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Abstract—Data outsourcing is a promising technical paradigm
to facilitate cost-effective real-time data storage, processing, and
dissemination. In such a system, a data owner proactively pushes
a stream of data records to a third-party cloud server for storage,
which in turn processes various types of queries from end users
on the data owner’s behalf. This paper considers outsourced
multi-version key-value stores that have gained increasing pop-
ularity in recent years, where a critical security challenge is to
ensure that the cloud server returns both authentic and fresh
data in response to end users’ queries. Despite several recent
attempts on authenticating data freshness in outsourced key-
value stores, they either incur excessively high communication
cost or can only offer very limited real-time guarantee. To fill
this gap, this paper introduces KV-Fresh, a novel freshness
authentication scheme for outsourced key-value stores that offers
strong real-time guarantee. KV-Fresh is designed based on a
novel data structure, Linked Key Span Merkle Hash Tree, which
enables highly efficient freshness proof by embedding chaining
relationship among records generated at different time. Detailed
simulation studies using a synthetic dataset generated from real
data confirm the efficacy and efficiency of KV-Fresh.

I. INTRODUCTION

Data outsourcing is a promising technical paradigm to
facilitate cost-effective storage, processing, and dissemination
of real-time data stream. In such a system, a data owner
proactively pushes one or multiple high-volume data streams
generated by distributed data sources to a third-party cloud
server for storage and backup, which in turn processes various
types of queries from many end users on the data owner’s be-
half. Examples of massive data streams include those collected
by stock exchange service providers, online social networking
service providers, critical infrastructure monitoring companies,
and so on. In addition to higher availability and elasticity
offered by cloud service provider, data outsourcing can also
relieve the data owner from cumbersome management work
and result in significant saving in operation cost.

This paper considers outsourced multi-version key-value
store [1], [2], which is a non-SQL data model developed for
storage, analysis and access of large volume of unstructured
data. A key-value store is a database storing a collection of
data records, each of which is a key-value pair that can be
efficiently retrieved using the key. In a multi-version key-value
store, the data value of a record has multiple versions, each
of which is an updated value received at a different time. In
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comparison with traditional relational databases, key-value s-
tores do not enforce any structure on the data and offers higher
scalability, simpler designs, and higher availability. Examples
of key-value stores include MongoDB, Amazon DynamoDB,
Azure Cosmos DB, and so on. Key-value stores and other
non-SQL databases have gained increasing popularity in recent
years, of which the market is expected to reach 4.2 billion by
2020 [3].

Data outsourcing, unfortunately, poses critical security chal-
lenges in that cloud service providers cannot be fully trusted to
faithfully provide query results to end users based on authentic
and up-to-date data for various reasons. First, a compromised
cloud server may provide forged data in response to end
users’ queries to mislead users into making incorrect decisions.
For example, a cloud service provider may return forged
data values in favor of the businesses with financial interests,
and similar misbehavior have been widely reported in web
search industry. Second, a cloud service provider may provide
authentic but stale data, which is more subtle and difficult to
detect. For example, a cloud service provider may purposefully
drop some data for saving storage cost. Such misbehavior
is particularly economically appealing if the data is of large
volume and subjected to frequent update. In comparison to
the first attack, this attack can also lead to bad decisions by
end users but is more subtle and difficult to detect. These
situations call for sound authentication techniques to ensure
both authenticity and freshness of any query result returned
by the cloud service provider.

Despite many efforts on authenticating outsourced query
processing [4]-[24], authenticating data freshness is partic-
ularly challenging and has thus far received very limited
attention. Common to existing solutions [25]-[29] is to divide
the time into intervals and let the data owner generate a
cryptographic proof for every key with no update in every
interval. On receiving a query, the cloud server is required to
return the most recent value for the queried key along with a
freshness proof. While such approaches allow end users to
verify the freshness of query results, the size of freshness
proof is linear to the number of the intervals after the most
recent update and thus inversely proportional to the length of
the interval. As a result, existing solutions [25]-[29] either
suffer from excessively high communication cost or can only



support limited real-time guarantee. For example, the state-
of-art solution [29] can only support interval size in minutes.
How to realize freshness authentication with strong real-time
guarantee remains an open problem.

In this paper, we tackle this open challenge by introducing
KV-Fresh, a novel freshness authentication mechanism for
outsourced multi-version key-value store. We observe that the
key to simultaneously achieve strong real-time guarantee and
communication efficiency is to break the linear dependence
between the size of freshness proof and the number of intervals
after the latest update. Based on this observation, we introduce
a novel data structure that embeds chaining relationship among
updates in different intervals to realize efficient freshness
proof. Built upon this novel data structure, KV-Fresh allows
the cloud server to prove the freshness of query results by
returning information for only a small number of intervals
while skipping potentially many intervals in between. Our
contributions in this paper can be summarized as follows.

o We identify a key limitation of existing solutions on
freshness authentication that they either suffer from ex-
cessively high communication cost or can only support
limited real-time guarantee.

o« We propose a novel data structure that allows highly
efficient proof of no update over a large of number of
intervals.

e« We introduce KV-Fresh, a novel freshness authentication
mechanism for outsourced multi-version key-value stores
that provides stronger real-time guarantee with low com-
munication cost.

o We confirm the high efficiency of KV-Fresh via extensive
simulation studies using a synthetic dataset generated
from a real dataset. In particular, our simulation results
show that KV-Fresh reduces the communication cost by
up to 99.6% for proving data freshness and achieves up
to nine times higher throughput in comparison with the
state-of-art solution INCBM-TREE [29].

