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Over the past year, a handful of new gravitational wave models have been developed to include multiple

harmonic modes thereby enabling for the first time fully Bayesian inference studies including higher modes

to be performed. Using one recently developed numerical relativity surrogate model, NRHybSur3dq8, we

investigate the importance of higher modes on parameter inference of coalescing massive binary black

holes. We focus on examples relevant to the current three-detector network of observatories, with a

detector-frame mass set to 120 M⊙ and with signal amplitude values that are consistent with plausible

candidates for the next few observing runs. We show that for such systems the higher mode content will be

important for interpreting coalescing binary black holes, reducing systematic bias, and computing

properties of the remnant object. Even for comparable-mass binaries and at low signal amplitude, the

omission of higher modes can influence posterior probability distributions. We discuss the impact of our

results on source population inference and self-consistency tests of general relativity. Our work can be used

to better understand asymmetric binary black hole merger events, such as GW190412. Higher modes are

critical for such systems, and their omission usually produces substantial parameter biases.

DOI: 10.1103/PhysRevD.101.124054

I. INTRODUCTION

During their first and second observing runs, the

Advanced LIGO [1] and Virgo [2] ground-based gra-

vitational wave (GW) detectors have identified several

coalescing compact binaries [3–9]. GW detectors are

exceptionally sensitive to very massive objects [10], and

the majority of compact binaries observed to date are pairs

of Oð30 M⊙Þ binary black hole (BBH) systems [9]. The

early analysis of these signals used semianalytical approx-

imations to general relativity [11–13]. More recently, better

approximations to general relativity have been developed

[14–18], which include more of the available physics such

as higher-harmonic modes.

Previous investigations have demonstrated that neglect-

ing some of the physics present in real signals produces

biased inferences for compact binaries; conversely, includ-

ing full physics enables sharper inferences. For instance,

studies [19–27] have shown that the nonquadrupole modes,

while being subdominant, can play a non-negligible role in

detection and parameter estimation, particularly for high

signal-to-noise-ratio (SNR), large total mass, high mass

ratio, or systems favoring an edge-on orientation. In addi-

tion, nonquadrupole modes can help break the degeneracy

between the binary inclination and distance,which is present

for quadrupole-mode-only models (see e.g., [14,28–30]).

The recent observation of GW190412 during the third

observing run of LIGO and Virgo has highlighted the

significance of higher-harmonic modes for the parameter

estimation of unequal mass BBH mergers [31]. Using both

precessing and aligned-spin models that included the

effects of subdominant modes, it has been demonstrated

that a measurable contribution of modes beyond the

dominant quadrupolar mode was present in the data of

GW190412. This underscores the need for such models for

future observing runs.

For the first set of gravitational-wave observations, the

massive binary black holes which dominate current obser-

vations produce short signals of modest SNRs. For the first

event, GW150914 [3], where detailed followups were
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done, the systematic errors due to the quadrupole-mode-

only approximation is generally smaller than the statistical

errors [32,33], although higher modes may lead to modest

changes in some of the extrinsic parameter values [30]. A

recent study [32] considering GW150914-like events of

near-equal mass and modest amplitude has concluded that

neglecting sub-dominant waveform modes did not lead to

bias and quadrupole-only models will suffice to character-

ize the observationally-accessible parameters of astrophysi-

cal binary black holes in the immediate future. However,

as pointed out in Ref [32], at the time of that study there

were no recovery models including higher modes and the

systems considered were q ≈ 1.2 and a detector-frame

total mass of 74. Recently, Chatzioannou et al. [34] have

reanalyzed GW170729, using IMRPhenomHM [14],

SEOBNRv4HM [15], and NRSur7dq2 [18] and found that

despite weak evidence for higher-order harmonic modes

their inclusion in the analysis leads to increased support for

unequal masses.

With newly developed multimode models it is now

possible to revisit these questions. We can now compute,

for example, the true posteriors using recovery models with

multiple harmonic modes that can then be compared to

posteriors recovered with dominant modes only. Such

comparisons will allow us to precisely quantify the infor-

mation gained by using subdominant modes. For example,

even for an equal-mass system, we observe that the

posterior produced without subdominant modes will expe-

rience a noticeable shift toward (incorrectly) favoring

lighter binary systems with more negative χeff values

(cf. Figs. 1 and 4). In fact this preferential bias appears

to be a common feature across many of the cases we have

considered.

In this paper, we use concrete examples of end-to-end

parameter inference to quantify how much approximations

that neglect subdominant modes can impact the interpre-

tation of gravitational-wave events. Unlike previous stud-

ies, which typically used either a single detector, low

signal-to-noise ratios (SNRs), or a Fisher matrix analysis,

our fully Bayesian study uses a three-detector network with

SNRs typical of detections expected in the near future. We

demonstrate these inference biases occur even at moderate

signal amplitude for some configurations, growing extreme

at amplitudes expected for some sources when LIGO

reaches design sensitivity [35].

We also explore additional physics that can be extracted

with nonquadropoles modes using a spin-aligned model,

such as improved measurability of individual spin compo-

nents, final mass and spin properties of the remnant, black

hole kicks [36], source population inference, and self-

consistency tests of general relativity. For example, in the

context of nonspinning BBH systems, Ref. [37] has

demonstrated that when higher-modes are omitted from

the recovery model, its effect can mimic deviations from

general relativity.

Our examples target sources with detector-frame masses

Mz ≃ 120 M⊙, comparable to the detector-frame masses

expected for typical near-future binary black hole obser-

vations (e.g., pairs of 35 M⊙ BHs at moderate redshift). For

comparison, as ground-based detector networks approach

design sensitivity and regularly detect sources near z ≃ 1, a

merging pair of BHs near the pair-instability mass-gap

(50 M⊙) observed at z ≃ 1 would have a detector-frame

mass of Mz ≃ 200 M⊙ [38]. We also consider target

sources with mass ratios in the range 1 ≤ q ≤ 7. To date

most LIGO/Virgo events show support only for systems

with mass ratios less than 2 [9]. The recent observation of

GW190412 [31] has now shown that we should expect to

observe larger mass ratio systems in the future. For

example, unequal mass systems are generically expected

for BBH mergers within the accretion disks of active

galactic nuclei [39]. Furthermore, the first and second

observing runs [9] have already observed compact objects

over a mass range of 1.3 M⊙ to 85 M⊙ suggesting

combinations involving mass-ratios as large as 7 are not

unreasonable for LIGO/Virgo to observe.

This paper is organized as follows. In Sec. II we introduce

the GW signal model and parameter inference techniques

used in this work. In Sec. III we survey the results of

parameter inference on a sequence of synthetic high-mass

binary black holes with systematically-varied mass ratio,

spin, and signal amplitude. We specifically address how

higher modes impact inference, comparing parameter infer-

ences performed with the full NRHybSur3dq8 model and

with a model truncated to include only l ¼ 2 modes. In

Sec. IV we discuss some consequences of our analysis. We

conclude in Sec. Vwith some brief remarks and futurework.

II. PRELIMINARIES

A. Gravitational wave model

A coalescing compact binary in a quasicircular orbit can

be completely characterized by eight intrinsic parameters,

namely the individual masses, mi, and spin vectors, Si, of

each compact object. Gravitational waveform models and

inference codes often employ parametrizations involving

the system’s total mass, M ¼ m1 þm2, the mass ratio,

q ¼ m1=m2; ð1Þ

where m1 ≥ m2, the dimensionless spins,

χ i ¼ Si=m
2
i ; ð2Þ

on the individual black holes (BHs), and an effective spin

parameter [40–42],

χeff ¼ ðS1=m1 þ S2=m2Þ · L̂=M; ð3Þ

which is a weighted combination of the spins projected

along the normalized orbital angular momentum vector L̂.
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We will express the dimensionless spins in terms of

Cartesian components χi;x, χi;y, χi;z, expressed relative to

the source frame. We define this frame such that the z-axis
is along the orbital angular momentum direction, which is

constant for nonprecessing BBH systems. Since our focus

is on the impact of higher-harmonic modes, we restrict

ourselves to the 4-dimensional space of nonprecessing

BBHs where nonquadropole, inspiral-merger-ringdown

(IMR) models are more mature. Such systems are charac-

terized by χi;x ¼ χi;y ¼ 0 and jχ1zj, jχ2zj ≤ 1.

When discussing waveform models, it is common

practice to introduce a complex gravitational-wave strain

hþðt; tc; ι;ϕc; λ⃗Þ − ih×ðt; tc; ι;ϕc; λ⃗Þ

¼
X

∞

l¼2

X

l

m¼−l

hlmðt − tc; λ⃗Þ−2Ylmðι;ϕc; Þ; ð4Þ

which is subsequently decomposed into a basis of

spin-weighted spherical harmonics −2Ylm. Here λ⃗≡

ðq;M; χ1z; χ2zÞ is used to denote the signal’s dependence

on the intrinsic parameters, ι is the inclination angle

between the orbital angular momentum of the binary and

line-of-sight to the detector, tc is the coalescence time, and

ϕc is the orbital phase at coalescence. Most gravitational

waveform models make predictions for the modes hlmðtÞ,
from which the gravitational-wave strain detected by a

ground-based interferometer,

hðt; Λ⃗Þ ¼ 1

r
Fþðra; dec;ψÞhþðt; tc; ι;ϕc; λ⃗Þ

þ 1

r
F×ðra; dec;ψÞh×ðt; tc; ι;ϕc; λ⃗Þ; ð5Þ

is readily assembled. The signal’s dependence on four

additional extrinsic parameters are the polarization angle

(ψ ), the luminosity distance to the source’s center-of-mass

(r), and sky location determined by the right ascension (ra)

and declination (dec). The antenna patterns Fðþ;×Þ project
the GW’s þ- and ×-polarization states, hðþ;×Þ, into the

detector’s frame. We shall use Λ⃗≡ ðra; dec;ψ ; r; tc; ι;ϕc; λ⃗Þ
to denote the signal’s dependence on all 11 parameters

defining the problem.

