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A combination of a Linear Quadratic Integral (LQ-I) controller for trajectory and shape
control and an Explicit Reference Governor (ERG) for constraint satisfaction is used to provide
constrained control for a longitudinal, nonlinear, multibody, seven-state Very Flexible Aircraft
(VFA) model. The ERG works directly with the nonlinear model to provide a safe reference
command input for the LQ-I controller, which tracks set-points in the aircraft velocity, angle of
attack, pitch angle, andmultibody dihedral angle, that allows the resulting trajectory to remain
within the constrained region. This paper described the development of the LQ-I and ERG
control combination, and the feasibility of this approach without and with a simple turbulence
model, and comparisons to a similar Scalar Reference Governor (SRG) control scheme, based
on simulations of pitching maneuvers of the aircraft with constraint enforcement on both the
state vector and control parameters.

I. Introduction
Very Flexible Aircraft (VFA) can be challenging to control. Their long wings, with relatively low stiffness when

compared to more traditional aircraft, result in highly nonlinear dynamics, which change significantly throughout
maneuvers. These aircraft may be so flexible that structural concerns arise during maneuvers, where large loads may be
placed on aircraft structures. Active constrained control of this flexibility is desirable to obtain high efficiency of the
system and to avoid exceeding the structural limits of the aircraft; however, this problem is difficult due to the inherently
nonlinear dynamics associated with flexible aircraft as the wing deformation changes.

Similar problems have been studied and various approaches tested in literature in order to provide this active control.
Model predictive control has been used for gust load alleviation and constraints for flexible and very flexible aircraft in
[1] and [2]. A trajectory control problem has been studied in [3] using a high-order model in UM/NAST without gusts,
with gusts being added in [4]. The use of multiple control loops for each shape control and trajectory control has also
been studied in [5]. Scalar Reference Governors (SRG) have been used in [6] to provide constraints of the root curvature
during maneuvers of a UM/NAST model.

Outside of constrained control, [7] and [8] describe a small seven-state nonlinear, longitudinal model for a VFA.
This model uses several rigidbody aircraft joined together through joints, creating a multibody aircraft, as opposed to
a true flexible wing with a smooth surface. This model is used to analyze a linear controller and an adaptive Linear
Quadratic Gaussian (LQG) / Loop Transfer Recovery (LTR) controller. In [8], a simple turbulence model based on a
normal random distribution of velocities is used to look at the effect of noise on a controller that does not include the
dihedral angle as one of the measured states.

These two ideas are combined in [9], where the model from [7] is combined with a SRG, as described in [10] and
[11], and a Linear Quadratic Integral (LQ-I) controller. This allowed for both maneuver load alleviation, trajectory
control, and shape control on the original nonlinear model.

In this paper, we extend the work done in [9] to an Explicit Reference Governor (ERG), as described in [12] and [13].
An LQ-I controller, created about a linearization of the model from a steady state trajectory, tracks set-points in the angle
of attack, pitch angle, velocity, and dihedral angle, using the thrust, and deflections of the inner and outer ailerons and
elevators as control inputs. The ERG maintains the constraints and adjusts the reference provided to the LQ-I controller
in order to prevent constraint violations. Like the SRG, this allows for reduced computation requirements, as noted in
[11] and [9], but provides better constraint control at set points further from the original steady state trajectory that the
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LQ-I controller is initialized about than the SRG. We present findings on the LQ-I controller and ERG combination and
some comparisons to the SRG results in [9], as well as look at the effects of the simple wind model from [8] on the ERG.

We first provide an overview of the aircraft model in Section II, the LQ-I controller in Section III, and the ERG in
Section IV. Then, we look at the combination of the LQ-I controller and ERG at a small, initially stable, dihedral angle
steady state trajectory in Section V, and a larger, initially unstable, dihedral steady state trajectory in Section VI. We
also present a simple wind turbulence model and the performance of the ERG under this stochastic response in Section
VII. Finally, we present our conclusions in Section VIII.

