run k times,
perhaps even when k → ∞. The design of a sequential Seldonian algorithm of this sort
may be feasible using confidence sequences [214]. Such an extension would also raise new
algorithmic questions like, if a sequential Seldonian algorithm resembles our regression and
classification algorithms, how should the data within D1 and D2 be reused across multiple
runs of the algorithm?

Appendix A: Derivation of Minimum MSE Estimator for Illustrative Example

In this appendix we show that the minimum MSE estimator of Y given X in our illustrative
example is 2

3
X. Here we do not limit our search of estimators to linear functions—2

3
X has

the lowest MSE of all possible estimators that use X (and only X) to predict Y . To show
this result, we derive an expression for the minimum MSE estimate of Y given that X = x.

We begin by writing an expression for the MSE of any estimate, ŷ ∈ R, given that X = x.

MSE(ŷ) :=

∫ ∞
−∞

Pr(Y = y|X = x)(ŷ − y)2dy, (S42)

where, in this section of the appendix only, we abuse notation and write Pr to denote
probability densities rather than probabilities. To find the value of ŷ that minimizes MSE we
find the critical points of MSE:

0 =
∂

∂ŷ
MSE(ŷ) (S43)

=
∂

∂ŷ

∫ ∞
−∞

Pr(Y = y|X = x)(ŷ − y)2 dy (S44)

=2

∫ ∞
−∞

Pr(Y = y|X = x)(ŷ − y) dy. (S45)

By Bayes theorem and marginalizing over T , we have that:

Pr(Y = y|X = x) =
Pr(X = x|Y = y) Pr(Y = y)

Pr(X = x)
(S46)

=
Pr(X = x|Y = y)

∑1
t=0 Pr(T = t) Pr(Y = y|T = t)

Pr(X = x)
. (S47)
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Thus, continuing from Eq. S45 we have that:

0 =2

∫ ∞
−∞

Pr(X = x|Y = y)
∑1

t=0 Pr(T = t)Pr(Y = y|T = t)

Pr(X = x)
(ŷ − y) dy (S48)

=
2

Pr(X = x)

∫ ∞
−∞

1

2π
e−

(x−y)2

2︸ ︷︷ ︸
Pr(X=x|Y=y)

 0.5︸︷︷︸
Pr(T=0)

1

2π
e
−(y−1)2

2︸ ︷︷ ︸
Pr(Y=y|T=0)

+ 0.5︸︷︷︸
Pr(T=1)

1

2π
e
−(y+1)2

2︸ ︷︷ ︸
Pr(Y=y|T=1)

 (ŷ − y) dy (S49)

=
1

4π2 Pr(X = x)

∫ ∞
−∞

e−
2(x−y)2+y2

4 (ŷ − y) dy. (S50)

Thus, (∫ ∞
−∞

e−
2(x−y)2+y2

4 dy

)
ŷ =

∫ ∞
−∞

e−
2(x−y)2+y2

4 y dy (S51)(
2

√
π

3
e−

x2

6

)
ŷ =

(
4

3

√
π

3
e
−x2

6

)
x (S52)

ŷ =
2

3
x. (S53)

It is straightforward to verify that this unique critical point is a global minimum of MSE(ŷ)
(as opposed to a saddle point or maximum).

73



 

References 

1. R. W. Jibson, Regression models for estimating coseismic landslide displacement. Eng. Geol. 
91, 209–218 (2007). doi:10.1016/j.enggeo.2007.01.013 

2. M. Bhasin, G. Raghava, Prediction of CTL epitopes using QM, SVM and ANN techniques. 
Vaccine 22, 3195–3204 (2004). doi:10.1016/j.vaccine.2004.02.005 

3. J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias. ProPublica, May 2016; 
www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. 

4. D. A. Pomerleau, ALVINN: An autonomous land vehicle in a neural network. Adv. Neural 
Inform. Process. Syst. 1, 305–313 (1988). 

5. S. Saria, A $3 trillion challenge to computational scientists: Transforming healthcare delivery. 
IEEE Intell. Syst. 29, 82–87 (2014). doi:10.1109/MIS.2014.58 

6. N. Bostrom, Superintelligence: Paths, Dangers, Strategies (Oxford Univ. Press, 2014). 

7. S. Russell, Should we fear supersmart robots? Sci. Am. 314, 58–59 (June 2016). 

8. D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, D. Mané, Concrete Problems in 
AI Safety. arXiv 1606.06565 [cs.AI] (25 July 2016). 

9. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, 2004). 

10. D. Bertsimas, G. J. Lauprete, A. Samarov, Shortfall as a risk measure: Properties, 
optimization and applications. J. Econ. Dyn. Control 28, 1353–1381 (2004). 
doi:10.1016/S0165-1889(03)00109-X 

11. A. Charnes, W. W. Cooper, Chance-constrained programming. Manage. Sci. 6, 73–79 
(1959). doi:10.1287/mnsc.6.1.73 

12. A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization (Princeton Univ. Press, 
2009). 

13. I. Asimov, Foundation (Gnome, 1951). 

14. See supplementary materials. 

15. O. L. Mangasarian, W. N. Street, W. H. Wolberg, Breast cancer diagnosis and prognosis via 
linear programming. Oper. Res. 43, 570–577 (1995). doi:10.1287/opre.43.4.570 

16. L. Weber, “Your résumé vs. oblivion.” Wall Street Journal (2012); 
www.wsj.com/articles/SB10001424052970204624204577178941034941330. 

17. L. Li, W. Chu, J. Langford, R. E. Schapire, A contextual-bandit approach to personalized 
news article recommendation. In International World Wide Web Conference (2010), pp. 
661–670. doi:10.1145/1772690.1772758 

http://dx.doi.org/10.1016/j.enggeo.2007.01.013
http://dx.doi.org/10.1016/j.vaccine.2004.02.005
http://dx.doi.org/10.1109/MIS.2014.58
https://arxiv.org/abs/1606.06565
http://dx.doi.org/10.1016/S0165-1889(03)00109-X
http://dx.doi.org/10.1287/mnsc.6.1.73
http://dx.doi.org/10.1287/opre.43.4.570


 

18. R. M. Houtman, C. A. Montgomery, A. R. Gagnon, D. E. Calkin, T. G. Dietterich, S. 
McGregor, M. Crowley, Allowing a wildfire to burn: Estimating the effect on future fire 
suppression costs. Int. J. Wildland Fire 22, 871–882 (2013). doi:10.1071/WF12157 

19. B. Moore, P. Panousis, V. Kulkarni, L. Pyeatt, A. Doufas, Reinforcement learning for closed-
loop propofol anesthesia: A human volunteer study. In Proceedings of the Twenty-Second 
Innovative Applications of Artificial Intelligence Conference (2010), pp. 1807–1813; 
www.aaai.org/ocs/index.php/IAAI/IAAI10/paper/view/1572/2359. 