Until recently, all spinning IMR models had set hlm ¼ 0

except for the dominant h2;�2 quadrupole modes. The

expectation had been that higher modes will not substan-

tially affect parameter inference for the O2 gravitational-

wave observations, which are characterized by low SNRs

and mostly face-on events of near-equal mass [22,25,32].

Over the past year or so, three new aligned-spin

IMR models have been built to include nonquadropole

modes: (i) a phenomenological frequency-domain model,

IMRPhenomHM [14], includes the ðl; jmjÞ ¼ ð2; 2Þ;
ð3; 3Þ; ð4; 4Þ; ð2; 1Þ; ð3; 2Þ; ð4; 3Þ modes; (ii) an effective-

one-body time-domain model, SEOBNRv4HM [15],

includes a similar set of ðl; jmjÞ ¼ ð2; 2Þ; ð3; 3Þ; ð4; 4Þ;
ð5; 5Þ; ð2; 1Þ modes; (iii) a time-domain surrogate model

for hybridized nonprecessing numerical relativity wave-

forms, NRHybSur3dq8 [16], includes all of the l ≤ 4 and

(5,5) spin-weighted spherical harmonic modes but not the

(4,1) or (4,0) modes.

Our study will use NRHybSur3dq8 as it both includes

the most modes and is expected to be more accurate

when evaluated within its training region (cf. Fig 6 from

Ref. [16]) of mass ratio q ≤ 8, and jχ1zj, jχ2zj ≤ 0.8. For the

20 Hz starting frequency considered here, this model is

valid for the entire LIGO band for stellar mass binaries with

total masses as low as 2.25 M⊙. We evaluate the model

through the PYTHON package GWSurrogate
1
[44,45]. The

GWSurrogate package provides direct access to the GW’s

harmonic modes hlmðtÞ appearing in the sum (4).

By comparing to NR, Ref. [16] has computed the

NRHybSur3dq8 model’s mismatches (averaged over many

points on the sky) as a function of total mass using the

Advanced LIGO design sensitivity noise curve. For the

120 M⊙ total mass systems predominantly used in our

studies, the single-detector mismatches have a median

value of 1 × 10−5. A sufficient condition for two waveform

models (in this case NR and NRHybSur3dq8) to be

considered indistinguishable is [32,46–48]

M <
D

2ρ2
; ð6Þ

where M is the mismatch and ρ is the signal-to-noise ratio

(SNR). Here D is an unknown constant that is sometimes

associated with the number of model parameters [49], with

D ¼ 4 for our spinning BBH model. Furthermore, if the

likelihood can be approximated by a Gaussian then an

expression for D can be obtained in terms of a chi-squared

distribution with 4 degrees of freedom [50]. Using this

value for D and a typical mismatch value quoted above,

we find that the NRHybSur3dq8 model will give robust

parameter estimates so long as ρ≲ 450. Even using

pessimistic values (D ¼ 1 and the 95th percentile of

mismatch errors 7 × 10−5) we find that NR and our model

will be indistinguishable according to Eq. (6) so long

as ρ≲ 85.

For context, we note that in the first and second

observing runs most BBH signals had a network SNR

of about 15 and spanning a range of 10 to 30. In the

upcoming observing run we would expect typical BBH

SNRs to be between 10 and roughly 40, based on the

cumulative distribution of the loudest SNR ρ among n

identified events (½1 − ðρ=10Þ3�n using a fiducial value

n ¼ 30). We caution the reader that in practice the

1
We use GWsurrogate version 0.9.f4; 5g, which exactly agrees

with the lalsimulation [43] implementation of the NRHyb-
Sur3dq8 model.
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condition in Eq. (6) should only be taken as a rough

estimate. For instance, it features an unknown constant D
while the NRwaveforms themselves have small, systematic

sources of error that would prevent any model to claim

indistinguishability from general relativity beyond esti-

mates of this systematic error [51]. Finally, the definition

of “indistinguishable” is not synonymous with “identical

posterior distributions”. Indeed, Fig. 4 shows that even for

simple systems at low SNR, which easily satisfy Eq. (6),

there can be noticeable discrepancies between the recov-

ered posteriors. For example, using a single interferometer

the mismatch between lmax ¼ 5 and lmax ¼ 2 models for a

nonspinning, equal-mass system is 0.0021, and so Eq. (6) is

satisfied at SNRs less than 30.

Due to the absence of higher-mode models for spinning

BBH systems until recently, previous parameter-inference

studies that have focused on the information content

available higher modes have either used quadrupole-only

(recovery) models or leveraged the Fisher matrix frame-

work. For high-accuracy, high-SNR scenarios involving the

3-detector network neither of these are fully sufficient. For

example, with the quadrupole-only model the reference

(“true”) posterior will not be possible to compute in

principle. Additionally, some of these models may have

modeling errors in the dominant mode that could become

noticeable at high SNR [52–54].

B. Bayesian inference

The likelihood of GW data in Gaussian noise has the

form (up to normalization),

lnLðλ; θÞ ¼ −
1

2

X

k

hhkðλ; θÞ − dkjhkðλ; θÞ − dkik

− hdkjdkik; ð7Þ

where hk are the predicted response of the kthdetector due
to a source with parameters (λ, θ) and dk are the detector

data in the kth instrument; λ denotes the combination of

redshifted total mass Mz and the remaining intrinsic

parameters needed to uniquely specify the binary’s dynam-

ics; θ represents the seven extrinsic parameters (4 space-

time coordinates for the coalescence event and 3 Euler

angles for the binary’s orientation relative to the Earth); and

hajbik ≡
R

∞
−∞

2dfãðfÞ�b̃ðfÞ=Sh;kðjfjÞ is an inner product

implied by the kth detector’s noise power spectral density

(PSD) Sh;kðfÞ. In practice we adopt both low- and high-

frequency cutoffs fmax, fmin so all inner products are

modified to

hajbik ≡ 2

Z

jfj>fmin;jfj<fmax

df
½ãðfÞ��b̃ðfÞ
Sh;kðjfjÞ

: ð8Þ

The joint posterior probability of λ, θ follows from Bayes’

theorem:

ppostðλ; θÞ ¼
Lðλ; θÞpðθÞpðλÞ

R

dλdθLðλ; θÞpðλÞpðθÞ ; ð9Þ

where pðθÞ and pðλÞ are priors on the (independent)

variables θ, λ. Following most previous work [9,55,56],

we adopt uninformed separable priors for parameter

inference.

C. RIFT

To construct the posterior distribution, we use the RIFT

algorithm [56], which iteratively constructs and refines an

approximation to the marginal likelihood

Lmarg ≡

Z

Lðλ; θÞpðθÞdθ; ð10Þ

which appears in Bayes’ theorem for the marginal posterior

distribution for λ. We use an existing program (ILE, which

Integrates the Likelihood over Extrinsic parameters) to

perform the necessary marginalization, for each fixed

source [33,57–59], by marginalizing the likelihood of

the data over the seven parameters characterizing the

spacetime coordinates and orientation of the binary relative

to the earth; see [57,60] paper for technical details.

To achieve rapid turnaround times, we use the new GPU-

accelerated implementation of ILE [60]. Working on the

CARNiE cluster, which includes 15 NVIDIA Tesla V100

GPU-enabled nodes, our current configuration completes

each of the binary black hole analyses presented in this work

in about 15 to 20 hours. When using all 15 GPUs, a single

ILE step for an SNR ¼ 30 case takes about 1 hour to finish.

Following the RIFT algorithm [56], we iteratively con-

struct an approximation to the likelihood by generating and

drawing from approximate posterior distributions, until our

posterior distribution converges. At each iteration, the

likelihood is approximated using Gaussian process regres-

sion with a squared-exponential kernel, with hyperpara-

meters tuned to the likelihood evaluations available at that

iteration.

III. INTRINSIC-PARAMETER BIASES

In this section, we present parameter estimation (PE)

results from sources listed in Table I. All synthetic datasets

use PSDs generated from data near GW170814 [6], when

all three detectors were operational, and are created with

zero noise realizations. Specifically the synthetic detector

data is exactly equal to the expected response due to our

GW source. Since detector noise is assumed to be colored

Gaussian noise with zero mean, using zero noise with the

likelihood defined in Eq. (7) makes our analysis equivalent

to an average over an ensemble of analyses which use

infinitely many noise realizations [32]. For all runs, fmin

and fmax from Eq. (8) are 20 Hz and 2000 Hz, respectively.
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Each synthetic dataset includes an injected signal from the

expected response at each detector due to our GW source

using the NRHybSur3dq8 model and including all of the

surrogate’s available lmax ¼ 5 modes (see Sec. II A for the

exact modes, which, for example, only includes (5,5) among

thel ¼ 5modes). Themodel generates awaveformsuch that

the instantaneous initial frequency of the (2,2) mode has a

frequency of 8 Hz, which ensures the (5,5) mode’s instanta-

neous initial frequency is out-of-band. We taper the begin-

ning and end portions of the waveform to avoid artificial

oscillations in the Fourier domain. In particular, since NR

waveforms (and therefore theNRHybSur3dq8model) do not

go to zero by the end of the simulation, we have found it

necessary to taper the last portion of the ringdown signal.

We adopt conventional mass and distance priors, uni-

form in detector-frame mass and in the cube of the

luminosity distance. For our nonprecessing spins, we adopt

a uniform prior for χi;z ∈ ½−0.9; 0.9�. Section IVA consid-

ers the effect of using an alternative spin prior in the context

of high SNR events.

Each of the following subsections describe a set of

related runs, varying one of the problems’ parameters at a

time. For each source configuration, we present parameter

estimates recovered using all of the available higher modes

lmax ¼ 5 (we may sometimes refer to this as the “true” or

reference posterior) and compare with posteriors recovered

using the same model restricted to only the lmax ¼ 2modes

(using jmj ¼ f2; 1g). In Secs. III A (q ¼ 1), III B (q ¼ 4),

and III C (q ¼ 7) we vary the spin configurations of χ1z ¼
χ2z ¼ f−0.8;−0.5; 0.0; 0.5; 0.8g while keeping the net-

work SNR fixed at 30.
2
For this sequence of runs, our

choice of inclination angle, ι ¼ 3π=4, is neither face-on nor
edge-on, but rather constitutes a “general” configuration. In

Sec. III D we consider varying the SNR to explore its effect

on marginalized posterior distributions.

