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Abstract—Data outsourcing is a promising technical paradigm
to facilitate cost-effective real-time data storage, processing, and
dissemination. In such a system, a data owner proactively pushes
a stream of data records to a third-party cloud server for storage,
which in turn processes various types of queries from end users
on the data owner’s behalf. This paper considers outsourced
multi-version key-value stores that have gained increasing pop-
ularity in recent years, where a critical security challenge is to
ensure that the cloud server returns both authentic and fresh
data in response to end users’ queries. Despite several recent
attempts on authenticating data freshness in outsourced key-
value stores, they either incur excessively high communication
cost or can only offer very limited real-time guarantee. To fill
this gap, this paper introduces KV-Fresh, a novel freshness
authentication scheme for outsourced key-value stores that offers
strong real-time guarantee. KV-Fresh is designed based on a
novel data structure, Linked Key Span Merkle Hash Tree, which
enables highly efficient freshness proof by embedding chaining
relationship among records generated at different time. Detailed
simulation studies using a synthetic dataset generated from real
data confirm the efficacy and efficiency of KV-Fresh.

I. INTRODUCTION

Data outsourcing is a promising technical paradigm to

facilitate cost-effective storage, processing, and dissemination

of real-time data stream. In such a system, a data owner

proactively pushes one or multiple high-volume data streams

generated by distributed data sources to a third-party cloud

server for storage and backup, which in turn processes various

types of queries from many end users on the data owner’s be-

half. Examples of massive data streams include those collected

by stock exchange service providers, online social networking

service providers, critical infrastructure monitoring companies,

and so on. In addition to higher availability and elasticity

offered by cloud service provider, data outsourcing can also

relieve the data owner from cumbersome management work

and result in significant saving in operation cost.

This paper considers outsourced multi-version key-value

store [1], [2], which is a non-SQL data model developed for

storage, analysis and access of large volume of unstructured

data. A key-value store is a database storing a collection of

data records, each of which is a key-value pair that can be

efficiently retrieved using the key. In a multi-version key-value

store, the data value of a record has multiple versions, each

of which is an updated value received at a different time. In

comparison with traditional relational databases, key-value s-

tores do not enforce any structure on the data and offers higher

scalability, simpler designs, and higher availability. Examples

of key-value stores include MongoDB, Amazon DynamoDB,

Azure Cosmos DB, and so on. Key-value stores and other

non-SQL databases have gained increasing popularity in recent

years, of which the market is expected to reach 4.2 billion by

2020 [3].

Data outsourcing, unfortunately, poses critical security chal-

lenges in that cloud service providers cannot be fully trusted to

faithfully provide query results to end users based on authentic

and up-to-date data for various reasons. First, a compromised

cloud server may provide forged data in response to end

users’ queries to mislead users into making incorrect decisions.

For example, a cloud service provider may return forged

data values in favor of the businesses with financial interests,

and similar misbehavior have been widely reported in web

search industry. Second, a cloud service provider may provide

authentic but stale data, which is more subtle and difficult to

detect. For example, a cloud service provider may purposefully

drop some data for saving storage cost. Such misbehavior

is particularly economically appealing if the data is of large

volume and subjected to frequent update. In comparison to

the first attack, this attack can also lead to bad decisions by

end users but is more subtle and difficult to detect. These

situations call for sound authentication techniques to ensure

both authenticity and freshness of any query result returned

by the cloud service provider.

Despite many efforts on authenticating outsourced query

processing [4]–[24], authenticating data freshness is partic-

ularly challenging and has thus far received very limited

attention. Common to existing solutions [25]–[29] is to divide

the time into intervals and let the data owner generate a

cryptographic proof for every key with no update in every

interval. On receiving a query, the cloud server is required to

return the most recent value for the queried key along with a

freshness proof. While such approaches allow end users to

verify the freshness of query results, the size of freshness

proof is linear to the number of the intervals after the most

recent update and thus inversely proportional to the length of

the interval. As a result, existing solutions [25]–[29] either

suffer from excessively high communication cost or can only



support limited real-time guarantee. For example, the state-

of-art solution [29] can only support interval size in minutes.

How to realize freshness authentication with strong real-time

guarantee remains an open problem.

In this paper, we tackle this open challenge by introducing

KV-Fresh, a novel freshness authentication mechanism for

outsourced multi-version key-value store. We observe that the

key to simultaneously achieve strong real-time guarantee and

communication efficiency is to break the linear dependence

between the size of freshness proof and the number of intervals

after the latest update. Based on this observation, we introduce

a novel data structure that embeds chaining relationship among

updates in different intervals to realize efficient freshness

proof. Built upon this novel data structure, KV-Fresh allows

the cloud server to prove the freshness of query results by

returning information for only a small number of intervals

while skipping potentially many intervals in between. Our

contributions in this paper can be summarized as follows.

• We identify a key limitation of existing solutions on

freshness authentication that they either suffer from ex-

cessively high communication cost or can only support

limited real-time guarantee.

• We propose a novel data structure that allows highly

efficient proof of no update over a large of number of

intervals.

• We introduce KV-Fresh, a novel freshness authentication

mechanism for outsourced multi-version key-value stores

that provides stronger real-time guarantee with low com-

munication cost.

• We confirm the high efficiency of KV-Fresh via extensive

simulation studies using a synthetic dataset generated

from a real dataset. In particular, our simulation results

show that KV-Fresh reduces the communication cost by

up to 99.6% for proving data freshness and achieves up

to nine times higher throughput in comparison with the

state-of-art solution INCBM-TREE [29].

