
2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficient Privacy-preserving Machine Learning in
Hierarchical Distributed System

Qi Jia, Student Member, IEEE, Linke Guo, Member, IEEE, Yuguang Fang, Fellow, IEEE, Guirong Wang,

Abstract—With the dramatic growth of data in both amount and scale, distributed machine learning has become an important tool for

the massive data to finish the tasks as prediction, classification, etc. However, due to the practical physical constraints and the

potention privacy leakage of data, it is infeasible to aggregate raw data from all data owners for the learning purpose. To tackle this

problem, the distributed privacy-preserving learning approaches are introduced to learn over all distributed data without exposing the

real information. However, existing approaches have limits on the complicated distributed system. On the one hand, traditional

privacy-preserving learning approaches rely on heavy cryptographic primitives on training data, in which the learning speed is

dramatically slowed down due to the computation overheads. On the other hand, the complicated system architecture becomes a

barrier in the practical distributed system. In this paper, we propose an efficient privacy-preserving machine learning scheme for

hierarchical distributed systems. We modify and improve the collaborative learning algorithm. The proposed scheme not only reduces

the overhead for the learning process but also provides the comprehensive protection for each layer of the hierarchical distributed

system. In addition, based on the analysis of the collaborative convergency in different learning groups, we also propose an

asynchronous strategy to further improve the learning efficiency of hierarchical distributed system. At the last, extensive experiments

on real-world data are implemented to evaluate the privacy, efficacy, and efficiency of our proposed schemes.

Index Terms—Efficiency, Privacy, Hierarchical Distributed System, Machine Learning.

✦

1 INTRODUCTION

MACHINE learning is an important data analysis tool
in the classification, regression, and prediction tasks

for the large-scale dataset. With the development of net-
work technologies, various types of data are increasingly
generated and stored in distributed systems [1], [2]. The
distributed learning approaches are becoming more desired
to discover the critical information from the distributed
datasets. Whereas the existing privacy issues are always
the stumbling blocks in the development of the distributed
machine learning techniques. In most cases, the datasets
are possessed by different distributed data owners, and the
data owners may be reluctant to expose their data to other
parties due to the privacy concerns. As a result, the privacy-
preserving distributed machine learning approaches [3], [4],
[5], [6], [7], [8], [9] are developed for tackling such privacy
issues while achieving the learning at the same time.

However, the conventional privacy-preserving dis-
tributed machine learning approaches focus on the sim-
ple distributed system architectures, which requires heavy
computation loads or can only provide learning schemes
over the restricted scenarios. In this paper, we take the step
forward to study the more complex hierarchical architecture
of the distributed system and propose the corresponding
privacy-preserving learning strategies. As illustrated in Fig.

• Mr. Jia and Dr. Guo are with the Department of Electrical and Computer
Engineering, Binghamton University, Binghamton, NY, 13850.
E-mail: qjia1@binghamton.edu, lguo@binghamton.edu

• Dr. Fang is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, 32611.
E-mail: fang@ece.ufl.edu

• Dr. Wang is with the Department of Surgery, SUNY Upstate Medical
University, Syracuse, NY, 13210.
E-mail: wangg@upstate.edu

1, the simple distributed systems include fully distributed
(Fig. 1(a)) or centralized (Fig. 1(b)) architectures, which only
contain single layer with one kind of distributed users.
On the contrary, the hierarchical architecture (Fig. 1(c))
includes multiple layers and different layer plays different
roles in the whole distributed system. Compared to the
simple architectures, the hierarchical distributed system is
more common to see in the real-world. For example, the
cellular network has such architecture, where the mobile
devices, base stations, and switching centers are shaping
the different layers in the whole system. Another example
could be the cooperations over different companies with
their own departments and each department has its own
customers’ sensitive data. In such hierarchical distributed
system, not only the simple distributed users of the lowest
layer have the privacy requirements of their data, but also
the agents or servers in the upper layers should provide
the privacy preservation for the learning process, where the
conventional approaches are not suitable anymore.

To tackle the existing problems, we propose an efficient
privacy-preserving learning approach over the hierarchical
system. Instead of passing the data with randomness or
encryption from the traditional privacy learning approach,
we decompose the optimization of learning task to the dis-
tributed users to avoid the direct data transmission, which
can save the additional operations and prevent the exposure
of data. Compared to the learning decomposition of simple
system architectures, our analysis in the hierarchical system
has more complicated privacy requirements of transmitting
parameters from the network structure. Therefore, accord-
ing to the different requirements, we analyze the different
data partitions of distributed users and propose the cor-
responding secure strategies to solve the possible privacy

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

method that different partial updates are generated for the
dual variables. Its classic optimization problem is formu-
lated as follows:

min
x

f(x) + g(x) (1)

where x ∈ Rn is the optimization variable, and f, g : Rn →
R are the objective functions. If we introduce a new variable
z, an equivalent problem can be constructed which having
the following form:

min
x

f(x) + g(z), s.t. x = z. (2)

The optimized result of Eq. (2) should be the same as in
the Eq. (1). However, in Eq. (2), it presents an alternative
approach to solve x and z separately. In this form, we can
compute x or z while treating the other as fixed values.
Furthermore, this problem can be generalized as follows:

min
x,z

f(x) + g(z), s.t.Ax + Bz = c. (3)

where A,B ∈ Rm×n are the constraint matrices. To solve this
optimization problem, ADMM approach utilizes the dual
ascent and the augmented multipliers to separately compute
the optimal values for each variable, which consists of the
iterations for x and z as the following steps:

xt+1 := argmin
x

{f(x) +
ρ

2
||Ax + Bzt − c + ut||22}

zt+1 := argmin
z

{g(z) +
ρ

2
||Axt+1 + Bz − c + ut||22}

ut+1 := ut + Axt+1 + Bzt+1 − c

(4)

where u is a compensate variable. The variables will update
with the growth of iterations. The compensate variable u
will converge to 0 and the corresponding variables x and z
will reach to their optimal values.

3.2 Secure Summation Protocol

Secure summation protocol provide that ways to privately
calculate the summation among different users without ex-
posing the actual value of each user. We use the secret shar-
ing [22] as a secure computation approach in our scheme.
Bascially, assume there are N users in the system and each
of them has a value vi, it has following steps:

• Each user i in the system generates N − 1 random
numbers rij(i 6= j) and sends the random numbers
to N − 1 other users respectively.

• Each user i sums over its own generated numbers

as gi =
∑N

j,i 6=j rij and its received numbers as hi =
∑N

j,j 6=i rji.
• After calculating these two values, instead of original

value vi, each user sends vi + gi − hi to other users.
• Finally, receivers can calculate the summation value

u =
∑N

i (vi + gi − hi) =
∑N

i (vi +
∑N

j,i 6=j rij −
∑N

j,j 6=i rji) =
∑N

i vi.

3.3 Secure Matrix Products Protocol

To privately compute the product of two matrices from
different parties [23], a secure matrix products protocol is
required. Suppose there are two users A and B in the system.
XA is a (n× pA) data matrix of user A and XB is a (n× pB)

data matrix of user B. They wish to compute the products
(XA)T XB of these two matrices without revealing the actual
matrix values to each other. The protocol has following
steps:

• User A splits its matrix XA into pA different columns,
XA = [XA

1 XA
2 ...X

A
pA

]. Then, user A generates g differ-
ent n-dimensional vectors {Z1,Z2, ...,Zg} to ensure
that each vector has dot product 0 with the columns,
i.e., ZT

i XA
j = 0 for all i and j. After that, user A sends

the (n × g) dimensional matrix Z = [Z1Z2...Zg] to
user B.

• User B computes W = (I − ZZT)XB , where I is an
(n × n)-dimensional identity matrix. Then, user B
sends W back to user A.

• Finally, user A calculates (XA)T W = (XA)T (I −
ZZT)XB = (XA)T XB and share the product value
(XA)T XB to user B.