It is known that the contribution of subdominant modes

toward the signal’s power increases as the inclination angle

is increased from a face-on (ι ¼ 0) to an edge-on (ι ¼ π=2)
configuration. As such, we expect our observed biases to be

larger (smaller) when compared to a face-on (edge-on)

system at the same network SNR value. This general

expectation was recently confirmed by Kalaghatgi et al.

[61], where the importance of subdominant modes for

nonspinning systems was quantified by systematically

varying the inclination angle across a range of values. In

our study we have instead fixed the inclination angle to a

value typical of an O2 event [9] while systematically

exploring the impact due to spin. As such our results are

complementary to those of Ref. [61].

A. q= 1

We first look at a set of equal mass runs with the different

spin configurations mentioned above. It is well known

that the relative power of subdominant harmonic modes

are minimized for equal mass BBH systems, so these

cases are expected to minimize bias. Previous studies

[19,22,25,32] have either found negligible bias (for face-

on systems), small bias (for edge-on systems), or quoted

results averaged over the source orientation where again

only very small biases were found. At the time of these

studies [19,22,25,32], however, there were no recovery

models for near-equal mass spinning BBH systems includ-

ing subdominant modes so these results were only sugges-

tive. Here we confirm the general expectation of smaller

bias at q ¼ 1, while also making more precise the nature of

the bias by comparing the true posterior to the approximate

one found with lmax ¼ 2 modes only. For example, in all

cases the true posterior’s peak is located at q ¼ 1, while

some of the biased posteriors have a non-negligible offset

often peaking closer to q ∼ 1.25. From Fig. 1 we also

TABLE I. Parameters of synthetic sources: This table shows the

parameters of all the synthetic sources used in this paper. ι is the

inclination angle between the line of sight of the observer and

the total angular momentum vector, q is the mass ratio defined with

q > 1 [see Eq. (1)], M is the detector-frame total mass, and χ� are
the components of the normalized spins [see Eq. (2)]. As we use a

nonprecessing model, we set all of the in-plane spin components to

0. All luminosity distances are set such that the network signal-to-

noise ratio achieves the value specified under the SNR column.

For example, in our q ¼ 7 sequence the most extreme values of

spin, χeff ¼ −0.8 and χeff ¼ 0.8, are located at 181.4720 Mpc

and 452.5185Mpc, respectively. This large discrepancy in distance

is due to the orbital hangup effect and is explained in greater

detail in Fig. 11. Other extrinsic parameters are fixed to the

following values: right ascension is RA ¼ 0.0, declination is

DEC ¼ 1.5707963, and the polarization angle is ψ ¼ π=4.

ID# ι q M (M⊙) χ1z χ2z SNR

1 π=4 2.267 127.1 0.72 0.0 30

2 3π=4 1.00 120.0 −0.80 −0.80 30

3 3π=4 1.00 120.0 −0.50 −0.50 30

4 3π=4 1.00 120.0 0.0 0.0 10,30,70

5 3π=4 1.00 120.0 0.50 0.50 30

6 3π=4 1.00 120.0 0.80 0.80 30

7 3π=4 4.00 120.0 −0.8 −0.8 30

8 3π=4 4.00 120.0 −0.5 −0.5 10,30,70

9 3π=4 4.00 120.0 0.0 0.0 30

10 3π=4 4.00 120.0 0.5 0.5 30

11 3π=4 4.00 120.0 0.8 0.8 30

12 3π=4 7.00 120.0 −0.8 −0.8 30

13 3π=4 7.00 120.0 −0.5 −0.5 30

14 3π=4 7.00 120.0 0.0 0.0 30

15 3π=4 7.00 120.0 0.5 0.5 30

16 3π=4 7.00 120.0 0.8 0.8 30

2
Given a fixed starting frequency, systems with their BH

component spins (anti-)aligned with the orbital angular momen-
tum will be (shorter) longer. As a result, to achieve a fixed SNR
the spin (anti-)aligned systems must be place located (closer)
farther as compared to a reference nonspinning system.
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observe noticeable shifts in the posteriors 90% confidence

region for anti-aligned configurations.

Figure 1 shows the posterior distributions of the intrinsic

parameters for all the different spin configurations. The

solid lines represent runs that were done with lmax ¼ 2

modes, and the dashed lines represent runs that include all

available lmax ¼ 5. For each run, there is some degree of

difference between the lmax ¼ 2 and lmax ¼ 5 runs. As

anticipated by Ref. [19], which used a non-Bayesian

approach and a single detector, this discrepancy between

FIG. 1. Non-HM and HM runs for q ¼ 1 spin set, with SNR ¼ 30 andM ¼ 120: The first five rows show theM, q, χeff , χ1z, χ2z one-
dimensional marginal distributions, where among this set of figures each column corresponds to a different synthetic source recovered

with either all lmax ¼ 5 modes (dashed line) or lmax ¼ 2 modes (solid line). Our figures are organized such that the injected spin is

systematically increased from left to right, where the synthetic source runs are ID2 (χeff ¼ −.8), ID3 (χeff ¼ −.5), ID4 (χeff ¼ 0), ID5

(χeff ¼ .5), and ID6 (χeff ¼ .8). In each figure’s title, we report the median value and the 90% confidence intervals of the marginalized

1D distribution for the lmax ¼ 2 (left) and lmax ¼ 5 (right) cases. A solid black vertical line denotes the true parameter value. The final

bottom row corresponds to the joint distributions for q vs χeff , M vs χeff , and χ1;z vs χ2;z for all five injections.
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the two distributions become more extreme as the spins

increase toward negative spin. For example, for negative

spins there are noticeable shifts in theM vs χeff posteriors.We

emphasize that even for the simplest case (equal mass and

zero spin), differences between the two results are visible.

Although parameter recovery is not biased in the sense that

all of the injection values lie within their 90% confidence

regions, it is also clear from the figure that the median

recovered using all subdominant modes is almost always

closer to the injection value. This is contrary to the general

expectation that subdominantmodes are largely irrelevant for

equal-mass systems [22,25,32]. Section III D explores how

different network SNRs affect the bias for these systems;

Appendix follows up on the curious differences seen in the

simplest case of zero spin, equal mass.

B. q = 4

We next increase our set of sources to q ¼ 4, a configu-

ration that is most relevant to GW190412-like events.

Similar to the q ¼ 1 case, as far as we are aware, the

existing literature for parameter estimation is comprised of

results for non-spinning recovery models [22], results for

near-equal mass without multi-mode recovery models [32],

or Fishermatrix-based studies [19,25].None of those studies

consider the 3-detector network configuration and a multi-

modal recovery model with fully Bayesian inference. At

larger mass ratios, our study confirms the general expect-

ations described in Ref. [19], although the observed bias is

often even larger than expected; compare to the typical errors

indicated by corresponding green, red, and blue curves in

Fig. 6 of Ref. [19] for our fiducial mass. We also are able to

more carefully quantify the nature of the bias by comparing

to the true posteriors. In particular, similar to the q ¼ 1

systems just considered, neglecting subdominant modes

consistently shifts the posterior toward more extreme anti-

aligned spin configurations with lighter total mass.

Figure 2 shows the posterior distributions for χeff vs q
and χeff vs M for all the different spin configurations. The

solid lines again represent runs that were done with lmax ¼
2modes, and the dashed lines represent runs that include all

available lmax ¼ 5. Similar to Sec. III A, we again see that

the differences become more extreme as the spins increase

toward negative spin. Comparing the same spin configures

between q ¼ 1 and q ¼ 4 runs, it is clear that increasing the

mass ratio dramatically increases the bias between the non-

HM and HM runs. In particular, there are now many cases

where parameter estimates recovered with lmax ¼ 2 modes

do not lie within their 90% confidence regions. Looking at

the two-dimensional posteriors, for example, shows many

cases where either the lmax ¼ 2 posterior either does not

contain the injection value or it is noticeably shifted from

the true posterior. By comparison, in almost all of the

lmax ¼ 5 cases, the marginal posteriors almost perfectly

peak at the true parameters. One notable exception is the

χeff ¼ −0.8 case (the purple distributions in Fig. 2) where

the true parameters seem to lie just inside the 90% con-

fidence region. We suspect this is due to a combination of

(i) the injection being very close to the boundaries of the

prior and (ii) the posterior for a χeff ¼ −0.8 injection is

much wider than the corresponding χeff ¼ 0.8 value, which

does not show this unexpected behavior.

C. q= 7

Finally, we analyze sources with q ¼ 7. Figure 3 shows

the posterior distributions of the intrinsic parameters for all

the different spin configurations. The solid lines again

represent runs that were done with lmax ¼ 2modes, and the

dashed lines represent runs that include all available

lmax ¼ 5. As expected and consistent with the trend seen

in the previous two subsections, we see substantial biases

are often introduced in M, q and χeff if higher modes are

omitted, especially for systems with large negative spin.

Only the higher-mode model is able to make reliable

parameter estimates, except for the large, positive spin

configurations where a quadrupole-only model continues to

do reasonably well. In some cases the biased posterior does

not even overlap with the true one, which would be

problematic for likelihood-reweighting techniques [62],

which require similar posterior distributions.

Somewhat unexpectedly, however, is that the χ1 ¼ χ2 ¼
0.8 system’s posterior shows almost no effect from neglect-

ing subdominant modes; any effect that is present is smaller

than the corresponding equal-mass system with χ1 ¼ χ2 ¼
−0.8. We believe this can be explained by the orbital

hangup effect [63], whereby given two otherwise identical

systems the one with larger aligned spin will experience

more orbits before merger. Consequently, the χ1 ¼ χ2 ¼
0.8 configuration will have more in-band cycles, and

subdominant modes are known to be suppressed during

the inspiral phase. We briefly elaborate on this effect in the

conclusions.