20. K. Grabczewski, W. Duch, Heterogeneous forests of decision trees. In International 
Conference on Artificial Neural Networks (2002), pp. 504–509. doi:10.1007/3-540-
46084-5_82 

21. D. Dheeru, E. Karra Taniskidou, UCI Machine Learning Repository (2017); 
http://archive.ics.uci.edu/ml. 

22. K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, D. I. Fotiadis, Machine 
learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 
13, 8–17 (2015). doi:10.1016/j.csbj.2014.11.005 

23. J. Komiyama, A. Takeda, J. Honda, H. Shimao, Proc. Mach. Learn. Res. 80, 2737–2746 
(2018). 

24. A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, H. Wallach, A reductions approach to 
fair classification. Proc. Mach. Learn. Res. 80, 60–69 (2018). 

25. M. B. Zafar, I. Valera, M. G. Rodriguez, K. P. Gummadi, Fairness constraints: Mechanisms 
for fair classification. Proc. Mach. Learn. Res. 54, 962–970 (2017). 

26. P. S. Thomas, G. Theocharous, M. Ghavamzadeh, High confidence policy improvement. 
Proc. Mach. Learn. Res. 37, 2380–2388 (2015). 

27. M. Ghavamzadeh, M. Petrik, Y. Chow, Safe policy improvement by minimizing robust 
baseline regret. Adv. Neural Inform. Process. Syst. 29, 2298–2306 (2016). 

28. R. Laroche, P. Trichelair, R. T. des Combes, Safe policy improvement with baseline 
bootstrapping. Proc. Mach. Learn. Res. 97, 3652–3661 (2019). 

29. D. Bertsimas, V. Gupta, N. Kallus, Data-driven robust optimization. Math. Program. 167, 
235–292 (2018). doi:10.1007/s10107-017-1125-8 

30. M. Bastani, thesis, University of Alberta (2014). 

31. S. Schmidt, K. Nørgaard, Bolus calculators. J. Diabetes Sci. Technol. 8, 1035–1041 (2014). 
doi:10.1177/1932296814532906 

32. C. Dalla Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, C. Cobelli, The UVA/Padova 
type 1 diabetes simulator: New features. J. Diabetes Sci. Technol. 8, 26–34 (2014). 
doi:10.1177/1932296813514502 

http://dx.doi.org/10.1071/WF12157
http://www.aaai.org/ocs/index.php/IAAI/IAAI10/paper/view/1572/2359
http://dx.doi.org/10.1016/j.csbj.2014.11.005
http://dx.doi.org/10.1007/s10107-017-1125-8
http://dx.doi.org/10.1177/1932296814532906
http://dx.doi.org/10.1177/1932296813514502


 

33. S. W. Suh, E. T. Gum, A. M. Hamby, P. H. Chan, R. A. Swanson, Hypoglycemic neuronal 
death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J. 
Clin. Invest. 117, 910–918 (2007). doi:10.1172/JCI30077 

34. A. J. Bree, E. C. Puente, D. Daphna-Iken, S. J. Fisher, Diabetes increases brain damage 
caused by severe hypoglycemia. Am. J. Physiol. Endocrinol. Metab. 297, E194–E201 
(2009). doi:10.1152/ajpendo.91041.2008 

35. E. C. McNay, V. E. Cotero, Impact of recurrent hypoglycemia on cognitive and brain 
function. Physiol. Behav. 100, 234–238 (2010). doi:10.1016/j.physbeh.2010.01.004 

36. D. Precup, R. S. Sutton, S. Dasgupta, Off-policy temporal-difference learning with function 
approximation. In Proceedings of the 18th International Conference on Machine 
Learning (2001), pp. 417–424; https://dl.acm.org/citation.cfm?id=655817. 

37. H. Zisser, L. Jovanovic, F. Doyle III, P. Ospina, C. Owens, Run-to-run control of meal-
related insulin dosing. Diabetes Technol. Ther. 7, 48–57 (2005). 
doi:10.1089/dia.2005.7.48 

38. Data related to this publication are available through Harvard Dataverse. DOI: 
10.7910/DVN/O35FW8 

39. Source code for all experiments is available through Zenodo. DOI: 10.5281/zenodo.3490615 

40. T. M. Mitchell, Machine Learning (McGraw-Hill, 1997). 

41. D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating 
errors. Nature 323, 533–536 (1986). doi:10.1038/323533a0 

42. A. Liaw, M. Wiener, Classification and regression by random forest. R News 2, 18–22 
(2002). 

43. B. E. Boser, I. M. Guyon, V. N. Vapnik, A training algorithm for optimal margin classifiers. 
In Annual Workshop on Computational Learning Theory (1992), pp. 144–152. 
doi:10.1145/130385.130401 

44. L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001). doi:10.1023/A:1010933404324 

45. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional 
neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105 (2012). 

46. A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the 
EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977). doi:10.1111/j.2517-
6161.1977.tb01600.x 

47. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (MIT Press, ed. 2, 2018). 

48. C. Watkins, thesis, University of Cambridge (1989). 

49. I. Asimov, I, Robot (Gnome, 1950). 

http://dx.doi.org/10.1172/JCI30077
http://dx.doi.org/10.1152/ajpendo.91041.2008
http://dx.doi.org/10.1016/j.physbeh.2010.01.004
https://dl.acm.org/citation.cfm?id=655817
http://dx.doi.org/10.1089/dia.2005.7.48
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x


 

50. C. Dwork, M. Hardt, T. Pitassi, O. Reingold, R. Zemel, Fairness through awareness. In 
Innovations in Theoretical Computer Science Conference (2012), pp. 214–226. 
doi:10.1145/2090236.2090255 

51. T. B. Hashimoto, M. Srivastava, H. Namkoong, P. Liang, Fairness without demographics in 
repeated loss minimization. Proc. Mach. Learn. Res. 80, 1929–1938 (2018). 

52. C. C. Miller, “Can an algorithm hire better than a human?” New York Times, June 2015; 
www.nytimes.com/2015/06/26/upshot/can-an-algorithm-hire-better-than-a-human.html. 

53. G. B. Dantzig, A. Orden, P. Wolfe, The generalized simplex method for minimizing a linear 
form under linear inequality restraints. Pac. J. Math. 5, 183–195 (1955). 
doi:10.2140/pjm.1955.5.183 

54. P. S. Thomas, W. Dabney, S. Mahadevan, S. Giguere, Projected natural actor-critic. Adv. 
Neural Inform. Process. Syst. 26, 2337–2345 (2013). 

55. H. Le, C. Voloshin, Y. Yue, Batch policy learning under constraints. Proc. Mach. Learn. 
Res. 97, 3703–3712 (2019). 

56. A. J. Irani, thesis, Georgia Institute of Technology (2015). 

57. C. J. Tomlin, thesis, University of California, Berkeley (1998). 

58. M. Oishi, C. J. Tomlin, V. Gopal, D. Godbole, Addressing multiobjective control: Safety and 
performance through constrained optimization. In International Workshop on Hybrid 
Systems: Computation and Control (2001), pp. 459–472. doi:10.1007/3-540-45351-2_37 

59. T. J. Perkins, A. G. Barto, Lyapunov design for safe reinforcement learning. J. Mach. Learn. 
Res. 3, 803–832 (2003). 