4 SYSTEM OVERVIEW

In this section, we describe the model of the hierarchical
distributed system, introduce the existing privacy chal-
lenges, and explain the basic privacy-preserving collabora-
tive learning method.

4.1 Model Description

In the hierarchical distributed system, the entities can be
divided into different layers. Without loss of generality, we
study a two-layer hierarchical distributed system. The learn-
ing of complicated system with more layers can be similarly
deduced from the two-layer architecture. As shown in Fig.
2, an example of a two-layer hierarchical distributed system
is built by the doctors and hospitals. Basically, the lower
layer is consisted by the actual data owners, such as the
doctors having their own patient health records (PHRs).
The upper layer has multiple nodes to assist different data
owners for collecting, transmitting, or computing with other
data owners, such as the hospitals or therapy centers can
manage different doctors and they can have cooperations
with each other. For simplicity, we name the entities in
the lower layer as users and the nodes in the upper layer
as agents. Generally, the users are separated into different
groups with their agents. The users should have the ability
to communicate with each other in the same group and the
agents can exchange information with other agents. In this
example, it means that one doctor can exchange information
with other doctors in the same hospital, while one hospital is
able to cooperate with other hospitals. The goal is to deploy
the machine learning process over the whole system for
acquiring a predication model based on all the distributed
data, which means a medical diagnosis model can be set
up from different hospitals and doctors without sacrifies the
privacy of PHRs.

Specifically, we assume that there are totally N users in
the lower layer, and they are categorized into S different
groups by the agents. Each group i (1 ≤ i ≤ S) has a group
agent to provide services for its Ni group users. Each user j
(1 ≤ j ≤ Ni) of group i has its own dataset as a (nij × pij)
matrix Xij and the corresponding (nij × 1) label vector Yij .
For a learning scheme L, the goal is to apply it in the system

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Lower Layer

Upper Layer

Fig. 2: Two-layer Hierarchical Architecture Model

to find the model M : Rp+1 → {0, 1} over all the distributed
users’ data.

4.2 Privacy Challenges

We assume all the entities in the system are honest-but-
curious. It means that they will strictly follow the proposed
scheme, but they are curious to learn more information than
allowed by deducing from what they obtained. We also
assume the collusion will not happen between the users
and agents, which means the users or agents will not share
the unauthorized information to others during the learning
process. Besides, we do not consider the outside attacks
or the user off-line cases in the distributed system. We
only focus on analyzing the possible data privacy leakages
from the system inside due to the architecture complexity.
Based on such assumptions, there are two major privacy
challenges for the distributed users.

First, due to the sensitivity of data, the raw data infor-
mation of distributed users should not be directly exposed
to others in the system. For the user j in group i, neither
the rows nor columns of the data matrix Xij should be
realized by any other users or agents. For example, without
the consent of patients, any parts of the PHRs cannot be
exposed to other entities.

Second, the data should not be retrieved from the ob-
tained information during the learning process. Although
the data is not directly exposed, the parameters transmission
between different users or agents cannot be prevented. Usu-
ally, the transmitting parameters are some optimal values
from the distributed data, which include part of the original
information. Even it cannot be used to perfectly reconstruct
all the original data, it still reflects some basic knowledge of
data. For example, in the SVM learning scheme, the optimal
values from the local computation of distributed users are
the Support Vectors, which still represent the boundary data
positions of different classes. Therefore, protection measures
are required to prevent such leakage from the parameters
transmitting.

4.3 Privacy-preserving Collaborative Learning

Based on above model assumptions and privacy challenges,
we reveal the limitation of the basic privacy-preserving
collaborative learning approach.

Most machine learning schemes have an objective cost
function h to be optimized for finding the best solutions for

model parameters. Without loss of generality, the optimiza-
tion problem can be formulated as a minimization task:

min
w

h(w) (5)

where w are the optimal model parameters. For example, in
the linear SVM, the optimization problem is:

argmin
w,b

1

2

∑

SV s

||w||2 + C||ξ||11

s.t. Y(Xw + 1b) ≥ 1 − ξ,

ξ ≥ 0.

(6)

where w and b are the model parameters. They are used
in the decision function d(t) = wT t + b for classifying the
coming test data t to different output labels [24]. The soft
margin parameter C and the slack variable ξ are used to
control the strictness and outliers of the classifier. The matrix
X represents the training dataset and the vector Y includes
the training labels for each data item in the rows of X.

However, in a distributed system, the dataset X and the
label vector Y are split among the distributed users. Directly
collecting the data and labels from users to solve the learn-
ing objective function will violate the privacy requirements
of user’s data. So, we can utilize a new variable to rewrite
the optimization problem as follows [14]:

min
wi

hi(wi), s.t.wi = z (7)

where hi is the objective function and wi is the model pa-
rameter for each user i in the distributed system. The newly
introduced parameter z forces all the model parameters wi

to keep the same result at the end of this optimization. This
transformation breaks the optimization problem from the
global dataset to the distributed users. Then, according to
the ADMM algorithm, we can treat wi and z separately. As
a result, each optimization of hi can be written as follows
[15]:

wt+1

i = argmin
wi

{hi(wi) +
ρ

2
||wi − zt + rti||

2}

= wt
i − α▽ hi − α▽ {

ρ

2
||wi − zt + rti||

2} (8a)

zt+1 =
1

N

N
∑

i

wt+1

i (8b)

rt+1

i = rti + wt+1

i − zt+1 (8c)

where ρ
2
||wi − zt + rti||

2 is the regularization term, ▽hi =
∂hi

∂wi
, and ▽{ρ

2
||wi − zt + rti||

2} = ρ(wi − zt + rti).
The original global learning optimization problem Eq.

(5) is decomposed to iterative updates for distributed users.
In each iteration, user i only need to compute the local
optimization for its parameter wi with its own data from
Eq. (8a) and its compensate value ri from Eq. (8b). After
that, instead of the original data, the local optimized model
parameters wi will be sent out to other users to calculate
the consensus term z for the next iteration. Along with the
growth of iteration, the consensus term z will become to
a stable value. As long as the absolute difference of con-
sensus terms |zt − zt−1| is decreasing to a certain criterion,
the iteration will stop and all the users are considered to
have a convergent consensus optimization result zt. This

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

result will be close to the learning result of gathering
all the users’ data [21]. Generally, the transmitting model
parameters have smaller size and take fewer computation
loads for distributed users than transmitting randomized
or encrypted data.Therefore, this approach provides a more
efficient learning process than the traditional randomness
or encryption based methods, while it still keeps the data in
private from the direct exposure.

However, two existing issues are the obstructions for
applying the basic collaborative learning approach to the hi-
erarchical distributed system. First, the transmitting model
parameters wi include the hidden information of the origi-
nal data. To prevent the possible leakage, protections should
be provided on the model parameters. Second, the privacy
requirements in the hierarchical distributed system are more
complicated than the simple architectures. It is necessary to
reconsider the learning process and parameter transmission
with the system structures.

5 PRIVACY-PRESERVING MACHINE LEARNING

FOR HIERARCHICAL DISTRIBUTED SYSTEM

In this section, we present the details of our privacy-
preserving learning approach for the hierarchical dis-
tributed system. We analyze the parameter transmission in
the hierarchical architecture and provide corresponding pri-
vacy preserving methods to ensure the secure computation.

Particularly, in the hierarchical distributed system, data
partitions make a big difference in the learning process. The
horizontally or vertically partitioned data in lower layer
users represent different information. Regarding to different
data partition scenarios, we provide two different protection
strategies to confirm the parameter privacy, which makes
our scheme become more practical.

5.1 Horizontally Partitioned Hierarchical System

The distributed user data in horizontally partitioned hierar-
chical architecture have same data feature dimensions, but
they are divided into different groups, where all the users’
data can build a complete global dataset matrix. For exam-
ple, as shown in Fig. 3, at the lower layer, the distributed
PHRs of doctors include all the dimensions’ information
as blood pressure, blood sugar, and blood lipids. At the
upper layer, the doctors are assistant by different hospitals
and these hospitals play as messengers to pass the data
related information. Therefore, we firstly study the basic
collaboration in the lower layer, and then figure out what
should be transmitted at the higher layer in such system.