D. Effect of network SNR on biases

In the previous subsections, it was shown that a

significant bias exists at SNR ¼ 30, even for the simplest

systems. This subsection is dedicated to investigating how

the SNR affects the bias. Here we use all the different SNR

runs from ID4 and ID8 in Table I. Figures 4 and 5 show the

posterior distributions for ID4 and ID8 respectively. As the

SNR increases, the posteriors become more precise for both

the non-HM and HM results (i.e., the statistical errors get

smaller). However, the HM results converge on the true

parameters while the non-HM results converge to a point

offset from the true parameter (i.e., the systematic errors

remain the same size and will dominate the statistical

uncertainties). As GW detectors get more sensitive,

the need for HM will become paramount even for the

simplest of events. More sensitive detectors will potentially

bring into view more exotic configurations at low SNRs

which can also be problematic. For example, the weakest
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q ¼ 4, χeff ¼ −0.5 system has noticeable bias. This could

be anticipated by noting that the mismatch between

lmax ¼ 5 and lmax ¼ 2 models at this injection value is

0.06989 and so Eq. (6) is not satisfied.

One particularly challenging configuration was the loud-

est q ¼ 4, χeff ¼ −0.5 system shown in Fig. 5 (solid blue).

In particular, the posterior recovered with the lmax ¼ 2

model shows evidence for a secondary peak widely

FIG. 2. Non-HM and HM runs for q ¼ 4 spin set, with SNR ¼ 30 andM ¼ 120: The first five rows show theM, q, χeff , χ1z, χ2z one-
dimensional marginal distributions, where among this set of figures each column corresponds to a different synthetic source recovered

with either all lmax ¼ 5 modes (dashed line) or lmax ¼ 2 modes (solid line). Our figures are organized such that the injected spin is

systematically increased from left to right, where the synthetic source runs are ID7 (χeff ¼ −.8), ID8 (χeff ¼ −.5), ID9 (χeff ¼ 0), ID10

(χeff ¼ .5), and ID11 (χeff ¼ .8). In each figure’s title, we report the median value and the 90% confidence intervals of the marginalized

1D distribution for the lmax ¼ 2 (left) and lmax ¼ 5 (right) cases. A solid black vertical line denotes the true parameter value. The final

bottom row corresponds to the joint distributions for q vs χeff , M vs χeff , and χ1;z vs χ2;z for all five injections.

FEROZ H. SHAIK et al. PHYS. REV. D 101, 124054 (2020)

124054-8



separated from the primary one. We checked this unex-

pected feature by directly comparing the values of the

likelihood in a small neighborhood around both peaks. The

presence of these two widely separated peaks proved to be

challenging for the current implementation of the ILE/RIFT

algorithm, which uses a single interpolant of the log-

likelihood surface. As a result, running this case took a

significantly longer time while also achieving a compara-

tively lower accuracy, where the accuracy is quantified

by the effective number of adaptive Monte Carlo samples.

FIG. 3. Non-HM and HM runs for q ¼ 7 spin set, with SNR ¼ 30 andM ¼ 120: The first five rows show theM, q, χeff , χ1z, χ2z one-
dimensional marginal distributions, where among this set of figures each column corresponds to a different synthetic source recovered

with either all lmax ¼ 5 modes (dashed line) or lmax ¼ 2 modes (solid line). Our figures are organized such that the injected spin is

systematically increased from left to right, where the synthetic source runs are ID12 (χeff ¼ −.8), ID13 (χeff ¼ −.5), ID14 (χeff ¼ 0),

ID15 (χeff ¼ .5), and ID16 (χeff ¼ .8). In each figure’s title, we report the median value and the 90% confidence intervals of the

marginalized 1D distribution for the lmax ¼ 2 (left) and lmax ¼ 5 (right) cases. A solid black vertical line denotes the true parameter

value. The final bottom row corresponds to the joint distributions for q vs χeff , M vs χeff , and χ1;z vs χ2;z for all five injections.
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FIG. 4. Non-HM and HM runs for a q ¼ 1,M ¼ 120, and zero-spin source (ID4), for different SNRs: The first five rows show theM,

q, χeff , χ1z, χ2z one-dimensional marginal distributions, where among this set of figures each column corresponds to a different synthetic

source recovered with either all lmax ¼ 5 modes (dashed line) or lmax ¼ 2 modes (solid line). Our figures are organized such that the

signal’s network SNR is systematically varied as 10 (orange), 30 (green), and 70 (blue), corresponding to the left, middle, and right

columns, respectively. A solid black vertical line denotes the true parameter value. The final bottom row corresponds to the joint

distributions for q vs χeff , M vs χeff , and χ1;z vs χ2;z for all three injections.
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FIG. 5. Non-HM and HM runs for a q ¼ 4, M ¼ 120, and χeff ¼ −0.5 source (ID8), for different SNRs: The first five rows show the

M, q, χeff , χ1z, χ2z one-dimensional marginal distributions, where among this set of figures each column corresponds to a different

synthetic source recovered with either all lmax ¼ 5 modes (dashed line) or lmax ¼ 2 modes (solid line). Our figures are organized such

that the signal’s network SNR is systematically varied as 10 (orange), 30 (green), and 70 (blue), corresponding to the left, middle, and

right columns, respectively. A solid black vertical line denotes the true parameter value. The final bottom row corresponds to the joint

distributions for q vs χeff , M vs χeff , and χ1;z vs χ2;z for all three injections.
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This case underscores that for high SNR events the omission

of subdominant modes can introduce highly complex like-

lihood surfaces, and prove challenging to explore accurately.

Within the RIFT framework, a recently implemented

Gaussian mixture model sampler is expected to more effi-

ciently sample from complicated likelihood surfaces. This

case also demonstrates how incorrectmodels can accidentally

yield good recovery of some parameters: the marginalized

posterior for χ2 (solid blue curve) looks remarkably accurate

around the primary peak despite the joint posterior (bottom

right panel) being nowhere near the true value.

To quantify the bias between the non-HM and HM runs,

we consider two commonly used measures of bias: (i) clas-

sifying the recovery of a particular parameter as biased if

the injected parameter value is outside of the 90% con-

fidence region and (ii) the Jensen-Shannon divergence

(JSD) between the different parameter distributions.

Given two probability distributions pðxÞ and gðxÞ, the

JSD is defined as

DJSðpjgÞ ¼
1

2
ðDKLðpjsÞ þDKLðgjsÞÞ; ð11Þ

where s ¼ 1=2ðpþ gÞ and

DKLðpjgÞ ¼
Z

pðxÞ log2
�

pðxÞ
gðxÞ

�

dx; ð12Þ

is the Kullback-Leibler divergence (KLD) between the

distributions p and g, measured in bits. For context, this is

the same calculation the LVC performed in [9] to quantify

the agreement between different models. When measured

in bits, the JSD is bounded below by 0. For a sense of

scale, the KL divergence between two one-dimensional

Gaussians with identical standard deviations but differing

means μ1, μ2 is ðμ1 − μ2Þ2=2σ2 ln 2; inverting, JSD ¼ 0.2

corresponds to μ1 − μ2 ≃ 0.5σ.

Figure 6 shows the JSD vs SNR and the simple “bias

classifier” for both the ID4 and ID8 runs, respectively.

Following the discussion in the LSC’s recently published

gravitational-wave transient catalog [9] (cf. Appendix 2.B),

we consider two marginalized posteriors to be sufficiently

different (i.e., biased) if the JSD is greater than ≈0.15. This

number corresponds to a SNR ≃ 30 for non-spinning,

equal-mass binaries; SNR ≃ 10 at q ¼ 4 and χ1z ¼ χ2z ¼
−0.5. Since subdominant modes become more important at

larger mass ratios and more negative values of χeff , the

quoted SNRs provide convenient lower bounds for similar

systems. For example, we expect HMs will also affect the

posterior for systems with SNRs ≥ 30 and q > 1, χeff ≤ 0

(similar to ID4); for systems with SNRs ≥ 10 and q > 4,

χeff ≤ −0.5 (similar to ID8).

IV. DISCUSSION

A. Effect of different spin priors

Besides the impact of subdominant modes, the ability to

accurately measure the spin parameters is also influenced

by the choice in spin prior [64], which is not well informed

by astrophysical observations or source population models.

FIG. 6. The importance of higher modes for loud signals: bias vs SNR: These panels show the JSD vs SNR for source ID4 (left panel)

and ID8 (right panel). Different markers indicate which one-dimensional marginal distribution was used to evaluate the JSD, which are

depicted in Figs. (4) and (5) for ID4 and ID8, respectively. The dashed horizontal blue line demarcates a commonly used threshold for

unacceptably large bias. Markers colored in red indicate that the true value falls outside the 90% credible interval region for the lmax ¼ 2

case (significant bias in the recovered parameter value), while those colored in green indicate the opposite. For lmax ¼ 5, the true value is

almost always within the 90% credible interval region except the parameter q in the q ¼ 1 case, where the true value lies at the edge;

despite not being in the he 90% credible interval the marginalized distribution for q obtains its maximum value at q ¼ 1 (cf. row 2 of

Fig. 4). Markers in gray indicate the JSD for the final remnant masses and spins.
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In our study, we have used a prior which is uniform in χz
(P1). However, many of the LVC’s analysis assume a prior

that is uniform in spin magnitude, jχ⃗j, and on the 2-sphere,

which, for our nonprecessing model, would induce a prior

by projection of χ⃗ along the orbital angular momentum

vector (P2). When assuming this spin prior, the peak of the

PDF of the individual component spins will strongly favor

zero. To see how these two significantly different priors

affect the ability to measure the spins, we compare

posteriors for two runs ID2 and ID6 with SNR ¼ 30

assuming the two different priors. Figure 7 shows the

individual χ�z spins as well as the effective spin χeff for each
spin prior. Despite using a strong source, all spin param-

eters are significantly perturbed by the prior choice, similar

to results found in previous work [64].