60. I. M. Mitchell, A. M. Bayen, C. J. Tomlin, A time-dependent Hamilton-Jacobi formulation of 
reachable sets for continuous dynamic games. IEEE Trans. Automat. Contr. 50, 947–957 
(2005). doi:10.1109/TAC.2005.851439 

61. A. Hans, D. Schneegaß, A. M. Schäfer, S. Udluft, Safe exploration for reinforcement 
learning. In European Symposium on Artificial Neural Networks (2008), pp. 143–148; 
https://pdfs.semanticscholar.org/5ee2/7e9db2ae248d1254107852311117c4cda1c9.pdf. 

62. E. Arvelo, N. C. Martins, Control Design for Markov Chains under Safety Constraints: A 
Convex Approach. arXiv 1209.2883 [cs.SY] (8 November 2012). 

63. A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, C. J. Tomlin, 
Reachability-based safe learning with Gaussian processes. In IEEE Conference on 
Decision and Control (2014), pp. 1424–1431. doi:10.1109/CDC.2014.7039601 

64. S. Zilberstein, Building strong semi-autonomous systems. In Proceedings of the 29th AAAI 
Conference on Artificial Intelligence (2015), pp. 4088–4092; 
www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9920/9686. 

http://dx.doi.org/10.2140/pjm.1955.5.183
http://dx.doi.org/10.1109/TAC.2005.851439
https://pdfs.semanticscholar.org/5ee2/7e9db2ae248d1254107852311117c4cda1c9.pdf
https://arxiv.org/abs/1209.2883
https://doi.org/10.1109/CDC.2014.7039601
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9920/9686


 

65. J. Nocedal, S. Wright, Numerical Optimization (Springer, ed. 2, 2006). 

66. A. Messac, A. Ismail-Yahaya, C. A. Mattson, The normalized normal constraint method for 
generating the Pareto frontier. Struct. Multidiscipl. Optim. 25, 86–98 (2003). 
doi:10.1007/s00158-002-0276-1 

67. G. F. Smits, M. Kotanchek, Pareto-front exploitation in symbolic regression. Genet. 
Program. Theory Pract. II, 283–299 (2005). doi:10.1007/0-387-23254-0_17 

68. M. Pirotta, S. Parisi, M. Restelli, Multi-objective reinforcement learning with continuous 
Pareto frontier approximation. In Conference on Artificial Intelligence (2015), pp. 2928–
2934; www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9798/9962. 

69. R. G. McCoy, H. K. Van Houten, J. Y. Ziegenfuss, N. D. Shah, R. A. Wermers, S. A. Smith, 
Increased mortality of patients with diabetes reporting severe hypoglycemia. Diabetes 
Care 35, 1897–1901 (2012). doi:10.2337/dc11-2054 

70. L. B. Miller, H. Wagner, Chance-constrained programming with joint constraints. Oper. Res. 
13, 930–945 (1965). doi:10.1287/opre.13.6.930 

71. A. Prékopa, On probabilistic constrained programming. In Princeton Symposium on 
Mathematical Programming (1970), pp. 113–138. doi:10.1515/9781400869930-009 

72. D. Dentcheva, A. Prékopa, A. Ruszczynski, Concavity and efficient points of discrete 
distributions in probabilistic programming. Math. Program. 89, 55–77 (2000). 
doi:10.1007/PL00011393 

73. A. Nemirovski, On safe tractable approximations of chance constraints. Eur. J. Oper. Res. 
219, 707–718 (2012). doi:10.1016/j.ejor.2011.11.006 

74. H. Xu, S. Mannor, Probabilistic goal Markov decision processes. In Proceedings of the 22nd 
International Joint Conference on Artificial Intelligence (2011), pp. 2046–2052. 
doi:10.5591/978-1-57735-516-8/IJCAI11-341 

75. M. H. Houck, A chance constrained optimization model for reservoir design and operation. 
Water Resour. Res. 15, 1011–1016 (1979). doi:10.1029/WR015i005p01011 

76. I. Gurvich, J. Luedtke, T. Tezcan, Staffing call centers with uncertain demand forecasts: A 
chance-constrained optimization approach. Manage. Sci. 56, 1093–1115 (2010). 
doi:10.1287/mnsc.1100.1173 

77. Q. Wang, Y. Guan, J. Wang, A chance-constrained two-stage stochastic program for unit 
commitment with uncertain wind power output. IEEE Trans. Power Syst. 27, 206–215 
(2012). doi:10.1109/TPWRS.2011.2159522 

78. E. Erdoğan, G. Iyengar, Ambiguous chance constrained problems and robust optimization. 
Math. Program. 107, 37–61 (2006). doi:10.1007/s10107-005-0678-0 

http://dx.doi.org/10.1007/s00158-002-0276-1
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9798/9962
http://dx.doi.org/10.2337/dc11-2054
http://dx.doi.org/10.1287/opre.13.6.930
https://doi.org/10.1515/9781400869930-009
http://dx.doi.org/10.1007/PL00011393
http://dx.doi.org/10.1016/j.ejor.2011.11.006
http://dx.doi.org/10.1029/WR015i005p01011
http://dx.doi.org/10.1287/mnsc.1100.1173
http://dx.doi.org/10.1109/TPWRS.2011.2159522
http://dx.doi.org/10.1007/s10107-005-0678-0


 

79. D. P. de Farias, B. Van Roy, On constraint sampling in the linear programming approach to 
approximate dynamic programming. Math. Oper. Res. 29, 462–478 (2004). 
doi:10.1287/moor.1040.0094 

80. G. Calafiore, M. C. Campi, Uncertain convex programs: Randomized solutions and 
confidence levels. Math. Program. 102, 25–46 (2005). doi:10.1007/s10107-003-0499-y 

81. A. Nemirovski, A. Shapiro, Convex approximations of chance constrained programs. SIAM 
J. Optim. 17, 969–996 (2006). doi:10.1137/050622328 

82. J. R. Birge, F. Louveaux, Introduction to Stochastic Programming (Springer, 2011). 

83. F. Provost, T. Fawcett, Robust classification for imprecise environments. Mach. Learn. 42, 
203–231 (2001). doi:10.1023/A:1007601015854 

84. J. García, F. Fernández, A comprehensive survey on safe reinforcement learning. J. Mach. 
Learn. Res. 16, 1437–1480 (2015). 

85. S. Kuindersma, R. Grupen, A. G. Barto, Variational Bayesian optimization for runtime risk-
sensitive control. In Robotics: Science and Systems VIII (2012), pp. 201–206. 
doi:10.15607/rss.2012.viii.026 

86. A. Tamar, Y. Glassner, S. Mannor, Optimizing the CVaR via sampling. In Conference on 
Artificial Intelligence (2015), pp. 2993–2999; 
www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9429/9972. 

87. Y. Chow, M. Ghavamzadeh, Algorithms for CVaR optimization in MDPs. Adv. Neural 
Inform. Process. Syst. 27, 3509–3517 (2014). 