5.1.1 Lower Layer Optimization

From the view of the lower layer, users are assisted by the
group agent. The learning process can be simplified to a
basic collaborative learning scheme. In each iteration, users
in the group needs to be guided by the consensus term and
regularization term to compute the local optimizations from
their own datasets. Specifically, for the group i and its user
j, the corresponding iteration updates to Eq. (8a) and Eq,
(8c) will be modified as follows:

wt+1

ij = wt
ij − α▽ hij − α▽ {

ρ

2
||wij − zti + rtij ||

2}

rt+1

ij = rtij + wt+1

ij − zt+1

i

(9)

Upper

Layer

Lower

Layer

User Data

Fig. 3: Horizontally Partitioned Data

These update steps only take the local data from the user
j in group i. It does not require the participation of other
users’ data, where the data privacy is preserved from the
direct exposure at the lower layer.

5.1.2 Upper Layer Cooperation

At the upper layer, the parameter transmission is different
to the basic scheme. In the fully distributed system, the
consensus term z can be computed from the connection
between neighbors. In the centralized distributed system,
this consensus term is able to be computed by the collection
of all users’ model parameters. However, due to the hierar-
chical architecture, the different groups will have their own
consensus term zi. Then, the original optimization problem
needs to be modified as:

min
wij

hij(wij), s.t.wij = zi, zi = z. (10)

In this problem, the constraints are separated from z to
zi. Thus, the consensus term z of Eq. (8b) no longer simply
equals to the average of all the distributed users. Instead,
each group needs to compute its own consensus term zi.
However, the computation of zi not only requires the user’s
model parameters wij from its own group i, but also needs
all the consensus terms zj , i 6= j from other groups. So,
in each iteration of the group agent, it should have the
following updates:

zt+1

i =
1

N

S
∑

i

Ni
∑

j

wt+1

ij

=
1

∑S
k Nk

(
S
∑

k,k 6=i

Nkztk +Niz
t
i)

=
1

∑S
k Nk

(
S
∑

k,k 6=i

Nkztk +
Ni
∑

ij

wt
ij)

(11)

In Eq. (11), different to the original scheme, the group
consensus term zi becomes an updated element calculated
from all the other groups’ consensus terms. Such a change
of the consensus term makes a significant difference to the
learning process. Because it divides the original z into differ-
ent groups of zi, which shrinks the consensus scale from the
whole system datasets to several small groups. Then, the ne-
gotiation efforts for users’ convergence are decreased from
global z to separated zi, such that the learning speed will

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

be improved. Therefore, compared to the simple distributed
system, the learning of the hierarchical architecture requires
fewer iterations to reach the same consensus result, which
is shown in our later experiments.

5.1.3 Privacy Preservation

Based on the updating step of Eq. (11), for each group, its
agent is in charging of communicating with other groups to
cooperatively compute zi, and it also needs to collect opti-

mized values wij for its group users to compute
∑Ni

ij wt
ij .

These two roles in the hierarchical distributed system have
two different privacy requirements.

At the lower layer, the summation of each user’s param-

eter
∑Ni

j wij should be obtained by the group agent. To
ensure the transmitted user parameters will not be exposed
to others, we apply the secret sharing secure summation
protocol. First, each user j in the group of i generates
Ni − 1 random matrices rjk(j 6= k) and sends the random
matrices to other users through their own connections,
which means these random matrices are kept unknown to
the group agent. Then, each user respectively computes the
summation gj from generated random matrices, and the
summation hj of received matrices. After that, each user
sends the randomized matrix wij + gj − hj to the group
agent. Finally, the group agent collect all the randomized
matrices to obtain the summation of all users’ parameter by

computing
∑Ni

j (wij + gj − hj) =
∑Ni

j wij .

At the upper layer, where the agents are connected with
each other, the update of consensus term zi requires all the
participations from other groups. Since the consensus term
zi represents its group data structure, the secure summation

for all other consensus terms
∑S

k,k 6=i Nkzk is still required.
To further reduce the computation load, we utilize the a
simple secure summation protocol to privately compute
this value. In particular, the agent of the group i can first
generate a random matrix ri which has same dimensions
as zi. Then, this random matrix will pass through every
other group agents through the network, where each group
agent adds its own consensus term on the received matrix as

rk =
∑k

n=i+1
Nnzn+ri. At the end, this matrix returns to the

agent of the group i and the summation will be obtained by

subtracting the random matrix ri as
∑S

k,k 6=i Nkzk. The usage
of such secure summation protocol can also make sure the
learning process with group agent off-lines. Even one agent
becomes to off-line during the learning, as long as it is not
the initial one, the summation can still be obtained. The only
sacrifice is that the off-line group’s data will not be covered
in the final learning result.

5.1.4 Application of SVM

To illustrate the feasibility of the proposed algorithm in
the specific learning scheme, we use the linear SVM as an
example. According to the hierarchical architecture analysis,
the linear SVM cost function and its constraints in the
horizontally partitioned scenario can be written as following

distributed form [14]:

argmin
wij ,bij

1

2

S
∑

i

Ni
∑

j

||wij ||
2 + C||ξij ||

1
1

s.t. Yij(Xijwij + 1bij) ≥ 1 − ξij ,

ξij ≥ 0, wij = zi, zi = z.

(12)

If we consider vij = [wT
ij ,bij]

T , Eij = [XT
ij , 1]T . By

applying our approach to distributed users, the update
iteration step is as follows:

λt+1

ij = argmax
λ:0≤λij≤C

1

2
λT
ijAλij + BTλij (13a)

vt+1

ij =
Ni

1 + ρNi

(ρzti − ρrtij + λt+1

ij YijEij) (13b)

zt+1

i =
1

N

S
∑

i

Ni
∑

j

(vt+1

ij + rtij) (13c)

=
1

∑S
k Nk

[
S
∑

k,k 6=i

Nkztk +
Ni
∑

ij

(vt
ij + rtij)] (13d)

rt+1

ij = rtij + vt+1

ij − zt+1

i (13e)

where λt+1

ij is the optimal Lagrange multiplier at iteration

t+ 1 for the user j of group i, and A = Ni

1+ρNi
YijEijET

ijYT
ij ,

B = −1 + Niρ
1+ρNi

(zti − rtij)YijEij . In each iteration, the agent
of group i applies the different secure summation protocols
to compute its own consensus term zt+1

i from the average
value of other groups’ consensus terms ztk,k 6=i, its own users’

parameters vt
ij , and its own compensate variable rtij . The

other updating steps can be locally computed by user j
in group i. Note that our approach can also be used to
support other machine learning algorithms. Basically, most
experience heuristic optimized tasks, not only linear SVM,
but also the normal nonlinear SVM, the linear regression,
logistic regression, naive Bayesian, and even formulated
decision tree, such kind of machine learning approaches can
be applied to our approach. The difference will only be the
change of objective functions h(w) in Eq. (5).