B. Consequences of biases for remnant properties

and consistency tests

Using the posterior distributions of the BBH system’s

component masses and spins one can compute the remnant

mass, Mf, and spin, af of the final (merged) black hole.

The values of ðMf; afÞ are interesting in their own right as

they can be used to infer a population of astrophysical

compact objects that formed through the merger of a BBH

system. Another use of ðMf; afÞ is to test the consistency of
general relativity by predicting these remnant values found

from (i) the post-merger portion of the signal which is

described by a ringdown signal characterized entirely by

ðMf; afÞ and (ii) the inspiral portion of the signal where we
compute the BBH system’s component values and, using

numerical relativity, arrive at an alternative estimate of

ðMf; afÞ. If general relativity correctly describes the

system’s entire evolution, we should expect the remnant

values found through each to be mutually consistent [65]. A

closely related test uses the remnant values computed with

the inspiral-only portion of the signal to infer the expected

quasinormal mode (QNM) of ringdown signal, and then

comparing this predicted QNM spectrum with the QNMs

estimated directly from the ringdown-only portion of the

data [65]. A different, but related, set of tests of the no-hair

theorem also benefit from the inclusion of both higher

harmonics and as well as quasinormal mode overtones [66].

All of these studies require accurate measurement of the

system’s remnant masses and spins. For example, unac-

ceptably large bias in these quantities could provide

misleading evidence for failed GR consistency tests, unless

the quadrupole-only premerger and postmerger models

make a serendipitously incorrect inference of the remnant

properties (i.e., both models are incorrect but in a consistent

manner).

In this subsection we explore bias in the remnant

properties implied by the posterior distributions computed

in Sec. III as the SNR increases. We compute the remnant

mass and spin magnitude by evaluating the high-accuracy

fitting formula provided by the surfinBH PYTHON package

[67] on the posteriors computed using lmax ¼ 5 and

lmax ¼ 2 recovery waveform models.

As the first example, where we expect minimal bias,

we consider the q ¼ 1, zero-spin source system (ID4)

whose posterior distributions for SNRs ¼ f10; 30; 70g are

reported in Fig. 4 from which we compute remnant

posteriors in Fig. 8 (left set of figures). While the true

remnant values are contained within all of the joint

posteriors’s 90% credible region, we begin to see modest

bias indicating impact from the higher-modes when the

signal’s strength reaches an SNR value of 70. This is

quantified in Fig. 6 which shows the Jensen-Shannon

divergence for Mf and af are 0.24 and 0.17, respectively.

For context, values above 0.15 are typically considered to

reflect non-negligible bias [9]. At all values of the SNR,

we find the lmax ¼ 5 posterior more tightly constrains the

true values.

Figure 8 also shows a similar sequence for the q ¼ 4,

χeff ¼ −0.5 source (ID8) where now the true remnant

values are no longer contained within the 90% credible

intervals by SNR ¼ 30. As seen from Fig. 6, the JS

divergence is already close to, or greater than, 0.15 at

SNR ¼ 10. This suggests that higher modes are very

important when estimating the remnant values from such

systems, and neglecting them would incorrectly lead to a

failure of the IMR consistency test for essentially any event

we might conceivably observe similar to ID8.

C. Consequences of biases on

population reconstruction

In a second and more qualitative example of the impact

of parameter biases due to neglect of physics, we consider

astrophysical inference for the mass, mass ratio and spin

distribution of coalescing BHs. For example, consider an

SNR ¼ 30, zero-spin BBH event with q ¼ 4. As illustrated

by the green curves in Fig. 2, inferences which neglect HMs

would deduce negative effective spin (and a more extreme

mass ratio). A single source with definitively negative χeff
would be interpreted as a strong indication for dynamical

formation in samples of less than several hundred mergers.

Such biased inferences for high-amplitude sources could

thus be misinterpreted to support qualitatively different

formation channels (e.g., dynamical formation) than sup-

ported by the true parameters, which are well characterized

by multimodal PE.

More typically, parameter biases due to model incom-

pleteness enter more insidiously into astrophysical infer-

ence, since population inference relies on combining

information from multiple sources and since systematic

biases impact all sources at a similar level. Following [68],

we estimate that parameter biases Δx ¼ xtrue − xmedian will

be significant for a population of N sources if the bias can

be identified in the population mean by stacking observa-

tions: in other words, if Δx≳
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2stat þ σ2astro

p

=
ffiffiffiffi

N
p

where

σstat and σastro are the statistical error in x and the width of
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FIG. 7. The effect of priors on spin measurability: Individual and effective spin parameter recovery assuming two different priors,

using synthetic datasets ID2 (q ¼ 1, χeff ¼ −.8) and ID6 (q ¼ 1, χeff ¼ .8) with SNR ¼ 30. The dashed curve represents the results

using a prior that assumes uniform spin magnitudes in χz (P1; uniform prior), and the dotted curve represents the results using a prior that

assumes uniform spin magnitudes in χ⃗ (P2; aligned spin z prior). Despite the high value of SNR used here, we observe that the choice of

prior has a significant influence on the recovered posteriors.
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the astrophysical distribution of x, respectively. In terms of

the JSD we anticipate that systematic differences in wave-

forms must produce a change in posteriors less than JSD ¼
0.15=N to have no effect on population inference. Our

examples show that even for zero-spin (but unequal-mass)

binaries, inferences about the mass ratio, total mass, and

effective spin in moderate-SNR sources can be significantly

biased by the lack of HM. If a population of unequal mass-

ratio binaries exist and has a spin distribution qualitatively

similar to the seemingly low-spin BH population identified

in O2, even inferences drawn from a handful of observations

could be noticeably biased about BH masses and spins.

D. A GW170729-like source

While much of our focus has been on fiducial BBH

systems, it is also interesting to consider sources that are

similar to events from the most recent observing run. In this

subsection, we analyze a synthetic source that has param-

eters (cf. ID1 in Table I) similar to GW170729, one of the

more interesting events from O2. As mentioned in [9,61],

the SNR of GW170729 was ∼12. However, to better

highlight the importance of HMs for this event, we instead

consider a GW170729-like event located at a distance such

that the SNR is 30. For consistency with other synthetic

events analyzed throughout this paper, we set χeff ¼ 0.5 as

its true value, which is near the upper end of the 90%

credible interval t [34]. Note that although χeff ¼ 0.5, we

now have χ1z ≠ χ2z ¼ 0. We continue using a uniform spin

magnitude in χz as our spin prior.

Figure 9 shows the posterior distributions for the runs

that include only lmax ¼ 2 (solid lines) and include all the

lmax ¼ 5 (dashed lines). As with all the results in Sec. III,

we see a significant bias between the two runs in all the

parameters. For example, we see that the lmax ¼ 5 model

does a much better job at recovering the individual spin

components as well as placing somewhat tighter constraints

on the spin of the larger BH, χ1z. Interestingly, we see a

similar shift in q and χeff that was observed in a recent

reanalysis of the actual GW170729 event [34]. As our

detectors continue to get more sensitive, we will increas-

ingly see events with parameter and SNR values similar to

the synthetic source ID1 considered here.

E. Comparison to previous works

Previous studies [19–27,30,32,61] have also considered

the impact of subdominant modes on parameter estimation,

FIG. 8. Effect of higher-order modes on remnant values and IMR consistency tests: These panels show marginal distributions for

remnant properties of the redshifted mass,Mf , and spin, af, for a non-spinning, q ¼ 1 source (ID4; left panels) and χeff ¼ −0.5, q ¼ 4

source (ID8; right panels). Our figures are organized such that the signal’s network SNR is systematically varied as 10 (orange), 30

(green), and 70 (blue), corresponding to the left, middle, and right columns of each panel.
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and we have made qualitative comparisons to some of these

works throughout our paper.

In this subsection, we furnish a more quantitative

comparison by considering one commonly used measure

of bias. Instead of using the Jensen-Shannon divergence to

compare two marginalized posterior distributions, we now

compute the bias,

βλ ¼
Δλ

σλ
; ð13Þ

as a ratio of the systematic error, Δλ ¼ jλinjected − λrecoveredj,
to the 1σ statistical error in the one-dimensional posterior,

σλ. The quantity βλ can be used to compare with Varma

et al. [19,25] and Kalaghatgi et al. [61]. We follow the

choice of Refs. [22] where λrecovered is taken to be the

maximum a posteriori (MAP) value. Note that Ref. [61]

instead defined the recovered value to be the median

value while Refs. [19,25] used the parameters that

maximize the match, which is similar to the maximum

likelihood estimate.

We now summarize to what extent our results are

consistent with previous ones. Broadly speaking, our find-

ings are in agreement with both Kalaghatgi et al. and Varma

et al., although there are some differences, which is to be

expected. Indeed, our injected signals have larger SNRs,

our gravitational-wave recovery model is different, and

our setup uses a coherent Bayesian inference on the

combined datasets from the current three-detector network

of observatories.

1. Comparison to Varma et al.

References [19,25] have used NR hybrids to map out

where in the parameter space systematic errors from using

quadrupole-only templates dominate over the expected 1σ

statistical errors. Such regions characterize where neglect-

ing subdominant modes will lead to unacceptably large

FIG. 9. GW170729-like event: Posterior plots for the ID1 run: q ¼ 2.267, MðM⊙Þ ¼ 127.1, χ1z ¼ 0.72, χ2z ¼ 0.0, SNR ¼ 30. The

solid and dashed lines represent the lmax ¼ 2 and lmax ¼ 5 runs respectively. When including HM, we are able to improve the recovery

of individual spin components. We also see a significant shift in the q and χeff distributions.
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errors in the parameter estimates. Statistical errors were

estimated using Fisher information matrix approximations

with a single detector setup, while the value of λrecovered
was taken to be the best fit parameter values using a

IMRPhenonD recovery model. The injected signal’s

strength was set to achieve a sky-averaged value of

SNR ¼ 8 (corresponding to an optimal orientation SNR

of about 20), and they take a weighted average of the bias

over a population of binaries with isotropic orientations.

Finally, while the effective spins of the injections they

consider are similar to ours, the individual spin components

are different.