II. RELATED WORK

Our work is mostly related to authenticating data freshness

and existing solutions can be generally classified into two cat-

egories. The first category relies on the data owner to construct

and maintain a proper data digest at the cloud server, such as

a Merkle Hash tree or its variants [25]–[27], [30], [31]. These

approaches require the data owner to maintain large local states

about historical data or incur significant communication cost

between the data owner and the cloud server. The second cate-

gory [32]–[34] detects the cloud server’s misbehavior through

offline audit, which cannot guarantee data freshness in real-

time. To authenticate data freshness in real time, Yang et al.
introduced a design based on trusted computing hardware [28].

In [29], Tang et al. introduced INCBM-TREE, a data structure

based on the Bloom filter and multi-level key-ordered Merkle

hash tree. INCBM-TREE can only support relaxed real-time

freshness check at the granularity of minute-based intervals, as

the size of the freshness proof is inversely proportional to the

interval length. Our work is mostly related to [29] and enables

freshness verification at much smaller time granularity without

using any trusted computing hardware.

Our work is also related to authenticating outsourced query

processing [4], in which a data owner outsources its dataset to

a third party service provider who is responsible for answering

the data queries from end users on the data owner’s behalf.

Significant effort has been devoted to ensuring query integrity

and completeness, i.e., a query result contains all the authentic

data records satisfying the query. Various types of queries

have been studied, including relational queries [5]–[7], range

queries [8]–[12], top-k queries [13]–[17], skyline queries [18]–

[21], kNN queries [22], [23], shortest-path queries [24], etc. A

general framework is to let the data owner precompute some

auxiliary information from its dataset, using cryptographic

techniques to accompany its dataset, whereby the third party

service provider can generate a proof in response to a user’s

query. None of these works consider the freshness of returned

data records, and they are thus inapplicable to the problem

addressed in this paper.

III. PROBLEM FORMULATION

In this section, we introduce our system and adversary

models and design goals.

A. System Model

We consider a data outsourcing system consisting of three

parties: a data owner, a third-party cloud server, and many

users. The data owner outsources a dataset in the form of a

multi-version key-value store to the cloud server, which in turn

answers data queries from users on the data owner’s behalf.

The data owner maintains the key-value store at the cloud

server by proactively pushing data updates to the cloud server

as they become available. We assume that the keys can be

ordered and denote by K = {1, . . . , |K|} the key space. The

key-value store consists of a collection of data records, each

of which contains a unique key k ∈ K and a data value that

can have multiple versions received over different time. Each

version corresponds to an update in the form of (k, v, t), where

k is the key, v is the update value, and t is the timestamp

indicating the time at which the update is issued.

Users access data records in the key-value store through

the cloud server’s GET API. Specifically, any user can issue a

GET query as Q(k, tq), where k is the queried key and tq is

an optional parameter indicating the point of time up to which

the data record is requested. On receiving query Q(k, tq), the

cloud server needs to return the most recent data record for

key k as of tq . The absence of parameter tq indicates that

the user is asking for the most recent data record as of now.

Extending our work to support other types of queries, e.g.,

range queries, is left as our future work.

B. Adversary Model

We assume that the data owner is trusted to faithfully

perform all system operations. In contrast, the cloud server

cannot be fully trusted and may launch the following two

attacks. First, the cloud server may return forged or tampered



data records that do not belong to the data owner’s dataset.

Second, the cloud server may return authentic but stale data

records in response to the user’s GET query.

We assume that the communication channels between the

data owner and the cloud server as well as between the cloud

server and users are secured using standard techniques, e.g.,

TLS [35]. In addition, we also assume that the data owner

cannot predict the keys that the user will query in advance.

C. Design Goals

Strict freshness verification—also referred to as real-time

freshness check in [29]—requires the data owner to not only

push authenticated data updates to the cloud sever as soon as

there are available but also constantly inform the cloud server

even if there is no update, which would result in prohibitive

processing and communication cost. As in the state-of-art

solution in [29], we seek to achieve relaxed real-time freshness

verification. Specifically, we assume that time is divided into

intervals of equal length, which means that the data owner

pushes authenticated date updates to the cloud server on the

interval basis. We assume that in every interval, every data

object k ∈ K has either no or just one new updated value.

Note that our proposed mechanism can be easily adopted to

support multiple updated values in one interval.

In view of the aforementioned attacks, we aim to design a

freshness authentication mechanism to allow a user to verify

whether the query result returned by the cloud server satisfies

the following two conditions.

• Query-result integrity: The returned data value v is indeed

an updated value for key k from the data owner and has

not been tampered with.

• Query-result freshness: There is no update for key k in

any interval that starts after t and ends no later than tq .

In other words, we aim to achieve relaxed real-time freshness

verification because it cannot guarantee no update for key

k in the interval that encloses tq . The smaller the interval

size, the stronger the real-time guarantee, and vice versa. We

aim to support strong real-time guarantee with millisecond-

based interval. Moreover, the mechanism should incur low

update cost between the data owner and the cloud server and

low communication and computation cost for proving data

freshness.

IV. KV-FRESH

In this section, we first introduce two strawman approaches

for freshness authentication followed by an overview of KV-

Fresh. We then introduce a novel data structure that underpins

KV-Fresh. Finally, we detail the design of KV-Fresh.

A. Two Strawman Approaches

We first introduce two strawman approaches to enable

query-result freshness and integrity verification. The first ap-

proach is to let the data owner maintain the most recent

update for every key and build a Merkle hash tree over all

data records in every interval, some of which are updated in

the current interval and the rest are copied from the previous

interval. The data owner pushes the Merkle hash tree to the

cloud server. With the Merkle hash tree constructed for every

interval, the cloud server can prove the integrity and freshness

of the query result. This approach incurs low communication

cost for proving data freshness but excessively high update

cost between the data owner and cloud server, as the data

owner has to transmit information for every key even if many

have no update in the short interval. In particular, the update

cost between the data owner and the cloud server is linear to

the size of the key space.