II. Nonlinear Multibody Aircraft Model
The longitudinal nonlinear model for the VFA aircraft is obtained as derived in [7], which provides a three-body

aircraft, where flexibility is provided by hinges at the rigid-body joints. This provides a simple, six-state model with five
control inputs, which represents the wing flexibility with a single number as the dihedral angle η. As done in [9], the
altitude state originally included in [7] has been removed to ensure that the overall system remains observable. Overall,
the six states are provided as

X =
[
V α θ q η Ûη

]T
, (1)

where V is the aircraft velocity in ft/s, α is the angle of attack in radians, θ is the pitch angle in radians, q is the pitch
rate in radians/s, η is the dihedral angle in radians, and Ûη is the dihedral angle rate in radians/s. The five control inputs
are provided as

U =
[
T δac δao δec δeo

]T
, (2)

where T is the overall thrust, δac is the inboard aileron deflection, δao is the outboard aileron deflection, δec is the
inboard elevator deflection, and δeo is the outboard elevator deflection. The thrust is in lbf and has a range between 0 and
200 lbf, and all deflections are angles in radians with ranges between −35◦ and 35◦. This setup is depicted graphically in
Fig. 1 for a front view showing the coordinate frames, and in Fig. 2 for a top-down view showing the control surfaces.

η

ẑ2
ŷ2

ẑBŷBẑ1

ŷ1

ẑ3
ŷ3

Fig. 1 VFA aircraft front view, showing all sectional coordinate frames (1, 2, and 3) and body coordinate frame
(B), as in [7]. The x̂ direction for each coordinate frame is directed out front of the aircraft (out of the page).

Nose

Tail

Section 1 Section 2 Section 3

δeo δec δeo

δao δac δao

Fig. 2 VFA aircraft top-down view showing control surfaces at the rear of the wing and tail and propellers in
the center towards the nose of each section.

The overall equations of motion are provided as

ÛV = (T cosα − D)/m − g sin γ, Ûα = −(T sinα + L)/(mV) + q + g cos(γ)/V,

Üη =
H − κc Ûη − κkη + d1 − d2

d3
, Ûq =

M − 2c2 sin(η) cos(η) Ûηq
c1 + c2 sin2 η

,

Ûθ = q,

(3)
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with additional supporting terms provided in

c1 = 3I∗yy,

c2 = 2I∗zz − 2I∗yy + m∗
s2

6
,

d1 =
s
2

m∗
( (
ÛV sin(α)V cos(α) Ûα

)
cos(η) − V sin(α) sin(η) Ûη −

2s
3

cos(η) sin(η) Ûη2
)
,

d2 = (I∗yy − I∗zz − m∗
s2

12
) sin(η) cos(η)q2 −

s
2

m∗ cos(η)V cos(α)q,

d3 = I∗xx + m∗(
s2

4
+

s2

6
cos2(η)),

(4)

where D is the drag,M is the moment,H is the hinge moment, γ is the flight path angle defined by

γ = θ − α, (5)

andM is the moment about the ŷB axis. All other constants are provided in Table 1.

Table 1 Constants for the aircraft model dynamics equations

Parameter Symbol Quantity
Sectional Mass m∗ 9.32 slugs
Sectional Inertia I∗xx 280 slugs . ft2

I∗yy 18.63 slugs . ft2

I∗zz 167.7 slugs . ft2

Sectional Span s 80 ft
Gravitational Acceleration g 32.2 ft/s2

Dihedral Joint Damping κc 141400 lbf/s
Dihedral Joint Stiffness κk 4900 lbf

We then calculate the values for L, D, andM through aerodynamic equations. Velocities ui , vi , and wi represent
the velocity along each of the axes for section i along axis x̂i , ŷi , and ẑi respectively, which are obtained for the middle
section 2 and outer sections 1 and 3 from the states in X as

u2 = V cosα + q
s
3

sin η, u3 = u1 = V cosα − q
s
6

sin η,

v2 = 0, v3 = −v1 = (V sinα + Ûη
s
3

cos η) sin η,

w2 = V sinα + Ûη
s
3

cos η, w3 = w1 = (V sinα + Ûη
s
3

cos η) cos η − Ûη
s
2
.

