
Offline Contextual Bandits with
High Probability Fairness Guarantees

Blossom Metevier1 Stephen Giguere1 Sarah Brockman1 Ari Kobren1
Yuriy Brun1 Emma Brunskill2 Philip S. Thomas1

1College of Information and Computer Sciences 2Computer Science Department
University of Massachusetts Amherst Stanford University

Abstract

We present RobinHood, an offline contextual bandit algorithm designed to satisfy
a broad family of fairness constraints. Our algorithm accepts multiple fairness
definitions and allows users to construct their own unique fairness definitions for the
problem at hand. We provide a theoretical analysis of RobinHood, which includes
a proof that it will not return an unfair solution with probability greater than a
user-specified threshold. We validate our algorithm on three applications: a user
study with an automated tutoring system, a loan approval setting using the Statlog
German credit data set, and a criminal recidivism problem using data released
by ProPublica. To demonstrate the versatility of our approach, we use multiple
well-known and custom definitions of fairness. In each setting, our algorithm is
able to produce fair policies that achieve performance competitive with other offline
and online contextual bandit algorithms.

1 Introduction

Machine learning (ML) algorithms are increasingly being used in high-risk decision making settings,
such as financial loan approval [7], hiring [37], medical diagnostics [12], and criminal sentencing [3].
These algorithms are capable of unfair behavior, and when used to guide policy and practice, can cause
significant harm. This is not merely hypothetical: ML algorithms that influence criminal sentencing
and credit risk assessment have already exhibited racially-biased behavior [3; 4]. Prevention of unfair
behavior by these algorithms remains an open and challenging problem [14; 20; 24]. In this paper,
we address issues of unfairness in the offline contextual bandit setting, providing a new algorithm,
designed using the recently proposed Seldonian framework [47] and called RobinHood, which is
capable of satisfying multiple fairness definitions with high probability.

Ensuring fairness in the bandit setting is an understudied problem. While extensive research has
been devoted to studying fairness in classification, recent work has shown that the decisions made by
fair ML algorithms can affect the well-being of a population over time [34]. For example, criminal
sentencing practices affect criminal recidivism rates, and loan approval strategies can change the
amount of wealth and debt in a population. This delayed impact indicates that the feedback used
for training these algorithms or defining fairness is more evaluative in nature, i.e., training samples
quantify the (delayed) outcome of taking a particular action given a particular context. Therefore, it
is important that fairness can be ensured for methods that are designed to handle evaluative feedback,
such as contextual bandits. For example, instead of predicting the likelihood of violent recidivism,
these methods can consider what actions to take to minimize violent recidivism.

Within the bandit setting, prior work has mostly focused on ensuring fairness in the online setting [24;
25; 27; 35], in which an agent learns the quality of different actions by interacting with the system of
interest. However, for many fairness applications, e.g., medical treatment suggestion [29], the online
setting is not feasible, as direct interaction might be too costly, risky, or otherwise unrealistic. Instead,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

these problems can be framed in the offline bandit setting, where a finite amount of data is collected
from the system over time and then used by the agent to construct a fair solution.

Issues of ensuring fairness in the offline contextual bandit setting are similar to those in other ML
settings. For instance, contextual bandit algorithms need to manage the trade-off between performance
optimization and fairness. Ideally, these algorithms should also be capable of handling a large set of
user-defined fairness criteria, as no single definition of fairness is appropriate for all problems [16].
Importantly, when it is not possible to return a fair solution, i.e., when fairness criteria are in conflict,
or when too little data is present, the algorithm should indicate this to the user. We allow our algorithm,
RobinHood, to return No Solution Found (NSF) in cases like this, and show that if a fair solution does
exist, the probability RobinHood returns NSF goes to zero as the amount of available data increases.

In summary, we present the first Seldonian algorithm for contextual bandits. Our contributions
are: 1) we provide an offline contextual bandit algorithm, called RobinHood, that allows users to
mathematically specify their own notions of fairness, including combinations of fairness definitions
already proposed by the ML community, and novel ones that may be unique to the application of
interest; 2) we prove that RobinHood is (quasi-)Seldonian: that it is guaranteed to satisfy the fairness
constraints defined by the user with high probability, 3) we prove that if a fair solution exists, as
more data is provided to RobinHood, the probability it returns NSF goes to zero; and 4) we evaluate
RobinHood on three applications: a tutoring system in which we conduct a user study and consider
multiple, unique fairness definitions, a loan approval setting in which well-known fairness definitions
are applied, and criminal recidivism. Our work complements fairness literature for classification
(e.g., [1; 8; 14; 50]), contextual bandits (e.g., [24; 25; 35; 14; 27; 22]), and reinforcement learning
(e.g., [40; 49]), as described in Section 7.

2 Contextual Bandits and Offline Learning

This section defines a contextual bandit, or agent, which iteratively interacts with a system. At each
iteration ◆ 2 {1, 2, ...}, the agent is given a context, represented as a random variable X◆ 2 R⌫ for
some ⌫. We assume that the contexts during different iterations are independent and identically

distributed (i.i.d.) samples from some distribution, dX . Let A be the finite set of possible actions that
the agent can select. The agent’s policy, ⇡ : R⌫ ⇥ A ! [0, 1] characterizes how the agent selects
actions given the current context: ⇡(x, a) = Pr(A◆ = a|X◆ = x). Once the agent has chosen an
action, A◆, based on context X◆, it receives a stochastic real-valued reward, R◆. We assume that the
conditional distribution of R◆ given X◆ and A◆ is given by dR, i.e., R◆ ⇠ dR(X◆, A◆, ·). The agent’s
goal is to choose actions so as to maximize the expected reward it receives.

For concreteness, we use a loan approval problem as our running example. For each loan applicant
(iteration ◆), a single action, i.e., whether or not the applicant should be given a loan, is chosen. The
resulting reward is a binary value: 1 if the loan is repaid and �1 otherwise. The agent’s goal using
this reward function is to maximize the expected number of loan repayments.

This paper focuses on enforcing fairness in the offline setting, where the agent only has access to a
finite amount of logged data,D, collected from one or more different policies. Policies used to collect
logged data are known as behavior policies. For simplicity of notation, we consider a single behavior
policy, ⇡b. D consists of the observed contexts, actions, and rewards: D = {(X◆, A◆, R◆)}m◆=1, where
m is the number of iterations for which D was collected, and where A◆ ⇠ ⇡b(X◆, ·).
The goal in the offline setting is to find a policy, ⇡0, which maximizes r(⇡0) := E[R◆|A◆ ⇠ ⇡

0(X◆, ·)]
using samples fromD only. Algorithms that solve this problem are called offline (or batch) contextual
bandit algorithms. At the core of many offline contextual bandit algorithms is an off-policy estimator,
r̂, which takes as inputsD and a policy to be evaluated, ⇡e, in order to produce an estimate, r̂(⇡e, D),
of r(⇡e). We call r̂(⇡e, D) the off-policy reward of ⇡e.

3 Problem Statement

Following the Seldonian framework for designing ML algorithms [47], our goal is to develop a fair
offline contextual bandit algorithm that satisfies three conditions: 1) the algorithm accepts multiple
user-defined fairness definitions, 2) the algorithm guarantees that the probability it returns a policy
that violates each definition of fairness is bounded by a user-specified constant, and 3) if a fair solution

2

exists, the probability that it returns a fair solution (other than NSF) converges to one as the amount of
training data goes to infinity. The first condition is crucial because no single definition of fairness is
appropriate for all problems [16]. The second condition is equally important because it allows the
user to specify the necessary confidence level(s) for the application at hand. However, if an algorithm
only satisfies the first two conditions, this does not mean it is qualitatively helpful. For example, we
can construct an algorithm that always returns NSF instead of an actual solution—this technically
satisfies 1) and 2), but is effectively useless. Ideally, if a fair solutions exists, a fair algorithm should
be able to (given enough data) eventually find and return it. We call this property consistency and
show in Section 5 that RobinHood is consistent.

Since condition 1) allows users to specify their own notions of fairness, the set of fair policies is not
known a priori. Therefore, the algorithm must reason about the fairness of policies using the available
data. We consider a policy to be either fair or unfair with respect to condition 2). For example, we
may say that a lending policy is fair if for all pairs of applicants who are identical in every way except
race, the policy takes the same action, i.e., approving or denying the loan for both. This criterion is
known as causal discrimination (with respect to race) [17; 30]. Then, a policy that adheres to this
definition is fair, and a policy that violates this definition is unfair. The algorithm that produces a
policy from data must ensure that, with high probability, it will produce a policy that is fair. Note that
the setting in which each action is fair or unfair can be captured by this approach by defining a policy
to be fair if and only if the probability it produces unfair actions is bounded by a small constant.

Formally, assume that policies are parameterized by a vector ✓ 2 Rl, so that ⇡(X◆, ·, ✓) is the
conditional distribution over action A◆ givenX◆ for all ✓ 2 Rl. LetD be the set of all possible logged
data sets and D be the logged data (a random variable, and the only source of randomness in the
subsequent equations). Let a : D ! Rl be an offline contextual bandit algorithm, which takes as
input logged data and produces as output the parameters for a new policy.

Let gi : Rl ! R be a user-supplied function, called a constraint objective, that measures the fairness
of a policy. We adopt the convention that if gi(✓)  0 then the policy with parameters ✓ is fair, and
if gi(✓) > 0 then the policy with parameters ✓ is unfair. Our goal is to create a contextual bandit
algorithm that enforces k behavioral constraints, where the ith constraint has the form:

Pr
⇣
gi(a(D))  0

⌘
� 1� �i, (1)

where �i 2 [0, 1] is the required confidence level for the i
th constraint. Together, the constraint

objective gi and the confidence level �i constitute a behavioral constraint. Any algorithm that
satisfies (1) is called Seldonian, or quasi-Seldonian if it relies on reasonable but false assumptions,
such as appeals to the central limit theorem [47].

Some constraints might be impossible to enforce if, for example, the user provides conflicting
constraints [28], or if �i cannot be established given the amount of data available. Algorithms that
provide high-probability guarantees are often very conservative [26]; if only a small amount of data
is available, it may be impossible for the algorithm to produce a policy that satisfies all behavioral
constraints with sufficiently high confidence. In such cases, RobinHood returns NSF to indicate that it
is unable to find a fair solution. When this occurs, the user has control over what to do next. For some
domains, deploying a known fair policy may be appropriate; for others, it might be more appropriate
to issue a warning and deploy no policy. We define gi(NSF) = 0, so that NSF is always fair.