II. RELATED WORK

Our work is mostly related to authenticating data freshness
and existing solutions can be generally classified into two cat-
egories. The first category relies on the data owner to construct
and maintain a proper data digest at the cloud server, such as
a Merkle Hash tree or its variants [25]-[27], [30], [31]. These
approaches require the data owner to maintain large local states
about historical data or incur significant communication cost
between the data owner and the cloud server. The second cate-
gory [32]-[34] detects the cloud server’s misbehavior through
offline audit, which cannot guarantee data freshness in real-
time. To authenticate data freshness in real time, Yang et al.
introduced a design based on trusted computing hardware [28].
In [29], Tang et al. introduced INCBM-TREE, a data structure
based on the Bloom filter and multi-level key-ordered Merkle
hash tree. INCBM-TREE can only support relaxed real-time
freshness check at the granularity of minute-based intervals, as
the size of the freshness proof is inversely proportional to the
interval length. Our work is mostly related to [29] and enables

freshness verification at much smaller time granularity without
using any trusted computing hardware.

Our work is also related to authenticating outsourced query
processing [4], in which a data owner outsources its dataset to
a third party service provider who is responsible for answering
the data queries from end users on the data owner’s behalf.
Significant effort has been devoted to ensuring query integrity
and completeness, i.e., a query result contains all the authentic
data records satisfying the query. Various types of queries
have been studied, including relational queries [5]-[7], range
queries [8]-[12], top-k queries [13]-[17], skyline queries [18]-
[21], KNN queries [22], [23], shortest-path queries [24], etc. A
general framework is to let the data owner precompute some
auxiliary information from its dataset, using cryptographic
techniques to accompany its dataset, whereby the third party
service provider can generate a proof in response to a user’s
query. None of these works consider the freshness of returned
data records, and they are thus inapplicable to the problem
addressed in this paper.

III. PROBLEM FORMULATION

In this section, we introduce our system and adversary
models and design goals.

A. System Model

We consider a data outsourcing system consisting of three
parties: a data owner, a third-party cloud server, and many
users. The data owner outsources a dataset in the form of a
multi-version key-value store to the cloud server, which in turn
answers data queries from users on the data owner’s behalf.

The data owner maintains the key-value store at the cloud
server by proactively pushing data updates to the cloud server
as they become available. We assume that the keys can be
ordered and denote by K = {1,...,|K|} the key space. The
key-value store consists of a collection of data records, each
of which contains a unique key k € K and a data value that
can have multiple versions received over different time. Each
version corresponds to an update in the form of (k, v, ¢), where
k is the key, v is the update value, and ¢ is the timestamp
indicating the time at which the update is issued.

Users access data records in the key-value store through
the cloud server’s GET API. Specifically, any user can issue a
GET query as Q(k,t,), where k is the queried key and ¢, is
an optional parameter indicating the point of time up to which
the data record is requested. On receiving query Q(k,1,), the
cloud server needs to return the most recent data record for
key k as of t,. The absence of parameter t, indicates that
the user is asking for the most recent data record as of now.
Extending our work to support other types of queries, e.g.,
range queries, is left as our future work.

B. Adversary Model

We assume that the data owner is trusted to faithfully
perform all system operations. In contrast, the cloud server
cannot be fully trusted and may launch the following two
attacks. First, the cloud server may return forged or tampered



data records that do not belong to the data owner’s dataset.
Second, the cloud server may return authentic but stale data
records in response to the user’s GET query.

We assume that the communication channels between the
data owner and the cloud server as well as between the cloud
server and users are secured using standard techniques, e.g.,
TLS [35]. In addition, we also assume that the data owner
cannot predict the keys that the user will query in advance.

C. Design Goals

Strict freshness verification—also referred to as real-time
freshness check in [29]—requires the data owner to not only
push authenticated data updates to the cloud sever as soon as
there are available but also constantly inform the cloud server
even if there is no update, which would result in prohibitive
processing and communication cost. As in the state-of-art
solution in [29], we seek to achieve relaxed real-time freshness
verification. Specifically, we assume that time is divided into
intervals of equal length, which means that the data owner
pushes authenticated date updates to the cloud server on the
interval basis. We assume that in every interval, every data
object k € K has either no or just one new updated value.
Note that our proposed mechanism can be easily adopted to
support multiple updated values in one interval.

In view of the aforementioned attacks, we aim to design a
freshness authentication mechanism to allow a user to verify
whether the query result returned by the cloud server satisfies
the following two conditions.

o Query-result integrity: The returned data value v is indeed
an updated value for key k from the data owner and has
not been tampered with.

o Query-result freshness: There is no update for key £ in
any interval that starts after ¢ and ends no later than ¢,.

In other words, we aim to achieve relaxed real-time freshness
verification because it cannot guarantee no update for key
k in the interval that encloses t,. The smaller the interval
size, the stronger the real-time guarantee, and vice versa. We
aim to support strong real-time guarantee with millisecond-
based interval. Moreover, the mechanism should incur low
update cost between the data owner and the cloud server and
low communication and computation cost for proving data
freshness.