(6)

This provides

Vi =

√
u2
i + v

2
i + w

2
i (7)

as the total velocity

αi = arctan
wi

ui
, βi = arcsin

ui
Vi

(8)

as the sectional angle of attack αi and sideslip angle βi , and

Qi =
1
2
ρV2

i (9)

as the sectional dynamic pressure Qi with the atmospheric density ρ. This allows us to compute
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L∗w,i = QiCLw ,i S
∗
w, CLw ,i = CLααi + CLδ δa,i, (10)

D∗w,i = QiCDw ,i S
∗
w, CDw ,i = CD0 + κDC2

Lw ,i
(11)

as the sectional wing lift L∗w,i and drag D∗w,i using the sectional wing lift coefficient CLw ,i and drag coefficient
CDw ,i . Other constants are outlined in Table 2. Similarly, we compute the same variables for the tail, with

L∗t ,i = QiCLt ,i S
∗
w, CLw ,i = CLα (αi + δe,i), (12)

D∗t ,i = QiCDt ,i S
∗
w, CDw ,i = CD0 + κDC2

Lt ,i
(13)

as the sectional tail lift L∗t ,i and drag D∗t ,i using the sectional tail lift coefficient CLt ,i and drag coefficient CDt ,i .
All additional constants are outlined in Table 2.

Table 2 Constants for the aircraft model aerodynamic force equations

Parameter Symbol Quantity
Sectional Wing Reference Area S∗w 640 ft2

Sectional Tail Reference Area S∗t 40 ft2

Lift Coefficients CLα 2π
CLδ 2

Parasitic Drag Coefficient CD0 0.007
Induced Drag Coefficient κD 0.07
Air Density at 40,000 ft ρ 5.8572 × 10−4 slug/ft2

We combine all the forces together into a single expression

P∗i =


−D∗i

0
−L∗i

 =

−(D∗w,i +D

∗
t ,i)

0
−(L∗w,i + L

∗
t ,i)

 (14)

that can be used with a local rotation matrix

Rb/w(α, β) =


cosα cos β − cosα sin β − sinα

sin β cos β 1
sinα cos β − sinα sin β cos β

 (15)

to convert between the local wind frame to the local section frame. The center section is already in the correct orientation
for the overall rigid body frame, as shown in Fig. 1; however, the outer section frames must be rotated into the overall
body frame using another rotation matrix

R2/1 = RT
2/3 =


1 0 0
0 cos η sin η
0 − sin η cos η

 (16)

where R2/1 is used to convert from frame 1 to frame 2 and R2/3 is used to convert from frame 3 to frame 2. Overall lift
and drag becomes

−D

0
−L

 = Rb/w(α, β)
T (

R2/1Rb/w(α1, β1)P∗q + Rb/w(α2, β2)P∗w + R2/3Rb/w(α3, β3)P∗3
)
. (17)
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From these overall forces, we compute the moments, similar to the forces for the wing and tail above, as

M∗i = QiCMi
cwS∗w, CMi

= CM0 + CMδ
δa,i (18)

with the aerodynamic sectional pitching momentM∗i , pitching moment coefficient CMi
, and other constants defined in

Table 3. We then combine aerodynamic moment with the forces from the wing and the tail to obtain

M =

3∑
i=1
(M∗i + lw,iD∗w,i − ltL∗t ,i) (19)

as the overall momentM using the wing and tail boom lengths lw and lt respectively. These constants are found in
Table 3, and lw,i is found as

lw,1 = lw,3 =
(

s
2
−

s
3

)
sin η,

lw,2 = −
s
3

sin η.
(20)

Table 3 Constants for the aircraft model aerodynamic moment equations

Parameter Symbol Quantity
Moment Coefficients CM0 0.025

CMδ
−0.25

Wing Chord cw 8 ft
Tail Span st 20 ft
Tail Chord ct 2 ft
Tail Boom Length lb 36 ft

Finally, we calculate the hinge momentH as

H = (L∗w,1 + L
∗
t ,1) − m∗g cos η cos θ (21)

using the lift components of section 1. Note that, due to symmetry of the model, this would be identical if using the
section 3 instead.