Notice that the creation of an algorithm that satisfies each of the three desired conditions is difficult.
Condition 1) is difficult to enforce because the user must be provided with an interface that allows
them to specify their desired definition of fairness without requiring the user to know the underlying
data distribution. Condition 2) is difficult to achieve because of the problem of multiple comparisons—
testing b solutions to see if they are fair equates to performing b hypothesis tests, which necessitates
measures for avoiding the problems associated with running multiple hypothesis tests using a single
data set. Condition 3) is particularly difficult to achieve in conjunction with the second condition—
the algorithm must carefully trade-off the maximizing expected reward with predictions about the
outcomes of future hypothesis tests when picking the candidate solution that it considers returning.

4 RobinHood Algorithm

This section presents RobinHood, our fair bandit algorithm. At a high level, RobinHood allows
users to specify their own notions of (un)fairness based on statistics related to the performance of a

3

potential solution. It then uses concentration inequalities [36] to calculate high-probability bounds on
these statistics. If these bounds satisfy the user’s fairness criteria, then the solution is returned.

Constructing Constraint Objectives. Users can specify their desired fairness definitions with
constraint objectives, {gi}ki=1, that accept a parameterized policy ✓ as input and produce a real-valued
measurement of fairness. For simplicity of notation, we remove the subscript i and discuss the
construction of an arbitrary constraint objective, g. In our loan approval example, we might define
g(✓) = CDR(✓)�✏, where CDR(✓) indicates the causal discrimination rate of ✓. However, computing
g for this example requires knowledge of the underlying data distribution, which is typically unknown.
In practice, each g might depend on distributions that are unavailable, so it is unreasonable to assume
that the user can compute g(✓) for an arbitrary g.

Instead of explicitly requiring g(✓), we could instead assume that the user is able to provide unbiased
estimators for g. However, this is also limiting because it may be difficult to obtain unbiased
estimators for certain constraint objectives, e.g., unbiased estimators of the standard deviation of a
random variable can be challenging (or impossible) to construct. Importantly, our algorithm does not
explicitly require an unbiased estimate of g(✓). Instead, it computes high-probability upper bounds
for g(✓). Even if the random variable of interest does not permit unbiased estimators, if it is a function
of random variables for which unbiased estimators exist, then valid upper bounds can be computed.

With this in mind, we propose a general interface in which the user can define g by combining d

real-valued base variables, {zj}dj=1, using addition, subtraction, division, multiplication, absolute
value, maximum, inverse, and negation operators. Base variables may also be multiplied and added
to constants. Instead of specifying the base variable zj(✓) explicitly, we assume the user is able to
provide an unbiased estimator, ẑj , of each base variable: zj(✓) := E[Average(ẑj(✓, D))]. That is,
each function ẑj takes a parameterized policy ✓ and a data set D and returns an arbitrary number of
i.i.d. outputs, ẑj(✓, D). In the definition of zj , the average of the outputs is taken so zj(✓) is a scalar.

A base variable estimator ẑj for our loan approval example could be defined as an integer indicating
whether or not causal discrimination is satisfied for applicable data points in D. To do this, ẑ(✓, D)
should produce 1 if for points h and f that differ only by race, ✓ chooses the same action, and 0
otherwise. Defining ẑ in this way gives us an unbiased estimate of the CDR. We could then define
g(✓) = z(✓)� ✏, requiring the CDR to be within some value ✏, with probability at least 1� �.

There may be some base variables that the user wants to use when defining fairness that do not have
unbiased estimators, e.g., standard deviation. To handle these cases, we also allow the user to use base
variables for which they can provide high-probability upper and lower bounds on z(✓) given any ✓

and dataD. As an example, in Appendix G we show how the user can define a base variable to be the
largest possible expected reward for any policy with parameters ✓ in some set ⇥, i.e., max✓2⇥ r(✓).

In summary, users can define constraint objectives that capture their desired definitions of fairness.
Constraint objectives are mathematical expressions containing operators (including summation,
division, and absolute value) and base variables (any variable, including constants, for which high-
confidence upper and lower bounds can be computed). In Section 6, we construct constraint objectives
for different fairness definitions and find solutions that are fair with respect to these definitions. In
Appendix A, we provide more examples of how to construct constraint objectives for other common
fairness definitions used in the ML community.

Pseudocode. RobinHood (Algorithm 1) has three steps. In the first step, it partitions the training
data into the candidate selection set Dc and the safety set Ds. In the second step, called candidate
selection, RobinHood uses Dc to construct a candidate policy, ✓c 2 ⇥, that is likely to satisfy the
third step, called the safety test, which ensures that the behavioral constraints hold. Algorithm 1
presents the RobinHood pseudocode. Because the candidate selection step is constructed with the
safety step in mind, we first discuss the safety test, followed by candidate selection. Finally, we
summarize the helper methods used during the candidate selection and safety test steps.

The safety test (lines 3–4) applies concentration inequalities using Ds to produce a high-probability
upper bound, Ui := Ui(✓c, Ds), on gi(✓c), the value of the candidate solution found in the candidate
selection step. More concretely, Ui satisfies Pr(gi(✓c)  Ui) � 1� �i. If Ui  0, then ✓c passes the
safety check and is returned. Otherwise, RobinHood returns NSF.

The goal of the candidate selection step (line 2) is to find a solution, ✓c, that maximizes expected
reward and is likely to pass the safety test. Specifically, ✓c is found by maximizing the output of

4

Algorithm 1 RobinHood (D,� = {�i}ki=1, Ẑ{ẑij}dj=1, E = {Ei}ki=1)

1: Dc, Ds = partition(D)
2: ✓c = argmax✓2⇥ CandidateUtility(✓, Dc,�, Ẑ, E) . Candidate Selection
3: [U1, ..., Uk] = ComputeUpperBounds(✓c, Ds,�, E , inflateBounds=False) . Safety Test
4: if Ui  0 for all i 2 {1, ..., k} then return ✓c else return NSF

Algorithm 2 CandidateUtility(✓, Dc,�, Ẑ, E)
1: [Û1, ..., Ûk] = ComputeUpperBounds(✓, Dc,�, Ẑ, E , inflateBounds=True)
2: rmin = min

✓02⇥
r̂(✓0, Dc)

3: if Ûi  �⇠ for all i 2 {1, ..., k} then return r̂(✓, Dc) else return rmin �
kP

i=1
max{0, Ûi}

Algorithm 2, which uses Dc to compute an estimate, Ûi, of Ui. The same concentration inequality
used to compute Ui in the safety test is also used to compute Ûi, e.g., Hoeffding’s inequality is used
to compute Ui and Ûi. Multiple comparisons are performed on a single data set (Dc) during the
search for a solution. This leads to the candidate selection step over-estimating its confidence that
the solution it picks will pass the safety test. In order to remedy this issue, we inflate the width of
the confidence intervals used to compute Ûi (this is indicated by the Boolean inflateBounds in
the pseudocode). Another distinction between the candidate selection step and the safety test is that,
in Algorithm 2, we check whether Ûi  �⇠ for some small constant ⇠ instead of 0. This technical
assumption is required to ensure the consistency of RobinHood, and is discussed in Appendix E.

We define the input E = {Ei}ki=1 in the pseudocode to be analytic expressions representing the
constraint objectives {gi}ki=1. For example, if we had the constraint objective g(✓) = z1(✓)⇥ z2(✓)+
z3(✓) � ✏, then E = E1 ⇥ E2 + E3 � ✏, where E1 = z1(✓), E2 = z2(✓), and E3 = z3(✓) . Each
expression Ei is used in ComputeUpperBounds (Algorithm 3) and related helper functions, the
pseudocode for which is located in Appendix B. At a high level, these helper functions recurse
through sub-expressions of each Ei until a base variable is encountered. Once this occurs, real-valued
upper and lower (1 � �i)-confidence bounds on the base variable’s estimators are computed and
subsequently propagated through Ei. Using our example from earlier, bounds for E1,2 = E1 ⇥ E2

would first be computed, followed by bounds for E1,2 + E3.

5 Theoretical Analyses

This section proves that given reasonable assumptions about the constraint objectives, {gi(✓)ki=1},
and their sample estimates, {Average(ĝi(✓, D))}ki=1, 1) RobinHood is guaranteed to satisfy the
behavioral constraints and 2) RobinHood is consistent.

To prove that RobinHood is Seldonian [47]: it is guaranteed to satisfy the behavioral constraints, i.e.,
that RobinHood returns a fair solution with high probability, we show that the safety test only returns
a solution if the behavioral constraints are guaranteed to be satisfied. This follows from the use of
concentration inequalities and transformations to convert bounds on the base variables, zj(✓c), into a
high-confidence upper bound, Ui, on gi(✓c). We therefore begin by showing (in Appendix C) that the
upper bounds computed by the helper functions in Appendix B satisfy Pr(gi(✓) > Ui)  �i for all
constraint objectives. Next, we show that the behavioral constraints are satisfied by RobinHood. We
denote RobinHood as a(D), a batch contextual bandit algorithm dependent on data D.

Theorem 1 (Fairness Guarantee). Let {gi}ni=0 be a sequence of behavioral constraints, where

gi : ⇥ ! R, and let {�i}ni=0 be a corresponding sequence of confidence thresholds, where �i 2 [0, 1].
Then, for all i, Pr(gi(a(D)) > 0)  �i. Proof. See Appendix D.

We define an algorithm to be consistent if, when a fair solution exists, the probability that the
algorithm returns a solution other than NSF converges to 1 as the amount of training data goes to
infinity. We state this more formally in Theorem 2.

5

Theorem 2 (Consistency). If Assumptions 1 through 5 (specified in Appendix E) hold, then

lim
n!1

Pr(a(D) 6= NSF, g(a(D))  0) = 1. Proof. See Appendix E.

In order to prove Theorem 2, we first define the set ⇥̄, which contains all unfair solutions. At a high
level, we show that the probability that ✓c satisfies ✓c 62 ⇥̄ converges to one as n ! 1. To establish
this, we 1) establish the convergence of the confidence intervals for the base variables, 2) establish
the convergence of the candidate objective for all solutions, and 3) establish the convergence of the
probability that ✓c 62 ⇥̄. Once we have this property about ✓c, we establish that the probability of the
safety test returning NSF converges to zero as n ! 1.