IV. KV-FRESH

In this section, we first introduce two strawman approaches
for freshness authentication followed by an overview of KV-
Fresh. We then introduce a novel data structure that underpins
KV-Fresh. Finally, we detail the design of KV-Fresh.

A. Two Strawman Approaches

We first introduce two strawman approaches to enable
query-result freshness and integrity verification. The first ap-
proach is to let the data owner maintain the most recent
update for every key and build a Merkle hash tree over all
data records in every interval, some of which are updated in
the current interval and the rest are copied from the previous

interval. The data owner pushes the Merkle hash tree to the
cloud server. With the Merkle hash tree constructed for every
interval, the cloud server can prove the integrity and freshness
of the query result. This approach incurs low communication
cost for proving data freshness but excessively high update
cost between the data owner and cloud server, as the data
owner has to transmit information for every key even if many
have no update in the short interval. In particular, the update
cost between the data owner and the cloud server is linear to
the size of the key space.

The second approach is to let the cloud server construct a
Key-Ordered Merkle Hash Tree (KOMT) for every interval
over only keys with update, where the absence of a key
implicitly indicates that the most recent update for this key
happened in one of the previous intervals. Given a batch of
key-value records, the data owner sorts the records according
to their keys and builds a Merkle hash tree over the sorted list.
Doing so can minimize the communication cost between the
data owner and the cloud server due to fewer leaf nodes in
each KOMT. However, it still incurs high communication cost
for proving data freshness if each key is updated infrequently,
as the cloud server needs to prove that there is no update in
possibly many intervals after the most recent update. More
importantly, the number of intervals after the most recent
update is inversely proportional to the size of interval, which
means that strong real-time guarantee would incur significant
communication cost for proving data freshness.

B. Overview Of KV-Fresh

KV-Fresh is designed to take the advantages of both ap-
proaches by striking a good balance between update cost and
freshness proof size. In particular, the first strawman approach
achieves low communication cost for proving data freshness
by copying the most recent update to the Merkle hash tree
constructed for the current interval. Doing so allows the cloud
server to prove data freshness using the Merkle hash tree
constructed for the current interval. In contrast, the second
approach achieves low update cost between the data owner and
the cloud server by greatly reducing the number of leaf nodes
of the Merkle hash tree constructed for every interval. We find
that the key to realize efficient freshness authentication with
strong real-time guarantee is to simultaneously maintaining
small Merkle hash tree size while realizing efficient proof of
no update after the most recent update.

Based on the above observation, we introduce Linked Key
Span Merkle Hash Tree (LKS-MHT), a novel data structure to
achieve small Merkle hash tree size in every interval while al-
lowing efficient proof of no update in possibly many intervals.
The key idea is to bundle adjacent keys with no update in one
interval as a key block to reduce the number of leaf nodes.
To enable efficient proof of no update over multiple intervals,
each key block embeds the index of an earlier interval if none
of the key in the block has update after the earlier interval.
This allows the cloud server to skip possibly many intervals
in between in the freshness proof. LKS-MHT can effectively
break the linear dependence between the freshness proof size



Fig. 1: An example of LKS-MHT.

and the number of intervals with no update and thus enable
highly efficient freshness authentication.

Under KV-Fresh, the data owner builds one LKS-MHT for
every interval and pushes the LKS-MHT to the cloud server.
The LKS-MHT contains information for every key in the key
space, either an updated value received in the current interval
or an index of an earlier interval, for which the LKS-MHT
contains the most recent update or the index of another earlier
interval. On receiving a GET query from the end user, the
cloud server returns the LKS-MHT leaf node containing the
queried key in the queried interval. If there is no update
for the key in the queried interval, the cloud server further
returns the LKS-MHT leaf node for the interval with index
embedded in the leaf node of the queried interval. This process
continuous until the most recent update for the queried key is
found. In what follows, we first introduce LKS-MHT and its
construction and then detail the operations of KV-Fresh.

C. LKS-MHT:Linked Key Span Merkle Hash Tree

We now introduce LKS-MHT, the data structure that under-
pins KV-Fresh. A LKS-MHT 7; is a binary tree constructed
for each interval ¢ with 0; leaf nodes L; 1, ..., L; g,. Every leaf
node L; ;,1 < j < 6;, consists of the following information.

(1) A key block Kiyj = [l@j,?“i,j} with l@j,’l“@j € K and
lij < . Ifl;; = 7, then K ; represents a single
key li,j~

An interval index 7; ; € {0,...,7 — 1} that indicates
that there is no update for any key in K ; from interval
vi,; + 1 to 4. In other words, the information about the
most recent update for each key in K; ; can be found in
interval «y; ; or earlier.

Or an updated key value v} along with timestamp i, if
K; ; represents a single key k (i.e., k = l; ; = r; ;) which
receives an update in interval i.

Given L;1,...,L;p,, the LKS-MHT 1is constructed similar
to the traditional Merkle hash tree. In particular, we first
calculate h; ; = H(L; ;) for all 1 < j < 6;, where H(-)
denotes a cryptographic hash function, e.g., SHA-256. We then
computes every internal node as the hash of the concatenation
of its two children. Note that if the number of leaf nodes is
not a perfect power of two, some dummy leaf nodes need be
introduced.