III. LQ-I Controller
An LQ-I controller is used to provide the active feedback control of the system. This controller controls the system

based on α, θ, V , and η, and actuates T , δao (symmetrically), δec , and δac , as in

U =
[
T δao δec δac

]T
, y =

[
α θ V η

]T
, (22)

for controlled actuators U and control feedback y. The other control surface, δac , be set as a constant based on its steady
state value. As the LQ-I controller requires a linear system, we linearize the nonlinear dynamics about a steady state
trajectory using V = 30 ft/s and γ = 0◦, obtained from α and θ using Eq (5). We also choose a value for η, for example,
η = 5◦. The initial α and δec is specified as

αo = 7.5◦ + η/600, δoec = 5◦ − η/10, (23)

as is done in [7]. This allows all the equations to be solved using an iterative solver to find a unique solution where
all parameters in ÛX equal 0, indicating a steady state trajectory with state and control inputs Xo and Uo, respectively.
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We also linearize about this point to obtain linearized A and B matrices for a standard linear model. As done in [7],
we calculate the required control inputs in U for a steady state trajectory for γ = 0◦, as well as the linearized system
stability from the eigenvalues λ of the A matrix, both in Fig. 3. In general, increasing the dihedral angle decreases the
system stability and pushes the real components of the eigenvalues in the positive-real direction, indicating a reduction
in stability.

Fig. 3 The steady state trajectory control input values for dihedral angles between 0 and 45o in level flight (left),
with corresponding linearized eigenvalues showing additional instability as the dihedral angle is increased for
the same dihedral angles (right), show similar results to those found in [7].

From the chosen trajectories, we construct the linear model as

Û̃X = AX̃ + BŨ, ỹ = CX̃, (24)

where X̃ , Ũ, and ỹ are the linear-model variants of their respective nonlinear system counterparts, obtained by

X̃ = X − Xo,

Ũ = U −Uo,

ỹ = y − yo .

(25)

The LQ-I design is obtained through applying LQR theory to the system, adding additional states to track the error
between ỹ and their commanded set-point values r ,

d
dt

[
ỹ − r

X̃

]
=

[
0 C
0 A

] [
ỹ − r

X̃

]
+

[
0
B

]
Ũ = ÃX̃ + B̃Ũ. (26)

From LQR theory, we construct the weighting matrices for the state and control vectors as

Q = diag([1000 1000 100 100 0.1 0.1 0.1 0.1 0.1 0.1]), (27)

R = diag([0.01 0.01 0.03 0.04]) (28)

for the above Ã and B̃ matrices. With these parameters, we obtain the LQ-I controller as

Ũ(t) = K Xcl =
[
Ki Kp

] [
z
X̃

]
(29)

for K as the LQR gain, with integral portion Ki and proportional portion Kp , and state error z obtained through

Ûz = ỹ − r . (30)
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IV. Explicit Reference Governor
In order to provide a response to the nonlinear system dynamics, an Explicit Reference Governor (ERG) is one

method that can be used in order to provide constrained control for the system. The ERG acts before the LQ-I controller,
as in Fig. 4, where r is passed into the ERG, which then outputs a reference v that is used in the LQ-I controller instead
of r directly. This allows the ERG to modify v to avoid constraint violation on the user-commanded r .

X(t), v

yc(t)r(t)
v(t)

ERG LQ-I Closed-
Loop

Fig. 4 ERG block diagram showing the user-input r(t), with the ERG acting and providing v(t) to the LQ-I
controller and taking feedback of X(t) and v to make its modification.