The second approach is to let the cloud server construct a

Key-Ordered Merkle Hash Tree (KOMT) for every interval

over only keys with update, where the absence of a key

implicitly indicates that the most recent update for this key

happened in one of the previous intervals. Given a batch of

key-value records, the data owner sorts the records according

to their keys and builds a Merkle hash tree over the sorted list.

Doing so can minimize the communication cost between the

data owner and the cloud server due to fewer leaf nodes in

each KOMT. However, it still incurs high communication cost

for proving data freshness if each key is updated infrequently,

as the cloud server needs to prove that there is no update in

possibly many intervals after the most recent update. More

importantly, the number of intervals after the most recent

update is inversely proportional to the size of interval, which

means that strong real-time guarantee would incur significant

communication cost for proving data freshness.

B. Overview Of KV-Fresh

KV-Fresh is designed to take the advantages of both ap-

proaches by striking a good balance between update cost and

freshness proof size. In particular, the first strawman approach

achieves low communication cost for proving data freshness

by copying the most recent update to the Merkle hash tree

constructed for the current interval. Doing so allows the cloud

server to prove data freshness using the Merkle hash tree

constructed for the current interval. In contrast, the second

approach achieves low update cost between the data owner and

the cloud server by greatly reducing the number of leaf nodes

of the Merkle hash tree constructed for every interval. We find

that the key to realize efficient freshness authentication with

strong real-time guarantee is to simultaneously maintaining

small Merkle hash tree size while realizing efficient proof of

no update after the most recent update.

Based on the above observation, we introduce Linked Key
Span Merkle Hash Tree (LKS-MHT), a novel data structure to

achieve small Merkle hash tree size in every interval while al-

lowing efficient proof of no update in possibly many intervals.

The key idea is to bundle adjacent keys with no update in one

interval as a key block to reduce the number of leaf nodes.

To enable efficient proof of no update over multiple intervals,

each key block embeds the index of an earlier interval if none

of the key in the block has update after the earlier interval.

This allows the cloud server to skip possibly many intervals

in between in the freshness proof. LKS-MHT can effectively

break the linear dependence between the freshness proof size



Fig. 1: An example of LKS-MHT.

and the number of intervals with no update and thus enable

highly efficient freshness authentication.

Under KV-Fresh, the data owner builds one LKS-MHT for

every interval and pushes the LKS-MHT to the cloud server.

The LKS-MHT contains information for every key in the key

space, either an updated value received in the current interval

or an index of an earlier interval, for which the LKS-MHT

contains the most recent update or the index of another earlier

interval. On receiving a GET query from the end user, the

cloud server returns the LKS-MHT leaf node containing the

queried key in the queried interval. If there is no update

for the key in the queried interval, the cloud server further

returns the LKS-MHT leaf node for the interval with index

embedded in the leaf node of the queried interval. This process

continuous until the most recent update for the queried key is

found. In what follows, we first introduce LKS-MHT and its

construction and then detail the operations of KV-Fresh.

C. LKS-MHT:Linked Key Span Merkle Hash Tree

We now introduce LKS-MHT, the data structure that under-

pins KV-Fresh. A LKS-MHT Ti is a binary tree constructed

for each interval i with θi leaf nodes Li,1, . . . , Li,θi . Every leaf

node Li,j , 1 ≤ j ≤ θi, consists of the following information.

(1) A key block Ki,j = [li,j , ri,j ] with li,j , ri,j ∈ K and

li,j ≤ ri,j . If li,j = ri,j , then Ki,j represents a single

key li,j .

(2.a) An interval index γi,j ∈ {0, . . . , i − 1} that indicates

that there is no update for any key in Ki,j from interval

γi,j + 1 to i. In other words, the information about the

most recent update for each key in Ki,j can be found in

interval γi,j or earlier.

(2.b) Or an updated key value vik along with timestamp tik, if

Ki,j represents a single key k (i.e., k = li,j = ri,j) which

receives an update in interval i.

Given Li,1, . . . , Li,θi , the LKS-MHT is constructed similar

to the traditional Merkle hash tree. In particular, we first

calculate hi,j = H(Li,j) for all 1 ≤ j ≤ θi, where H(·)
denotes a cryptographic hash function, e.g., SHA-256. We then

computes every internal node as the hash of the concatenation

of its two children. Note that if the number of leaf nodes is

not a perfect power of two, some dummy leaf nodes need be

introduced.

Fig. 2: Illustration of LKS-MHT-based freshness

authentication

Fig. 1 shows an example of the LKS-MHT constructed for

an interval i with the key space K = {1, . . . , 8}. The first

leaf node corresponds to key Ki,1 = 1 with the updated value

vi1 and timestamp ti1 received in interval i; the second leaf

node corresponds to a key block Ki,2 = [2, 4] and an interval

index 3, meaning that the most recent information for keys in

[2, 4] can be found in interval 3 or earlier; the third leaf node

corresponds a key block Ki,3 = [5, 7] and an interval index

2, meaning that the most recent information about any key in

[5, 7] can be found in interval 2 or earlier; and the last leaf

node corresponds to key Ki,1 = 8 with updated value vi8 and

timestamp ti8.

To see how LKS-MHT can be used to realize efficient

freshness authentication, consider Fig. 2 as an example, where

eight LKS-MHTs T1, . . . , T8 are constructed for intervals 1 to

8 over key space K = {1, 2, 3, 4}. Assume that the user issues

a GET query as Q(2, tq), where tq is the end of interval 8.