(2.2)

2.b)

Interval
2 3 4 5 6 7 8

Key ! 6
1o vf H

Key block with interval index T

Fig. 2: Illustration of LKS-MHT-based freshness
authentication

Fig. 1 shows an example of the LKS-MHT constructed for
an interval 7 with the key space K = {1,...,8}. The first
leaf node corresponds to key K;; = 1 with the updated value
vt and timestamp t! received in interval i; the second leaf
node corresponds to a key block K; 2 = [2,4] and an interval
index 3, meaning that the most recent information for keys in
[2,4] can be found in interval 3 or earlier; the third leaf node
corresponds a key block K; 3 = [5,7] and an interval index
2, meaning that the most recent information about any key in
[5,7] can be found in interval 2 or earlier; and the last leaf
node corresponds to key K; ; = 8 with updated value v and
timestamp 5.

To see how LKS-MHT can be used to realize efficient
freshness authentication, consider Fig. 2 as an example, where
eight LKS-MHTs 77, ..., Ts are constructed for intervals 1 to
8 over key space K = {1,2,3,4}. Assume that the user issues
a GET query as Q(2,t,), where t, is the end of interval 8.
Since the most recent update for key 2 is v3 received in interval
3, the cloud server needs to prove that there has been no update
in intervals 4 to 8. To do so, the cloud server only needs to
return the first leaf node in LKS-MHT 73, which is a key
block [1,2] and embeds an interval index 6, and the second
leaf node in LKS-MHT Tg, which is a key block [2,3] and
embeds an interval index 3, and the second leaf node in LKS-
MHT T3, which is a single key 2 with updated value v3. As
we can see, there is no need for the cloud server to return any
information about intervals 4, 5, and 7.

D. LKS-MHT Construction

Now we discuss how to construct LKS-MHT 7T; for each
interval 4, for which the key is to determine the set of
key blocks with corresponding interval index. Denote by
Ki; € K the subset of keys that receive updates in each
interval 7 € {1,2,...}. Without loss of generality, suppose
K = {ki71,]€i)2,...,]€i))\i}, where \; = |K:l| and ki}1 <
k‘@g <0< ki,)\i-

1) The First Interval: 1t is straightforward to determine the
leaf nodes of LKS-MHT 7T;7. We can see that the A\; keys
K1 = {k11,k12,...,k1,, } partition the whole key space
K ={1,...,K} into A\; + 1 key blocks By = [1,k11 — 1],
By = [k11+ 1, k12— 1],...,Bx+1 = [k1n, + 1, K]. For
simplicity, we assume that none of these key blocks are empty,



Algorithm 1: Construct candidate leaf nodes

input : Leaf nodes L;—1,1,...,L;—1,9,_, and K;
output: An ordered list of candidate leaf nodes for T
C; < emptylist;
foreach j € {1,...,6,_1} do
Kij+ Ki—1,j5; ,
it L1 :'<k,vfl,t}(1> then
| vig=i-1;
end
else if L;—1,j = ([li—1,j,mi~1,j],7i-1,;) then
| i =vi-15
end
Append C; j = (K; j,7:,j) to Cy;

N A ;B W N =

=

end

foreach k; ; € K; do

13 Find C; , € C; such that k; ; € K; 43

14 Delete C; , from C;;

15 Insert Cf = (ki,]-,v]ici 7,t§'€i 7) after Cj —1;
16 if k},‘ﬂj > liﬂ then ) )

17 | Insert ([l ki j — 1],4) before C;

—-
R =

18 end

19 if k; ; < i, then

20 Insert ([k; ; + 1,75 ],4) after C;
21 end

22 end

23 return C;;

from which we can form 6; = 2)\; + 1 key blocks { K7 ; }?;1,
where
B(j+1)/2, lf] is Odd,
Ky ;= e
k1 /2, if 7 is even,

for all 1 < j < 6;. We then create one leaf node L, ; for each
key block K ;, where

_ <B(j+1)/27 0>7 lfj is Odd,
1) = . . .
’ (k1572 U;J/Zatijm% if j is even.

2) Subsequent Intervals: For every subsequent interval @
(i > 2), the leaf nodes of T; are determined jointly by the
leaf nodes of T;_; and /C; in two steps: (1) constructing a set
of candidate leaf nodes and (2) determining the leaf nodes.

Candidate leaf nodes. First, we can obtain a set of can-
didate leaf nodes based on L; 11,...,L;—1,4, ,, and K.
Consider as an example a leaf node L;_;; with key block
K,'_l,j = [Zi—l,jvri—l,j] and interval index Yi-1,57 < 1.
Assume that |K;_; ;| > 2. If no key in K;_; ; receives any
update in interval i, we create one candidate leaf node the
same as L;_y ;. Otherwise, we split K;_; ; into multiple non-
overlapping key blocks and create one candidate leaf node
from each of them. Each candidate leaf node either contains a
key with update in interval 7 or a key block with no update that
inherits the interval index ;1 ; from L;_; ;. For example,
if a single key k € K;_;; is updated in interval i and
li—1; < k < mi—1,, we can split K;_; ; into three smaller
candidate blocks and create three candidate leaf nodes: the
first one with key block [l;_1 j,k — 1] and the same interval
index 7;_1, the second one consisting of a single key £, the
updated value v,i, and timestamp i and the third one with
key block [k + 1, ri,l}j] and the same interval index ~y;_1 ;.