88. Y. S. Abu-Mostafa, M. Magdon-Ismail, H. T. Lin, Learning from Data: A Short Course 
(AMLBook, 2012). 

89. P. Massart, Concentration Inequalities and Model Selection (Springer, 2007). 

90. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. 
Assoc. 58, 13–30 (1963). doi:10.1080/01621459.1963.10500830 

91. B. Efron, Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82, 171–185 (1987). 
doi:10.1080/01621459.1987.10478410 

92. L. E. Chambless, A. R. Folsom, A. R. Sharrett, P. Sorlie, D. Couper, M. Szklo, F. J. Nieto, 
Coronary heart disease risk prediction in the atherosclerosis risk in communities (ARIC) 
study. J. Clin. Epidemiol. 56, 880–890 (2003). doi:10.1016/S0895-4356(03)00055-6 

93. A. R. Folsom, L. E. Chambless, B. B. Duncan, A. C. Gilbert, J. S. Pankow, Prediction of 
coronary heart disease in middle-aged adults with diabetes. Diabetes Care 26, 2777–2784 
(2003). doi:10.2337/diacare.26.10.2777 

94. M. Petrik, Y. Chow, M. Ghavamzadeh, Safe policy improvement by minimizing robust 
baseline regret. Adv. Neural Inform. Process. Syst. 29, 2298–2306 (2016). 

http://dx.doi.org/10.1287/moor.1040.0094
http://dx.doi.org/10.1007/s10107-003-0499-y
http://dx.doi.org/10.1137/050622328
http://dx.doi.org/10.1023/A:1007601015854
https://doi.org/10.15607/rss.2012.viii.026
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9429/9972
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1080/01621459.1987.10478410
http://dx.doi.org/10.1016/S0895-4356(03)00055-6
http://dx.doi.org/10.2337/diacare.26.10.2777


 

95. F. Kamiran, T. Calders, Classifying without discriminating. In International Conference on 
Computer, Control and Communication (2009), pp. 1–6. doi:10.1109/IC4.2009.4909197 

96. T. Calders, S. Verwer, Three naive Bayes approaches for discrimination-free classification. 
Data Min. Knowl. Discov. 21, 277–292 (2010). doi:10.1007/s10618-010-0190-x 

97. B. T. Luong, S. Ruggieri, F. Turini, k-NN as an implementation of situation testing for 
discrimination discovery and prevention. In ACM Conference on Knowledge Discovery 
and Data Mining (2011), pp. 502–510. doi:10.1145/2020408.2020488 

98. T. Kamishima, S. Akaho, J. Sakuma, Fairness-aware learning through regularization 
approach. In International Conference on Data Mining Workshops (2011), pp. 643–650. 
doi:10.1109/icdmw.2011.83 

99. M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, S. Venkatasubramanian, Certifying 
and removing disparate impact. In ACM Conference on Knowledge Discovery and Data 
Mining (2015), pp. 259–268. doi:10.1145/2783258.2783311 

100. B. Fish, J. Kun, Á. D. Lelkes, A confidence-based approach for balancing fairness and 
accuracy. In SIAM International Conference on Data Mining (2016), pp. 144–152. 
doi:10.1137/1.9781611974348.17 

101. M. Joseph, M. Kearns, J. Morgenstern, A. Roth, Fairness in learning: Classic and contextual 
bandits. Adv. Neural Inform. Process. Syst. 29, 325–333 (2016). 

102. M. Rabin, Incorporating fairness into game theory and economics. Am. Econ. Rev. 83, 
1281–1302 (1993). 

103. E. Fehr, K. M. Schmidt, A theory of fairness, competition, and cooperation. Q. J. Econ. 
114, 817–868 (1999). doi:10.1162/003355399556151 

104. A. Falk, U. Fischbacher, A theory of reciprocity. Games Econ. Behav. 54, 293–315 (2006). 
doi:10.1016/j.geb.2005.03.001 

105. A. Datta, S. Sen, Y. Zick, Algorithmic transparency via quantitative input influence. In 
IEEE Symposium on Security and Privacy (2016), pp. 598–617. doi:10.1109/sp.2016.42 

106. P. Adler, C. Falk, S. A. Friedler, G. Rybeck, C. Scheidegger, B. Smith, S. 
Venkatasubramanian, Auditing black-box models by obscuring features. In IEEE 
International Conference on Data Mining (2016), pp. 1–10. doi:10.1109/icdm.2016.0011 

107. A. Datta, M. C. Tschantz, A. Datta, Automated experiments on ad privacy settings. In 
Proceedings on Privacy Enhancing Technologies (2015), pp. 92–112. 
doi:10.1515/popets-2015-0007 

108. S. Galhotra, Y. Brun, A. Meliou, Fairness testing: Testing software for discrimination. In 
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering 
(2017), pp. 498–510. doi:10.1145/3106237.3106277 

https://doi.org/10.1109/IC4.2009.4909197
http://dx.doi.org/10.1007/s10618-010-0190-x
https://doi.org/10.1145/2020408.2020488
https://doi.org/10.1109/icdmw.2011.83
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1137/1.9781611974348.17
http://dx.doi.org/10.1162/003355399556151
http://dx.doi.org/10.1016/j.geb.2005.03.001
https://doi.org/10.1109/sp.2016.42
https://doi.org/10.1109/icdm.2016.0011
https://doi.org/10.1515/popets-2015-0007
https://doi.org/10.1145/3106237.3106277


 

109. A. Narayanan, “21 fairness definitions and their politics” (tutorial at the ACM Conference 
on Fairness, Accountability, and Transparency, 2018); 
https://fatconference.org/static/tutorials/narayanan-21defs18.pdf. 

110. J. M. Kleinberg, S. Mullainathan, M. Raghavan, Inherent trade-offs in the fair determination 
of risk scores. In Innovations in Theoretical Computer Science Conference (2017), pp. 
43:1–43:23. doi:10.4230/LIPIcs.ITCS.2017.43 

111. S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, On the (im)possibility of fairness. 
arXiv 1609.07236 [cs.CY] (23 September 2016). 

112. P. T. Kim, Data-driven discrimination at work. William Mary Law Rev. 58, 857 (2016). 

113. L. Sweeney, Discrimination in online ad delivery. Commun. ACM 56, 44–54 (2013). 
doi:10.1145/2447976.2447990 

114. D. Ingold, S. Soper, “Amazon doesn’t consider the race of its customers. Should it?” 
Bloomberg (21 April 2016); www.bloomberg.com/graphics/2016-amazon-same-day. 

115. Griggs v. Duke Power Co., 401 U.S. 424 (1971). 

116. A. Chouldechova, Fair prediction with disparate impact: A study of bias in recidivism 
prediction instruments. Big Data 5, 153–163 (2017). doi:10.1089/big.2016.0047 

117. L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, M. Hardt, Delayed impact of fair machine 
learning. Proc. Mach. Learn. Res. 80, 3150–3158 (2018). 

118. S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, A. Huq, Algorithmic decision making and 
the cost of fairness. In ACM Conference on Knowledge Discovery and Data Mining 
(2017), pp. 797–806. doi:10.1145/3097983.3098095 

119. M. Hardt, E. Price, N. Srebro, Equality of opportunity in supervised learning. Adv. Neural 
Inform. Process. Syst. 29, 3323–3331 (2016). 