5.2 Vertically Partitioned Hierarchical System

Different to the horizontally partitioned scenario, the dis-
tributed datasets have different data features in the verti-
cally partitioned hierarchical distributed system. As shown
in Fig. 4, at the lower layer, different doctors have their
own records with same blood feature information. But at
the upper layer, the blood information is vertically parti-
tioned, different hospitals may hold different blood features.
If we put their data together, they should align with the
disease diagnosis results of same patients. As a result, the
distributed users can be seen as the mixed segmentations
to the global matrix. It vertically divides the matrix so that
each data group has different columns at the upper layer,
but at the lower layer, each user holds this group’s rows as
the horizontally partitioned data. Due to such difference,
the agents of groups require certain computation at the
upper level to assist the consensus of different data features.
Therefore, we will explain the learning process at upper
layer first, and then give the details of the lower layer
cooperations.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

User Data

Upper Layer

Lower

Layer

Fig. 4: Vertically Partitioned Data

5.2.1 Upper Layer Optimization

Different to the horizontally partitioned scenario, the analy-
sis for the vertically partitioned data should start from the
view of the upper layer. Because the groups have different
data features, the responsibility of the consensus term is not
simple letting all the parameters stay to the same value. It
should integrate all the dimensions parameters and com-
bined value becomes to the real objective function in the
original problem. Therefore, generalized objective function
for the upper layer is written as follows:

min
wi,zi

S
∑

i

fi(wi) + g(
S
∑

i

zi)

s.t. zi = XT
i wi, i = 1, ..., S

(14)

where g is the across function combining different dimen-
sion of zi together to ensure the learning model is set upon
all the data dimensions for a consensus learning result, and
Xi is the virtual integrated matrix for the group i. The
constraint promises that the product of parameters wi and
data Xi commit to one part of the consensus zi. This problem
is hard to be solved in a direct way. So we find its dual
function as follows:

Γ = inf
wi,zi

{
S
∑

i

fi(wi) + g(
S
∑

i

zi) +
S
∑

i

λi(X
T
i wi − zi)}

=
S
∑

i

inf
wi

{fi(wi) + 〈λiXi,wi〉}+ inf
zi
{g(z) + 〈−λi, z〉}

=
S
∑

i

−f∗
i (−λiXi)− g∗(λi)

(15)
where z =

∑S
i zi and {f∗, g∗} are the conjugate func-

tion of {f, g}. The Γ is a convex function and only when
λi = λ it can have infinite value. If we define the function
φi(λi) = −f⋆

i (−λiXi) −
1

S
g⋆(λi), the original vertically

data partitioned problem can be transformed to a horizontal
problem:

min
λi

φi(λi), s.t. λi = λ. (16)

Then, it can be solved by the similar procedures of horizon-
tally partitioned scenario as Eq. (9) and Eq. (11).

5.2.2 Lower layer Cooperation

However, the computations of Eq. (15) are only suitable for
the upper layer, and all the conducts are only related to the
group agent i. Since we have the horizontally partitioned
data at the lower layer, the matrix Xi is distributed to several
users j in this group. Therefore, the actual matrices are the
destructions of Xi:

Xi =

Xi1

...
Xij

...
XiNi

(17)

where Xij represents the data submatrix possessed by the
user i of the group j, which has same column number but
different rows to the Xi. Due to such distributions at the
lower layer, the privacy should be considered to prevent the
leakage of each user’s data. Specifically, the computation
which related to the Xi is not available to directly apply
the Xi into the calculation anymore. A private computation
method from the submatrices Xij should be provided. For
example, in the Eq. (14) and Eq. (15), the computation XT

i wi

and −λiXi are related to the data matrix Xi and they are
calculated between the group agent and its own users,
where each user’s data matrix Xij should be protected.

5.2.3 Privacy Preservation

Without loss of generality, we use matrix Ci to represent the
multiplier of matrix Xi. The matrix Xi has Ni users with
their submatrices Xij , such that Xi = [XT

i1, ...,XT
iNi

]T . Then,

we correspondingly separate the Ci as Ci = [CT
i1, ...,CT

iNi
]T .

The product can be written as follow:

XT
i Ci = [XT

i1, ...,XT
iNi

]

Ci1

...
CiNi

= XT
i1Ci1 + ...+ XT

iNi
CiNi

(18)

The product of original matrix is decomposed to the prod-
ucts of the submatrices. Then, we implement the secure
matrix product protocol on the submatrices to privately
compute this value. The implementation will be taken
place between any user or agent. First, user j generates
the compensated matrix {Zi1, ...,ZiNi

} for {Xi1, ...,XiNi
}

respectively. Second, the generated Zij is send to the agent
for computing Wij = (I − ZijZT

ij)Cij . Third, Wij is sent

back and the XT
ijCij is acquired from computing XT

ijWij =

XT
ijCij . Finally, the XT

i Ci can be calculated by accordingly

adding up the XT
ijCij from Eq. (18) using the secret sharing

secure summation protocol between the group agent and
users. Once we promise the privacy of matrix product, the
data privacy can be preserved during the whole vertically
partitioned learning process since there is no other informa-
tion exchange for lower layer users.

However, this approach cannot guarantee the ideal pri-
vacy preservation on all matrix computations [23]. To de-
crease the possible breaches in computation between user
A and B, we can choose an optimal value g = pA

pA+pB
n for

the user A, so that the generated matrix Z has minimized
mutual information of A and B. Without the collusions of
different users, this revealed mutual information is insuffi-
cient to recover the original matrix value. In some extreme

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

cases, the leakage is inevitable for specific matrix values. For
example, only one non-zero value in a column of the matrix
I−ZZT can let user A realize one row for matrix XB . While
the leakage can only retrieve part of rows in the original
matrix, and it can be prevented by detecting these special
cases in the first place.

5.2.4 Application of SVM

Similarity, we provide an example of linear SVM. The
updates process for vertically partitioned data can be con-
cluded as follows:

wt+1

i = ρ(1 + ρXT
i Xi)

−1XT
i [z

t −
S
∑

i

Xiw
t
i + Xiw

t
i + rt]

(19a)

λt+1 = argmax
λ:0≤λ≤C

1

2
λT Aλ+ BTλ (19b)

zt+1 =
S
∑

i

Xiw
t+1

i − rt +
1

ρ
λt+1Y (19c)

rt+1 = rt + zt+1 −
S
∑

i

Xiw
t+1

i (19d)

where Y is the labels matrix for the whole system, z and
b are the parameters of virtual classifier for dividing the

hyperplane. A = 1

ρ
Y11T Y and B = −1+Y(

∑S
i Xiw

t+1

i −rt).
To provide the privacy preservation for individual users in
each group, the secure procedures will be applied to the
computation related to the matrix Xi.

6 ASYNCHRONOUS LEARNING FOR HIERARCHI-

CAL DISTRIBUTED SYSTEM

6.1 Convergence Analysis

The convergence iteration process of optimization is the key
to the privacy-preserving collaborative approach. On the
one hand, it prevents the direct data exposure and provides
secure exchange of optimized parameters in each iteration.
On the other hand, the learning speed performance de-
pends on the collaborative convergence process. For differ-
ent datasets and system settings, the required iterations to
reach the consensus learning result are quite different. Such
difference of iterations provides the flexibility of learning
in the hierarchical distributed system. We can adjust the
settings of the learning to change the convergence speed for
different groups in the hierarchical architecture to improve
the global learning efficiency.

From the iteration update of parameter w in the learning
process:

wt+1

i = argmin
wi

{hi(wi) +
ρ

2
||wi − zt + rti||

2},

we can see that the convergence speed is influenced by
three factors. First, it depends on the dataset itself. Different
datasets have their own data structures, which will have
different result to hi(wi). If the content of one dataset is
closer to the universal data structure, it does not need
many iterations for converging to the consensus, and vice
versa. Second, the collaborative convergence depends on

the influence of other users’ data, which is weighted by
the parameter ρ in ρ

2
||wi − zt + rti||

2. If the weight of this
influence becomes larger, it is faster to reach the convergence
result for users since the exchanged information from other
users is increased. Third, the convergence also depends on
the parameter α in α▽ hi +α▽{ρ

2
||wi − zt + rti||

2}, which
controls the gradient descent step size. If it grows larger,
the increased step size leads to faster convergence but could
cause the unsatisfied results. Based on different parameter
settings and the data contents, the convergence speed could
vary from one to another. At the same time, such difference
also influences the performance of the learned result.

To illustrate the influence, we build a simulation on the
centralized model for 20 distributed users by different pa-
rameter settings in the convergence. As shown in Fig. 5, with
the growth of step size, the required iteration number is de-
creasing. Meanwhile, the accuracy of the learned result has
an obvious decline. A trade-off between the efficiency and
result performance can be made by adjusting the learning
parameter settings. Normally, we need to choose the proper
parameters to pursue a balanced learning performance for
suiting different applications in practice [25].