In order to build up the properties discussed above, we make a few mild assumptions, which we
summarize here. To establish 1), we assume that the confidence intervals on the base variables
converge almost surely to the true base variable values for all solutions. Hoeffding’s inequality and
Student’s t-test are examples of concentration inequalities that provide this property. We also assume
that the user-provided analytic expressions, E , are continuous functions of the base variables. With
the exception of division, all operators discussed in Section 4 satisfy this assumption. In fact, this
assumption is still satisfied for division when positive base variables are used in the denominator. To
establish 2) and 3), we assume that the sample off-policy estimator, r̂, converges almost surely to
r, the actual expected reward. This is satisfied by most off-policy estimators [46]. We also make
particularly weak smoothness assumptions about the output of Algorithm 2, which only requires the
output of Algorithm 2 to be smooth across a countable partition of ⇥. Lastly, we assume that at least
one fair solution exists and that this solution is not on the fair-unfair boundary.

Note that consistency does not provide bounds on the amount of data necessary for the return of a fair
solution. Although a high-probability bound on how much data our algorithm requires to return a
solution other than NSF would provide theoretical insights into the behavior of our algorithm, our
focus is on ensuring that our algorithm can return solutions other than NSF using practical amounts
of data on real problems. Hence, in the following section we conduct experiments with real data
(including data that we collected from a user study).

6 Empirical Evaluation

We apply RobinHood to three real-world applications: tutoring systems, loan approval, and criminal
recidivism. Our evaluation focuses on the three research questions. 1) When do solutions returned by
RobinHood obtain performance comparable to those returned by state-of-the-art methods? 2) How
often does RobinHood return an unfair solution, as compared to state-of-the-art methods? 3) In
practice, how often does RobinHood return a solution besides NSF?

6.1 Experimental Methodology and Application Domains

To the best of our knowledge, no other fair contextual bandit algorithms have been proposed in
the offline setting. We therefore compare to two standard offline methods: POEM [44] and Offset
Tree [6]. In Appendix F, we also compare to Rawlsian Fairness, a fair online contextual bandit
framework [23]. Existing offline bandit algorithms are not designed to adhere to multiple, user-
defined fairness constraints. One seemingly straightforward fix to this is to create an algorithm that
uses all of the data, D, to search for a solution, ✓, that maximizes the expected reward (using a
standard approach), but with the additional constraint that an estimate, ĝ(✓, D), of how unfair ✓ is, is
at most zero. That is, this method enforces the constraint ĝ(✓, D)  0 without concern for how well
this constraint generalizes to future data. We construct this method, called NaïveFairBandit, as a
baseline for comparison. In RobinHood and NaïveFairBandit, we use Student’s t-test to calculate
upper and lower confidence bounds on base variables for a particular ✓.

Note that Algorithm 1 relies on the optimization algorithm (and implicitly, the feasible set) chosen
by the user to find candidate solutions. If the user chooses an optimization algorithm incapable
of finding fair solutions, e.g., they choose a gradient method when the fairness constraints defined
make it difficult or impossible for it to find a solution, then RobinHood will return NSF. We chose
CMA-ES [19] as our optimization method. Further implementation details, including pseudocode for
NaïveFairBandit, can be found in Appendix F.

6

Tutoring Systems. Our first set of experiments is motivated by intelligent tutoring systems (ITSs),
which aim to teach a specific topic by providing personalized and interactive instruction based on a
student’s skill level [38]. Such adaptations could have unwanted consequences, including inequity
with respect to different student populations [13]. We conduct our experiments in the multi-armed
bandit setting—a special case of the contextual bandit setting in which context is the same for every
iteration. To support these experiments, we collected user data from the crowdsourcing marketplace
Amazon Mechanical Turk. In our data collection, users were presented with one of two different
versions of a tutorial followed by a ten-question assessment. Data including gender, assessment score,
and tutorial type was collected during the study. Let R◆ be the assessment score achieved by user ◆
and S◆ 2 {f, m} represent the gender of user ◆. (Due to lack of data for users identifying their gender
as “other,” we restricted our analysis to male- and female-identifying users.) D was collected using a
uniform-random behavior policy. Further details are provided in Appendix F.

To demonstrate the ability of our algorithm to satisfy multiple and novel fairness criteria, we develop
two behavioral constraints for these experiments: gf (✓) := |F |�1

P|D|
◆=0 R◆I(f)� E[R|f]� ✏f and

gm(✓) := |M |�1
P|D|

◆=0 R◆I(m) � E[R|m] � ✏m, where |F | and |M | denote the respective number
of female- and male-identifying users, I(x) is an indicator function for the event X◆ = x, where
x 2 {f,m}, and E[R|x] is the expected reward conditioned on the event X◆ = x for x previously
defined. In words, for the constraint gf to be less than 0, the expected reward for females may only
be smaller than the empirical average for females in the collected data by at most ✏f . The second
constraint gm is similarly defined with respect to males. Note that different values of ✏f and ✏m

can allow for improvement to female performance and decreased male performance and vice versa.
Defining the constraints in this way may be beneficial if the user is aware that bias towards a certain
group exists, and then hypothesizes that performance towards this group may need to decrease to
improve performance of a minority group, as is the case in this data set. We also highlight that a fair
policy for this experiment is one such that gf (✓)  0 and gm(✓)  0.

In our first experiment, which we call the similar proportions experiment, males and females are
roughly equally represented in D: |F | ⇡ |M |. In our second ITS experiment, which we call the
skewed proportions experiment, we simulate the scenario in which females are under-represented in
the data set (and elaborate on the process for doing this in Appendix F). We perform this experiment
because 1) biased data collection is a common problem [9] and 2) methods designed to maximize
reward may do so at the expense of under-represented groups.

In the skewed proportions experiment we introduce a purposefully biased tutorial that responds
differently to users based on their gender identification in order to experiment with a setting where
unfairness is likely to occur. This tutorial provides information to male-identifying users in an
intuitive, straightforward way but gives female-identifying users incorrect information, resulting in
high assessment scores for males and near-zero assessment scores for females. The average total
score for the biased tutorial in D is higher than that of the other tutorials—because of this, methods
that optimize for performance without regard for gm and gf will often choose the biased tutorial
for deployment. In practice, a similar situation could occur in an adaptive learning system, where
tutorials are uploaded by different sources. The introduction of a bug might compel a fairness-unaware
algorithm to choose an unfair tutorial.

Loan Approval. Our next experiments are inspired by decision support systems for loan approval.
In this setting, a policy uses a set of features, which describe an applicant, to determine whether the
applicant should be approved for a loan. We use the Statlog German Credit data set, which includes a
collection of loan applicants, each one described by 20 features, and labels corresponding to whether
or not each applicant was assessed to have good financial credit [32]. A policy earns reward 1 if it
approves an applicant with good credit or denies an applicant with bad credit (the credit label of each
applicant is unobserved by the policy); otherwise the agent receives a reward of �1. We conduct two
experiments that focus on ensuring fairness with respect to sex (using the Personal Status and

Sex feature of each applicant in the data set to determine sex). Specifically, we enforce disparate
impact [51] in one and statistical parity [14] in the other. In Appendix F we define statistical parity
for this domain and discuss experimental results.

Disparate impact is defined in terms of the relative magnitudes of positive outcome rates. Let
f and m correspond to females and males and let A = 1 if the corresponding applicant was
granted a loan and A = 0 otherwise. Disparate impact can then be written as: g(✓) :=

7

max {E[A|m]/E[A|f],E[A|f]/E[A|m]} � (1+✏). To satisfy this, neither males nor females may
enjoy a positive outcome rate that is more than 100✏% larger than that of the other sex.

Criminal Recidivism. This experiment uses recidivism data released by ProPublica as part of their
investigation into the racial bias of deployed classification algorithms [3]. Each record in the data
set includes a label indicating if the person would later re-offend (decile score), and six predictive
features, including juvenile felony count, age, and sex. In this problem, the agent is tasked with
producing the decile score given a feature vector of information about a person (the decile score label
of each applicant is unobserved by the policy). The reward provided to the bandit is 1 if recidivism
occurs and 0 otherwise. We apply approximate statistical parity here, where features of interest are
race (Caucasian and African American). A policy exhibits statistical parity if the probability with
which it assigns a beneficial outcome to individuals belonging to protected and unprotected classes is
equal: g(✓) := |Pr(A = 1|Caucasian)� Pr(A = 1|African American)|� ✏.

6.2 Results and Discussion

Figure 1 shows our experimental results over varying training set sizes. The leftmost plots in each
row show the off-policy reward of solutions returned by each algorithm, and the middle plots show
how often solutions are returned by each algorithm. The solution rate for each baseline is 100%
because RobinHood is the only algorithm able to return NSF. The purpose of plotting the solution
rate is to determine how much data is required for solutions other than NSF to be returned by our
algorithm. The rightmost plots show the probability that an algorithm violated the fairness constraints.
The dashed line in these plots denotes the maximum failure rate allowed by the behavioral constraints
(� = 5% in our experiments).

In all of our experiments, unless a certain amount of data is provided to NaïveFairBandit, it returns
unfair solutions at an unacceptable rate. This seems workable at first glance—one could argue that
so long as enough data is given to NaïveFairBandit, it will not violate the behavioral constraints.
In practice, however, it is not known in advance how much data is needed to obtain a fair solution.
NaïveFairBandit’s failure rate varies considerably in each experiment, and it is unclear how to
determine the amount of data necessary for NaïveFairBandit’s failure rate to remain under �. In
essence, RobinHood is a variant of NaïveFairBandit that includes a mechanism for determining
when there is sufficient data to trust the conclusions drawn from the available data.

In some of our experiments, the failure rates of the fairness-unaware baselines (Offset Tree and
POEM) approach � as more data is provided. To explain this behavior, note that when reward
maximization and fairness are nonconflicting, there may exist fair high-performing solutions. In the
case that only high-performing solutions meet the fairness criteria, the failure rate of these algorithms
should decrease as more data is provided. Importantly, while these baselines might be fair in some
cases, unlike RobinHood, these approaches do not come with fairness guarantees.

In the similar proportions experiment, fairness and performance optimization are nonconflicting. In
this case, RobinHood performs similarly to the state-of-the-art—it is able to find and return solutions
whose off-policy reward is comparable to the baselines. The same pattern can be seen in the loan
approval and criminal recidivism experiments. In these applications, when high-performing fair
solutions exist, RobinHood is able to find and return them. In the skewed proportions experiment,
the biased tutorial maximizes overall performance but violates the constraint objectives. As expected,
POEM and Offset Tree frequently choose to deploy this tutorial regardless of the increase in training
data, while RobinHood frequently chooses to deploy a tutorial whose off-policy reward is high (with
respect to the behavioral constraints). In summary, in each of our experiments, RobinHood is able to
return fair solutions with high probability given a reasonable amount of data.