We summarize the general procedure for constructing a list

Interval

Fig. 3: An example of LKS-MHTSs constructed under
maximum merging.

of candidate leaf nodes in Algorithm 1, which takes a list of
leaf nodes L;_11,...,L;—1,, , of LKS-MHT T;_; and K,
as input and outputs a sorted list of candidate leaf nodes C;.
The list of candidate leaf nodes is initialized as an empty list
(Line 1). We then create one candidate leaf node from each leaf
node L;_; ; where the interval index is set to ¢ — 1 if L;_y ;
corresponds to a single key with update in interval ¢ — 1 or
7i,j—1 if it corresponds to a key block (Lines 2 to 11). We
then check every key k; ; € K; to make necessary adjustment
to the candidate leaf nodes (Lines 12 to 22). Specifically, for
every k; ; € K;, we find the candidate leaf node C;, whose
key block encloses k; ; and replace C; , with a new candidate
leaf node (k,j,vj, ,t}, ), a candidate leaf node on the left if
ki j > l; », and a candidate leaf node on the right if k; ; < 7; ;.

Leaf nodes. We now determine the leaf nodes for T} from
the candidate leaf nodes, for which the key is to merge some
adjacent candidate leaf nodes to maintain a small number of
leaf nodes. Without merging, the number of leaf nodes would
increase monotonically at every interval and eventually reach
IC, resulting in excessive update cost between the data owner
and the cloud server similar to Strawman Approach 1.

Under what condition can adjacent candidate leaf nodes
be merged? We observe that multiple adjacent candidate leaf
nodes can be merged into one if none of the keys in the
corresponding key blocks is updated in interval 7. Specifically,
for a group of adjacent candidate leaf nodes C; j, ..., C; jis,
if none of the keys in thij K , is updated in interval 4, then
we can merge key blocks K j;,..., K; s into one and create
a new leaf node as <U§;§ K; i — 1) that indicates that the

most recent information about any key in Uiij K; , can be
found in 7;_;.

Which adjacent candidate leaf nodes should be merged?
A plausible answer is to merge every block of consecutive
candidate leaf nodes into one leaf node to minimize the
number of leaf nodes and thus the update cost. However, doing
so would increase the size of freshness proof, as the cloud
server needs to return information for more intervals. Fig. 3
shows an example of blindly merging all possible leaf nodes
for 8§ LKS-MHTSs. Assume that the end user issues a GET
query as (Q(2,t,), where ¢, is at the end of interval 8. The
cloud server needs to return the first leaf node of Tg, which
is a key block [1, 3] and embeds an interval index 7, and the
first leaf node in LKS-MHT 7%, which is a key block [1, 2]



and embeds an interval index 6, the second leaf node of 7§,
which is a key block [2, 4] and embeds an interval index 5, the
first leaf node in LKS-MHT 75, which is a key block [1, 3]
and embeds an interval index 3, and the second leaf node
of Ty which is a single key 2 with the updated value v3. In
comparison with the previous example shown in Fig. 2, the
cloud server needs to return two more leaf nodes.

We first observe that some merging decisions can be made
based on whether related keys have updates in the two in-
tervals. Let C; = (Ciq1,...,Cig,) be the list of candidate
leaf nodes output by Algorithm 1, where ¢; is the number of
candidate leaf nodes. We define b; as the decision variable
such that b; = 1 if C;; and C; j 41 are merged into one and
0 otherwise for all 1 < j < ¢; — 1. We find that b; can be
determined in the following two cases.

o Case 1: If either C; ; or C; j4+1 corresponds to a single
key with update in interval 4, then b; = 0, as the
corresponding leaf node needs to record the update value
and thus cannot be merged with other.

e Case 2:1If C; j and C; ;1 each correspond to a single key
with update in interval i — 1, i.e., 5 ; = Vi j41 = — 1,
then we should merge them into one leaf node, i.e., b; =
1. Doing so can reduce the number of leaf nodes without
increasing freshness proof size, because the cloud server
needs to return the leaf node for at least one interval after
the most recent update in interval ¢ — 1.

Based on the above observation, we define three index sets as
e={l,....0; =1}, P9 = {jli € , K, ; €Ki VK, 11 €
Ki} and ®; = {j|j € ,7; = Vi,j+1 = ¢ — 1}, where &g
and ®; correspond to the first and second cases, respectively. It
follows that b; = 0 for all j € ®y and b; =1 for all j € ®;.
In addition, we have |®o| < |K;|, as every key in |K;| can
introduce at most one element to ®,. We further note that if
we let b; =1 for all j € @\ P, i.e., merging every possible
pair of candidate leaf nodes, then it would take |®| — |®g|
merging operations and result in ¢; —(¢; —1—|Dg|) = |Po|+1
leaf nodes. Therefore, the minimum number of leaf nodes that
T; could have is |®g| + 1.

We now formulate the remaining merging decisions as
an optimization problem, in which we seek to minimize
the expected size of freshness proof under the constraint of
maximum number of leaf nodes. We observe that the size of
freshness proof is linear to the number of intervals for which
the cloud server needs to return a leaf node. Denote by Ay ;
and Ay ;1 the numbers of leaf nodes the cloud server needs
to return in response to queries = (k,4) and Q = (k,i—1),
respectively, for all £ € K. Also let p; be the probability of
key k being queried, where ), . pr = 1. If every key is
equally likely being queried, we then have p, = % for all
k € K. The expected number of leaf nodes that the cloud
server needs to return for freshness proof is given by

E(h;) = Zpkhk,i = Zpkhk,i—l + Zpk(hk,i — hgio1),

kek keK keK
1

where E(-) denotes expectation. Since merging decisions have

no impact on the first term, minimizing E(h;) is equivalent to
minimizing Y, o pr(hk,i — heio1).