20 40 60 80 100120140160180200
0

40

80

120

Step Size

It
e

ra
tio

n
s

(a) Iterations

20 40 60 80 100120140160180200
0.8

0.9

1

Step Size

A
cc

u
ra

cy

(b) Accuracy

Fig. 5: Different Step Size

6.2 Asynchronous Strategy

In accordance with such convergence facts, an asynchronous
learning strategy becomes available in the hierarchical dis-
tributed system [26], [27]. Compared to the synchronous
one, the asynchronous learning brings two benefits to the
system. First, the hierarchical architecture can promise the
flexible choice of the different learning parameters for
groups in the system. Especially, the same group is more
often to have similar user data structures. For example, one
hospital may have its local patients’ health records and the
symptoms could be similar to each other for the patients
in this area. Due to such similarity, we can accordingly
select the appropriate convergence speed parameters for
different groups without introducing the conflicts. Second,
the asynchronous learning saves computation time for the
convergence. As shown in Fig. 6, different to the syn-
chronous mode, the distributed users with asynchronous
learning strategy has no necessity to wait for the response
from other users. In the hierarchical distributed system, it
means that the different groups can work on their own
convergence progress while do not need to wait for other
groups consensus results.

Based on these benefits, we can arrange different param-
eters to the groups. Specifically, in Eq. (8), we change the

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

A

B
Waiting

Response

(a) Synchronous

A

B
Get

Response

Continue

Process

(b) Asynchronous

Fig. 6: Different Synchronization Mode

parameter α, ρ to αi, ρi to represent the different settings
for the group i.

In the asynchronous learning, different parameters will
lead to the different learning progress of groups. Some
groups may have faster convergence to reach the final con-
sensus result, but the others may become slower. However,
to ensure the global consensus convergence result, the syn-
chronization is needed for the groups to communicate and
exchange their own optimized values. Generally, two meth-
ods can be used to keep the synchronization for different
groups. One is to have the prearranged learning parameters
for different groups so that the synchronization will be oper-
ated after several specific iterations. Unfortunately, without
knowing the parameter settings from other groups, it can
hardly determine the convergence parameters in advance.
Also, even the speed parameters can be prearranged, the
faster groups still need to wait for the slower ones for
synchronization.

To avoid the inefficiency and promise the convergence,
we apply modified asynchronous iterations for the hierar-
chical model. In particular, we do not limit or prearrange
the speed parameters of different groups. Instead, we define
a staleness value D for the whole network. This staleness
value is an upper bound for the distance of fastest group to
the slowest one. Although each group has its own conver-
gence speed, this staleness promises the fastest one should
not be too much ahead than the slowest one [28], [29]. We
can control this staleness so that the system still consensus to
the correct solution. As a result, using ti as the index for the
iterations of the group i, our algorithm for the asynchronous
distributed privacy-preserving learning in the horizontally
partitioned model can be written as following formulas:

wti+1

ij = wti
ij − αi ▽ hij − αiρi(wij − ztii + rtiij)

zti+1

i =
1

N
(

S
∑

k,k 6=i

Nkztkk +
Ni
∑

ij

wti+1

ij)

rti+1

ij = rtiij + wti+1

ij − zti+1

i

(20)

in which max(ti) −min(ti) ≤ D, i ∈ S. Since the vertically
data partitioned scenario can be transformed to the hori-
zontal problem, the similar asynchronous iterations can be
applied to improve the efficiency as well [30].

Comparing to the original learning in Eq. (9) and Eq.(11),
the asynchronous process has difference in the gathering of

other groups’ consensus terms
∑S

k,k 6=i Nkztkk . To analyze the
influence of this difference. We can firstly study a two users
case. Assume there are two distributed users A and B. If we
deploy the asynchronous learning process on their data, and
we let A be the faster one. We will have w1

A = w0
A − f(z0A),

where f(z0A) = αA ▽ hA + αAρA(wA − z0A + r0A). Then,
we will have z1A = 1

2
(z0B + w1

A) = 1

2
[w0

B + w0
A − f(z0A)],

and w2
A = w1

A − f(z1A) = w0
A − f(z0A) − f(z1A). So,

since we have a largest staleness value D, in the extreme

case, we will have zDA = 1

2
[w0

B + w0
A −

∑D−1

i=0
f(ziA)].

Similarly, in the original learning process, we have z’DA =
1

2
[w0

B−
∑D−1

i=0
f(z’iB)+w0

A−
∑D−1

i=0
f(z’iA)]. Because we will

not have too large staleness value D, we can assume that
f(ziA) ≈ f(z’iA). Then, we will have the difference between
original and asynchronous learning as follow,

z’DA − zDA =
1

2
[w0

B −
D−1
∑

i=0

f(z’iB) + w0
A −

D−1
∑

i=0

f(z’iA)]

−
1

2
[w0

B + w0
A −

D−1
∑

i=0

f(ziA)] = −
1

2

D−1
∑

i=0

f(z’iB)

(21)

Assume it takes M steps in total for the original learning
process to reach the final consensus result z’mA . Then, the
portion of this difference in the original convergence result
will be:

z’DA − zDA
z’mA

=

∑D−1

i=0
f(z’iB)

∑m−1

i=0
f(z’iB)− w0

B +
∑m−1

i=0
f(z’iA)− w0

A

,

(22)
Usually, compared to the whole iteration steps m, D will
be a relative smaller value in the learning preset. Also,
since this is the extreme case which has largest iteration
gap from the beginning step, it only provides an upper
bound for the learning difference between original and
asynchronous strategies. For the multiple groups in our

system, the influence will changed from − 1

2

∑D−1

i=0
f(z’iB) to

− 1

N−1

∑

k∈S,k 6=A

∑D−1

i=0
f(z’ik), which will not make larger

influence for group A. As a consequence, compared to the
original learning process, the asynchronous approach will
have similar result in the hierarchical distributed system,
which means it has the same learning ability, but is more
efficient in practice.

7 PERFORMANCE EVALUATION

7.1 Privacy Analysis

In our scheme, the decomposition from Eq. (5) to Eq. (8) dis-
perses the learning process from a united global task to the
distributed users. So, for each user, the related computations
have three components for wi, z, and ri. The direct exposure
of each user’s data is prevented from the provided locality
in the collaborative learning process. Specifically, the model
parameter wi and compensate parameter ri only requires
user’s own data and an outside consensus term z. The only
possible leakage is the computation of consensus term z
from Eq. (8b), which is a summation of model parameters
wi from different users.

To prevent the possible leakages, our scheme provides
the protection with the hierarchical architecture analysis in
different applications. In the horizontally data partitioned
scenario, the group agents are in charging of the collection
and transmission for the model parameter wij and group
consensus term zi. At the lower layer, the secret sharing
secure summation protocol can prevent the group agent to
realize the value of wij . Even the group agent has all the
wij+gj−hj , it cannot recover the real wij without knowing
the randomized matrices rjk. At the upper layer, the simple
secure summation protocol can still privately obtain the

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

consensus term zi but has more efficient computation. How-
ever, in some extreme cases, it is possible to have leakage of
consensus term zi. For example, if some agents are isolated
in the upper layer network, the summation matrix passes
to such agents will return back the previous ones. In this
case, the previous agent i can realize the consensus term
zi+1 by subtracting two neighbor matrices. Therefore, to
prevent such issues, the isolated agent can also generate
its own random matrix for disguising the summation. At
the end, the summation value will be sent to this agent for
subtracting its generated random matrix to obtained the real
result.

In the vertical data partition scenario, the upper layer ac-
tually has a similar privacy-preserving collaborative learn-
ing process, where the data privacy of each group agent
can be preserved from the locality. Within each group, the
secure matrix protocol is applied in the computations of
parameters and user’s data. The agent cannot reveal the
real data matrix value of its user. Besides, since each user
only computes its own data with the parameter submatrix
in corresponding rows, the data will not be exposed to the
other users in the same group. Thus, the data privacy is
preserved at both upper and lower layer.