The formulation of the ERG is as provided in [12]. Instead of working directly with v, the ERG works instead with
Ûv. The goal of the ERG is to ensure that the resulting dynamics remain within the constraint bounds throughout the
execution of the system. The overall problem for the ERG is

Ûv = ∆(X, v)ρ(r, v). (31)

The two primary parts to the ERG from Eq. (31) are the dynamic safety margin ∆(X, v) and the navigation field
ρ(r, v). The dynamic safety margin is a function that is strictly positive, such that ∆ ≥ 0. Larger values for ∆ denote that
v is safer to change, and so thus result in a larger Ûv. This provides a value that correlates to how much, or rather how
safe, it is to move the reference v towards r . The navigation field provides the vector in which to move v towards r .

A. Constraint Definition
We define the constraints used by the ERG as

Hyc ≤ h, (32)

where H is the constraint output matrix, h is the constraint limit matrix, and yc is the constraint output, obtained through

yc = CyX, (33)

for constraint output matrix Cy . For this problem, we pick Cy such that we get

Cy =
[
η δao δec δac Ûη

]
. (34)

We can rearrange Eq. (32) into to provide a degree for how close the constraints are to their limit as

c = h − Hyc, (35)

where c represents how close each constraint is to its limit. For each constraint value ci ≥ 0, the constraint i is satisfied,
while ci < 0 represents a constraint beyond its limit. This form of the equation proves to be more useful in the
construction of the ERG.

B. Dynamic Safety Margin
One methodology to obtain a dynamic safety margin is through the use of Lyapunov theory, where there exists a

Lyapunov threshold value Γ(v) and a Lyapunov function V(X, v) to obtain ∆(X, v) as

∆(X, v) = κ
(
Γ(v) − V(X, v)

)
, (36)

Γ(v) =
(−HXo + h)2

HT P−1H
, V(X, v) = XT PX, (37)

where κ is a scalar positive constant and P is a positive-definite matrix, as in [12]. However, this approach is too
conservative for this VFA system and often results in poor performance, especially when control surface deflections are
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included in the constraints. Therefore, we look at the trajectory itself as the dynamic safety margin, where we propagate
the system forward in time over some time horizon To to obtain the predicted states x̂ with the current reference v. From
this, the minimum constraint value, as calculated in Eq. (35), is used as the dynamic safety margin. As the constraint
equations provide negative values when outside of the constraints, a greater value represents states that are further away,
and is “safer” than lower values. This comes from [12], and is

∆(X, v) = κ min
τ∈[0,To ]

{h − HCy X̂(τ |X, v)}, (38)

where we have x̂ as the propagation of the system in time τ seconds into the future from the last value of X and v. This
provides a method to obtain the degree of risk associated with moving the current v, with a larger minimum constraint
value as “safer” to move than a smaller one. To improve controller performance, we also add a smoothing term

σ(v,r) = min
{
1,
| |r − v | |
ηs

}
(39)

where ηs is a positive constant used to change the scale of this smoothing term, as is done in [13]. This term reduces the
value of Ûv near the desired reference in order to reduce oscillations. We can then combine the smoothing and dynamic
safety margin to get

∆smooth(X, v) = σ(v,r)∆(X, v) (40)

where ∆smooth(X, v) is dynamic safety margin equation that we use in the ERG for the VFA aircraft. For this
implementation, we use the full nonlinear model to propagate the state X̂ and a time horizon To of 10 s in Eq. (38). This
performs well for these cases, but a better stopping criteria will be need to be researched.

C. Navigation Function
The navigation field for this problem is be derived simply as the normalized vector between r and v,

ρ(r, v) =
r − v

max{| |r − v | |, ηp}
, (41)

obtained from [12]. We add a small, positive division tolerance term ηp so that, when v is very close to r , we avoid any
division by zero.