7 Related Work

Significant research effort has focused on fairness-aware ML, particularly classification algorithms [1;
8; 14; 50], measuring fairness in systems [17], and defining varied notions of fairness [33; 17; 14].
Our work complements these efforts but focuses on the contextual bandit setting. This section
describes work related to our setting, beginning with online bandits.

Recall (from Section 2) that in the standard online bandit setting, an agent’s goal is to maximize
expected reward, ⇢(a) = E[R◆|A◆ = a], as it interacts with a system. Over time, estimates of ⇢ are

8

Figure 1: Each row presents results for different experiments generated over 30, 30, 50, and 50 trials respectively.
Top row: tutoring sytsem, similar proportions with ✏m = 0.5, ✏f = 0.0. Second row: tutoring system, skewed
proportions with ✏m = 0.5, ✏f = 0.0. Third row: enforcing disparate impact in the loan approval application
with ✏ = �0.8. Fourth row: enforcing statistical parity in the criminal recidivism application with ✏ = 0.1. The
dashed line denotes the maximum failure rate allowed by the behavioral constraints (� = 5% in our experiments).

computed, and the agent must trade-off between exploiting, i.e., taking actions that will maximize ⇢,
and exploring, i.e., taking actions it believes are suboptimal to build a better estimate of ⇢ for taking
that action. Most fairness-unaware algorithms eventually learn a policy that acceptably maximizes ⇢,
but there are no performance guarantees for policies between initial deployment and the acceptable
policy, i.e., while the agent is exploring. These intermediate polices may choose suboptimal actions
too often—this can be problematic in a real-world system, where choosing suboptimal actions could
result in unintended inequity. In effect, fairness research for online methods has mostly focused on
conservative exploration [24; 25; 35; 14; 27; 22]. The notion of action exploration does not apply in
the offline setting because the agent does not interact iteratively with the environment. Instead, the
agent has access to data collected using previous policies not chosen by the agent. Because of this,
fairness definitions involving action exploration are not applicable to the offline setting.

Related work also exists in online metric-fairness learning [18; 41], multi-objective contextual bandits
(MOCB) [45; 48], multi-objective reinforcement learning (MORL) [40; 49], and data-dependent
constraint satisfaction [11; 47]. RobinHood can address metric-based definitions of fairness that can
be quantitatively expressed using the set of operations defined in Section 4. MOCB and MORL largely
focus on approximating the Pareto frontier to handle multiple and possibly conflicting objectives,
though a recent batch MORL algorithm proposed by Le et al. [31] is an exception to this trend—this
work focuses on problems of interest (with respect to fair policy learning) that can be framed as
chance-constraints, and assumes the convexity of the feasible set⇥. RobinHood represents a different
approach to the batch MOCB setting with high probability constraint guarantees. The interface for
specifying fairness definitions (presented in Section 4) makes RobinHood conceptually related to
algorithms that satisfy data-dependent constraints [11]. In fact, RobinHood can more generally be
thought of as an algorithm that ensures user-defined properties or behaviors with high probability, e.g.,
properties related to fairness. Finally, RobinHood belongs to a family of methods called Seldonian
algorithms [47]. This class of methods satisfies user-defined safety constraints with high probability.

9

Acknowledgments

This work is supported by a gift from Adobe and by the National Science Foundation under grants no.
CCF-1453474, IIS-1753968, CCF-1763423, and an NSF CAREER award to Brunskill. Research
reported in this paper was sponsored in part by the Army Research Laboratory under Cooperative
Agreement W911NF-17-2-0196. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.

References
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A

reductions approach to fair classification. In International Conference on Machine Learning,
2018. URL https://github.com/Microsoft/fairlearn.

[2] Takeshi Amemiya. Advanced econometrics. Harvard university press, 1985.

[3] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine
bias. ProPublica, May 2016. URL https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing.

[4] Robert Bartlett, Adair Morse, Richard Stanton, and Nancy Wallace. Consumer lending discrim-
ination in the era of fintech. Unpublished working paper. University of California, Berkeley,
2018.

[5] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in
criminal justice risk assessments: The state of the art. Sociological Methods & Research, page
0049124118782533, 2018.

[6] Alina Beygelzimer and John Langford. The offset tree for learning with partial labels. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 129–138. ACM, 2009.

[7] Nanette Byrnes. Artificial intolerance. MIT Technology Review, March 2016. URL https:

//www.technologyreview.com/s/600996/artificial-intolerance/.

[8] Toon Calders and Sicco Verwer. Three naive Bayes approaches for discrimination-free classifi-
cation. Data Mining and Knowledge Discovery, 21(2):277–292, 2010.

[9] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning from
imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1):1–6, 2004.

[10] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic
decision making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 797–806. ACM, 2017.

[11] Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang,
Blake Woodworth, and Seungil You. Training well-generalizing classifiers for fairness metrics
and other data-dependent constraints. arXiv preprint arXiv:1807.00028, 2018.

[12] Marleen de Bruijne. Machine learning approaches in medical image analysis: From detection to
diagnosis. Medical Image Analysis, 33:94–97, October 2016. doi: 10.1016/j.media.2016.06.032.

[13] Shayan Doroudi and Emma Brunskill. Fairer but not fair enough on the equitability of knowledge
tracing. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge,
pages 335–339. ACM, 2019.

[14] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science

Conference, pages 214–226. ACM, 2012.

[15] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

10

[16] Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. On the (im) possibility
of fairness. arXiv preprint arXiv:1609.07236, 2016.

[17] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: Testing software for
discrimination. In Joint Meeting of the European Software Engineering Conference and ACM

SIGSOFT Symposium on the Foundations of Software Engineering, pages 498–510, Paderborn,
Germany, September 2017. doi: 10.1145/3106237.3106277.

[18] Stephen Gillen, Christopher Jung, Michael Kearns, and Aaron Roth. Online learning with
an unknown fairness metric. In Advances in Neural Information Processing Systems, pages
2600–2609, 2018.

[19] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary computation, 9(2):159–195, 2001.

[20] Moritz Hardt, Eric Price, Nati Srebro, et al. Equality of opportunity in supervised learning. In
Advances in neural information processing systems, pages 3315–3323, 2016.

[21] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

[22] Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness
in reinforcement learning. arXiv preprint arXiv:1611.03071, 2016.

[23] Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. Fair
algorithms for infinite and contextual bandits. arXiv preprint arXiv:1610.09559, 2016.

[24] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning:
Classic and contextual bandits. In Advances in Neural Information Processing Systems, pages
325–333, 2016.

[25] Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. Meritocratic
fairness for infinite and contextual bandits. In AIES, pages 158–163, New Orleans, LA, USA,
2018. ISBN 978-1-4503-6012-8. doi: 10.1145/3278721.3278764.

[26] Sham Machandranath Kakade et al. On the sample complexity of reinforcement learning. PhD
thesis, University of London London, England, 2003.

[27] Abbas Kazerouni, Mohammad Ghavamzadeh, Yasin Abbasi, and Benjamin Van Roy. Conserva-
tive contextual linear bandits. In Advances in Neural Information Processing Systems, pages
3910–3919, 2017.

[28] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

[29] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal. The
artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care.
Nature Medicine, 24(11):1716, 2018.

[30] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In
Advances in Neural Information Processing Systems, pages 4066–4076, 2017.

[31] Hoang M Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints.
arXiv preprint arXiv:1903.08738, 2019.

[32] Moshe Lichman et al. UCI machine learning repository, 2013.

[33] Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. Delayed impact of
fair machine learning. In International Conference on Machine Learning, 2018.

[34] Lydia T Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. Delayed impact of
fair machine learning. arXiv preprint arXiv:1803.04383, 2018.

[35] Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal, and David C Parkes.
Calibrated fairness in bandits. arXiv preprint arXiv:1707.01875, 2017.

11

[36] P. Massart. Concentration Inequalities and Model Selection. Springer, 2007.

[37] Claire Cain Miller. Can an algorithm hire better than a human? The New

York Times, June 2015. URL https://www.nytimes.com/2015/06/26/upshot/

can-an-algorithm-hire-better-than-a-human.html.

[38] Tom Murray. Authoring intelligent tutoring systems: An analysis of the state of the art.
International Journal of Artificial Intelligence in Education, 10:98–129, 1999.

[39] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80, 2000.

[40] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of
multi-objective sequential decision-making. Journal of Artificial Intelligence Research, 48:
67–113, 2013.

[41] Guy N Rothblum and Gal Yona. Probably approximately metric-fair learning. arXiv preprint
arXiv:1803.03242, 2018.

[42] P. K. Sen and J. M. Singer. Large Sample Methods in Statistics An Introduction With Applications.
Chapman & Hall, 1993.

[43] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.

[44] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
logged bandit feedback. In International Conference on Machine Learning, pages 814–823,
2015.

[45] Cem Tekin and Eralp Turğay. Multi-objective contextual multi-armed bandit with a dominant
objective. IEEE Transactions on Signal Processing, 66(14):3799–3813, 2018.

[46] Philip Thomas. Safe Reinforcement Learning. PhD thesis, Doctoral Dissertations, 2015.

[47] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere, Yuriy Brun, and
Emma Brunskill. Preventing undesirable behavior of intelligent machines. Science, 366(6468):
999–1004, November 2019. ISSN 0036-8075. doi: 10.1126/science.aag3311.

[48] Eralp Turğay, Doruk Öner, and Cem Tekin. Multi-objective contextual bandit problem with
similarity information. arXiv preprint arXiv:1803.04015, 2018.

[49] Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of
pareto dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512,
2014.

[50] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi.
Fairness constraints: Mechanisms for fair classification. In Fairness, Accountability, and

Transparency in Machine Learning, Lille, France, July 2015.

[51] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi.
Fairness beyond disparate treatment & disparate impact: Learning classification without dis-
parate mistreatment. In Proceedings of the 26th International Conference on World Wide Web,
pages 1171–1180. International World Wide Web Conferences Steering Committee, 2017.