7.2 Analysis of Simple Architectures

Due to the complicated overheads on the training data,
traditional randomness or encryption based privacy-
preserving learning needs more computational time than
the collaborative learning approaches. For example, we
tested the encryption-based privacy-preserving learning ap-
proach [3] for 20 distributed users on the Higgs dataset
[31]. As shown in Table 1, the encryption based learning
approach requires much more time cost on the learning
process. With the growth of data instance number in each
distributed user, it even has more increment than the col-
laborative learning approach. The related comparison of
efficiency also has been illustrated in many previous works
[14], [15], [16]. Therefore, in our experiment, we mainly
focus on the performance comparison between the basic
collaborative learning approach and our proposed schemes.

TABLE 1: Comparison between Encryption-based and Col-
laborative Distributed Learning

Data Instances Encryption Based Fully Distributed
1,00 163.1s 6.8s
1,000 2041.3s 144.2s
5,000 9084.3s 583.1s
10,000 30231.4s 1473.9s

We first present the basic privacy-preserving collabora-
tive learning in two simple architectures, fully distributed
and centralized. In the fully distributed architecture [14],
one user cannot communicate with all the other users at
one single communication step. Instead, each user can only
communicate and exchange information with its neighbors.

In such case, the zt+1 = 1

Ni

∑Ni

j wt+1

j , where Ni is the
number of neighbors for user i. Each user cannot collect
all wi from all other users but only the neighbors’ model
parameters wi. Even though, by gradually passing the pa-
rameters along with the network, it still promises that the
whole network can achieve the convergence [14]. However,

due to the insufficient information exchange, the fully dis-
tributed architecture needs more iterations to reach the stop
criterion of the convergence. On the contrary, the centralized
architecture has a central node to connect all the nodes
in the network [16]. The central node is not trustworthy
and the data should not be directly collected on this node.
However, with the help of the node, this architecture equals
to a virtual complete connected network for the users, where
all users can communicate with each other in one step. As
a result, each user can obtain all the other users’ optimized
model parameters wi within one communication round. The
communication cost and needed iterations will be reduced.

We conduct a simulation for these two kinds of simple
distributed architectures and apply the linear SVM learn-
ing scheme on 100 users to illustrate their performance
difference. Each user’s dataset includes 100 data instance
with random labels and patterns with 25 data features.
For simplicity, in the fully distributed model, the users are
assumed to be connected one-by-one as a chain. The results
are shown in TABLE 2. From this table, we can see that the
learning of fully distributed system requires more iterations,
time cost, and communication than the centralized one. This
demonstrate that the sufficient communication in central-
ized architecture can accelerate the convergence speed for
the iterations.

TABLE 2: Comparison of Two Simple Architectures

Fully Distributed Centralized
Iteration 514 67

Time Cost 766s 107s
Communication Cost 144KB 10KB

Step Size 5 5
Avg. Neighbors 1.98 1 (real) / 99 (virtual)

7.3 Classification Accuracy

To study the performance of our proposed approach in the
hierarchical distributed system, we implement the linear
support vector machine learning method over the three real-
world datasets. The breast cancer data from [32] has 683
instances and 10 feature attributes, the svmguide1 [33] data
has 3,089 instances and 4 different data features and the
Higgs from [31] has 11,000,000 data items (we use 100,000)
with 28 features. All datasets only have positive or negative
labels. About 70% data in each dataset are used to train the
linear classifiers and the rest 30% data are tested with the
trained classifiers to measure the classification accuracy.

We first evaluate the classification accuracy of the dis-
tributed learning approaches in three different architectures.
The regular linear SVM learning approach is also evaluated
as a benchmark of the comparison, where its training data
is not separated. We set 20 distributed users in the system,
and we divide the users into two groups with similar user
numbers to analyze the proposed hierarchical architecture.
The classification accuracy results are shown in TABLE 3,
where the distributed learning approaches have the same
convergence parameters and stop criterion.

From the table, the normal linear SVM has the best
performance for all the datasets since it does not have
any lost and obstacle from the distributed networks. For
the distributed systems, the learning result of the fully

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 3: Classification Accuracy

Dataset Breast Cancer Svmguide1 Higgs
Normal LSVM 96.83% 95.4% 64.4%

Fully distributed 89.67% 84.20% 53.7%
Centralized 95.50% 92.2% 61.16%

Hierarchical (2 Groups) 94.83% 89.70% 57.76%

2 3 4 5 6 7 8 9 10 11 12 13
50

60

70

80

90

100

Group Number

A
c
c
u
ra

c
y
 (

%
)

Breast Cancer
Higgs
Svmguide1

Fig. 7: Classification Accuracy with Different Group Num-
ber

distributed architecture has the worst classification accuracy
due to the insufficient communications between the users,
while the centralized architecture has the best performance.
For the hierarchical architecture, its communication is more
sufficient than the fully distributed one, but not as good
as the centralized architecture. Therefore, it has a balanced
performance between these two architectures on the classi-
fication accuracy. To analyze the effects of group number for
the hierarchical architecture, we extend the group number
from 2 to 13 in evaluating the classification accuracy and
the results are shown in Fig. 7. With the growth of group
number, the accuracy of the hierarchical distributed system
is decreasing. Larger group number means the system has
a closer architecture to the fully distributed system, which
has worse performance on the classification.

7.4 Learning Efficiency

7.4.1 Horizontally Partitioned

To compare the learning cost of the different architectures,
we evaluate 4 to 20 distributed users to see the trends.
As shown in Fig. 8, the three architectures have the dif-
ference on the learning convergence speed. The fully dis-
tributed architecture needs the most iterations for reaching
the consensus result. Also, with the growing of the user
number, the required iterations have an increasing trend.
The centralized architecture requires much fewer iterations
for the convergence, and it does not have obvious increment
with the growth of user number. In particular, since the
hierarchical scheme reduces the collaborative range from
the whole system to the multiple small groups, it has the
best performance with the least iteration requirement. Also,
since each group is influenced by the other groups. Once
the convergence of one group is stopped, the other groups
will quickly align with this converged group, such that the
required iterations will be similar in different groups.

Besides, we test the convergence vibration of different
distribution architectures in Fig. 9, which reflects the con-
sensus difference value |zt − zt−1| trends with the growth

of iteration. The test is based on all the datasets for 20 dis-
tributed users. The y-axis of these figures is the logarithmic
value of consensus difference in two adjacent iterations. The
longer curve means that it takes more iteration steps to reach
the convergence, and the vibrations mean the consensus
difference value is changing with the increase of iteration for
adjusting the final results. We can see that the curve of fully
distributed architecture has a long time of iterations to reach
the end of convergence and has fierce vibration tail. It means
that the users in the fully distributed system need longer
and erratic negotiation period to get a satisfied consensus
result at the end of the convergence. The hierarchical and
centralized architectures have short curves and reach to the
consensus result quickly, which means they do not need
the redundant adjustments at the convergence end. Besides,
compared to the centralized architecture, the hierarchical
distributed system does not have the tail vibrations, which
reaches to the consensus result in shorter iterations and it
saves more time from the final adjustments between the
distributed users.

Moreover, for the hierarchical distributed system, the
division of different groups may have influence on the learn-
ing performance. We choose different number of groups for
the breast cancer and svmguide1 datasets. As shown in Fig.
10(a), we divide the 20 distributed users into 2 to 13 groups
in the system, where each group has similar user numbers
and the equal data volumes. The results reflect that the
different group numbers have impacts on the convergence
of the learning. If the group number is larger, the model
is getting closer to the fully distributed model. Then, the
required number of iteration is increasing. Moreover, the
data allocation ratio among the groups also has the impacts.
We divide the 20 users into a two-group case of breast
cancer data with different ratios. As shown in Fig. 10(b),
if the ratio deviation between two groups is larger, it means
the data have the larger difference between groups, such
that they need different iterations to reach the convergence.
However, the influence of this ratio only works for the small
size of data in the groups. More data points in each user
will mitigate the influence of such deviation. Because the
fewer users will have more different typical data structures.
With the growing of user number, the effects made by group
division ratio will be mitigated. Therefore, combining with
the classification accuracy results, the smaller group number
and the larger user dataset can result in a better performance
in the hierarchical distributed system.