Our main point of comparison is with Fig. 1 of Ref. [19],

where the authors identify where in the parameter space

subdominant modes are important by considering where βλ
exceeds 1. By this measure, in our study subdominant

modes are important for parameter estimation for all of the

cases shown in Fig. 10 except χeff ¼ 0.5 and q ≤ 4. By

comparison, Varma et al. find that nearly all of these cases

show no bias; only χeff ¼ −0.5 and large-mass ratio

systems are require subdominant modes to be included

in the model. As such, for heavy BBH systems, our results

indicate that subdominant modes are required over a larger

region of the parameter space as compared to the general

conclusions of Ref. [19]. The most likely explanation for

this discrepancy is the different SNR values used in our

studies. While typically the largest SNR in any given

detector is about 20, our signal’s network SNR is 30.

We also point out that all of the trends evident in Fig. 1 of

Ref. [19] have been confirmed in our fully Bayesian, three-

detector setup. Most interestingly that at a fixed SNR the

impact of subdominant modes will depend strongly on χeff ,

FIG. 10. Parameter biases, βλ, for λ ¼ fM; q; χeffg recovered with either all lmax ¼ 5 modes (dashed line) or lmax ¼ 2 modes (solid

line). We consider different synthetic sources by varying q ¼ f1; 4; 7g and χeff ¼ f−.5; 0; .5g while fixing SNR ¼ 30 and M ¼ 120.

(Note: The marginalized posteriors for these systems are shown in Figs. 1, 2, and 3 which report the 90% confidence interval values,

instead of the 68% values used to compute βλ). To compare with Ref. [61], we also show the bias (green stars) for a similar set of

nonspinning synthetic sources recovered with the quadrapole-only IMRPhenomD model. Broadly speaking, given the many differences

in our setup, our findings are in general agreement with Ref. [61]. Note that the apparent disagreement in βq appears to be due to our

definition of the bias (see text). Finally, we also show the average bias, ðβM þ βq þ βχeff Þ=3 in the bottom right panel. Here we clearly

see general trends typically observed in our studies: subdominant modes are increasingly important as the value of the mass ratio

increases and/or effective spin decreases, and recovery models that include all modes reduces bias in all cases.
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with almost no bias observed for large, positive spins. We

return to this issue in the conclusions.

2. Comparison to Kalaghatgi et al.

A very recent study by Kalaghatgi et al. [61] used a

two-detector Bayesian setup and studied the impact of

subdominant modes for nonspinning systems while sys-

tematically varying the inclination angle. In this study, NR

hybrids are used as the signal template and a quadrupole-

only IMRPhenomD recovery model is used. Indeed,

their choice of M ¼ 100 and SNR ¼ 25 makes their setup

closely analogous to ours, which facilitates direct com-

parison for non-spinning systems. We compare to their set

of runs where the injected signal’s inclination is set to

60 degrees, which is close to our value of 45 degrees.

In Fig. 10 we plot (green star) the bias due to omitting

subdominant modes as reported in Ref. [61]. These should

be comparedwith our nonspinning,lmax ¼ 2 (green circles;

solid green line) biases. The dependence of βM and βχeff with

mass ratio is in broad agreement, with both results showing a

similar up-down pattern. Our smaller values of βM and βχeff
indicate less error due to neglecting subdominant modes,

which is somewhat surprising seeing as our network SNR is

larger. This is most likely due to the fact that we inject and

recoverwith the sameNRsurrogatemodel.Our values forβq
appear to show disagreement, which is mostly due to

differing choices for the recovered value. Indeed, since

many of our posteriors in q peak at q ¼ 1 the bias is 0,

whereas the mean is offset from 1. We have checked that

when switching to the definition used in Kalaghatgi et al.

our bias values are more consistent with values of about

1.4, 1.4 and 2.7 at q ¼ 1, q ¼ 4, and q ¼ 7, respectively.

F. Measuring individual black hole spins

It is well known that while individual spins are difficult

to measure, the effective spin parameter, χeff , is much better

constrained. A recent study [69] systematically explored

this question in the context of a single gravitational-wave

detector by using the quadrapole-only SEOBNRv2 model

[70,71]. The general conclusion of this work (see Figs. 1

and 4 of Ref. [69]) is that individual spins are poorly

constrained. For equal-mass systems, it was found that the

spin measurements are constrained only by the Kerr limit

and so only near-extremal spins can be constrained as the

posterior will run up against the prior. Furthermore, as the

mass ratio increases, the spin of the larger blackhole is

better constrained while the smaller black hole’s spin

remains unconstrained. Finally, this general picture remains

unchanged across a wide range of total masses, including

the values we have focused on in our paper.

In this subsection, we revisit the results from Sec. III

but now briefly comment on our ability to measure the

individual component spins using the full three-detector

network with a our multimode recovery model.

Unfortunately, as anticipated in Ref. [69], the inclusion

of subdominant modes does not qualitatively change the

situation. This is visually and quantitatively evident for

equal mass (cf. Fig. 1), q ¼ 4 (cf. Fig. 2), and q ¼ 7

(cf. Fig. 3) systems, all of which have a network SNR of 30.

Here we see that while the inclusion of subdominant modes

(dashed lines) dramatically reduces the bias in recovering

χeff , χ1, and χ2, the size of the 90% confidence intervals

(shown in the figure’s title) are mostly unaffected. A similar

conclusion can be reached by comparing the joint distri-

butions for χ1 vs χ2 (bottom right panels in Figs. 1, 2, and 3)

recovered with lmax ¼ 2 and lmax ¼ 5 recovery models.

Thus we conclude that, at least for the configurations

considered here, including subdominant modes in our

waveform recovery model will reduce bias in the both

the effective spin and individual spin components, but does

relatively little to better constrain them.

V. CONCLUSIONS

In this work, using the recently-developed

NRHybSur3dq8 model, we systematically investigate the

importance of higher modes on the interpretation of

gravitational wave signals from coalescing binary black

hole systems. We have primarily focused on heavy systems

with masses and spins similar to the detector-frame masses

of near-future gravitational-wave observations while using

current detector network sensitivities. Previous studies

[19–27,30,32,61] have also explored this question in

various approximate contexts, either using a single detector,

relying on Fisher information matrix approximations, or

restricted to non-spinning BBH models. Here we perform

coherent Bayesian inference on the combined datasets from

the current three-detector network of observatories, which

is the same setup used in the recent analysis of gravitational

wave observations [9]. We confirm many of the general

expectations of previous works, while providing a more

direct quantification of the bias within this realistic setup.

As expected, we find that higher modes are very

important for interpreting asymmetric binaries with

q > 1. More surprisingly, we find noticeable differences

even when the injected signal mass ratio is q ¼ 1, when

subdominant modes are expected to be suppressed (See

Appendix for a small follow up analysis). Also as expected,

we find that the biases introduced by neglecting higher-

modes are very important for q > 1 and SNR ≥ 30

[19,26,59]. However, in our examples we also find that

inference without higher modes has a significant impact on

the interpretation of low-SNR sources, particularly by

influencing our knowledge of the binary’s mass ratio.

General trends typically observed in our studies indicate

that subdominant modes are increasingly important

as the value of the mass ratio increases and/or effective

spin decreases, and recovery models that include all

modes reduces bias in all cases. Our work highlights the
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importance of subdominant modes for events similar to

GW190412, an unequal mass BBH merger.

Consistent with previous work, we find that configura-

tions withMz ≃ 120 and large aligned spins have almost no

parameter bias [19] even at high SNRs. Such systems with

large aligned spin exhibit the orbital hangup effect and have

more in-band cycles. Given that the systems we have

considered start in the late-inspiral regime, results from

numerical relativity are most relevant toward quantifying

the importance of this effect. For example, Table 3 from

Ref. [72] shows that when starting from a fixed gravita-

tional-wave frequency, the number of premerger orbits

from an equal-mass, spin-aligned BBH system increases

from about 5 to 9 as the effective spin parameter is varied

from 0 to 0.85. Figure 11 shows an example of this effect

for the two most extreme cases we have considered in our

study. The time-domain inset shows that the length of the

signal increases as the spin becomes more positive, hence

more of the SNR will be contained in the inspiral for

systems with large, positive spin. The inspiral portion of the

signal is known to be dominated by the (2,2) mode’s

amplitude [20], which Fig. 11’s insets show by comparing

the relative amplitudes. We also see that near and after

merger the higher modes quickly become larger in ampli-

tude. Hence the impact of higher modes will be suppressed

for longer signals, which seems to be why the orbital

hangup effect serves to suppress the importance of higher

modes. Other mechanisms by which more of the inspiral is

in-band should similarly reduce the importance of higher

harmonics. For instance, at a fixed SNR, the importance of

subdominant modes for parameter estimation with systems

with total masses lighter (heavier) than the fiducial value of

120 considered here are expected to be less (more)

important for parameter estimation.

In our examples, parameter inference of spinning BBH

systems without higher modes are frequently biased. These

consistent systematic biases may accumulate in population

inference calculations, as described in Sec. IV C (see also

Ref. [68]). We anticipate that any population inferences

of asymmetric, high-mass black hole binaries will require

significant attention to waveform systematics. Section IV B

also demonstrated that neglecting higher-order modes in the

analysis of GWobservations leads to biased estimates of the

remnant object’s mass and spin. For instance, Fig. 8 shows

that higher-modes provide significantly better constraints

on the remnant values, while the computed Jensen-Shannon

divergence indicates a tension between the remnantmass and

spin posteriors recovered by the lmax ¼ 2model and the true

one (cf. Fig. 8) over a range of SNRs and mass ratios. As the

remnant values feature prominently in IMR consistency tests

of general relativity, our study suggests that neglecting

higher-modes could incorrectly trigger failed tests of GR,

for examplewhen carrying out consistency tests between the

strong-field merger and ringdown portions of the signal.

Despite the many benefits enumerated here, unfortunately,

subdominant modes do not appear to improve our ability to

resolve individual spin components, but they can reduce bias

in their recovered values.