12

A Constructing Constraint Objectives for Common Fairness Definitions

This appendix provides examples of how to construct constraint objectives for several common
fairness definitions. Our example domain will be the loan approval problem described in Section 2. In
this problem, a bank is interested in maximizing the expected number of loan repayments it receives.
The bank chooses to formulate this as an offline bandit problem such that, for each loan applicant, a
single action, i.e., whether or not the applicant should be given a loan, is chosen.

We consider an action to belong to the positive class if the action corresponds to approving a loan,
and we say it belongs to the negative class otherwise. We define an outcome to be whether or not an
applicant repays (or would have repaid) a loan. We consider an outcome to belong to the positive
class if the applicant repays the loan, and we say it belongs to the negative class otherwise. Many of
the statistical measures of fairness we consider in this section rely on metrics we introduce below,
framed in the context of the loan approval example.

• True positive (TP): the event in which the action chosen by the policy and the actual outcome both
belong to the positive class. A true positive in the loan approval setting occurs when an applicant
who would repay a loan is given a loan.

• False positive (FP): the event in which the action chosen by the algorithm is in the positive class
when the actual outcome belongs to the negative class. A false positive in the loan approval setting
is when an applicant who would not repay a loan is given a loan.

• False negative (FN): the event in which the action chosen by the policy is in the negative class but
the actual outcome is in the positive class. A false negative in the loan approval setting is when an
applicant who would have repaid a loan is denied a loan.

• True negative (TN): the event in which the action chosen by the policy and the actual outcome
both belong to the negative class. A true negative in the loan approval setting is when an applicant
who would not have repaid a loan is denied a loan.

Let TPR=TP/(TP+FN), FPR=FP/(TP+FN), FNR=FN/(TP+FN), and TNR=TN/(FP+TN) be the true
positive, false positive, false negative, and true negative rates, respectively. Assume that the bank has
unbiased estimators of these terms.

We now provide examples of how to construct objective constraints for some common definitions of
fairness. In each definition, the bank is interested in guaranteeing fairness with respect to gender (the
protected group), which we will assume to be binary in order to simplify notation.

Predictive Equality [10]. A policy exhibits predictive equality if FP rates are equal between groups.
In our loan approval problem, this implies that the probability that an applicant who would not have
repaid a loan be incorrectly approved for a loan should be the same for male- and female-identifying
applicants. Predictive equality can be defined as E[FPR|f] = E[FPR|m]. To construct a constraint
objective that satisfies g(✓)  0 if ✓ is fair, we can set g = |E[FPR|f]�E[FPR|m]|� ✏. This gives us
a constraint objective for (approximate) predictive equality.

Equal Opportunity [20]. A policy exhibits equal opportunity if FN rates are equal between groups.
In our loan approval problem, this implies that the probability that an applicant is denied a loan when
they would have repaid it is equal between male- and female-identifying applicants. Equal opportunity
can be defined as E[FNR|f] = E[FNR|m]. To construct a constraint objective that satisfies g(✓)  0
if ✓ is fair, we can set g = |E[FNR|f] � E[FNR|m]| � ✏. This gives us a constraint objective for
(approximate) equal opportunity.

Equalized Odds [20] (Conditional Procedure Accuracy Equality [5]). This definition combines
predictive equality and equal opportunity: a policy exhibits equalized odds if FPR and TPR are equal
between protected and unprotected groups. Assume the bank has unbiased estimators of FPR and
TPR. Then equalized odds can be defined as (E[FPR|m] = E[FPR|f])^ (E[TPR|m] = E[TPR|f]). To
satisfy g(✓)  0 if ✓ is fair, we can set g = |E[FPR|f]� E[TPR|m]|+ |E[FPR|m]� E[TPR|f]|� ✏.

Treatment Equality [5]. This definition focuses on the ratio of FN and FP errors for each
group. A policy exhibits treatment equality if the ratio of FNs and FPs is equal for both female-

13

Algorithm 3 ComputeUpperBounds(✓, D,�, Ẑ, E , inflateBounds)
1: out = []
2: for i = 1, ..., k do
3: Ẑi = {ẑij}

di
j=1 ✓ Ẑ

4: Li, Ui = Bound(Ei, ✓, D, �i/di, Ẑi, inflateBounds)
5: out.append(Ui)

6: return out

and male-identifying applicants. For the loan approval problem, this definition can be writ-
ten as (E[FN|f]/E[FP|f]) = (E[FN|m]/E[FP|m]). For intuition, if the left-hand side of this ex-
pression were greater than the right-hand side, then either fewer female-identifying applicants
were incorrectly assigned to the negative class than male-identifying applicants or more females-
identifying applicants were incorrectly assigned to the positive class than male-identifying ap-
plicants. To construct a constraint objective that satisfies g(✓)  0 if ✓ is fair, we can set
g = |(E[FN|f]/E[FP|f])� E[FN|m]/E[FP|m])|� ✏.

B RobinHood Algorithm

This section elaborates on the helper methods (Algorithms 3 through 6) our approach uses. Recall
that during candidate selection, Ûi is calculated as the estimate of Ui, the upper bound of a behavioral
constraint function gi. This is done by substituting all quantities that depend on Ds with approxi-
mations computed from Dc, and inflating the confidence intervals used to reflect this substitution,
which is indicated by the Boolean variable inflateBounds. When set to True, the number of g(✓c)
estimates obtained using Ds is approximated asm = m|Dc|/|Ds| (Algorithm 5).

Algorithm 6 uses concentration inequalities [36] to produce high probability upper and lower bounds
for a given behavioral constraint. It does this by recursively looking at sub-expressions of E until
a base variable is encountered, upon which, Algorithm 4 is called to calculate a real-valued high-
confidence bound on the base variable’s estimators. Correctness of Algorithm 6 is shown in Section C,
and mostly follows from correct use of interval arithmetic and probability theory.

Different concentration inequalities can be substituted into Algorithm 5 to calculate upper and lower
(1��i)-confidence bounds on each gi. The pseudocode in Algorithm 5 presents both Hoeffding’s
inequality and Student’s t-test as examples, where � is the sample standard deviation with Bessel’s
correction and t1��i,m is the 100(1��i) percentile of the Student’s t distribution with m degrees
of freedom. Note that Hoeffding’s inequality often requires algorithms to be very conservative,
i.e., high-probability guarantees may require an impractical amount of data. We could instead use
Student’s t-test, which is more data-efficient but assumes that the amount of many random variables
is normally distributed. Due to the central limit theorem this is a reasonable assumption, but does not
hold in general.

Finally, different policy evaluation methods, concentration inequalities, and optimization methods
can be used for this algorithm. Here, we describe the specific modules we use in our experiments.
Our experiments use importance sampling [39] to compute the expected return of a potential solution
⇡c. Next, we use several concentration inequalities to bound the base variables used in our algorithm.
As mentioned above, Hoeffding’s inequality or the Student’s t-test were used for most experiments.
In addition, we use confidence intervals based on Bootstrap methods [15] due to their desirable
variance-reduction properties in the tutoring experiment. Lastly, RobinHood uses a black box search
method to solve the optimization problem on line 2 of Algorithm 1. In our experiments, we use the
CMA-ES [19] implementation provided in the Python package cma (Python package).

Our algorithms were implemented in Python 3.6 (https://www.python.org/) using the numerical
processing package, Numpy 1.15 (https://www.numpy.org/).

For the criminal recidivism and loan approval, a partition of 60% of the total data was used for
testing and 40% for training. For the tutoring system experiments, we instead used 80% of the data
for training. In all experiments, when training RobinHood, 40% of the training data was used for
candidate selection and 60% for the safety test.

14

Algorithm 4 CIbound(✓, D, �, Ẑ, inflateBounds)
1: z = ẑj(✓, D)
2: margin = CIFunction(z,D, �, inflateBounds)
3: return

⇣
mean(z)� margin, mean(z) + margin

⌘

Algorithm 5 CIfunction(z,D, �, inflateBounds)
1: scale = 1
2: m = length(z)
3: if inflateBounds then
4: scale = 2
5: m = m

|Ds|
|Dc|

6: case Hoeffding: CI = (b� a)
q

ln 1/�
2m case Student’s t: CI = �(z)p

m
t1��,m�1

7: return scale⇥ CI

C Proof of Correctness for Recursive Bounds

In this section, we show that the upper bounds computed by the helper functions in Appendix B
(Algorithms 3 through 6) satisfy Pr(gi(✓) > Ui)  �i for all constraint objectives. This follows from
the use of concentration inequalities and transformations to convert bounds on the base variables
zj(✓c), into a high-confidence upper bound, Ui on gi(✓c). More formally, we want to prove Lemma 1
below, whose assumptions are with respect to Hoeffding’s inequality [21]. We show the proof for this
lemma as well as a similar proof using Student’s t-test [43] here.
Lemma 1 (Recursive Bounds: Hoeffding’s Inequality). The upper bounds, {Ui}ki=1, returned by

ComputeUpperBounds (Algorithm 3) satisfy the following inequality when inflateBounds=False
and ẑj(✓c, D) is bounded in some interval [a, b] for ✓c and all j 2 {1, ..., d}: 8i 2
{1, ..., k} Pr(gi(✓) > Ui)  �i.

For Student’s t-test, assume that {Ui}ni=1 satisfies Lemma 1 when inflateBounds=False and
Average(ẑj(✓c, D)) is normally distributed.

Proof. Assume l1, u1, and l2, u2 are 1��/2 confidence lower and upper bounds on base variables
z1 and z2, respectively. Then Pr(z1 2 [l1, u1]) � 1��/2 and Pr(z2 2 [l2, u2]) � 1��/2. Below,
we show that operations on base variables z1 and z2 result in high probability bounds. Note that
throughout this proof, we make use of interval arithmetic and the following fact, which holds by the
Union Bound:

Pr(z1 2 [l1, u1], z2 2 [l2, u2]) � 1��.

Addition: The event (z1 2 [l1, u1] ^ z2 2 [l2, u2]) implies that z1+ z2 2 [l1+ l2, u1+u2]. Then,
Pr((z1 + z2) 2 [l1 + l2, u1 + u2]) � Pr(z1 2 [l1, u1] ^ z2 2 [l2, u2]), which is at least 1��. So,
Pr((u1 + u2) 2 [l1 + l2, u1 + u2]) � 1��.

Maximum: The event (z1 2 [l1, u1] ^ z2 2 [l2, u2]) implies that max{z1, z2} 2 [max{l1, l2} ^
max{u1, u2}]. Then, Pr(max{u1, u2} 2 [max{l1, l2} ^max{z1, z2}]) � Pr(z1 2 [l1, u1] ^ z2 2
[l2, u2]), which is at least 1��. So, Pr(max{z1, z2} 2 [max{l1, l2},max{u1, u2}]) � 1��.