V. Constrained Simulations with Small Dihedral Angles and ERG
For the first set of simulations, we want to see how the controller responds near the equilibrium point. We choose

similar simulation points as in [9] so that we can compare the ERG response to that of the SRG. For the equilibrium
point, we choose the steady state trajectory previously outlined, starting with a dihedral angle of η = 5◦. About these
points, the linearized system has eigenvalues

λ1 = −0.0207, λ2,3 = −0.0308 ± 1.4917i,

λ4 = −6.6181, λ5,6 = −2.5697 ± 6.7663i,
(42)

which all have negative real parts, indicating that the linearized open-loop system is stable; however, this doesn’t tell too
much about the nonlinear system, during which the stability changes throughout the maneuver. The simulations are run
with a timestep Ts = 0.01 s, and in each simulation, the original steady state trajectory is held for 2 s before the new
desired trajectory is provided to the controller in order to demonstrate the initial steady state trajectory. We also use
constraints such that

4.5◦ ≤ η ≤ 5.5◦,
25◦ ≤ δao ≤ 32◦,

1.5◦ ≤ δec ≤ 7.5◦,
17◦ ≤ δac ≤ 23◦.

(43)

For reference, Fig. 5 shows this simulation without the ERG. This shows significant angles beyond the provided
constraints in nearly all constrained parameters.

We simulate the ERG with a command to set γ = 5◦, by setting θr = 13◦ and αr = 8◦, resulting in Fig. 6. The ERG
prevents significant excursions beyond the range of the constraints, unlike in the original unconstrained simulation,
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Fig. 5 Climb command without ERG increases the flight path angle to γ = 5◦, but violates constrains for all
constrained parameters in both the dihedral angle and control surface deflections.

Fig. 6 Climb command with the ERG increases the flight path angle to γ = 5◦ without constraint violations,
reaching the target flight path angle in about 35 s.

with the primary active constraints are the center and outer aileron. The ERG reaches the desired flight path angle in
approximately 35 s. Note that the commanded γ is reconstructed from the reference commands for θ and α.

The ERG significantly impacts the results of the simulation by drastically reducing the magnitude of these constraint
excursions and allows the aircraft to safely reach the commanded trajectory. We perform the same maneuver, this time
with γ = −5◦, to illustrate the symmetry of the system in Fig. 7. In this case, there is also virtually no constraint
violations as the controller again reaches the desired flight path angle in approximately 35 s.

Overall, these results show that the ERG is capable of preventing significant constraint excursions that would
otherwise be present in the output of the closed-loop system. Looking at the stability of the system throughout a
maneuver as determining the maximum real eigenvalue of the linearized open-loop A matrix at each of the flight
conditions. Performing this for the first case, where we set γ = 5◦, we obtain Fig. 8. This shows that the controller does
end up at an unstable equilibrium at γ = 5◦. While initially at a stable linearized system equilibrium point, the controller
moves the nonlinear system smoothly to an unstable point at the desired γ = 5◦ with a maximum real-component
eigenvalue of 0.017. This provides an indication of the degree of stability at each point along the trajectories from above
from the actual nonlinear system.

We also run a similar test with γ = 10◦ to show how the ERG responds for a larger flight path angle command in Fig.
9. this shows a larger deviation from the steady state and illustrates one effect of the ERG in that there are oscillations
that occur due to the fact that the reference v is a dynamic system as well. It is subject to tuning of the ERG parameters,
like κ, as well as the time step in the simulations.

When we compare these results with those from the linear SRG from [9], the SRG typically better maintains an
active constraint, where one of the constraint terms is almost always right on the constraint limits. This is due to the
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Fig. 7 Descent command with the ERG increases the flight path angle to γ = −5◦ without constraint violations,
reaching the target flight path angle in about 35 s.

Fig. 8 Both without (left) and with (right) ERG for γ = 5◦ result in an unstable final trajectory; however, the
without ERG has a sudden spike in the maximum real-component eigenvalue at the beginning, while no such
spike occurs with the ERG and the system gradually increases to the final trajectory values.

Fig. 9 Climb command with the ERG increases the flight path angle to γ = 10◦ without constraint violations,
reaching the target flight path angle in about 65 s.