Since the most recent update for key 2 is v32 received in interval

3, the cloud server needs to prove that there has been no update

in intervals 4 to 8. To do so, the cloud server only needs to

return the first leaf node in LKS-MHT T8, which is a key

block [1, 2] and embeds an interval index 6, and the second

leaf node in LKS-MHT T6, which is a key block [2, 3] and

embeds an interval index 3, and the second leaf node in LKS-

MHT T3, which is a single key 2 with updated value v32 . As

we can see, there is no need for the cloud server to return any

information about intervals 4, 5, and 7.

D. LKS-MHT Construction

Now we discuss how to construct LKS-MHT Ti for each

interval i, for which the key is to determine the set of

key blocks with corresponding interval index. Denote by

Ki ⊆ K the subset of keys that receive updates in each

interval i ∈ {1, 2, . . . }. Without loss of generality, suppose

Ki = {ki,1, ki,2, . . . , ki,λi
}, where λi = |Ki| and ki,1 <

ki,2 < · · · < ki,λi
.

1) The First Interval: It is straightforward to determine the

leaf nodes of LKS-MHT T1. We can see that the λ1 keys

K1 = {k1,1, k1,2, . . . , k1,λ1
} partition the whole key space

K = {1, . . . ,K} into λ1 + 1 key blocks B1 = [1, k1,1 − 1],
B2 = [k1,1 + 1, k1,2 − 1], . . . , Bλ1+1 = [k1,λ1 + 1,K]. For

simplicity, we assume that none of these key blocks are empty,



Algorithm 1: Construct candidate leaf nodes

input : Leaf nodes Li−1,1, . . . , Li−1,θi−1
and Ki

output: An ordered list of candidate leaf nodes for Ti

1 Ci ← emptylist;
2 foreach j ∈ {1, . . . , θi−1} do
3 Ki,j ← Ki−1,j ;

4 if Li−1,j = 〈k, vi−1
k , ti−1

k 〉 then
5 γi,j = i− 1;
6 end
7 else if Li−1,j = 〈[li−1,j , ri−1,j ], γi−1,j〉 then
8 γi,j = γi−1,j ;
9 end

10 Append Ci,j = 〈Ki,j , γi,j〉 to Ci;
11 end
12 foreach ki,j ∈ Ki do
13 Find Ci,x ∈ Ci such that ki,j ∈ Ki,x;
14 Delete Ci,x from Ci;

15 Insert C∗
i = 〈ki,j , viki,j

, tiki,j
〉 after Ci,x−1;

16 if ki,j > li,x then
17 Insert 〈[li,x, ki,j − 1], i〉 before C∗

i ;
18 end
19 if ki,j < ri,x then
20 Insert 〈[ki,j + 1, ri,x], i〉 after C∗

i ;
21 end
22 end
23 return Ci;

from which we can form θi = 2λ1+1 key blocks {K1,j}θij=1,

where

K1,j =

{
B(j+1)/2, if j is odd,

k1,j/2, if j is even,

for all 1 ≤ j ≤ θi. We then create one leaf node L1,j for each

key block K1,j , where

L1,j =

{
〈B(j+1)/2, 0〉, if j is odd,

〈k1,j/2, v1kj/2
, t1kj/2

〉, if j is even.

2) Subsequent Intervals: For every subsequent interval i
(i ≥ 2), the leaf nodes of Ti are determined jointly by the

leaf nodes of Ti−1 and Ki in two steps: (1) constructing a set

of candidate leaf nodes and (2) determining the leaf nodes.

Candidate leaf nodes. First, we can obtain a set of can-

didate leaf nodes based on Li−1,1, . . . , Li−1,θi−1
, and Ki.

Consider as an example a leaf node Li−1,j with key block

Ki−1,j = [li−1,j , ri−1,j ] and interval index γi−1,j < i.
Assume that |Ki−1,j | ≥ 2. If no key in Ki−1,j receives any

update in interval i, we create one candidate leaf node the

same as Li−1,j . Otherwise, we split Ki−1,j into multiple non-

overlapping key blocks and create one candidate leaf node

from each of them. Each candidate leaf node either contains a

key with update in interval i or a key block with no update that

inherits the interval index γi−1,j from Li−1,j . For example,

if a single key k ∈ Ki−1,j is updated in interval i and

li−1,j < k < ri−1,j , we can split Ki−1,j into three smaller

candidate blocks and create three candidate leaf nodes: the

first one with key block [li−1,j , k − 1] and the same interval

index γi−1,j , the second one consisting of a single key k, the

updated value vik, and timestamp tik, and the third one with

key block [k + 1, ri−1,j ] and the same interval index γi−1,j .

We summarize the general procedure for constructing a list

Fig. 3: An example of LKS-MHTs constructed under

maximum merging.

of candidate leaf nodes in Algorithm 1, which takes a list of

leaf nodes Li−1,1, . . . , Li−1,θi−1
of LKS-MHT Ti−1 and Ki

as input and outputs a sorted list of candidate leaf nodes Ci.

The list of candidate leaf nodes is initialized as an empty list

(Line 1). We then create one candidate leaf node from each leaf

node Li−1,j where the interval index is set to i− 1 if Li−1,j

corresponds to a single key with update in interval i − 1 or

γi,j−1 if it corresponds to a key block (Lines 2 to 11). We

then check every key ki,j ∈ Ki to make necessary adjustment

to the candidate leaf nodes (Lines 12 to 22). Specifically, for

every ki,j ∈ Ki, we find the candidate leaf node Ci,x whose

key block encloses ki,j and replace Ci,x with a new candidate

leaf node 〈ki,j , viki,j
, tiki,j

〉, a candidate leaf node on the left if

ki,j > li,x, and a candidate leaf node on the right if ki,j < ri,x.