Product: Let A := min{l1l2, l1u2, l2u1, l2u2} and B := max{u1l1, u1l2, u2l1, u2l2}. The event
(z1 2 [l1, u1] ^ z2 2 [l2, u2]) implies that (z1 ⇥ z2) 2 [A,B]. Then, Pr((z1 ⇥ z2) 2 [A,B]) �
Pr(z1 2 [l1, u1] ^ z2 2 [l2, u2]) which is at least 1��. So, Pr((z1 ⇥ z2) 2 [A,B]) � 1��.

This can extend to d base variables instead of two, in which case the operations on the probability
inequalities described are less than or equal to 1��/d. Now, assume l and u are endpoints of an
interval that satisfies Pr(z 2 [l, u]) � 1��, for base variable z.

Negation: The event z 2 [l, u] implies that �z 2 [�u,�l]. Then, Pr(�z 2 [�u,�l]) � 1��.

15

Algorithm 6 Bound(E, ✓, D, �, Ẑ, inflate)

1: X = {✓, D, �, Ẑ, inflate}
2: switch E do
3: case u(✓)
4: return CIBound(X)

5: case �E

6: return �Bound(E,X)

7: case El + Er

8: (Ll, Ul) = Bound(El, X)
9: (Lr, Ur) = Bound(Er, X)
10: return (Ll + Lr, Ul + Ur)

11: case El ⇥ Er

12: (Ll, Ul) = Bound(El, X)
13: (Lr, Ur) = Bound(Er, X)
14: return (min{LlLr, UlLr, LlUr, UlUr}, max{LlLr, UlLr, LlUr, UlUr})
15: case E�1

16: (L,U) = Bound(E0
, X)

17: if 0 2 [l, u] then return NaN else return (1/U, 1/L)

18: case |E|
19: (L,U) = Bound(E,X)
20: if 0 2 [l, u] then
21: return (min{0, |L|, |U |},max{|L|, |U |})
22: else
23: return (min{|L|, |U |},max{|L|, |U |})
24: case max{El, Er}
25: (Ll, Ul) = Bound(El, X)
26: (Lr, Ur) = Bound(Er, X)
27: return (max{Ll, Lr},max{Ul, Ur})

Inverse (1/z): Let E be the event z 2 [l, u]. If l = 0, then E implies that 1/z 2 [1/u,1], and if
u = 0, then E implies that 1/z 2 [�1, 1/l]. If 0 2 [l, u], then E implies that 1/z 2 ([�1, 1/l] [
[1/u,1]) = [�1,1]. In these cases, Pr(1/z 2 [1/u,1]) � 1�� and Pr(1/z 2 [�1, 1/l]) �
1��, respectively. If 0 62 [l, u], E implies that 1/z 2 [1/u, 1/l], and Pr(1/z 2 [1/u, 1/l]) � 1��.

Absolute value: If 0 2 [l, u], then the event z 2 [l, u] implies |z|2 [0,max{|l|, |u|}]. In this case,
Pr(|z|2 [0,max{|L|, U}]) � 1��. Otherwise, z 2 [l, u] implies |z|2 [min{|l|, |u|},max{|l|, |u|}],
and Pr(|z|2 [min{|l|, |u|},max{|l|, |u|}]) � 1��.

While our set of operations does not include much more than simple arithmetic, interval methods can
also be applied to functions with certain behaviors, e.g., functions with properties of monotonicity.
This can be used to extend the set of operations allowed on base variables.

D Proof of Theorem 1: High Probability Fairness Guarantee

Consider the contrapositive formulation of behavioral constraint i, Pr(gi(a(D)) > 0)  �i. With
respect to this expression, gi(a(D)) > 0) implies that a(D) is not NSF, which further implies that
Ui  0 for all i, and thus Pr(gi(a(D)) > 0) = Pr(gi(a(D)) > 0, Ui  0). Next, we use the fact
that the joint event, (gi(a(D)) > 0, Ui  0) implies the event, (gi(a(D)) > Ui):

Pr(gi(a(D)) > 0)  Pr
⇣
gi(a(D)) > Ui(✓c, Ds)

⌘
.

Lastly, we note that g(a(D)) > 0 implies that a solution was returned—that is, a(D) = ✓c:
Pr(gi(a(D)) > 0)  Pr(gi(✓c) > Ui).

Assumption 1 shows that for any fixed parameter vector, ✓ 2 ⇥, the upper bounds estimated by
Algorithm 3 using inflateBounds=False satisfy Pr(gi(✓) > Ui)  �i. Because ✓c 2 ⇥ for

16

any Dc, it follows from the substitution, ✓ = ✓c, that Pr(gi(a(D)) > Ui)  �i. This implies that
Pr(gi(a(D)) > 0)  �i), which further implies Pr(gi(a(D))  0) � 1� �i, completing the proof.

E Proof of Theorem 2: Consistency Guarantee

Recall that the logged data, D, is a random variable. To further formalize this notion, let (⌦,⌃, p)
be a probability space on which all relevant random variables are defined, and let Dn : ⌦ ! D be
a random variable, where Dn = Dc [Ds. We will discuss convergence as n ! 1. Dn(!) is a
particular sample of the entire set of logged data with n trajectories, where ! 2 ⌦. Below, we present
formal definitions and assumptions necessary for presenting our main result. To simplify notation, we
assume that there exists only a single behavioral constraint and note that the extension of our proof to
multiple behavioral constraints is straightforward.
Definition 1. We say that a function f : M ! R on a metric space (M,d) is piecewise Lipschitz
continuous with Lipschitz constant K and with respect to a countable partition, {M1,M2, ...}, of M
if f is Lipschitz continuous with Lipschitz constant K on all metric spaces in {(Mi, d)}1i=1.

Definition 2. If (M,d) is a metric space, a set X ✓ M is a �-covering of (M,d) if and only if

max
y2M

min
x2X

d(x, y)  �.

Let ĉ(✓, Dc) denote the output of a call to CandidateUtility(⇥, Dc,�, Ẑ, E) and let c(✓) :=
rmin � g(✓). Because we assume that there exists only a single behavioral constraint, the candidate
utility function can be rewritten as CandidateUtility(⇥, Dc, �, Ẑ, E). That is, there is only a
single threshold � and a single analytic expression E. The next assumption ensures that c and ĉ are
piecewise Lipschitz continuous. Notice that the �-covering requirement is straightforwardly satisfied
if ⇥ is countable for ⇥ ✓ Rm for any positive natural number m.
Assumption 1. The feasible set of policies, ⇥, is equipped with a metric, d⇥, such that for allDc(!)
there exist countable partitions of ⇥, ⇥c = {⇥c

1,⇥
c
2, ...} and ⇥ĉ = {⇥ĉ

1,⇥
ĉ
2, ...}, where c(·) and

ĉ(·, Dc(!)) are piecewise Lipschitz continuous with respect to ⇥c
and ⇥ĉ

respectively with Lipschitz

constantsK and K̂. Furthermore, for all i 2 N>0 and all � > 0 there exist countable �-covers of ⇥c
i

and ⇥ĉ
i .

Next we assume that for all ✓ 2 ⇥, the user-provided analytic expression E is a continuous function
of the base variables. With the exception of division, all operators discussed in Section 4 satisfy this
assumption. In fact, this assumption is still satisfied for division when positive base variables are
used in the denominator.
Assumption 2. For all ✓ 2 ⇥, g(✓) is a continuous function of the base variables,

z1(✓), z2(✓), ..., zd(✓).

Next we assume that a fair solution, ✓?, exists such that g(✓?) is not precisely on the boundary of fair
and unfair. This can be satisfied by solutions that are arbitrarily close to the fair-unfair boundary.
Assumption 3. There exists an ✏ > ⇠ and a ✓

? 2 ⇥ such that g(✓?)  �✏.

Next we assume that the sample off-policy estimator, r̂, converges almost surely to r, the actual
expected reward. This is satisfied by most off-policy estimators [46].

Assumption 4. 8✓ 2 ⇥, r̂(✓, Dc)
a.s.�! r(✓).

Lastly, we assume that the method used in RobinHood for constructing high-probability upper and
lower bounds of a sample mean constructs confidence intervals that converge almost surely to the
true mean, i.e., we assume that the confidence intervals on the base variables converge almost surely
to the true base variable values for all solutions.. Hoeffding and Student’s t-test are two example
concentration inequalities that have this property: Hoeffding’s inequality converges to the mean
deterministically as n ! 1, while the confidence interval used by Student’s t-test converges almost
surely to the mean assuming the standard deviation is finite (to see this, notice that the t statistic is
bounded and 1/

p
n ! 0).

Assumption 5. The confidence intervals on the base variables, z1(✓), z2(✓), ..., zd(✓), converge
almost surely to the true base variable values for all ✓ 2 ⇥.

17

We prove Theorem 2 by building up properties that culminate with the desired result, starting with a
variant of the strong law of large numbers:
Property 1 (Khintchine Strong Law of Large Numbers). Let {X◆}1i=1 be independent and identi-

cally distributed random variables. Then (1n
Pn

i=1 X◆)1n=1 is a sequence of random variables that

converges almost surely to E[X1], if E[X1] exists, i.e.,
1
n

Pn
i=1 X◆

a.s.�! E[X1].

Proof. See Theorem 2.3.13 of Sen and Singer [42].

In this proof, we consider the set ⇥̄ ✓ ⇥, which contains all solutions that are not safe, and some that
are safe but fall beneath a certain threshold: ⇥̄ := {✓ 2 ⇥ : g(✓) > �⇠/2}. At a high level, we will
show that the probability that the candidate solution, ✓c, viewed as a random variable that depends on
the candidate data set Dc, satisfies ✓c 62 ⇥̄ converges to one as n ! 1, and then that the probability
that ✓c is returned also converges to one as n ! 1.

First, consider the confidence intervals produced for each base variable, zj . Let lj(✓, Dc) and
uj(✓, Dc) be the upper and lower confidence intervals on zj(✓), respectively.

Property 2. For all ✓ 2 ⇥, lj(✓, Dc)
a.s.�! zj(✓) and uj(✓, Dc)

a.s.�! zj(✓).