7.4.2 Vertically Partitioned

Comparing with the horizontally partitioned one, the major
difference happens at the lower layer from the extra matrix
computations in the vertically partitioned scenario. So, in-
stead of analyzing the iteration convergence, we evaluate
the additional computation load by these secure matrix
products. We apply the vertical partition learning approach
to the Higgs dataset with three groups of {10, 10, 8} data di-
mensions. The users in each group have their own datasets
of different data instance numbers. As shown in Fig. 11, the
computational time cost of our privacy-preserving approach
introduces a little computation overhead than the original
learning scheme, which only comes from the addition secure
matrix products.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

User Number

It
e
ra

ti
o
n

Fully Distributed

Centralized

Hierarchical (Group1)

Hierarchical (Group2)

(a) Breast Cancer Data

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

User Number

It
e
ra

ti
o
n

Fully Distributed

Centralized

Hierarchical (Group1)

Hierarchical (Group2)

(b) Svmguide1 Data

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

User Number

It
e
ra

ti
o
n

Fully Distributed

Centralized

Hierarchical (Group1)

Hierarchical (Group2)

(c) Higgs Data

Fig. 8: Convergence Iteration

0 50 100
−25

−20

−15

−10

−5

0

5

Iteration

L
o
g
 D

if
fe

re
n
c
e

Fully Distributed
Centralized
Hierarchical

(a) Breast Cancer Data

0 100 200 300 400
−25

−20

−15

−10

−5

0

5

Iteration

L
o
g
 D

if
fe

re
n
c
e

Fully Distributed
Centralized
Hierarchical

(b) Svmguide1 Data

0 100 200 300 400
−20

−15

−10

−5

0

5

Iteration

L
o
g
 D

if
fe

re
n
c
e

Fully Distributed
Centralized
Hierarchical

(c) Higgs Data

Fig. 9: Convergence Vibration

2 3 4 5 6 7 8 9 10 11 12 13
10

12

14

16

18

20

22

24

Group Number

It
e

ra
ti
o

n

Svmguide1 Breast Cancer

(a) Different Group Numbers

1:9 2:8 3:7 4:6 5:5 6:6 7:3 8:2 9:1
0

5

10

15

20

25

30

Group1:Group2

It
e
ra

ti
o
n

Group1 Group2

(b) Different Group Ratios

Fig. 10: Group Division

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

User Data Instance

L
e
a
rn

in
g
 T

im
e
 (

s
)

Original Vertically Partitioned Scheme
Privacy−preserving Hierarchical Vertically Partitioned Scheme

Fig. 11: Hierarchical Vertically Partitioned Scheme

7.5 Improvement of Asynchronous Iterations

Based on the normal hierarchical learning scheme, we fur-
ther implement the asynchronous learning strategy to the

system. The influence of the convergence speed control
parameters has been illustrated in Fig. 5, but it is only
evaluated with the same step size for different groups in
the horizontally partitioned scenario. To study the improve-
ments of asynchronous learning, we evaluate a two-group
division to the breast cancer dataset. To see the influence of
different learning speeds, the step sizes in different groups
are changed. As shown in Fig. 12, the larger step size set-
tings require less iterations for convergence. However, at the
same time, the larger step size may lead to the worse clas-
sification performance. Due to such difference, we need to
choose the balanced step sizes in different groups to satisfy
the classification accuracy requirements, while providing a
more efficient learning process. For example, if our selection
of the step size should not be larger than 50, instead of

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

using the same (50, 50) in the synchronous iterations, we
can choose (50, 20) as the best learning parameters in two
groups for the asynchronous learning.

30
70

110
150

190

30
70

110
150

190

0

50

100

Group2 Step
Group1 Step

It
e
ra

ti
o
n
s

0

20

40

60

80

Fig. 12: Different Step Size of Asynchronous Learning

Certainly, this asynchronous learning strategy can also
be applied to more groups case in the hierarchical dis-
tributed system. As shown in Fig. 13, with different group
numbers, the required iterations are evaluated for syn-
chronous and asynchronous strategies. From this figure, the
asynchronous learning requires about only half iterations to
the synchronous one on the efficiency improvement of the
collaborative learning process in the hierarchical distributed
system. During the evaluation, we ensure that at least one
group in the asynchronous iterations mode has same step
size with the synchronous one, such that they are in the
same step size level.

2 4 6 8 10
0

50

100

150

200

250

Group Number

It
e
ra

tio
n
s

Asynchronous
Synchronous

Fig. 13: Iterations in Different Strategies

8 CONCLUSION

In this paper, we propose a novel efficient privacy-
preserving machine learning scheme for the hierarchical
distributed system. Based on the analysis of hierarchical
architecture, we introduce the privacy-preserving solutions
to different data partition scenarios. The specific application
solutions of linear support vector machine are also provided
for both upper and lower layers in the system. Additionally,
we present a further improvement in the learning efficiency
by implementing the asynchronous learning strategy for
different groups of the system. Finally, real-world datasets
experiments are implemented to illustrate the privacy, effi-
cacy, and efficiency of our approach.

Moreover, based on the analysis of the hierarchical dis-
tributed system, we can see that it has advantages than
the simple distributed systems. In the normal applications
of distributed learning, we can even transform the sim-
ple architecture to the hierarchical systems to improve the
efficiency. For example, in a fully distributed system, we
can divide the fully distributed users into different groups
to abstractly build a hierarchical distributed system. Thus,
the learning process will have a shrank consensus scope
and the asynchronous learning process is available with
different group learning speed settings. Therefore, in real
applications, we can use this way to construct an abstract
hierarchical system for improving the learning performance.

REFERENCES

[1] D. Peteiro-Barral and B. Guijarro-Berdiñas, “A survey of methods
for distributed machine learning,” Progress in Artificial Intelligence,
vol. 2, no. 1, pp. 1–11, 2013.

[2] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine
learning: An artificial intelligence approach. Springer Science &
Business Media, 2013.

[3] O. L. Mangasarian and E. W. Wild, “Privacy-preserving classifi-
cation of horizontally partitioned data via random kernels.” in
DMIN, 2008, pp. 473–479.

[4] K. Chen and L. Liu, “Privacy preserving data classification with
rotation perturbation,” in Fifth IEEE International Conference on
Data Mining (ICDM’05). IEEE, 2005, pp. 4–pp.

[5] O. L. Mangasarian, “Privacy-preserving linear programming,”
Optimization Letters, vol. 5, no. 1, pp. 165–172, 2011.

[6] S. Laur, H. Lipmaa, and T. Mielikäinen, “Cryptographically pri-
vate support vector machines,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2006, pp. 618–624.

[7] C. Orlandi, A. Piva, and M. Barni, “Oblivious neural network
computing via homomorphic encryption,” EURASIP Journal on
Information Security, vol. 2007, p. 18, 2007.

[8] J. Vaidya, H. Yu, and X. Jiang, “Privacy-preserving svm classifica-
tion,” Knowledge and Information Systems, vol. 14, no. 2, pp. 161–178,
2008.

[9] H. Yu, J. Vaidya, and X. Jiang, “Privacy-preserving svm classifi-
cation on vertically partitioned data,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2006, pp. 647–656.

[10] M. Santillana, A. T. Nguyen, M. Dredze, M. J. Paul, E. O. Nsoe-
sie, and J. S. Brownstein, “Combining search, social media, and
traditional data sources to improve influenza surveillance,” PLoS
Comput Biol, vol. 11, no. 10, p. e1004513, 2015.