Next, we analyze the relationship between by, ..., by, 1 and
> kei Pr(hi,i—hyi—1). First, we observe that hy ;—hy ;-1 =
1 if key k belongs to a candidate leaf node that has been
merged with another and 0 otherwise. We therefore seek to
find a subset of candidate leaf nodes to be merged, denoted by
M; € Cj, such that the > JeM, ZkeK _pr is minimized.
Let @ = @\ (PolJP1) and’ {bjlj € @ } be the remaining
decision variables that need be determined. Further denote by
O = {b; =1]j € @'} and &) = {b; = 0|j € D'} be the
subsets of decision variables set to one and zero, respectively.
Given @) and @4, a candidate leaf node C; ; is merged with
another, i.e., C; ; € M; if either j — 1 or j € ®]J®;. Let
D={jlj—1€dJP1Vje @ JP1Ajec P} We have

Do m=2 D> e
C; ;€EM; kEK; ; JENMkEK, ;

Since ®; is predetermined, we formulate the merging deci-
sions as the following programming problem.

ZZZPk

JENKEK, ;
subject to ) C &',

—[®; [ J @] < max(r, [®o| +1), 2
b; =0,V € <1>0U<1>’,
bj =1,Yj € & | @),

minimize

where ¢; — |®;|J®)| is the number of leaf nodes after
|®; |J )| merging operations and T is a system parameter
that limits the number of leaf nodes for every LKS-MHT and
is usually set to be the larger the expected number of updates
in each interval.

We now introduce an efficient greedy algorithm to solve
the above optimization problem. Specifically, it is easy to see
that objective function f(-) is non-negative and monotone. In
addition, for any &, C ®, C ® and j € &'\ &, we have
F@, UG — F(@2) > F(@,UL5}) — f(®,). because the
elements in ®, \ ®, may have already caused C; ; or C; j+1
merged with another, resulting in smaller return from adding j.
Therefore f(-) is also submodular. It is well known that for any
function that is submodular, non-negative, and monotone, a
greedy algorithm that selects the local optimal element at every
step can output a solution with guaranteed approximation ratio
of 1 — 1/e, and no polynomial-time algorithm can achieve a
better guarantee unless P = N P [36].

Algorithm 2 shows the greedy algorithm. We first initialize
the number of leaf nodes 6; to ¢; — |®4], i.e., ¢; candidate n-
odes after |®;| merging operations (Line 1). We then initialize
® to empty set and the set of remaining decision variables
D' to @\ (Dol Dy). We then iteratively make the remaining
merging decisions (Lines 4 to 9). In each iteration, we find
j* € ® with the smallest f(®’(J{j*}) and move j* from &’
to ®/. This process continuous until the number of leaf nodes



Algorithm 2: Construct Leaf Nodes 1
,Ci ;> @, @o, @1, and 7

input : Candidate leaf nodes Cj 1, ...
output: &} and &
0; < ¢i — |P1l;
D)+ 0
@ @\ (PoU21):
while 0; > max(7, |®o| + 1) do
J* = argmineqr £(@' U{j}):
o) U]
o — o\ [y
92' < 91' —1;
end
<I>6 — D'\ <I>'1;
return ®; and ®{;

S © ® u AW =

—-
=

0; reaches max(7, |®o| + 1). Finally, ®} and ®{ = &'\ ¢
are output for constructing the leaf nodes for 7;.

E. Detailed Procedures

We now detail the procedures involved in KV-Fresh, which
consists of three phases: update preprocessing, query pro-
cessing, and query-result verification. We assume that the
data owner has a public/private key pair that supports batch
verification of digital signatures, such as RSA [37].

1) Update Preprocessing: Assume that the data owner
receives data records {(vi,ti)|k € K;} in each interval i
for ¢ = 1,2,.... At the end of each interval 7, the data
owner generates the leaf nodes L;1,...,L;p according to
the procedures in Section IV-D1 if ¢ = 1 or Section IV-D2
otherwise. The data owner then constructs an LKS-MHT T;
over L; 1,...,L; 9. Let (n,e) and d be the data owner’s RSA
public/private key pair and R; the root of T;. The data owner
signs the concatenation of interval index ¢ and R; as

s; = H(i||R;)? mod n. (3)

Finally, the data owner sends all the leaf nodes L; 1,..., L; g,
and its signature s; to the cloud server, whereby the cloud
server can compute all the intermediate nodes and root of 7.

2) Query Processing: Assume that a data user issues a GET
query Q(k,t,) asking for most recent update for key k as of
the end of interval ;. Also assume that v}, is the most recent
update for key k received at time t}; in interval 7, where 7 < ¢;.