120. R. Berk, H. Heidari, S. Jabbari, M. Kearns, A. Roth, Fairness in criminal justice risk 
assessments: The state of the art. Sociol. Methods Res. 10.1177/0049124118782533 
(2018). doi:10.1177/0049124118782533 

121. M. J. Kusner, J. R. Loftus, C. Russell, R. Silva, Counterfactual fairness. Adv. Neural 
Inform. Process. Syst. 30, 4066–4076 (2017). 

122. G. N. Rothblum, G. Yona, Probably approximately metric-fair learning. Proc. Mach. Learn. 
Res. 80, 5680–5688 (2018). 

123. F. Kamiran, T. Calders, M. Pechenizkiy, Discrimination aware decision tree learning. In 
International Conference on Data Mining (2010), pp. 869–874. 
doi:10.1109/icdm.2010.50 

124. I. Žliobaite, F. Kamiran, T. Calders, Handling conditional discrimination. In International 
Conference on Data Mining (2011), pp. 992–1001. doi:10.1109/icdm.2011.72 

https://fatconference.org/static/tutorials/narayanan-21defs18.pdf
https://arxiv.org/abs/1609.07236
http://dx.doi.org/10.1145/2447976.2447990
http://dx.doi.org/10.1089/big.2016.0047
https://doi.org/10.1145/3097983.3098095
http://dx.doi.org/10.1177/0049124118782533
https://doi.org/10.1109/icdm.2010.50
https://doi.org/10.1109/icdm.2011.72


 

125. T. Calders, F. Kamiran, M. Pechenizkiy, Building classifiers with independency constraints. 
In International Conference on Data Mining Workshops (2009), pp. 13–18. 
doi:10.1109/icdmw.2009.83 

126. C. Dwork, N. Immorlica, A. T. Kalai, M. Leiserson, Decoupled classifiers for group-fair 
and efficient machine learning. Proc. Mach. Learn. Res. 81, 119–133 (2018). 

127. S. Yao, B. Huang, New fairness metrics for recommendation that embrace differences. In 
Workshop on Fairness, Accountability, and Transparency in Machine Learning (2017); 
https://arxiv.org/pdf/1706.09838.pdf. 

128. M. Kay, C. Matuszek, S. A. Munson, Unequal representation and gender stereotypes in 
image search results for occupations. In Annual ACM Conference on Human Factors in 
Computing Systems (2015), pp. 3819–3828. doi:10.1145/2702123.2702520 

129. H. Demuth, M. Beale, Neural network toolbox for use with Matlab, Version 4 (2004); 
http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf. 

130. N. Hansen, The CMA evolution strategy: A comparing review. In Towards a New 
Evolutionary Computation: Advances in the Estimation of Distribution Algorithms, J. 
Lozano, P. Larrañaga, I. Inza, E. Bengoetxea, Eds. (Springer, 2006), pp. 75–102. 
doi:10.1007/11007937_4 

131. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. 
Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python. J. Mach. 
Learn. Res. 12, 2825–2830 (2011). 

132. A. Maurer, M. Pontil, Empirical Bernstein bounds and sample variance penalization. In 
Annual Conference on Learning Theory (2009), pp. 115–124; 
www.cs.mcgill.ca/~colt2009/papers/012.pdf#page=1. 

133. G. Tesauro, Temporal difference learning and TD-gammon. Commun. ACM 38, 58–68 
(1995). doi:10.1145/203330.203343 

134. A. Ng, J. Kim, M. Jordan, S. Sastry, Autonomous helicopter flight via reinforcement 
learning. Adv. Neural Inform. Process. Syst. 17, 799–806 (2004). 

135. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, 
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. 
Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level 
control through deep reinforcement learning. Nature 518, 529–533 (2015). 
doi:10.1038/nature14236 

136. P. S. Thomas, G. Theocharous, M. Ghavamzadeh, High confidence off-policy evaluation. In 
Proceedings of the 29th AAAI Conference on Artificial Intelligence (2015), pp. 3000–
3006; www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10042/9973. 

https://doi.org/10.1109/icdmw.2009.83
https://arxiv.org/pdf/1706.09838.pdf
https://doi.org/10.1145/2702123.2702520
http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf
https://doi.org/10.1007/11007937_4
https://www.cs.mcgill.ca/%7Ecolt2009/papers/012.pdf#page=1
http://dx.doi.org/10.1145/203330.203343
http://dx.doi.org/10.1038/nature14236
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10042/9973


 

137. P. S. Thomas, thesis, University of Massachusetts, Amherst (2015). 

138. J. Kober, J. Peters, Learning motor primitives for robotics. In IEEE International 
Conference on Robotics and Automation (2009), pp. 2112–2118. 
doi:10.1109/robot.2009.5152577 

139. F. Sehnke, C. Osendorfer, T. Ruckstiess, A. Graves, J. Peters, J. Schmidhuber, Parameter-
exploring policy gradients. Neural Netw. 23, 551–559 (2010). 
doi:10.1016/j.neunet.2009.12.004 

140. E. A. Theodorou, J. Buchli, S. Schaal, A generalized path integral control approach to 
reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010). 

141. F. Stulp, O. Sigaud, http://hal.archives-ouvertes.fr/hal-00738463 (2012). 

142. H. Kahn, A. W. Marshall, Methods of reducing sample size in Monte Carlo computations. 
J. Oper. Res. Soc. Am. 1, 263–278 (1953). doi:10.1287/opre.1.5.263 

143. D. Precup, R. S. Sutton, S. Singh, Eligibility traces for off-policy policy evaluation. In 
Proceedings of the 17th International Conference on Machine Learning (2000), pp. 759–
766; 
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1079&context=cs_faculty_p
ubs. 

144. D. P. Bertsekas, J. N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific, Belmont, 
MA, 1996). 

145. G. Theocharous, P. S. Thomas, M. Ghavamzadeh, Personalized ad recommendation 
systems for life-time value optimization with guarantees. In Proceedings of the 24th 
International Joint Conference on Artificial Intelligence (2015), pp. 1806–1812. 
doi:10.1145/2740908.2741998 

146. P. S. Thomas, E. Brunskill, Importance sampling with unequal support. In Proceedings of 
the 31st AAAI Conference on Artificial Intelligence (2017), pp. 2646–2652; 
www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14957/14457. 

147. R. G. Miller, Simultaneous Statistical Inference (Springer, 2012). 

148. H. Kahn, “Use of different Monte Carlo sampling techniques” (Tech. Rep. P-766, RAND 
Corporation, September 1955). 

149. N. Jiang, L. Li, Doubly robust off-policy evaluation for reinforcement learning. Proc. 
Mach. Learn. Res. 48, 652–661 (2016). 