FIG. 11. These panels show the absolute value of the Fourier transform of the (2,2), (3,3), and (4,4) modes of the q ¼ 7 system with a

spin of χeff ¼ −0.8 (left; ID12) and χeff ¼ 0.8 (right; ID16), and for reference we show the ZeroDetHighPower PSD. The inset figures

show the ratio of the higher modes relative to the dominant mode. Because the χeff ¼ −0.8 system merges at a lower orbital frequency,

the subdominant modes contribute more to the overall SNR. This should be compared to the χeff ¼ 0.8 system which merges at a higher

orbital frequency, and consequently more of the inspiral portion of the waveform, which is dominated by the (2,2) mode, contributes to

the overall SNR. For illustrative purposes, a cartoon inset shows the time-domain signal starting from 20 Hz is of drastically different

durations for these two systems. Note that the Fourier transformed signals were started from 3 Hz and tapered in order to avoid boundary

effects. We also see that the waveform model has a small hybridization “glitch” in the (4,4) mode, which is likely due to post-Newtonian

theory breaking down at high mass ratio and high spin; hybridization will be improved when higher order PN amplitude terms become

available.
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Finally, we have found that posteriors using an incom-

plete waveform model are often significantly offset from

the full-model posterior, typically toward (incorrectly)

favoring lighter binary systems with more negative χeff
values. For example, a significant fraction of the probability

for the lmax ¼ 5 posterior is not contained within the

high-probability boundaries of the lmax ¼ 2 posterior. This

suggests that it may be difficult to apply the likelihood-

reweighting techniques advocated in [62], which require

similar posterior distributions in all binary intrinsic and

extrinsic parameters for the two models being applied

(i.e., a simplified lmax ¼ 2 model and a model including

higher modes).

Given the large number of possible injection values one

could consider, we have restricted our attention to systems

with Mz ¼ 120 M⊙ and χ1z ¼ χ2z, while varying χeff , q
and the SNR. By relaxing these restrictions, future studies

should explore the importance of subdominant modes with

coherent Bayesian inference using the three-detector net-

work of observatories. Within a restricted setup, previous

studies have shown that, generally speaking, the bias due to

omitting subdominant modes increases at higher total

masses [19,20,25]. Given that only the heaviest systems

(e.g. GW170729) observed to date have a detector-frame

total mass near Mz ¼ 120 M⊙, our results provide a

convenient upper bound on the greatest impact of sub-

dominant modes for near-future binary black hole obser-

vations. A more comprehensive survey using our setup

could be used to identify for which regions of the parameter

space subdominant modes are important when considering

total mass variations (cf. Fig. 1 of Ref. [19]).

Looking ahead, we anticipate that aligned-spin IMR

models including higher modes [14–16] will become

standard in the analysis gravitational wave observations.

Indeed, as shown here, the inclusion of subdominant modes

will improve the interpretation of most events, and in some

cases substantially so. A very recent study by Kalaghatgi

et al. [61], usingMz ≃ 120 M⊙, nonspinning BBH systems

and an aligned-spin phenomenological recovery model

IMRPhenomHM, has also concluded that higher modes

significantly reduces bias. Using the most physically-

complete models will also remove the need for ad hoc

regions-of-validity that depend on both the source param-

eters as well as the scientific questions under consideration.

However, to enable our model to fully encompass the range

of likely events, our models must also allow for generic

precessing sources. Recent modeling of precessing binaries

will allow for improved analysis of generic precessing

sources [73]. Indeed, as already indicated by Ref. [37], we

expect that many tests of general relativity could be biased

unless they account for both higher modes and precession.
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APPENDIX: FOLLOW UP ON THE

SIGNIFICANCE OF HIGHER MODES FOR

EQUAL MASS, ZERO SPIN, SNR= 10 CASE

As pointed out in Secs. III D and V, there seems to be

significant differences between the lmax ¼ 5 and lmax ¼ 2

runs for the equal mass, zero spin, SNR ¼ 10 case, which

runs contrary to several previous studies that had implied

that HM would have minimal impact at low SNR for

comparable-mass binaries.

To better understand our results, we perform a comple-

mentary analysis under the assumption of zero spin

FIG. 12. Reanalysis of equal mass, zero spin, SNR ¼ 10: This

corner plot shows the reanalyses of a equal mass, zero spin,

SNR ¼ 10 source using lmax ¼ 2 (black) and lmax ¼ 5 (blue)

mode but only on a grid in mass parameters (i.e., assuming zero

spin). As first shown in Fig. 4, there are noticeable differences

between the two different distributions.
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(i.e., lay out a grid only in Mtot; q), allowing us to directly

evaluate the marginal likelihood versus the two remaining

binary parameters. Figure 12 shows the results of both the

lmax ¼ 5 and lmax ¼ 2 results. We continue to observe

notable differences between the two posteriors even when

restricted to two dimensions (i.e., only mass parameters). It

is certainly surprising to see any difference given that this is

a low SNR, equal mass event. One possibility is that due to

the broadness of the posterior in mass ratio, a significant

fraction of the posterior needs to be evaluated at values of

q≳ 2 where higher modes begin to play an increasingly

important role.

[1] J. Aasi et al. (LIGO Scientific Collaboration), Advanced

LIGO, Classical Quantum Gravity 32, 074001 (2015).

[2] T. Accadia et al. (VIRGO Collaboration), Virgo: A laser

interferometer to detect gravitational waves, J. Instrum. 7,

P03012 (2012).

[3] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Observation of Gravitational Waves from a Binary Black

Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[4] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Binary Black Hole Mergers in the first Advanced LIGO

Observing Run, Phys. Rev. X 6, 041015 (2016); Erratum,

Phys. Rev. X 8, 039903 (2018).

[5] B. P. Abbott et al. (LIGO Scientific, VIRGO Collaborations),

GW170104: Observation of a 50-Solar-Mass Binary Black

Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118,

221101 (2017); Erratum, Phys. Rev. Lett. 121, 129901 (2018).

[6] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

GW170814: AThree-Detector Observation of Gravitational

Waves from a Binary Black Hole Coalescence, Phys. Rev.

Lett. 119, 141101 (2017).

[7] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

GW170608: Observation of a 19-solar-mass binary black

hole coalescence, Astrophys. J. 851, L35 (2017).

[8] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

GW170817: Observation of Gravitational Waves from a

Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101

(2017).

[9] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

GWTC-1: A Gravitational-Wave Transient Catalog of

Compact Binary Mergers Observed by LIGO and Virgo

during the First and Second Observing Runs, Phys. Rev. X

9, 031040 (2019).

[10] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Astrophysical implications of the binary black-hole merger

GW150914, Astrophys. J. 818, L22 (2016).

[11] M. Hannam, P. Schmidt, A. Boh, L. Haegel, S. Husa, F.

Ohme, G. Pratten, and M. Pürrer, Simple Model of

Complete Precessing Black-Hole-Binary Gravitational

Waveforms, Phys. Rev. Lett. 113, 151101 (2014).

[12] A. Taracchini et al., Effective-one-body model for black-

hole binaries with generic mass ratios and spins, Phys. Rev.

D 89, 061502 (2014).

[13] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.

Mrou, H. P. Pfeiffer, M. A. Scheel, and B. Szilgyi, Inspiral-

merger-ringdown waveforms of spinning, precessing black-

hole binaries in the effective-one-body formalism, Phys.

Rev. D 89, 084006 (2014).

[14] L. London, S. Khan, E. Fauchon-Jones, C. Garca, M.

Hannam, S. Husa, X. Jimnez-Forteza, C. Kalaghatgi, F.

Ohme, and F. Pannarale, First Higher-Multipole Model of

Gravitational Waves from Spinning and Coalescing Black-

Hole Binaries, Phys. Rev. Lett. 120, 161102 (2018).

[15] R. Cotesta, A. Buonanno, A. Boh, A. Taracchini, I. Hinder,

and S. Ossokine, Enriching the symphony of gravitational

waves from binary black holes by tuning higher harmonics,

Phys. Rev. D 98, 084028 (2018).

[16] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E.

Kidder, and H. P. Pfeiffer, Surrogate model of hybridized

numerical relativity binary black hole waveforms, Phys.

Rev. D 99, 064045 (2019).

[17] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, D. A.

Hemberger, P. Schmidt, and R. Smith, A surrogate model of

gravitational waveforms from numerical relativity simula-

tions of precessing binary black hole mergers, Phys. Rev. D

95, 104023 (2017).

[18] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, C. D.

Ott, M. Boyle, L. E. Kidder, H. P. Pfeiffer, and B. Szilgyi,

Numerical relativity waveform surrogate model for generi-

cally precessing binary black hole mergers, Phys. Rev. D 96,

024058 (2017).

[19] V. Varma and P. Ajith, Effects of nonquadrupole modes in

the detection and parameter estimation of black hole

binaries with nonprecessing spins, Phys. Rev. D 96, 124024

(2017).

[20] J. C. Bustillo, S. Husa, A. M. Sintes, and M. Pürrer, Impact

of gravitational radiation higher order modes on single

aligned-spin gravitational wave searches for binary black

holes, Phys. Rev. D 93, 084019 (2016).

[21] C. Capano, Y. Pan, and A. Buonanno, Impact of higher

harmonics in searching for gravitational waves from

nonspinning binary black holes, Phys. Rev. D 89, 102003

(2014).

[22] T. B. Littenberg, J. G. Baker, A. Buonanno, and B. J. Kelly,

Systematic biases in parameter estimation of binary black-

hole mergers, Phys. Rev. D 87, 104003 (2013).

[23] J. C. Bustillo, P. Laguna, and D. Shoemaker, Detectability of

gravitational waves from binary black holes: Impact of

precession and higher modes, Phys. Rev. D 95, 104038

(2017).

[24] D. A. Brown, P. Kumar, and A. H. Nitz, Template banks to

search for low-mass binary black holes in advanced gravi-

tational-wave detectors, Phys. Rev. D 87, 082004 (2013).