Leaf nodes. We now determine the leaf nodes for Ti from

the candidate leaf nodes, for which the key is to merge some

adjacent candidate leaf nodes to maintain a small number of

leaf nodes. Without merging, the number of leaf nodes would

increase monotonically at every interval and eventually reach

K, resulting in excessive update cost between the data owner

and the cloud server similar to Strawman Approach 1.

Under what condition can adjacent candidate leaf nodes

be merged? We observe that multiple adjacent candidate leaf

nodes can be merged into one if none of the keys in the

corresponding key blocks is updated in interval i. Specifically,

for a group of adjacent candidate leaf nodes Ci,j , . . . , Ci,j+s,

if none of the keys in
⋃j+s

x=j Ki,x is updated in interval i, then

we can merge key blocks Ki,j , . . . ,Ki,s into one and create

a new leaf node as 〈⋃j+s
x=j Ki,x, i − 1〉 that indicates that the

most recent information about any key in
⋃j+s

x=j Ki,x can be

found in Ti−1.

Which adjacent candidate leaf nodes should be merged?

A plausible answer is to merge every block of consecutive

candidate leaf nodes into one leaf node to minimize the

number of leaf nodes and thus the update cost. However, doing

so would increase the size of freshness proof, as the cloud

server needs to return information for more intervals. Fig. 3

shows an example of blindly merging all possible leaf nodes

for 8 LKS-MHTs. Assume that the end user issues a GET

query as Q(2, tq), where tq is at the end of interval 8. The

cloud server needs to return the first leaf node of T8, which

is a key block [1, 3] and embeds an interval index 7, and the

first leaf node in LKS-MHT T7, which is a key block [1, 2]



and embeds an interval index 6, the second leaf node of T6,

which is a key block [2, 4] and embeds an interval index 5, the

first leaf node in LKS-MHT T5, which is a key block [1, 3]
and embeds an interval index 3, and the second leaf node

of T2 which is a single key 2 with the updated value v32 . In

comparison with the previous example shown in Fig. 2, the

cloud server needs to return two more leaf nodes.

We first observe that some merging decisions can be made

based on whether related keys have updates in the two in-

tervals. Let Ci = 〈Ci,1, . . . , Ci,φi〉 be the list of candidate

leaf nodes output by Algorithm 1, where φi is the number of

candidate leaf nodes. We define bj as the decision variable

such that bj = 1 if Ci,j and Ci,j+1 are merged into one and

0 otherwise for all 1 ≤ j ≤ φi − 1. We find that bj can be

determined in the following two cases.

• Case 1: If either Ci,j or Ci,j+1 corresponds to a single

key with update in interval i, then bj = 0, as the

corresponding leaf node needs to record the update value

and thus cannot be merged with other.

• Case 2: If Ci,j and Ci,j+1 each correspond to a single key

with update in interval i− 1, i.e., γi,j = γi,j+1 = i− 1,

then we should merge them into one leaf node, i.e., bj =
1. Doing so can reduce the number of leaf nodes without

increasing freshness proof size, because the cloud server

needs to return the leaf node for at least one interval after

the most recent update in interval i− 1.

Based on the above observation, we define three index sets as

Φ = {1, . . . , φi − 1},Φ0 = {j|j ∈ Φ,Ki,j ∈ Ki ∨ Ki,j+1 ∈
Ki} and Φ1 = {j|j ∈ Φ, γi,j = γi,j+1 = i − 1}, where Φ0

and Φ1 correspond to the first and second cases, respectively. It

follows that bj = 0 for all j ∈ Φ0 and bj = 1 for all j ∈ Φ1.

In addition, we have |Φ0| ≤ |Ki|, as every key in |Ki| can

introduce at most one element to Φ0. We further note that if

we let bj = 1 for all j ∈ Φ \ Φ0, i.e., merging every possible

pair of candidate leaf nodes, then it would take |Φ| − |Φ0|
merging operations and result in φi−(φi−1−|Φ0|) = |Φ0|+1
leaf nodes. Therefore, the minimum number of leaf nodes that

Ti could have is |Φ0|+ 1.

We now formulate the remaining merging decisions as

an optimization problem, in which we seek to minimize

the expected size of freshness proof under the constraint of

maximum number of leaf nodes. We observe that the size of

freshness proof is linear to the number of intervals for which

the cloud server needs to return a leaf node. Denote by hk,i

and hk,i−1 the numbers of leaf nodes the cloud server needs

to return in response to queries Q = (k, i) and Q = (k, i−1),
respectively, for all k ∈ K. Also let pk be the probability of

key k being queried, where
∑

k∈K pk = 1. If every key is

equally likely being queried, we then have pk = 1
K for all

k ∈ K. The expected number of leaf nodes that the cloud

server needs to return for freshness proof is given by

E(hi) =
∑
k∈K

pkhk,i =
∑
k∈K

pkhk,i−1 +
∑
k∈K

pk(hk,i − hk,i−1),

(1)

where E(·) denotes expectation. Since merging decisions have

no impact on the first term, minimizing E(hi) is equivalent to

minimizing
∑

k∈K pk(hk,i − hk,i−1).

Next, we analyze the relationship between b1, . . . , bφi−1 and∑
k∈K pk(hk,i−hk,i−1). First, we observe that hk,i−hk,i−1 =

1 if key k belongs to a candidate leaf node that has been

merged with another and 0 otherwise. We therefore seek to

find a subset of candidate leaf nodes to be merged, denoted by

Mi ∈ Ci, such that the
∑

Ci,j∈Mi

∑
k∈Ki,j

pk is minimized.