150. J. A. Cruz, D. S. Wishart, Applications of machine learning in cancer prediction and 
prognosis. Cancer Inform. 2, 59–77 (2006). doi:10.1177/117693510600200030 

151. M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. T. Aguiar, M. 
Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. 

https://doi.org/10.1109/robot.2009.5152577
http://dx.doi.org/10.1016/j.neunet.2009.12.004
http://dx.doi.org/10.1287/opre.1.5.263
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1079&context=cs_faculty_pubs
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1079&context=cs_faculty_pubs
https://doi.org/10.1145/2740908.2741998
http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14957/14457
http://dx.doi.org/10.1177/117693510600200030


 

Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C. Aster, T. R. Golub, 
Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and 
supervised machine learning. Nat. Med. 8, 68–74 (2002). doi:10.1038/nm0102-68 

152. Q.-H. Ye, L.-X. Qin, M. Forgues, P. He, J. W. Kim, A. C. Peng, R. Simon, Y. Li, A. I. 
Robles, Y. Chen, Z.-C. Ma, Z.-Q. Wu, S.-L. Ye, Y.-K. Liu, Z.-Y. Tang, X. W. Wang, 
Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene 
expression profiling and supervised machine learning. Nat. Med. 9, 416–423 (2003). 
doi:10.1038/nm843 

153. World Health Organization, Global Report on Diabetes (2016); 
http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf. 

154. C. Toffanin, M. Messori, F. Di Palma, G. De Nicolao, C. Cobelli, L. Magni, Artificial 
Pancreas: Model Predictive Control Design from Clinical Experience (Sage, 2013). 

155. R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti, M. O. Federici, T. 
R. Pieber, H. C. Schaller, L. Schaupp, T. Vering, M. E. Wilinska, Nonlinear model 
predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. 
Meas. 25, 905–920 (2004). doi:10.1088/0967-3334/25/4/010 

156. S. M. Lynch, B. W. Bequette, Model predictive control of blood glucose in type I diabetics 
using subcutaneous glucose measurements. In American Control Conference (2002), pp. 
4039–4043. doi:10.1109/acc.2002.1024561 

157. R. S. Parker, F. J. Doyle, N. A. Peppas, A model-based algorithm for blood glucose control 
in type I diabetic patients. IEEE Trans. Biomed. Eng. 46, 148–157 (1999). 
doi:10.1109/10.740877 

158. H. Schaller, L. Schaupp, M. Bodenlenz, M. Wilinska, L. Chassin, P. Wach, T. Vering, R. 
Hovorka, T. Pieber, On-line adaptive algorithm with glucose prediction capacity for 
subcutaneous closed loop control of glucose: Evaluation under fasting conditions in 
patients with type 1 diabetes. Diabet. Med. 23, 90–93 (2006). doi:10.1111/j.1464-
5491.2006.01695.x 

159. Y. Matsuo, S. Shimoda, M. Sakakida, K. Nishida, T. Sekigami, S. Ichimori, K. Ichinose, M. 
Shichiri, E. Araki, Strict glycemic control in diabetic dogs with closed-loop 
intraperitoneal insulin infusion algorithm designed for an artificial endocrine pancreas. J. 
Artif. Organs 6, 55–63 (2003). doi:10.1007/s100470300009 

160. T. Sekigami, S. Shimoda, K. Nishida, Y. Matsuo, S. Ichimori, K. Ichinose, M. Shichiri, M. 
Sakakida, E. Araki, Comparison between closed-loop portal and peripheral venous 
insulin delivery systems for an artificial endocrine pancreas. J. Artif. Organs 7, 91–100 
(2004). doi:10.1007/s10047-004-0251-2 

161. S. Shimoda, K. Nishida, M. Sakakida, Y. Konno, K. Ichinose, M. Uehara, T. Nowak, M. 
Shichiri, Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin 

http://dx.doi.org/10.1038/nm0102-68
http://dx.doi.org/10.1038/nm843
http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf
http://dx.doi.org/10.1088/0967-3334/25/4/010
https://doi.org/10.1109/acc.2002.1024561
http://dx.doi.org/10.1109/10.740877
http://dx.doi.org/10.1111/j.1464-5491.2006.01695.x
http://dx.doi.org/10.1111/j.1464-5491.2006.01695.x
http://dx.doi.org/10.1007/s100470300009
http://dx.doi.org/10.1007/s10047-004-0251-2


 

analog for long-term clinical application of a wearable artificial endocrine pancreas. 
Front. Med. Biol. Eng. 8, 197–211 (1997). 

162. G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser, D. E. Seborg, An improved PID 
switching control strategy for type 1 diabetes. IEEE Trans. Biomed. Eng. 55, 857–865 
(2008). doi:10.1109/TBME.2008.915665 

163. A. E. Panteleon, M. Loutseiko, G. M. Steil, K. Rebrin, Evaluation of the effect of gain on 
the meal response of an automated closed-loop insulin delivery system. Diabetes 55, 
1995–2000 (2006). doi:10.2337/db05-1346 

164. G. Steil, A. Panteleon, K. Rebrin, Closed-loop insulin delivery—The path to physiological 
glucose control. Adv. Drug Deliv. Rev. 56, 125–144 (2004). 
doi:10.1016/j.addr.2003.08.011 

165. S. Soylu, K. Danisman, I. E. Sacu, M. Alci, Closed-loop control of blood glucose level in 
type-1 diabetics: A simulation study. In Electrical and Electronics Engineering (2013), 
pp. 371–375. doi:10.1109/eleco.2013.6713864 

166. K. Amrein, M. Ellmerer, R. Hovorka, N. Kachel, H. Fries, D. Von Lewinski, K. Smolle, T. 
R. Pieber, J. Plank, Efficacy and safety of glucose control with space GlucoseControl in 
the medical intensive care unit—an open clinical investigation. Diabetes Technol. Ther. 
14, 690–695 (2012). doi:10.1089/dia.2012.0021 

167. R. Hovorka, Closed-loop insulin delivery: From bench to clinical practice. Nat. Rev. 
Endocrinol. 7, 385–395 (2011). doi:10.1038/nrendo.2011.32 

168. J. R. Castle, J. H. DeVries, B. Kovatchev, Future of automated insulin delivery systems. 
Diabetes Technol. Ther. 19, S-67–S-72 (2017). doi:10.1089/dia.2017.0012 

169. H. Zisser, L. Robinson, W. Bevier, E. Dassau, C. Ellingsen, F. J. Doyle III, L. Jovanovič, 
Bolus calculator: A review of four “smart” insulin pumps. Diabetes Technol. Ther. 10, 
441–444 (2008). doi:10.1089/dia.2007.0284 

170. R. Gondhalekar, E. Dassau, F. J. Doyle III, Periodic zone-MPC with asymmetric costs for 
outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica 71, 
237–246 (2016). doi:10.1016/j.automatica.2016.04.015 

171. B. Kovatchev, D. M. Raimondo, M. Breton, S. Patek, C. Cobelli, In silico testing and in 
vivo experiments with closed-loop control of blood glucose in diabetes. IFAC Proc. Vol. 
41, 4234–4239 (2008). doi:10.3182/20080706-5-KR-1001.00712 