SRG solving an optimization problem on a scalar ratio κ between 0 and 1 to find the maximum possible value for v
based on the linearized system about the original trajectory propagated forward in time from the current state values.
Because it is solving based on a linear system, this optimization can be done very rapidly. In comparison, the ERG adds
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v as a dynamics term, so no optimization is done. Instead, the full nonlinear system is propagated and used as a guide
for how close the trajectory would get to the constraints. This means that, while the ERG must be tuned, as it is an
additional source for dynamics, and does not necessarily obtain the closest possible value for v to r at each time step, it
is not dependent on the linear model and thus behaves more favorably in cases where the nonlinear dynamics diverge
from the linearized dynamics about the equilibrium point. In these simulations, setting γ = 5◦ does not provide enough
difference to allow the decrements in the SRG performance to allow the ERG to outperform; however, with the γ = 10◦
case, the ERG starts to outperform the SRG, reaching the desired flight path angle in a smooth fashion. For reference,
the SRG output is shown in Fig. 10, which shows the decreasing performance of the SRG as the linear and nonlinear
models diverge.

Fig. 10 Climb command with the SRG increases the flight path angle to γ = 9.76◦, nearly the target γ = 10◦,
but results in a jagged climb command due to the linear model diverging from the nonlinear model at larger
flight path angles.

VI. Constrained Simulations with Large Dihedral Angles and ERG
Increasing the dihedral angle further decreases the stability present in the system, as indicated in Fig. 3, which can

become problematic for the LQ-I controller to counteract. At η = 23◦, we have linearized eigenvalues of

λ1 = 0.0120, λ2,3 = 0.3523 ± 1.0421i,

λ4 = −6.9121, λ5,6 = −2.3515 ± 1.0232i,
(44)

which are clearly unstable based on λ1 and λ2,3 having positive-real components. In addition, the LQ-I controller is not
able to stabilize this system alone, with the nonlinear dynamics diverging too much from the linearized dynamics used
within the controller as the controller tries to reach the flight path angle without any knowledge of constraints or control
surface saturation. For the new dihedral angle, we also add new constraints of

22◦ ≤ η ≤ 24◦,
22.76◦ ≤ δao ≤ 32.76◦,

−2.3◦ ≤ δec ≤ 7.7◦,
11.64◦ ≤ δac ≤ 21.64◦.

(45)

Once the ERG is added, however, the system is able to be stabilized. The ERG prevents the controller from moving
too quickly and enforces the constraints on the control surface and dihedral angle, and slowly moves the reference
accordingly, to ensure that the LQ-I controller is not allowed to make too sudden of movements that would otherwise
cause instabilities. This is shown in Fig. 11, where the target command of γ = 10◦ is reached in about 50 s without
constraint violations.

In addition, we also test the behavior of the system when requesting a command that would require a control input
beyond the given constraints in the steady state case. If we set γ = 20◦, the ERG is successful in preventing exceedances
in this case in Fig. 12, with the controller only able to reach a maximum γ = 14.33◦ before the center aileron constraint
is limited against its lower bound. The ERG successfully limits the controller from moving beyond this and maintains
the constraint, settling into this lower-angle flight path.
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Fig. 11 ERG can stabilize the otherwise instable system at η = 23◦ and targeting γ = 10◦, and properly reach
the desired target γ in about 50 s.

Fig. 12 ERG limits the system response to prevent going beyond constraint bounds by capping γ = 14.33◦,
resulting in the center aileron lower bound being actively constrained.

Fig. 13 SRG also limits the system response to prevent going beyond constraint bounds, but caps at a lower
γ = 11.74◦ and does not have any active nonlinear system constraints due to system mismatch.

As before, this behaves better than the corresponding SRG due to the divergence between the linear and nonlinear
responses, as in the SRG response in Fig. 13.

The SRG has a limit of γ = 11.74◦, preventing the system from going beyond the constraint bounds, but has no
constraints active at the final state at the end of the simulation. This is because the linear system’s constraints are active,
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but due to the mismatch between the linear and nonlinear systems, results in only the linear, and not the nonlinear,
system not being actively constrained.