Given T1,...,T;,, the cloud server constructs the query
result as follows. For every x = 1,2, ..., the cloud server finds
the leaf node L, ;, in LKS-MHT T, suchthat k € K, ; . It
follows that L, ;. = (k,v,t}) if ¢, =i and (Kg, ., Vg, )
otherwise. The cloud server returns

Re = (¢z, Ly, 5. A(Rq, |qu’jz)v Sq.)

as a partial query result, where R, is the root of LKS-MHT
Ty, and A(Rg, |L,, ;) is the set of internal nodes in Ty,
needed for computing root R, from leaf node L, ; . If g, >
1, then the cloud server set ¢, 11 = 4, ;. and repeat the above
process until ¢, = ¢, i.e., the most recent update for key k
received in interval 7 has been returned.

3) Query-Result Verification: Assume that the user has re-
ceived the query result in the form of R = (Ry, ..., R,), where

TABLE I: Default Settings

Para. Val. Description.
€ 10 ms | The interval size
K| 10,000 | The number of keys
m 1,000 The number of intervals
T 512 The maximal number of key blocks
:40] 256 The length of hash
54 1024 | The length of data owner’s signature

R: = (Gz,Lq, ., A(Rq,|Lq, j.)sSq.), for all 1 < x < r.
The data user first verifies the integrity of the query result.
Specifically, for every x = 1,...,r, the user first computes
R,, from L, ; using A(R,,|L,, ;) It then verifies all r
signatures in batch by checking whether

r , r
(H 5¢.)° = H H(g:||Ry,) mod n,
r=1 r=1

where (n,e) is the data owner’s RSA public key. If so, the
user considers the query result authentic.

The data user also proceeds to verify the freshness of
the query result using the interval indexes embedded in the
returned leaf nodes. Assume that ¢; > --- > ¢s. The user first
checks if ¢; = qi, as the cloud server should always return
one leaf node for the queried interval ¢;. If so, the user further
checks whether ¢, 1 = v, ;, forallz =1,...,s—1. Finally,
the user verifies whether leaf node L, ; contains the updated
value v}, and timestamp ¢ . If so, the user considers the query
result fresh and accepts v}; as the most recent.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of KV-Fresh.

A. Dataset

We create a synthetic dataset from a TrueFax real-time
currency conversion dataset [38] that includes tick-by-tick
historical conversion rates for 16 major currency pairs with
fractional pip spreads in millisecond detail. For our purpose,
we take the currency conversion rate from EUR to USD from
12:00 am (GMT), January 2nd, 2019 to 03:46:40 pm (GMT)
January 3rd, 2019. We divide the time period into 10,000
segments of 10 seconds. We treat the segment indexes as keys
and the conversion rates as the updates. Our synthetic dataset
consists 10,000 keys for a period of 10 seconds, and on average
131.55 keys receive updates for every 10 ms.

B. Simulation Settings

We implement KV-Fresh in Python and test it on a desktop
with 17-6700 CPU, 16GB RAM and 64-bit Winl0 operating
system. We adopt the SHA-256 for the cryptographic hash
function and RSA for digital signature. Table I summarizes
our default settings unless mentioned otherwise.

We compare KV-Fresh with the state-of-art solution
INCBM-TREE [29] as well as the Strawman-1 and Strawman-
2 approaches discussed in Section IV-A using four metrics:
(1) update cost which is number of extra bits per second
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Fig. 4: Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with interval size varying from 10s to 1ms.

transmitted from the data owner to cloud server, (2) proof
size which is the number of extra bits needed for proving
the integrity and freshness for a query result, (3) throughput
which is the number of queries processed by the cloud server
per second, and (4) verification time which is the time needed
for verifying a returned query result by the user.

C. Simulation Results

We now report our simulation results where every point
represents the average of 10,000 runs.

1) The Impact of Interval Size: Fig. 4(a) compares the
update cost under Strawman-1, Strawman-2, INCBM-TREE,
and KV-Fresh for 7 = 256,512 and 1024 with interval size
varying from 10s to 1ms. As we can see, the update cost per
second increases as the interval sizes decreases under all four
mechanisms. This is expected, as the number of intervals is
inversely proportional to the interval size. Among the four
mechanisms, Strawman-1 has the highest update cost when
the interval size is smaller than 1s, as the data owner needs
to send the most recent key-value record for every key in
every interval. Strawman-2 and INCBM-TREE have the lowest
update cost, as the data owner only sends keys with updates
under both mechanisms. The update cost of KV-Fresh falls in
the middle and increases much slower than that of Strawman-
1. This is anticipated, as KV-Fresh requires the data owner to
transmit updated key-value records and key block information
with no update for every interval. Moreover, the smaller 7,
the fewer leaf nodes of LKS-MHT in each interval, the lower
update cost under KV-Fresh, and vice versa. We can see that
even when the interval size is 1 ms, KV-Fresh with 7 = 1024
incurs an update cost of approximately 10® bits per second. In
other words, a 100-Mbps link between the data owner and the
cloud server suffices to support a key space of 10,000 keys,
which makes KV-Fresh very practical.