Proof. Concentration inequalities construct confidence intervals around the mean by starting with the
sample mean of the unbiased estimates (in our case, ẑ(✓, Dc)) and then adding or subtracting a con-
stant. While some concentration inequalities are naturally in this form, such as Hoeffding’s inequality
and Student’s t-test, others can be restructured to produce this form. Thus, given Assumption 5,
lj(✓, Dc) and uj(✓, Dc) can be be written as Average(ẑ(✓, Dc)) + Zn, where Zn is a sequence of
random variables that converges (almost surely) to zero. Since Average(ẑ(✓, Dc))

a.s.�! zj(✓) by
Property 1, we therefore have that both lj(✓, Dc)

a.s.�! zj(✓) and uj(✓, Dc)
a.s.�! zj(✓).

Next, we are interested in showing that the upper bound, Û , returned by Algorithm 3 converges to
g(✓). To clarify notation, here we write Û(✓, Dc) to emphasize that Û depends on the solution, ✓,
and the data, Dc, passed to the off-policy estimator.

Property 3. For all ✓ 2 ⇥, Û(✓, Dc)
a.s.�! g(✓).

Proof. We have from Property 2 that the confidence intervals on the base variables converge almost
surely to z1(✓), z2(✓), . . . , zd(✓). Furthermore, by Assumption 2 we have that g(✓) is a continuous
function of these base variables. Recall that Û(✓, Dc) is the upper bound produced by pushing the
confidence intervals on the base variables though the analytic expression for g(✓). Since g(✓) is a
continuous function of these base variables, Û(✓, Dc) is a continuous function of the confidence
intervals on the base variables. So, by the continuous mapping theorem [2], Û(✓, Dc) converges
almost surely to the value that it takes when applied to the converged values for the base variables,
i.e., g(✓).

Recall that we define ĉ(✓, Dc) as the output of Algorithm 2, i.e., CandidateUtility(⇥, Dc, �, Ẑ, E).
Below, we show that given a fair solution ✓? and dataDc, ĉ(✓?, Dc) converges almost surely to r(✓?),
the expected reward of ✓?.

Property 4. ĉ(✓?, Dc)
a.s.�! r(✓?).

Proof. By Property 3, we have that given Assumption 2, Û(✓?)
a.s.�! g(✓?). By Assumption 3, we

have that g(✓?)  �✏. Now, let

A = {! 2 ⌦ : lim
n!1

U(✓?, Dc(!)) = g(✓?)}. (2)

Recall that Û(✓?, Dc)
a.s.�! g(✓?) means that Pr(limn!1 Û(✓?, Dc) = g(✓?)) = 1. So ! is in

A almost surely, i.e., Pr(! 2 A) = 1. Consider any ! 2 A. From the definition of a limit and
the previously established property that g(✓?)  �✏, we have that there exists an n0 such that
for all n � n0, the candidate utility function, Algorithm 2, will return r̂(✓?, Dc) (this avoids the
discontinuity of the if statement in Algorithm 2 for values smaller than n0).

18

Furthermore, we have from Assumption 4 that r̂(✓?, Dc)
a.s.�! r(✓?). Let

B = {! 2 ⌦ : lim
n!1

r̂(✓?, Dc(!)) = r(✓?)}. (3)

From Assumption 4 we have that ! is in B almost surely, i.e., Pr(! 2 B) = 1, and thus by the
countable additivity of probability measures, Pr(! 2 (A \B)) = 1.

Consider now any ! 2 (A \ B). We have that for sufficiently large n, Algorithm 2 will return
r̂(✓?, Dc) (since ! 2 A), and further that r̂(✓?, Dc) ! r(✓?) (since ! 2 B). Thus, for all ! 2
(A \B), the output of the candidate utility function converges to r(✓?), i.e., ĉ(✓?, Dc(!)) ! r(✓?).
Since Pr(! 2 (A \B)) = 1, we conclude that ĉ(✓?, Dc(!))

a.s.�! r(✓?).

We have now established that the candidate utility function converges almost surely to r(✓?) for
the ✓? assumed to exist in Assumption 3. We now establish a similar result for all ✓ 2 ⇥̄—that the
output of the candidate utility function converges almost surely to c(✓) (recall that c(✓) is defined as
rmin � g(✓)).

Property 5. For all ✓ 2 ⇥̄, ĉ(✓, Dc)
a.s.�! c(✓).

Proof. By Property 3, we have that Û(✓, Dc)
a.s.�! g(✓). If ✓ 2 ⇥̄, then we have that g(✓) > �⇠/2.

We now change the definition of the set A from its definition in the previous property to a similar
definition suited to this property. That is, let:

A = {! 2 ⌦ : lim
n!1

U(✓, Dc(!)) = g(✓)}. (4)

Recall that Û(✓, Dc)
a.s.�! g(✓) means that Pr(limn!1 Û(✓, Dc) = g(✓)) = 1. So, ! is in A

almost surely, i.e., Pr(! 2 A) = 1. Consider any ! 2 A. From the definition of a limit and the
previously established property that g(✓) > �⇠/2, we have that there exists an n0 such that for all
n � n0 the candidate utility function will return rmin �

Pk
i=1 max{0, Ûi}. By the same argument,

Û(✓, Dc(!)) ! g(✓). So, for all ! 2 A, the output of the candidate utility function, ĉ(✓, Dc(!)) !
rmin � g(✓)� ⇠, and since Pr(! 2 A) = 1 we therefore conclude that ĉ(✓, Dc(!))

a.s.�! c(✓).

By Property 5 and one of the common definitions of almost sure convergence,

8✓ 2 ⇥̄, 8✏ > 0,Pr
⇣

lim
n!1

inf{! 2 ⌦ : |ĉ(✓, Dn(!))� c(✓)| < ✏}
⌘
= 1.

Because ⇥ is not countable, it is not immediately clear that all ✓ 2 ⇥̄ converge simultaneously to
their respective c(✓). We show next that this is the case due to our smoothness assumptions.

Property 6. 8✏0 > 0,Pr
⇣

lim
n!1

inf{! 2 ⌦ : 8✓ 2 ⇥̄, |ĉ(✓, Dc(!))� c(✓)| < ✏
0}
⌘
= 1.

Proof. Let C(�) denote the union of all the points in the �-covers of the countable partitions of ⇥
assumed to exist by Assumption 1. Since the partitions are countable and the �-covers for each
region are assumed to be countable, we have that C(�) is countable for all �. Then for all �, we have
convergence for all ✓ 2 C(�) simultaneously:

8� > 0, 8✏ > 0,Pr
⇣

lim
n!1

inf{! 2 ⌦ : 8✓ 2 C(�), |ĉ(✓, Dc(!))� c(✓)| < ✏}
⌘
= 1. (5)

Now, consider a ✓ 62 C(�). By Definition 2 and Assumption 1, 9 ✓
0 2 ⇥̄c

i , d(✓, ✓
0)  �. Moreover,

because c and ĉ are Lipschitz continuous on ⇥̄c
i and ⇥̄ĉ

i (by Assumption 1) respectively, we have
that |c(✓) � c(✓0)|  K� and |ĉ(✓, Dc(!)) � ĉ(✓0, Dc(!))|  K̂�. So, |ĉ(✓, Dc(!)) � c(✓)| 
|ĉ(✓, Dc(!))� c(✓0)|+K�  |ĉ(✓0, Dc(!))� c(✓0)|+ �(K + K̂). This means that for all � > 0:
⇣
8✓ 2 C(�), |ĉ(✓, Dc(!))� c(✓)| < ✏

⌘
=)

⇣
8✓ 2 ⇥̄, |ĉ(✓, Dc(!))� c(✓)| < ✏+ �(K + K̂)

⌘
.

Substituting this into (5), we get:

8� > 0, 8✏ > 0,Pr
⇣

lim
n!1

inf{! 2 ⌦ : 8✓ 2 ⇥̄, |ĉ(✓, Dc(!))� c(✓)| < ✏+ �(K + K̂)}
⌘
= 1.

19

Now, let � := ✏/(K + K̂) and ✏
0 = 2✏. Thus, we have the following:

8✏0 > 0,Pr
⇣

lim
n!1

inf{! 2 ⌦ : 8✓ 2 ⇥̄, |ĉ(✓, Dc(!))� c(✓)| < ✏
0}
⌘
= 1.

So, given the appropriate assumptions, for all ✓ 2 ⇥̄, we have that ĉ(✓, Dc(!))
a.s.�! c(✓) and that

ĉ(✓?, Dc(!))
a.s.�! r(✓?). Due to the countable additivity property of probability measures and

Property 6, we have the following:

Pr
⇣h

8✓ 2 ⇥̄, lim
n!1

ĉ(✓, Dc(!)) = c(✓)
i
,

h
lim
n!1

ĉ(✓?, Dc(!)) = r(✓?)
i⌘

= 1, (6)

where Pr(A,B) denotes the joint probability of A and B.

Let H denote the set of ! 2 ⌦ such that (6) is satisfied. Note that rmin is defined as the value always
less than r(✓) for all ✓ 2 ⇥, and �g(✓)  0 for all ✓ 2 ⇥̄. So, for all ! 2 H , for sufficiently
large n, the candidate utility function will not define ✓c to be in ⇥̄. Since ! is in H almost surely
(Pr(! 2 H) = 1), we therefore have that limn!1 Pr(✓c 62 ⇥̄) = 1.

The remaining challenge is to establish that, given ✓c 62 ⇥̄, the probability that the safety test returns
NSF converges to zero as n ! 1. By Property 3 (but using Ds in place of Dc), we have that
Û(✓c, Ds)

a.s.�! g(✓c). Furthermore, we have that for all ! 2 H , there exists an n0 such that for all
n � n0, ✓c 62 ⇥. From the definition of ⇥, this means that there exists an n such that for all n � n0,
g(✓c) < �⇠/2, at which point the safety test would return ✓c. So, we have our desired result—the
limit as n ! 1 of the probability that RobinHood returns a solution, ✓c, is one, meaning the limit as
n ! 1 of the probability that RobinHood returns NSF is zero.

F Additional Experimental Details

This section provides pseudocode for the helper methods in RobinHood, details for the baselines,
more details on our application domains, and a discussion of the results in our loan approval
experiments.

F.1 Baseline Methods

Except for NaïveFairBandit, the baselines we compare to exist as repositories online and are
linked below.