VII. Addition of Turbulence to the Controller Output
Adding in a simple turbulence model to the VFA model, as done in [8], where random velocities are added to the

local velocity vectors of each of the three wing sections. This simulates variances in wind through these parameters.
The random numbers are obtained from a normal, Gaussian, distribution with a standard deviation of 1 ft/s and a mean
of 0 ft/s. These are added to each of the ui and wi for each of the three wing sections i, as in

ûi = ui +N(0ft/s, (1ft/s)2),
v̂i = vi,

ŵi = ui +N(0ft/s, (1ft/s)2),
(46)

where ûi and ŵi are the new velocity values used in place of the original ui and wi in the modeling equations when the
wind model is active andN is a normal distribution. As turbulence is only added in the sectional x̂i and ŷi directions, v̂i
is the same as before. This is due to the longitudinal model, in which v2 must be 0, and the disturbances on sections 1
and 3 are symmetrical in order to remain within the longitudinal plane. For the ERG, we first use predictions for the
DSM obtained without the wind disturbance in the model; however, the last state that is obtained from the simulation is
used in the modeling of the ERG, and so the ERG still must account for an initial value of disturbance when propagating
the system forward in time. When we run these simulations, the ERG is still able to perform well, providing responses
that still generally prevent constrained region excursions. For example, Fig. 14 shows the first case, η = 5◦ and γ = 5◦,
where the ERG is successfully able to prevent large deviations from the constraints and maintain the desired γ.

Fig. 14 ERG is able to maintain the stability of the system during the random disturbances while preventing
large exceedances in the control parameters despite added turbulence model.

In the case as above where we do not include a wind disturbance in the prediction model for the ERG when
calculating Ûv, the controller reaches a steady state where the average disturbance is right on the constraint line, meaning
that we are continuously moving out of the constrained region. To illustrate this, we look at a simulation with η = 23◦,
target γ = 20◦, and the constraints are

22◦ ≤ η ≤ 24◦,
−35◦ ≤ δao ≤ 30◦,

−35◦ ≤ δec ≤ 30◦,
10◦ ≤ δac ≤ 20◦.

(47)

As before, the turbulence standard deviation is 1 ft/s. In Fig. 15, simply propagating the system forward, while
constraining the simulation before reaching the desired γ = 20◦, does not adequately prevent δac from moving below its
10◦ lower limit. This is because this ERG formulation does not include the turbulence disturbance in the ERG prediction
simulation. Thus, on average, the mean disturbance is 0 ft/s, and so after enough time the simulation tracks towards the
γ = 17.58◦ obtained from the case with no wind disturbance.
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Fig. 15 ERG without the wind included in the prediction simulation cannot adequately prevent the center
aileron from moving beyond lower constraint limit.

Adjusting the model to include this wind in the prediction simulation provides much more favorable results in Fig.
16. The ERG caps the flight path angle at about γ = 14◦, much lower than before, and successfully prevents the large
constraint violations from Fig. 15.

Fig. 16 ERG with the wind included in the prediction simulation prevents most excursions beyond the lower
constraint limit for the center aileron.

VIII. Conclusion
An LQ-I controller in combination with an ERG was presented that shows this control scheme is effective for the

control of a multibody aircraft in longitudinal flight, based on the aircraft model provided by [7]. This control scheme
provides good performance in constrained control, and can act well even as the nonlinear and linear models diverge,
providing better performance than a similar SRG, and helps to stabilize a system that would otherwise be unstable due
to the control surface deflections that would otherwise be requested by the LQ-I controller alone. Furthermore, this
control method can provide constrained control even under the case of a stochastic turbulence model. Additional studies
would be needed on higher-order models that cover more of the dynamics, not just longitudinal dynamics, to assess the
effectiveness of this controller under conditions closer to those that would be seen in a real-world aircraft.
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