Let Φ′ = Φ \ (Φ0

⋃
Φ1) and {bj |j ∈ Φ′} be the remaining

decision variables that need be determined. Further denote by

Φ′
1 = {bj = 1|j ∈ Φ′} and Φ′

0 = {bj = 0|j ∈ Φ′} be the

subsets of decision variables set to one and zero, respectively.

Given Φ′
1 and Φ1, a candidate leaf node Ci,j is merged with

another, i.e., Ci,j ∈ Mi if either j − 1 or j ∈ Φ′
1

⋃
Φ1. Let

Π = {j|j − 1 ∈ Φ′
1

⋃
Φ1 ∨ j ∈ Φ′

1

⋃
Φ1 ∧ j ∈ Φ}. We have∑

Ci,j∈Mi

∑
k∈Ki,j

pk =
∑
j∈Π

∑
k∈Ki,j

pk.

Since Φ1 is predetermined, we formulate the merging deci-

sions as the following programming problem.

minimize f(Φ′
1) =

∑
j∈Π

∑
k∈Ki,j

pk

subject to Φ′
1 ⊆ Φ′,

φi − |Φ1

⋃
Φ′

1| ≤ max(τ, |Φ0|+ 1),

bj = 0, ∀j ∈ Φ0

⋃
Φ′

0,

bj = 1, ∀j ∈ Φ1

⋃
Φ′

1,

(2)

where φi − |Φ1

⋃
Φ′

1| is the number of leaf nodes after

|Φ1

⋃
Φ′

1| merging operations and τ is a system parameter

that limits the number of leaf nodes for every LKS-MHT and

is usually set to be the larger the expected number of updates

in each interval.

We now introduce an efficient greedy algorithm to solve

the above optimization problem. Specifically, it is easy to see

that objective function f(·) is non-negative and monotone. In

addition, for any Φx ⊆ Φy ⊆ Φ′ and j ∈ Φ′ \ Φy we have

f(Φx

⋃{j}) − f(Φx) ≥ f(Φy

⋃{j}) − f(Φy), because the

elements in Φy \Φx may have already caused Ci,j or Ci,j+1

merged with another, resulting in smaller return from adding j.

Therefore f(·) is also submodular. It is well known that for any

function that is submodular, non-negative, and monotone, a

greedy algorithm that selects the local optimal element at every

step can output a solution with guaranteed approximation ratio

of 1 − 1/e, and no polynomial-time algorithm can achieve a

better guarantee unless P = NP [36].

Algorithm 2 shows the greedy algorithm. We first initialize

the number of leaf nodes θi to φi − |Φ1|, i.e., φi candidate n-

odes after |Φ1| merging operations (Line 1). We then initialize

Φ′
1 to empty set and the set of remaining decision variables

Φ′ to Φ \ (Φ0

⋃
Φ1). We then iteratively make the remaining

merging decisions (Lines 4 to 9). In each iteration, we find

j∗ ∈ Φ′ with the smallest f(Φ′ ⋃{j∗}) and move j∗ from Φ′

to Φ′
1. This process continuous until the number of leaf nodes



Algorithm 2: Construct Leaf Nodes 1

input : Candidate leaf nodes Ci,1, . . . , Ci,φi
, Φ, Φ0, Φ1, and τ

output: Φ′
1 and Φ′

0
1 θi ← φi − |Φ1|;
2 Φ′

1 ← ∅;
3 Φ′ ← Φ \ (Φ0

⋃
Φ1);

4 while θi > max(τ, |Φ0|+ 1) do
5 j∗ = argminj∈Φ′ f(Φ′ ⋃{j});
6 Φ′

1 ← Φ′
1

⋃{j∗};
7 Φ′ ← Φ′ \ {j∗};
8 θi ← θi − 1;
9 end

10 Φ′
0 ← Φ′ \ Φ′

1;
11 return Φ′

1 and Φ′
0;

θi reaches max(τ, |Φ0| + 1). Finally, Φ′
1 and Φ′

0 = Φ′ \ Φ′
1

are output for constructing the leaf nodes for Ti.

E. Detailed Procedures

We now detail the procedures involved in KV-Fresh, which

consists of three phases: update preprocessing, query pro-
cessing, and query-result verification. We assume that the

data owner has a public/private key pair that supports batch

verification of digital signatures, such as RSA [37].

1) Update Preprocessing: Assume that the data owner

receives data records {〈vik, tik〉|k ∈ Ki} in each interval i
for i = 1, 2, . . . . At the end of each interval i, the data

owner generates the leaf nodes Li,1, . . . , Li,θ according to

the procedures in Section IV-D1 if i = 1 or Section IV-D2

otherwise. The data owner then constructs an LKS-MHT Ti

over Li,1, . . . , Li,θ. Let (n, e) and d be the data owner’s RSA

public/private key pair and Ri the root of Ti. The data owner

signs the concatenation of interval index i and Ri as

si = H(i||Ri)
d mod n. (3)

Finally, the data owner sends all the leaf nodes Li,1, . . . , Li,θi

and its signature si to the cloud server, whereby the cloud

server can compute all the intermediate nodes and root of Ti.

2) Query Processing: Assume that a data user issues a GET

query Q(k, tq) asking for most recent update for key k as of

the end of interval q1. Also assume that vik is the most recent

update for key k received at time tik in interval i, where i ≤ q1.