• Offset Tree [6]: https://github.com/david-cortes/contextualbandits
• POEM [44]: http://www.cs.cornell.edu/ adith/POEM/
• Rawlsian Fair Machine Learning for Contextual Bandits [23]: An online contextual bandit algo-
rithm which enforces weakly meritocratic fairness at every step of the learning process. We used
the repository located at https://github.com/jtcho/FairMachineLearning for this experiment, but
made changes to the original code. This was done to accurately reflect the original work in Joseph
et al. [23]. Specifically, the repository code showed the bandit the reward for each action at every
round, and this was instead changed to returning the reward for only the action chosen by the
algorithm.

• NaïveFairBandit does not employ a safety test, and therefore does not search for candidate
solutions with inflated confidence intervals or return NSF. Pseudocode for NaïveFairBandit is
located in Algorithm 7.

F.2 Tutoring Systems

User Study. We define a new mathematical operator called the $ operator such that A$B =
B ⇥ dA/10e. In total, three tutorial versions are used in our experiments. The $ operator is
described in different ways in each of the three tutorials, as depicted in Figures F.1 through F.3.
Tutorial 1 (Figure F.1) describes the $ operator using code, and includes example problems. Tutorial 2
(Figure F.2 describes the $ operator in a non-intuitive way, and uses fewer example problems.

20

Algorithm 7 NaïveFairBandit
1: function NAIVEFAIRBANDIT(D,�, Ẑ, E)
2: ✓c = argmax

✓2⇥
NaiveCandidateValue(✓, D,�, Ẑ, E)

3:
4: function NAIVECANDIDATEVALUE(✓, Dc,�, Ẑ, E)
5: [Û1, ..., Ûk] = ComputeUpperBounds(✓, Dc,�, Ẑ, E , False)
6: rmin = min

✓02⇥
r̂(✓0, Dc)

7: if Ûi  0 for all i 2 {1, ..., k} then return r̂(✓, Dc) else return rmin �
kP

i=1
max{0, Ûi}

Tutorial 1

Figure F.1: Tutorial that defines the $ operator using code.

Tutorial 3 (Figure F.3) responds differently to users based on their gender identification. Male-
identifying users were given the straightforward definition of the $ operator, while female-identifying
users were given an incorrect definition. The number of female-identified users in this data set is
1,403 and the number of male-identified users is 1,178. In the equal proportions experiment, two
tutorials were used for a total of 1988 samples. In the skewed proportions experiment, three tutorials
were used for a total of 2581 samples were used. The assessment shown to each user once they
completed the provided tutorial consists of ten questions using the $ operator, e.g., 16$4. When
computing importance weights, we re-scale female and male samples to simulate a similar data set
containing 80% males and 20% females. Response format was fill-in-the-blank.

F.3 Loan Approval

Statistical Parity. In this experiment, we enforce statistical parity. A policy is considered fair
in this case if its probability of approving male applicants is equal to its probability of approving
female applicants. We use the Personal Status and Sex feature of each applicant to determine
sex. Statistical parity can be encoded as the following constraint objective:

g(✓) :=
���E[A|m]� E[A|f]

���� ✏, (7)

where A = 1 if the corresponding applicant was granted a loan and A = 0 otherwise. To satisfy this
constraint objective, the absolute difference between the conditional expectations must be less than ✏
with high probability.

Statistical Parity Experimental Results. We ran 50 trials for this experiment. We find that for
larger training set sizes the estimated expected reward of solutions returned by RobinHood grows
steadily more comparable to those returned by Offset Tree and NaïveFairBandit. Very quickly,
we see that baselines begin to return solutions that are fair with respect to each constraint objective,
indicating that solutions that optimize performance also are in line with the behavioral constraints.
As can be seen in Figure F.4, RobinHood is able to find and return these solutions as well.

21

Tutorial 2

Figure F.2: Tutorial that explains the $ operator in a convoluted manner.

Tutorial 3

Figure F.3: Biased tutorial that provides incorrect information to female-identifying users.

Comparison to Online Fairness Methods. Because most existing work on fairness for bandits
considers the online setting, we performed an additional experiment to evaluate how RobinHood

performs in comparison to these baselines. In particular, we compare RobinHood to the framework
discussed by Joseph et al. [23], called Rawlsian Fair Machine Learning. This framework considers
the contextual bandit setting in a slightly different way, where contexts are actions from which to
choose. Importantly, we note that this experiment is not entirely fair, as RobinHood is formulated for
the offline bandit setting. Nonetheless, the results of this experiment provide a rudimentary analysis
of how our method might perform if used in this setting.

To compare our method, which learns using a batch of data, to baselines that make decisions online,
we use the following procedure. First, we assume that the problem definition provides a reward
function, r : (X ⇥ A) ! R, which determines the value of taking each action given a particular
context. In our experiment, we obtain r by training a Gaussian process regression model to predict R
given (X,A), using the data from the loan approval experiment. Importantly, because this experiment
uses a simulator, which only roughly approximates the processes that generated the loan approval
dataset, we expect the results to differ from those that were obtained in the offline loan approval
experiments. Given r, we train RobinHood as in offline experiments, with the exception that reward
is computed dynamically using r instead of being estimated using importance sampling. To train the
online baseline algorithms, we allow them to iteratively learn over each context in the training data
set in random order. As a result, despite the fact that RobinHood learns in batch while the baselines
learn iteratively, our training procedure ensures that all models are trained on the same amount of
data, and using the same set of contexts and reward function, r. Once the algorithms are trained,
their parameters are fixed and they are evaluated on the remaining testing data. As in the offline

22

Figure F.4: Enforcing statistical parity in the Loan Approval domain (✏ = 0.23).

Figure F.5: Comparison to online methods for loan approval using disparate impact (✏ = �0.8).

experiments, we report evaluation statistics averaged over several randomized trials, where each trial
uses 40% of the data for training and 60% for testing.

Figure F.5 shows the results of this experiment, which we averaged over 50 trials. Similar to our
other results, RobinHood maintains an acceptable failure rate (5% in this experiment), and returns
solutions other than NSF given a reasonable amount of data.

G Example Base Variable Without Unbiased Estimator

In Section 4 we mentioned that there may be some base variables that the user wants to use when
defining fairness that do not have unbiased estimators (e.g., standard deviation). For example, say the
user wanted to define a base variable to be the largest possible expected reward for any policy with
parameters ✓ in some set ⇥, i.e., max✓2⇥ r(✓). That is, this base variable is: z(✓) := max✓02⇥ r(✓0).
Note that because this quantity does not depend on the solution being evaluated, ✓, we denote it as z
instead of z(✓). This base variable is important in the context of this paper because it can be a useful
component in definitions of fairness.

Consider an example application where each context corresponds to a person, actions correspond to
deciding which tutorial on consumer economics to give to a person, and the reward is the person’s
fiscal savings during the following year. In this case, we might desire a system that is fair with
respect to people from different locations, say Maryland and Mississippi. Since the mean income in
Maryland in 2015 was $75,847, while the mean income in Mississippi in 2015 was only $40,593, it
would not be reasonable to require the bandit algorithm to ensure that it selects actions in a way that
ensures the expected return for people in both states is similar (the expected yearly income). That
is, a tutoring system on resource economics could not be expected to remedy the income disparity
between these two states.

Rather than compare the expected rewards for people in each state, it would be more reasonable
to compare how far the expected reward is from the best possible expected reward for people in
each state. This allows for behavioral constraints that require the expected yearly income (expected
return) for people in each state to be within $500 of the maximum possible expected income when
considering the impact of different policies (tutoring systems). Alternatively, one might require the
expected yearly income to be within 10% of the best possible (our of all of the tutoring systems
considered) for people in each state. To use these definitions of fairness, we might desire a base
variable that is equal to the maximum possible expected reward for people of a particular type. The
base variable that we present here shows how this can be achieved (although we present the variable
without conditioning on a person’s type, this extension is straightforward).

23

The challenge when upper-bounding z is that we do not know which policy is optimal. It is
straightforward to construct high-confidence upper bounds on the performance of a particular policy
using importance sampling and a concentration inequality like Hoeffding’s inequality. In this section
only, let U(✓, D) denote a (1��)-confidence upper bound on z, constructed from data, D. One
approach to upper bound z would be to first produce a high-confidence upper bound, U(✓0, D), on
the performance of each solution ✓

0 2 ⇥, and then compute the bound on z using the set of upper
bounds, {U(✓0, D)}✓02⇥. Because ✓? is the optimal policy with respect to r, i.e.,

✓
? 2 argmax

✓02⇥
r(✓0), (8)

one candidate for a (1��)-confidence upper bound on z is the supremum of the upper bounds
computed for each ✓

0: sup✓02⇥ U(✓0, D).

However, it is not clear that this is a valid upper bound on z. Intuitively, if the upper bound computed
for any of the ✓0 2 ⇥ is too small, then this proposed upper bound on r(✓?) may be too small. So, it
may seem that the probability that this upper bound fails is the probability that there is one or more
✓
0 2 ⇥ for which U(✓0, D) does not upper bound z. If ⇥ has cardinality n, then this probability can

be as large as n�. Here we show that this reasoning is incorrect: for this particular base variable, the
probability of failure remains �, not n�. That is:
Property 7. Let ⇥ be a (possibly uncountable) set of policy parameters (policies). If, there exists at

least one ✓
?
satisfying (8) and for all ✓

0 2 ⇥, U(✓0, D) is a (1��)-confidence upper bound on r(✓0),
constructed from data D, then

Pr

✓
sup
✓02⇥

U(✓0, D) � max
✓02⇥

r(✓0)

◆
� 1��. (9)

Proof. Note that in (9), U(✓0, D) is the only random variable—it is the source of all randomness.
Furthermore, by the assumption that there exists at least one ✓? satisfying (8), max✓02⇥ r(✓0) exists.
However, max✓02⇥ U(✓0, D) may not exist, and so we use sup✓02⇥ U(✓0, D).

Let ✓? be any policy satisfying (8). By assumption, U(✓?) is a (1��)-confidence upper bound on
r(✓?). That is,

Pr
⇣
U(✓?, D) � r(✓?)

⌘
� 1��. (10)

Because ✓? satisfies (8), we have that r(✓?) = max✓02⇥ r(✓0), and so

Pr

✓
U(✓?, D) � max

✓02⇥
r(✓0)

◆
� 1��. (11)

Since ✓? 2 ⇥, we have that U(✓?, D)  sup✓02⇥ U(✓0, D), and so

Pr

✓
sup
✓02⇥

U(✓0, D) � max
✓02⇥

r(✓0)

◆
� 1��. (12)

24