172. F. H. El-Khatib, C. Balliro, M. A. Hillard, K. L. Magyar, L. Ekhlaspour, M. Sinha, D. 
Mondesir, A. Esmaeili, C. Hartigan, M. J. Thompson, S. Malkani, J. P. Lock, D. M. 
Harlan, P. Clinton, E. Frank, D. M. Wilson, D. DeSalvo, L. Norlander, T. Ly, B. A. 
Buckingham, J. Diner, M. Dezube, L. A. Young, A. Goley, M. S. Kirkman, J. B. Buse, H. 
Zheng, R. R. Selagamsetty, E. R. Damiano, S. J. Russell, Home use of a bihormonal 

http://dx.doi.org/10.1109/TBME.2008.915665
http://dx.doi.org/10.2337/db05-1346
http://dx.doi.org/10.1016/j.addr.2003.08.011
https://doi.org/10.1109/eleco.2013.6713864
http://dx.doi.org/10.1089/dia.2012.0021
http://dx.doi.org/10.1038/nrendo.2011.32
http://dx.doi.org/10.1089/dia.2017.0012
http://dx.doi.org/10.1089/dia.2007.0284
http://dx.doi.org/10.1016/j.automatica.2016.04.015
https://doi.org/10.3182/20080706-5-KR-1001.00712


 

bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: A multicentre 
randomised crossover trial. Lancet 389, 369–380 (2017). doi:10.1016/S0140-
6736(16)32567-3 

173. R. Hovorka, Continuous glucose monitoring and closed-loop systems. Diabet. Med. 23, 1–
12 (2006). doi:10.1111/j.1464-5491.2005.01672.x 

174. E. Sachs, R.-S. Guo, S. Ha, A. Hu, On-line process optimization and control using the 
sequential design of experiments. In Symposium on VLSI Technology (1990), pp. 99–100. 
doi:10.1109/vlsit.1990.111027 

175. Y. Wang, F. Gao, F. J. Doyle III, Survey on iterative learning control, repetitive control, and 
run-to-run control. J. Process Contr. 19, 1589–1600 (2009). 
doi:10.1016/j.jprocont.2009.09.006 

176. C. Toffanin, A. Sandri, M. Messori, C. Cobelli, L. Magni, Automatic adaptation of basal 
therapy for type 1 diabetic patients: a run-to-run approach. IFAC Proc. Vol. 47, 2070–
2075 (2014). doi:10.3182/20140824-6-ZA-1003.02462 

177. C. Toffanin, M. Messori, C. Cobelli, L. Magni, Automatic adaptation of basal therapy for 
type 1 diabetic patients: A run-to-run approach. Biomed. Signal Process. Control 31, 
539–549 (2017). doi:10.1016/j.bspc.2016.09.002 

178. C. Owens, H. Zisser, L. Jovanovič, B. Srinivasan, D. Bonvin, F. J. Doyle III, Run-to-run 
control of blood glucose concentrations for people with type 1 diabetes mellitus. IEEE 
Trans. Biomed. Eng. 53, 996–1005 (2006). doi:10.1109/TBME.2006.872818 

179. C. C. Palerm, H. Zisser, L. Jovanovič, F. J. Doyle III, A run-to-run control strategy to adjust 
basal insulin infusion rates in type 1 diabetes. J. Process Contr. 18, 258–265 (2008). 
doi:10.1016/j.jprocont.2007.07.010 

180. C. C. Palerm, H. Zisser, W. C. Bevier, L. Jovanovič, F. J. Doyle, Prandial insulin dosing 
using run-to-run control: Application of clinical data and medical expertise to define a 
suitable performance metric. Diabetes Care 30, 1131–1136 (2007). doi:10.2337/dc06-
2115 

181. J. Tuo, H. Sun, D. Shen, H. Wang, Y. Wang, Optimization of insulin pump therapy based 
on high order run-to-run control scheme. Comput. Methods Programs Biomed. 120, 123–
134 (2015). doi:10.1016/j.cmpb.2015.04.010 

182. C. Toffanin, R. Visentin, M. Messori, F. Di Palma, L. Magni, C. Cobelli, Toward a run-to-
run adaptive artificial pancreas: In silico results. IEEE Trans. Biomed. Eng. 65, 479–488 
(2018). doi:10.1109/TBME.2017.2652062 

183. C. C. Palerm, H. Zisser, L. Jovanovič, F. J. Doyle III, Flexible run-to-run strategy for 
insulin dosing in type 1 diabetic subjects. IFAC Proc. Vol. 39, 521–526 (2006). 

http://dx.doi.org/10.1016/S0140-6736(16)32567-3
http://dx.doi.org/10.1016/S0140-6736(16)32567-3
http://dx.doi.org/10.1111/j.1464-5491.2005.01672.x
https://doi.org/10.1109/vlsit.1990.111027
http://dx.doi.org/10.1016/j.jprocont.2009.09.006
https://doi.org/10.3182/20140824-6-ZA-1003.02462
http://dx.doi.org/10.1016/j.bspc.2016.09.002
http://dx.doi.org/10.1109/TBME.2006.872818
http://dx.doi.org/10.1016/j.jprocont.2007.07.010
http://dx.doi.org/10.2337/dc06-2115
http://dx.doi.org/10.2337/dc06-2115
http://dx.doi.org/10.1016/j.cmpb.2015.04.010
http://dx.doi.org/10.1109/TBME.2017.2652062


 

184. C. Palerm, H. Zisser, L. Jovanovič, F. Doyle III, A run-to-run framework for prandial 
insulin dosing: Handling real-life uncertainty. Int. J. Robust Nonlinear Control 17, 1194–
1213 (2007). doi:10.1002/rnc.1103 

185. J. B. Lee, E. Dassau, F. J. Doyle III, A run-to-run approach to enhance continuous glucose 
monitor accuracy based on continuous wear. IFAC-PapersOnLine 48, 237–242 (2015). 
doi:10.1016/j.ifacol.2015.10.145 

186. H. Zisser, C. C. Palerm, W. C. Bevier, F. J. Doyle III, L. Jovanovič, Clinical update on 
optimal prandial insulin dosing using a refined run-to-run control algorithm. J. Diabetes 
Sci. Technol. 3, 487–491 (2009). doi:10.1177/193229680900300312 

187. J. Kolodner, Case-Based Reasoning (Morgan Kaufmann, 2014). 

188. M. Reddy, P. Pesl, M. Xenou, C. Toumazou, D. Johnston, P. Georgiou, P. Herrero, N. 
Oliver, Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes 
based on case-based reasoning: A 6-week nonrandomized single-arm pilot study. 
Diabetes Technol. Ther. 18, 487–493 (2016). doi:10.1089/dia.2015.0413 

189. E. M. Aiello, C. Toffanin, M. Messori, C. Cobelli, L. Magni, Postprandial glucose 
regulation via KNN meal classification in type 1 diabetes. IEEE Control Syst. Lett. 3, 
230–235 (2018). doi:10.1109/LCSYS.2018.2844179 

190. E. Daskalaki, P. Diem, S. G. Mougiakakou, An actor–critic based controller for glucose 
regulation in type 1 diabetes. Comput. Methods Programs Biomed. 109, 116–125 (2013). 
doi:10.1016/j.cmpb.2012.03.002 

191. P. D. Ngo, S. Wei, A. Holubová, J. Muzik, F. Godtliebsen, Reinforcement-learning optimal 
control for type-1 diabetes. In EMBS International Conference on Biomedical & Health 
Informatics (2018), pp. 333–336. doi:10.1109/BHI.2018.8333436 

192. F. S. Melo, S. P. Meyn, M. I. Ribeiro, An analysis of reinforcement learning with function 
approximation. In International Conference on Machine Learning (2008), pp. 664–671. 
doi:10.1145/1390156.1390240 

193. L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement learning: A survey. J. Artif. 
Intell. Res. 4, 237–285 (1996). doi:10.1613/jair.301 

194. J. M. Hammersley, Monte Carlo methods for solving multivariable problems. Ann. N.Y. 
Acad. Sci. 86, 844–874 (1960). doi:10.1111/j.1749-6632.1960.tb42846.x 

195. P. S. Thomas, E. Brunskill, Data-efficient off-policy policy evaluation for reinforcement 
learning. Proc. Mach. Learn. Res. 48, 2139–2148 (2016). 