Given T1, . . . , Tq1 , the cloud server constructs the query

result as follows. For every x = 1, 2, . . . , the cloud server finds

the leaf node Lqx,jx in LKS-MHT Tqx such that k ∈ Kqx,jx . It

follows that Lqx,jx = 〈k, vik, tik〉 if qx = i and 〈Kqx,jx , γqx,jx〉
otherwise. The cloud server returns

Rx = 〈qx, Lqx,jx ,A(Rqx |Lqx,jx), sqx〉
as a partial query result, where Rqx is the root of LKS-MHT

Tqx , and A(Rqx |Lqx,jx) is the set of internal nodes in Tqx

needed for computing root Rqx from leaf node Lqx,jx . If qx >
i, then the cloud server set qx+1 = γqx,jx and repeat the above

process until qx = i, i.e., the most recent update for key k
received in interval i has been returned.

3) Query-Result Verification: Assume that the user has re-

ceived the query result in the form of R = 〈R1, . . . ,Rr〉, where

TABLE I: Default Settings

Para. Val. Description.
ε 10 ms The interval size
|K| 10,000 The number of keys
m 1,000 The number of intervals
τ 512 The maximal number of key blocks

|H(·)| 256 The length of hash
|si| 1024 The length of data owner’s signature

Rx = 〈qx, Lqx,jx ,A(Rqx |Lqx,jx), sqx〉, for all 1 ≤ x ≤ r.

The data user first verifies the integrity of the query result.

Specifically, for every x = 1, . . . , r, the user first computes

Rqx from Lqx,jx using A(Rqx |Lqx,jx). It then verifies all r
signatures in batch by checking whether

(
r∏

x=1

sqx)
e ?
=

r∏
x=1

H(qx||Rqx) mod n,

where (n, e) is the data owner’s RSA public key. If so, the

user considers the query result authentic.

The data user also proceeds to verify the freshness of

the query result using the interval indexes embedded in the

returned leaf nodes. Assume that q1 > · · · > qs. The user first

checks if qs = q1, as the cloud server should always return

one leaf node for the queried interval q1. If so, the user further

checks whether qx+1 = γqx,jx for all x = 1, . . . , s−1. Finally,

the user verifies whether leaf node Lqx,jx contains the updated

value vik and timestamp tik. If so, the user considers the query

result fresh and accepts vik as the most recent.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of KV-Fresh.

A. Dataset

We create a synthetic dataset from a TrueFax real-time

currency conversion dataset [38] that includes tick-by-tick

historical conversion rates for 16 major currency pairs with

fractional pip spreads in millisecond detail. For our purpose,

we take the currency conversion rate from EUR to USD from

12:00 am (GMT), January 2nd, 2019 to 03:46:40 pm (GMT)

January 3rd, 2019. We divide the time period into 10,000

segments of 10 seconds. We treat the segment indexes as keys

and the conversion rates as the updates. Our synthetic dataset

consists 10,000 keys for a period of 10 seconds, and on average

131.55 keys receive updates for every 10 ms.

B. Simulation Settings

We implement KV-Fresh in Python and test it on a desktop

with i7-6700 CPU, 16GB RAM and 64-bit Win10 operating

system. We adopt the SHA-256 for the cryptographic hash

function and RSA for digital signature. Table I summarizes

our default settings unless mentioned otherwise.

We compare KV-Fresh with the state-of-art solution

INCBM-TREE [29] as well as the Strawman-1 and Strawman-

2 approaches discussed in Section IV-A using four metrics:

(1) update cost which is number of extra bits per second
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Fig. 4: Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with interval size varying from 10s to 1ms.

transmitted from the data owner to cloud server, (2) proof
size which is the number of extra bits needed for proving

the integrity and freshness for a query result, (3) throughput
which is the number of queries processed by the cloud server

per second, and (4) verification time which is the time needed

for verifying a returned query result by the user.

C. Simulation Results

We now report our simulation results where every point

represents the average of 10,000 runs.

1) The Impact of Interval Size: Fig. 4(a) compares the

update cost under Strawman-1, Strawman-2, INCBM-TREE,

and KV-Fresh for τ = 256, 512 and 1024 with interval size

varying from 10s to 1ms. As we can see, the update cost per

second increases as the interval sizes decreases under all four

mechanisms. This is expected, as the number of intervals is

inversely proportional to the interval size. Among the four

mechanisms, Strawman-1 has the highest update cost when

the interval size is smaller than 1s, as the data owner needs

to send the most recent key-value record for every key in

every interval. Strawman-2 and INCBM-TREE have the lowest

update cost, as the data owner only sends keys with updates

under both mechanisms. The update cost of KV-Fresh falls in

the middle and increases much slower than that of Strawman-

1. This is anticipated, as KV-Fresh requires the data owner to

transmit updated key-value records and key block information

with no update for every interval. Moreover, the smaller τ ,

the fewer leaf nodes of LKS-MHT in each interval, the lower

update cost under KV-Fresh, and vice versa. We can see that

even when the interval size is 1 ms, KV-Fresh with τ = 1024
incurs an update cost of approximately 108 bits per second. In

other words, a 100-Mbps link between the data owner and the

cloud server suffices to support a key space of 10,000 keys,

which makes KV-Fresh very practical.

Fig. 4(b) shows the impact of interval size on the proof size

of Strawman-1, Strawman-2, INCBM-TREE, and KV-Fresh.