[25] V. Varma, P. Ajith, S. Husa, J. C. Bustillo, M. Hannam, and

M. Pürrer, Gravitational-wave observations of binary black

IMPACT OF SUBDOMINANT MODES ON THE INTERPRETATION … PHYS. REV. D 101, 124054 (2020)

124054-21



holes: Effect of nonquadrupole modes, Phys. Rev. D 90,

124004 (2014).

[26] P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Missing

Link: Bayesian detection and measurement of intermediate-

mass black-hole binaries, Phys. Rev. D 92, 022002 (2015).

[27] I. Harry, J. C. Bustillo, and A. Nitz, Searching for the full

symphony of black hole binary mergers, Phys. Rev. D 97,

023004 (2018).

[28] R. O’Shaughnessy, B. Farr, E. Ochsner, H.-S. Cho, V.

Raymond, C. Kim, and C.-H. Lee, Parameter estimation of

gravitational waves from precessing black hole-neutron star

inspirals with higher harmonics, Phys. Rev. D 89, 102005

(2014).

[29] S. A. Usman, J. C. Mills, and S. Fairhurst, Constraining the

inclinations of binary mergers from gravitational-wave

observations, Astrophys. J. 877, 82 (2019).

[30] P. Kumar, J. Blackman, S. E. Field, M. Scheel, C. R. Galley,

M. Boyle, L. E. Kidder, H. P. Pfeiffer, B. Szilagyi, and S. A.

Teukolsky, Constraining the parameters of GW150914 and

GW170104 with numerical relativity surrogates, Phys. Rev.

D 99, 124005 (2019).

[31] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),

GW190412: Observation of a binary-black-hole coales-

cence with asymmetric masses, arXiv:2004.08342.

[32] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Effects of waveform model systematics on the interpretation

of GW150914, Classical Quantum Gravity 34, 104002

(2017).

[33] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Directly comparing GW150914 with numerical solutions of

Einsteins equations for binary black hole coalescence, Phys.

Rev. D 94, 064035 (2016).

[34] K. Chatziioannou et al., On the properties of the massive

binary black hole merger GW170729, Phys. Rev. D 100,

104015 (2019).

[35] B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo

Collaboration), Prospects for observing and localizing

gravitational-wave transients with advanced ligo and

advanced virgo, Living Rev. Relativity 19, 1 (2016).

[36] J. C. Bustillo, J. A. Clark, P. Laguna, and D. Shoemaker,

Tracking Black Hole Kicks from Gravitational Wave

Observations, Phys. Rev. Lett. 121, 191102 (2018).

[37] P. T. H. Pang, J. C. Bustillo, Y. Wang, and T. G. F. Li,

Potential observations of false deviations from general

relativity in gravitational wave signals from binary black

holes, Phys. Rev. D 98, 024019 (2018).

[38] K. Belczynski et al., The effect of pair-instability mass loss

on black hole mergers, Astron. Astrophys. 594, A97 (2016).

[39] B. McKernan, K. E. S. Ford, R. O’Shaughnessy, and D.

Wysocki, Monte-Carlo simulations of black hole mergers in

AGN disks: Low χeff mergers and predictions for LIGO,

Mon. Not. R. Astron. Soc. 494, 1203 (2020).

[40] T. Damour, Coalescence of two spinning black holes: An

effective one-body approach, Phys.Rev.D 64, 124013 (2001).

[41] E. Racine, Analysis of spin precession in binary black hole

systems including quadrupole-monopole interaction, Phys.

Rev. D 78, 044021 (2008).

[42] P. Ajith et al., Inspiral-Merger-Ringdown Waveforms for

Black-Hole Binaries with Non-Precessing Spins, Phys. Rev.

Lett. 106, 241101 (2011).

[43] LIGO Scientific Collaboration, LIGO Algorithm Library—

LALSuite, free software (GPL) (2018).

[44] GWSurrogate, https://pypi.python.org/pypi/gwsurrogate/.

[45] S. E. Field, C. R. Galley, J. S. Hesthaven, J. Kaye, and M.

Tiglio, Fast prediction and evaluation of gravitational wave-

forms using surrogate models, Phys. Rev. X 4, 031006

(2014).

[46] E. E. Flanagan and S. A. Hughes, Measuring gravitational

waves from binary black hole coalescences: 2. The Waves’

information and its extraction, with and without templates,

Phys. Rev. D 57, 4566 (1998).

[47] L. Lindblom, B. J. Owen, and D. A. Brown, Model wave-

form accuracy standards for gravitational wave data analy-

sis, Phys. Rev. D 78, 124020 (2008).

[48] S. T. McWilliams, B. J. Kelly, and J. G. Baker, Observing

mergers of non-spinning black-hole binaries, Phys. Rev. D

82, 024014 (2010).

[49] K. Chatziioannou, A. Klein, N. Cornish, and N. Yunes,

Analytic Gravitational Waveforms for Generic Precessing

Binary Inspirals, Phys. Rev. Lett. 118, 051101 (2017).

[50] E. Baird, S. Fairhurst, M. Hannam, and P. Murphy,

Degeneracy between mass and spin in black-hole-binary

waveforms, Phys. Rev. D 87, 024035 (2013).

[51] M. Boyle et al., The SXS Collaboration catalog of binary

black hole simulations, Classical Quantum Gravity 36,

195006 (2019).

[52] M. Vallisneri and N. Yunes, Stealth bias in gravitational-

wave parameter estimation, Phys. Rev. D 87, 102002

(2013).

[53] A. R. Williamson, J. Lange, R. O’Shaughnessy, J. A. Clark,

P. Kumar, J. C. Bustillo, and J. Veitch, Systematic chal-

lenges for future gravitational wave measurements of

precessing binary black holes, Phys. Rev. D 96, 124041

(2017).

[54] M. Favata, Systematic Parameter Errors in Inspiraling

Neutron Star Binaries, Phys. Rev. Lett. 112, 101101 (2014).

[55] J. Veitch et al., Parameter estimation for compact binaries

with ground-based gravitational-wave observations using

the LALInference software library, Phys. Rev. D 91, 042003

(2015).

[56] J. Lange, R. O’Shaughnessy, and M. Rizzo, Rapid and

accurate parameter inference for coalescing, precessing

compact binaries, arXiv:1805.10457.

[57] C. Pankow, P. Brady, E. Ochsner, and R. O’Shaughnessy,

Novel scheme for rapid parallel parameter estimation of

gravitational waves from compact binary coalescences,

Phys. Rev. D 92, 023002 (2015).

[58] J. Lange et al., Parameter estimation method that directly

compares gravitational wave observations to numerical

relativity, Phys. Rev. D 96, 104041 (2017).

[59] R. O’Shaughnessy, J. Blackman, and S. E. Field, An

architecture for efficient gravitational wave parameter esti-

mation with multimodal linear surrogate models, Classical

Quantum Gravity 34, 144002 (2017).

[60] D. Wysocki, R. O’Shaughnessy, J. Lange, and Y.-L. L.

Fang, Accelerating parameter inference with graphics

processing units, Phys. Rev. D 99, 084026 (2019).

[61] C. Kalaghatgi, M. Hannam, and V. Raymond, Parameter

Estimation with a spinning multi-mode waveform model:

IMRPhenomHM, Phys. Rev. D 101, 103004 (2020).

FEROZ H. SHAIK et al. PHYS. REV. D 101, 124054 (2020)

124054-22



[62] E. Payne, C. Talbot, and E. Thrane, Higher order gravita-

tional-wave modes with likelihood reweighting, Phys.

Rev. D 100, 123017 (2019).

[63] M. Campanelli, C. O. Lousto, and Y. Zlochower, Spinning-

black-hole binaries: The orbital hang up, Phys. Rev. D 74,

041501 (2006).

[64] K. Chatziioannou, G. Lovelace, M. Boyle, M. Giesler, D. A.

Hemberger, R. Katebi, L. E. Kidder, H. P. Pfeiffer, M. A.

Scheel, and B. Szilágyi, Measuring the properties of nearly

extremal black holes with gravitational waves, Phys. Rev. D

98, 044028 (2018).

[65] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Tests of General Relativity with GW150914, Phys. Rev.

Lett. 116, 221101 (2016); Erratum, Phys. Rev. Lett. 121,

129902 (2018).

[66] I. Ota and C. Chirenti, Overtones or higher harmonics?

Prospects for testing the no-hair theorem with gravitational

wave detections, Phys. Rev. D 101, 104005 (2020).

[67] V. Varma, D. Gerosa, L. C. Stein, F. Hbert, and H. Zhang,

High-Accuracy Mass, Spin, and Recoil Predictions of

Generic Black-Hole Merger Remnants, Phys. Rev. Lett.

122, 011101 (2019).

[68] D. Wysocki, J. Lange, and R. O’Shaughnessy, Reconstruct-

ing phenomenological distributions of compact binaries via

gravitational wave observations, Phys. Rev. D 100, 043012

(2019).

[69] M. Pürrer, M. Hannam, and F. Ohme, Can we measure

individual black-hole spins from gravitational-wave obser-

vations?, Phys. Rev. D 93, 084042 (2016).

[70] M. Pürrer, Frequency-domain reduced order models for

gravitational waves from aligned-spin compact binaries,

Classical Quantum Gravity 31, 195010 (2014).

[71] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle,

D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroue,

H. P. Pfeiffer, M. A. Scheel, B. Szilágyi, N. W. Taylor, and

A. Zenginoglu, Effective-one-body model for black-hole

binaries with generic mass ratios and spins, Phys. Rev. D 89,

061502(R) (2014).

[72] M. Hannam, S. Husa, B. Brügmann, and A. Gopakumar,

Comparison between numerical-relativity and post-

Newtonian waveforms from spinning binaries: The orbital

hang-up case, Phys. Rev. D 78, 104007 (2008).

[73] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.

Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Surro-

gate models for precessing binary black hole simulations

with unequal masses, Phys. Rev. Research 1, 033015

(2019).

IMPACT OF SUBDOMINANT MODES ON THE INTERPRETATION … PHYS. REV. D 101, 124054 (2020)

124054-23