196. D. M. Maahs, B. A. Buckingham, J. R. Castle, A. Cinar, E. R. Damiano, E. Dassau, J. H. 
DeVries, F. J. Doyle III, S. C. Griffen, A. Haidar, L. Heinemann, R. Hovorka, T. W. 
Jones, C. Kollman, B. Kovatchev, B. L. Levy, R. Nimri, D. N. O’Neal, M. Philip, E. 
Renard, S. J. Russell, S. A. Weinzimer, H. Zisser, J. W. Lum, Outcome measures for 

http://dx.doi.org/10.1002/rnc.1103
http://dx.doi.org/10.1016/j.ifacol.2015.10.145
http://dx.doi.org/10.1177/193229680900300312
http://dx.doi.org/10.1089/dia.2015.0413
http://dx.doi.org/10.1109/LCSYS.2018.2844179
http://dx.doi.org/10.1016/j.cmpb.2012.03.002
https://doi.org/10.1109/BHI.2018.8333436
https://doi.org/10.1145/1390156.1390240
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1111/j.1749-6632.1960.tb42846.x


 

artificial pancreas clinical trials: A consensus report. Diabetes Care 39, 1175–1179 
(2016). doi:10.2337/dc15-2716 

197. C. Ellingsen, E. Dassau, H. Zisser, B. Grosman, M. W. Percival, L. Jovanovič, F. J. Doyle 
III, Safety constraints in an artificial pancreatic β cell: An implementation of model 
predictive control with insulin on board. J. Diabetes Sci. Technol. 3, 536–544 (2009). 
doi:10.1177/193229680900300319 

198. C. Toffanin, H. Zisser, F. J. Doyle III, E. Dassau, Dynamic insulin on board: Incorporation 
of circadian insulin sensitivity variation. J. Diabetes Sci. Technol. 7, 928–940 (2013). 
doi:10.1177/193229681300700415 

199. G. D. Konidaris, S. Osentoski, P. S. Thomas, Value function approximation in 
reinforcement learning using the Fourier basis. In Proceedings of the 25th AAAI 
Conference on Artificial Intelligence (2011), pp. 380–395; 
www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3569/3885. 

200. A. T. Høstmark, G. S. Ekeland, A. C. Beckstrøm, H. D. Meen, Postprandial light physical 
activity blunts the blood glucose increase. Prev. Med. 42, 369–371 (2006). 
doi:10.1016/j.ypmed.2005.10.001 

201. Z. Guo, P. S. Thomas, E. Brunskill, Using options and covariance testing for long horizon 
off-policy policy evaluation. Adv. Neural Inform. Process. Syst. 30, 2492–2501 (2017). 

202. Q. Liu, L. Li, Z. Tang, D. Zhou, Breaking the curse of horizon: Infinite-horizon off-policy 
estimation. Adv. Neural Inform. Process. Syst. 31, 5356–5366 (2018). 

203. J. P. Hanna, S. Niekum, P. Stone, Importance sampling policy evaluation with an estimated 
behavior policy. Proc. Mach. Learn. Res. 97, 2605–2613 (2019). 

204. D. S. Brown, S. Niekum, Toward probabilistic safety bounds for robot learning from 
demonstration. In 2017 AAAI Fall Symposium Series (2017), pp. 10–18; 
https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/16023/15282. 

205. S. Kakade, Optimizing average reward using discounted rewards. In Annual Conference on 
Computational Learning Theory (2001), pp. 605–615. doi:10.1007/3-540-44581-1_40 

206. L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M. Chickering, E. Portugaly, 
D. Ray, P. Simard, E. Snelson, Counterfactual reasoning and learning systems: The 
example of computational advertising. J. Mach. Learn. Res. 14, 3207–3260 (2013). 

207. F. Berkenkamp, A. Krause, A. P. Schoellig, Bayesian Optimization with Safety Constraints: 
Safe and Automatic Parameter Tuning in Robotics. arXiv 1602.04450 [cs.RO] (14 
February 2016). 

208. E. Delage, Y. Ye, Distributionally robust optimization under moment uncertainty with 
application to data-driven problems. Oper. Res. 58, 595–612 (2010). 
doi:10.1287/opre.1090.0741 

http://dx.doi.org/10.2337/dc15-2716
http://dx.doi.org/10.1177/193229680900300319
http://dx.doi.org/10.1177/193229681300700415
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3569/3885
http://dx.doi.org/10.1016/j.ypmed.2005.10.001
https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/16023/15282
https://doi.org/10.1007/3-540-44581-1_40
https://arxiv.org/abs/1602.04450
http://dx.doi.org/10.1287/opre.1090.0741


 

209. Z. Wang, P. W. Glynn, Y. Ye, Likelihood robust optimization for data-driven problems. 
Comput. Manage. Sci. 13, 241–261 (2016). doi:10.1007/s10287-015-0240-3 

210. P. M. Mohajerin Esfahani, D. Kuhn, Data-driven distributionally robust optimization using 
the Wasserstein metric: Performance guarantees and tractable reformulations. Math. 
Program. 171, 115–166 (2018). doi:10.1007/s10107-017-1172-1 

211. C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, A. Roth, The reusable holdout: 
Preserving validity in adaptive data analysis. Science 349, 636–638 (2015). 
doi:10.1126/science.aaa9375 

212. K. Gourgoulias, M. A. Katsoulakis, L. Rey-Bellet, J. Wang, How biased is your model? 
Concentration Inequalities, Information and Model Bias. arXiv 1706.10260 [cs.IT] (30 
June 2017). 

213. G. Katz, C. Barett, D. L. Dill, K. Julian, M. J. Kochenderfer, Reluplex: An efficient SMT 
solver for verifying deep neural networks. In International Conference on Computer 
Aided Verification (2017), pp. 97–117. doi:10.1007/978-3-319-63387-9_5 

214. S. R. Howard, A. Ramdas, J. McAuliffe, J. Sekhon, Uniform, nonparametric, non-
asymptotic confidence sequences. arXiv 1810.08240 [math.ST] (18 October 2018). 

http://dx.doi.org/10.1007/s10287-015-0240-3
http://dx.doi.org/10.1007/s10107-017-1172-1
http://dx.doi.org/10.1126/science.aaa9375
https://arxiv.org/abs/1706.10260
https://doi.org/10.1007/978-3-319-63387-9_5
https://arxiv.org/abs/1810.08240