The proof size of Strawman-1 is not affected by the interval

size and stays at 4460 bits. The proof sizes of the other three

mechanisms all increase as the interval size decreases, except

for KV-Fresh with τ = 256. Among the other three, the proof

sizes of Strawman-2 and INCBM-TREE grows the fastest are

approximately inversely proportional to the interval size. The

reason is that the data owner needs to prove that there is no

update in every interval after the most recent update under both

mechanisms. While INCBM-TREE employs a Bloom filter for

efficient proof of no update, every Bloom filter covers only

a constant number of intervals, and transmitting the Bloom

filter incurs additional communication cost in comparison with

Strawman-2. In contrast, the proof size under KV-Fresh grows

much slower as the interval size decreases, because KV-Fresh

allows the cloud server to skip potentially many intervals in

the freshness proof. We can also see that the higher τ , the

smaller the proof size when interval size reaches 10 ms and

1 ms. The reason is that the smaller the interval size, the

fewer keys have updates in every interval, the fewer merging

operations are needed for larger τ , and thus the fewer intervals,

i.e., leaf nodes, need be returned under KV-Fresh. This is also

the reason that we see the decrease in the proof size for KV-

Fresh with τ = 256 when interval size decreases from 10 ms

to 1ms. In addition, we can see that KV-Fresh significantly

outperforms INCBM-TREE when interval size is small. For

example, when the interval size is 1 ms, the proof size under

KV-Fresh with τ = 1024 is approximately 90 Kb, which is

less than 0.4% of the 22.9 Mb under INCBM-TREE.

Fig. 4(c) shows the throughput under Strawman-1,

Strawman-2, INCBM-TREE, and KV-Fresh. The throughput

under Strawman-1 is the highest and is not affected by the

change in interval size. Among the other three, the throughput

of Strawman-2 is the smallest, followed by INCBM-TREE.

The reason is that the smaller the interval size, the more

intervals after the most recent update, the more intervals the

cloud server needs to process under Strawman-2 and INCBM-

TREE, and vice versa. In contrast, the throughput of KV-Fresh

initially declines as the interval size decreases from 10 s to 10

ms and then becomes stable or increases slightly as the interval

size decreases from 10 ms to 1 ms. The reason for the initial

decline is that when the interval size is large, most of the keys

have updates in every interval, and the merging constraint is

determined by |Φ0| instead of τ , which results in excessive

merging operations and more intervals that the cloud server

needs to check. As the interval size further decreases, fewer

and fewer keys have updates in each interval, which result in

fewer merging operations and thus fewer intervals the cloud

server needs to check. Generally speaking, in comparison

with Strawman-2 and INCBM-TREE, KV-Fresh has similar

throughput when the interval size is large while outperforms
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Fig. 5: Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with |K| varying from 100 to 50,000.
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Fig. 6: Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with τ varying from 256 to 10,000.

Strawman-2 and INCBM-TREE by large margins when the

interval size is small.

Fig. 4(d) compares the verification cost of the four mech-

anisms under different interval sizes. As we can see, the

verification cost of Strawman-1 remains at 0.6357ms and is

not affected by the change in interval size. The verification

cost increases as the interval size decreases under all the other

three mechanisms. Among them, KV-Fresh has the lowest ver-

ification cost and outperforms INCBM-TREE and Strawman-

2 by large margins. The reason is that fewer leaf nodes

need be returned under KV-Fresh than both INCBM-TREE

and Strawman-2. These results demonstrate the significant

advantages of KV-Fresh over other two mechanisms.

2) The Impact of the Number of Keys: Figs. 5(a) to

5(d) compares the performance of KV-Fresh, Strawman-1,

Strawman-2 and INCBM-TREE with |K|, i.e., the number

of keys, varying from 100 to 50,000. As we can see from

Fig. 5(a), the update costs of all schemes increase as the

number of keys increase, which is anticipated. Moreover, the

update cost of KV-Fresh is lower than that of Strawman-1 by a

larger margin and higher than that of Strawman-2 and INCBM-

TREE. Even for KV-Fresh with τ = 4096, the update cost is

approximately 3.9×107 bits per second, which is very practical

for K = 50, 000 and 10-ms interval. Moreover, we can see

from Fig. 5(b) that the proof size under all four mechanisms

increase as |K| increases, as larger |K| leads to deeper MHT.

Moreover, as |K| increases from 100 to 50,000, the proof size

under KV-Fresh is always significantly smaller than that under

Strawman-2 and INCBM-TREE. Similarly, Figs. 5(c) and 5(d)

show that KV-Fresh achieves much higher throughput and

lower verification cost than Strawman-2 and INCBM-TREE,

because fewer leaf nodes need be returned under KV-Fresh

than the other two.

3) The Impact of τ : Figs. 6(a) to 6(d) shows the perfor-

mance of KV-Fresh with varying τ , where the performance of

Strawman-1, Strawman-2 and INCBM-TREE are plotted for

reference. Generally speaking, the larger τ , the higher update

cost, the smaller proof size, the higher throughput, the smaller

verification cost for KV-Fresh, and vice versa. In addition, the

update cost, proof size, throughput, and verification cost of

KV-Fresh are almost always between those under Strawman-

1, Strawman-2, and INCBM-TREE, which is expected. While

KV-Fresh incurs higher update cost than Strawman-2 and

INCBM-TREE, it incurs much lower communication cost

between the cloud server and the ender and smaller verification

cost. Moreover, while update only happens between the data

owner and the cloud server, the cloud server could serve

potentially many users at the same time.

VI. CONCLUSION

In this paper, we have presented the design and evaluation

of KV-Fresh, a novel freshness authentication scheme for

outsourced multi-version key-value stores. KV-Fresh is built

upon LKS-MHT, a novel data structure that allows efficient

proof of no update over a potentially large number of inter-

vals. Extensive simulation studies confirm that KV-Fresh can

simultaneously achieve strong real-time guarantee and high

communication efficiency.
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