[11] G. Tsoumakas and I. Vlahavas, “Effective stacking of distributed
classifiers,” in Ecai, vol. 2002, 2002, pp. 340–344.

[12] F. Provost and V. Kolluri, “A survey of methods for scaling up
inductive algorithms,” Data mining and knowledge discovery, vol. 3,
no. 2, pp. 131–169, 1999.

[13] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[14] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based
distributed support vector machines,” Journal of Machine Learning
Research, vol. 11, no. May, pp. 1663–1707, 2010.

[15] K. Xu, H. Ding, L. Guo, and Y. Fang, “A secure collaborative
machine learning framework based on data locality,” in 2015 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2015, pp.
1–5.

[16] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang, “Privacy-preserving
machine learning algorithms for big data systems,” in Distributed
Computing Systems (ICDCS), 2015 IEEE 35th International Conference
on. IEEE, 2015, pp. 318–327.

[17] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and
optimization for big data analytics:(statistical) learning tools for
our era of data deluge,” IEEE Signal Processing Magazine, vol. 31,
no. 5, pp. 18–31, 2014.

[18] O. Bousquet and L. Bottou, “The tradeoffs of large scale learning,”
in Advances in neural information processing systems, 2008, pp. 161–
168.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2859420, IEEE

Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[19] M. Rodrı́guez, D. M. Escalante, and A. Peregrı́n, “Efficient dis-
tributed genetic algorithm for rule extraction,” Applied soft comput-
ing, vol. 11, no. 1, pp. 733–743, 2011.

[20] Y. Kokkinos and K. G. Margaritis, “A distributed asynchronous
and privacy preserving neural network ensemble selection ap-
proach for peer-to-peer data mining,” in Proceedings of the Fifth
Balkan Conference in Informatics. ACM, 2012, pp. 46–51.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Machine Learning, vol. 3, no. 1, pp. 1–122,
2010.

[22] J. C. Benaloh, “Secret sharing homomorphisms: Keeping shares
of a secret secret,” in Conference on the Theory and Application of
Cryptographic Techniques. Springer, 1986, pp. 251–260.

[23] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter, “Privacy-preserving
analysis of vertically partitioned data using secure matrix prod-
ucts,” Journal of Official Statistics, vol. 25, no. 1, p. 125, 2009.

[24] C. Cortes and V. Vapnik, “Support vector machine,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[25] P. Smyth, M. Welling, and A. U. Asuncion, “Asynchronous dis-
tributed learning of topic models,” in Advances in Neural Informa-
tion Processing Systems, 2009, pp. 81–88.

[26] L. Fang and Y. Lei, “An asynchronous distributed admm al-
gorithm and efficient communication model,” in Dependable,
Autonomic and Secure Computing, 14th Intl Conf on Pervasive
Intelligence and Computing, 2nd Intl Conf on Big Data Intelli-
gence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl C. IEEE,
2016, pp. 136–140.

[27] K. Gimpel, D. Das, and N. A. Smith, “Distributed asynchronous
online learning for natural language processing,” in Proceedings
of the Fourteenth Conference on Computational Natural Language
Learning. Association for Computational Linguistics, 2010, pp.
213–222.

[28] T. A. Lahlou and T. A. Baran, “Asynchronous algorithms for
solving linear programs,” arXiv preprint arXiv:1502.06784, 2015.

[29] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimization
algorithms,” in 1984 American Control Conference, 1984, pp. 484–
489.

[30] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml
via a stale synchronous parallel parameter server,” in Advances in
neural information processing systems, 2013, pp. 1223–1231.

[31] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic
particles in high-energy physics with deep learning,” Nature com-
munications, vol. 5, 2014.

[32] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[33] C.-C. C. Chih-Wei Hsu and C.-J. Lin., “A practical guide to support
vector classification.” 2003. [Online]. Available: https://www.
csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/ref.html#CWH03a

Qi Jia received his B.E. degree in Communica-
tion Engineering from Beihang University (Bei-
jing University of Aeronautics and Astronautics)
in 2014. He received the MS degree electri-
cal and computer engineering from Binghamton
University and is continuing his work towards
the PhD. degree. His research interests include
security and privacy issues in machine learning
and data mining. He is a co-recipient of Best
Paper Award of Globecom 2015, Symposium on
Communication and Information System Secu-

rity. He is a student member of the IEEE.

Linke Guo received the BE degree in elec-
tronic information science and technology from
the Beijing University of Posts and Telecommu-
nications in 2008. He received the MS and PhD
degrees in electrical and computer engineering
from the University of Florida in 2011 and 2014,
respectively. Since August 2014, he has been an
assistant professor in the Department of Elec-
trical and Computer Engineering, Binghamton
University, State University of New York. His re-
search interests include network security and

privacy, social networks, and applied cryptography. He serves as the
publication chair of IEEE Conference on Communications and Network
Security (CNS) 2016 and 2017. He was the symposium co-chair of Net-
work Algorithms and Performance Evaluation Symposium, ICNC 2016.
He has served as the Technical Program Committee (TPC) members for
several conferences including IEEE INFOCOM, ICC, GLOBECOM, and
WCNC. He is the co-recipient of Best Paper Award of Globecom 2015,
Symposium on Communication and Information System Security. He is
a member of the IEEE and ACM.

Yuguang Fang (F’08) received an MS degree
from Qufu Normal University, Shandong, China
in 1987, a PhD degree from Case Western Re-
serve University in 1994, and a PhD degree
from Boston University in 1997. He joined the
Department of Electrical and Computer Engi-
neering at University of Florida in 2000 and has
been a full professor since 2005. He held a Uni-
versity of Florida Research Foundation (UFRF)
Professorship (2017-2020, 2006-2009), Univer-
sity of Florida Term Professorship (2017-2019),

a Changjiang Scholar Chair Professorship (Xidian University, Xian,
China, 2008-2011; Dalian Maritime University, Dalian, China, 2015-
2018), Overseas Academic Master (Dalian University of Technology,
Dalian, China, 2016-2018), and a Guest Chair Professorship with Ts-
inghua University, China (2009-2012). Dr. Fang received the US Na-
tional Science Foundation Career Award in 2001, the Office of Naval
Research Young Investigator Award in 2002, the 2015 IEEE Commu-
nications Society CISTC Technical Recognition Award, the 2014 IEEE
Communications Society WTC Recognition Award, and the Best Paper
Award from IEEE ICNP (2006). He has also received a 2010-2011 UF
Doctoral Dissertation Advisor/Mentoring Award, a 2011 Florida Blue
Key/UF Homecoming Distinguished Faculty Award, and the 2009 UF
College of Engineering Faculty Mentoring Award. He was the Editor-
in-Chief of IEEE Transactions on Vehicular Technology (2013-present),
the Editor-in-Chief of IEEE Wireless Communications (2009-2012),
and serves/served on several editorial boards of journals including
IEEE Transactions on Mobile Computing (2003-2008, 2011-2016), IEEE
Transactions on Communications (2000-2011), and IEEE Transactions
on Wireless Communications (2002-2009). He has been actively par-
ticipating in conference organizations such as serving as the Technical
Program Co-Chair for IEEE INFOCOM2014 and the Technical Program
Vice-Chair for IEEE INFOCOM’2005. He is a fellow of the IEEE and
a fellow of the American Association for the Advancement of Science
(AAAS).

Guirong Wang , PhD (Dr. rer. Nat.) is a Profes-
sor in the Department of Surgery of the SUNY
Upstate Medical University, Syracuse, USA. His
major research interests are Cell and Molecu-
lar Biology of Pulmonary Diseases, especially
for surfactant protein gene expression, regu-
lation and biological functions, and the gene-
environmental interactions using in vitro cell and
in vivo transgenic mouse models. He has pub-
lished 88 peer-reviewed scientific papers. His
research works have been supporting by several

agencies including NIH and NSF awards.