Fig. 4(b) shows the impact of interval size on the proof size
of Strawman-1, Strawman-2, INCBM-TREE, and KV-Fresh.
The proof size of Strawman-1 is not affected by the interval
size and stays at 4460 bits. The proof sizes of the other three
mechanisms all increase as the interval size decreases, except
for KV-Fresh with 7 = 256. Among the other three, the proof
sizes of Strawman-2 and INCBM-TREE grows the fastest are
approximately inversely proportional to the interval size. The
reason is that the data owner needs to prove that there is no

update in every interval after the most recent update under both
mechanisms. While INCBM-TREE employs a Bloom filter for
efficient proof of no update, every Bloom filter covers only
a constant number of intervals, and transmitting the Bloom
filter incurs additional communication cost in comparison with
Strawman-2. In contrast, the proof size under KV-Fresh grows
much slower as the interval size decreases, because KV-Fresh
allows the cloud server to skip potentially many intervals in
the freshness proof. We can also see that the higher 7, the
smaller the proof size when interval size reaches 10 ms and
1 ms. The reason is that the smaller the interval size, the
fewer keys have updates in every interval, the fewer merging
operations are needed for larger 7, and thus the fewer intervals,
i.e., leaf nodes, need be returned under KV-Fresh. This is also
the reason that we see the decrease in the proof size for KV-
Fresh with 7 = 256 when interval size decreases from 10 ms
to 1ms. In addition, we can see that KV-Fresh significantly
outperforms INCBM-TREE when interval size is small. For
example, when the interval size is 1 ms, the proof size under
KV-Fresh with 7 = 1024 is approximately 90 Kb, which is
less than 0.4% of the 22.9 Mb under INCBM-TREE.

Fig. 4(c) shows the throughput under Strawman-I,
Strawman-2, INCBM-TREE, and KV-Fresh. The throughput
under Strawman-1 is the highest and is not affected by the
change in interval size. Among the other three, the throughput
of Strawman-2 is the smallest, followed by INCBM-TREE.
The reason is that the smaller the interval size, the more
intervals after the most recent update, the more intervals the
cloud server needs to process under Strawman-2 and INCBM-
TREE, and vice versa. In contrast, the throughput of KV-Fresh
initially declines as the interval size decreases from 10 s to 10
ms and then becomes stable or increases slightly as the interval
size decreases from 10 ms to 1 ms. The reason for the initial
decline is that when the interval size is large, most of the keys
have updates in every interval, and the merging constraint is
determined by |®g| instead of 7, which results in excessive
merging operations and more intervals that the cloud server
needs to check. As the interval size further decreases, fewer
and fewer keys have updates in each interval, which result in
fewer merging operations and thus fewer intervals the cloud
server needs to check. Generally speaking, in comparison
with Strawman-2 and INCBM-TREE, KV-Fresh has similar
throughput when the interval size is large while outperforms
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Strawman-2 and INCBM-TREE by large margins when the
interval size is small.

Fig. 4(d) compares the verification cost of the four mech-
anisms under different interval sizes. As we can see, the
verification cost of Strawman-1 remains at 0.6357ms and is
not affected by the change in interval size. The verification
cost increases as the interval size decreases under all the other
three mechanisms. Among them, KV-Fresh has the lowest ver-
ification cost and outperforms INCBM-TREE and Strawman-
2 by large margins. The reason is that fewer leaf nodes
need be returned under KV-Fresh than both INCBM-TREE
and Strawman-2. These results demonstrate the significant
advantages of KV-Fresh over other two mechanisms.

2) The Impact of the Number of Keys: Figs. 5(a) to
5(d) compares the performance of KV-Fresh, Strawman-1,
Strawman-2 and INCBM-TREE with ||, i.e., the number
of keys, varying from 100 to 50,000. As we can see from
Fig. 5(a), the update costs of all schemes increase as the
number of keys increase, which is anticipated. Moreover, the
update cost of KV-Fresh is lower than that of Strawman-1 by a
larger margin and higher than that of Strawman-2 and INCBM-
TREE. Even for KV-Fresh with 7 = 4096, the update cost is
approximately 3.9 x 107 bits per second, which is very practical
for K = 50,000 and 10-ms interval. Moreover, we can see
from Fig. 5(b) that the proof size under all four mechanisms
increase as || increases, as larger |K| leads to deeper MHT.
Moreover, as |K| increases from 100 to 50,000, the proof size
under K'V-Fresh is always significantly smaller than that under
Strawman-2 and INCBM-TREE. Similarly, Figs. 5(c) and 5(d)
show that KV-Fresh achieves much higher throughput and
lower verification cost than Strawman-2 and INCBM-TREE,
because fewer leaf nodes need be returned under KV-Fresh
than the other two.

3) The Impact of T: Figs. 6(a) to 6(d) shows the perfor-
mance of KV-Fresh with varying 7, where the performance of
Strawman-1, Strawman-2 and INCBM-TREE are plotted for
reference. Generally speaking, the larger 7, the higher update
cost, the smaller proof size, the higher throughput, the smaller
verification cost for KV-Fresh, and vice versa. In addition, the
update cost, proof size, throughput, and verification cost of
KV-Fresh are almost always between those under Strawman-
1, Strawman-2, and INCBM-TREE, which is expected. While
KV-Fresh incurs higher update cost than Strawman-2 and
INCBM-TREE, it incurs much lower communication cost
between the cloud server and the ender and smaller verification
cost. Moreover, while update only happens between the data
owner and the cloud server, the cloud server could serve
potentially many users at the same time.

VI. CONCLUSION

In this paper, we have presented the design and evaluation
of KV-Fresh, a novel freshness authentication scheme for
outsourced multi-version key-value stores. KV-Fresh is built
upon LKS-MHT, a novel data structure that allows efficient
proof of no update over a potentially large number of inter-
vals. Extensive simulation studies confirm that KV-Fresh can
simultaneously achieve strong real-time guarantee and high
communication efficiency.
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