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ABSTRACT

Indoor positioning systems (IPSes) can enable many location-based

services in large indoor venues where GPS signals are unavailable

or unreliable. Among the most viable types of IPSes, RSS-IPSes rely

on ubiquitous smartphones and indoor WiFi infrastructures and ex-

plore distinguishable received signal strength (RSS) measurements

at different indoor locations as their location fingerprints. RSS-

IPSes are unfortunately vulnerable to physical-layer RSS attacks

that cannot be thwarted by conventional cryptographic techniques.

Existing defenses against RSS attacks are all subject to an inherent

tradeoff between indoor positioning accuracy and attack resilience.

This paper presents the design and evaluation of MV-IPS, a novel

RSS-IPS based on weighted multi-voting, which does not suffer

from this tradeoff. In MV-IPS, every WiFi access point (AP) that

receives a user’s RSS measurement gives a weighted vote for every

reference location, and the reference location that receives the high-

est accumulative votes from all APs is output as the user’s most

likely position. Trace-driven simulation studies based on real RSS

measurements demonstrate that MV-IPS can achieve much higher

positioning accuracy than prior solutions no matter whether RSS

attacks are present.
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• Security andprivacy→Mobile andwireless security; •Human-

centered computing→ Ubiquitous and mobile computing systems
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1 INTRODUCTION

Indoor Positioning Systems (IPSes) have attracted tremendous inter-

est from the academia and industry. An IPS cannot only help mobile

users obtain real-time locations in large indoor venues where G-

PS signals are unavailable or unreliable, but also provide relevant

location contexts to enable a wide range of exciting applications.

Exemplary IPS applications include location-based proximity adver-

tising in shopping malls, patient and visitor guidance in hospitals,

personnel and asset tracking in factories, and so on.

WiFi-based RSS-IPSes [5, 6] are among the most promising types

of IPSes and expected to foster a market of 2.5 billion US dollars by

2020 [1]. Relying on ubiquitous smartphones and existing indoor

WiFi infrastructures, RSS-IPSes explore distinguishable received

signal strength (RSS) measurements at different indoor locations as

their location fingerprints. RSS-IPSes are very attractive to indoor

venue owners because there is no need to perform costly infras-

tructure updates. A typical RSS-IPS works in two phases. In the

offline training phase, the IPS operator collects RSS fingerprints at

indoor positions to build a fingerprint database of sufficient spatial

granularity. In the online positioning phase, on receiving a location

query with an RSS measurement from the user, the IPS searches

its fingerprint database for the most matching RSS fingerprint and

returns the corresponding reference position to the querier.

RSS-IPS is unfortunately vulnerable to signal strength (RSS) at-

tacks at the physical layer that cannot be thwarted by conventional

cryptographic techniques. Early studies [8] demonstrate that RSS

measurements can be easily manipulated by placing absorbing

materials such as book, water, and foil between transmitting and

receiving devices. Most recently, Li et al. [29] showed that, by im-

personating a few WiFi APs with off-the-shelf wireless routers and

fine-tuning their transmission power, the attacker can control the

RSS values at a target location to either maximize the distance error

or mislead the IPS server into returning an arbitrary wrong location.

While several defenses against RSS attacks have proposed in the

literature [9, 14, 17, 26, 29], they nevertheless all exhibit a tradeoff

between attack resilience and positioning accuracy in the absence

of RSS attacks. In other words, the high resilience to RSS attacks is

usually achieved at the sacrifice of positioning accuracy when there

is no RSS attack. This inherent tradeoff makes existing defenses

less appealing to IPS operators and thus less likely to be adopted in

reality.

Is it possible to design an RSS-IPS that can achieve high

positioning accuracy in spite of the presence or absence of

RSS attacks?
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In this paper, we provide an affirmative answer to the above

question by introducing MV-IPS, a novel RSS-IPS with higher po-

sitioning accuracy than prior defenses in both cases. We find that

the key to achieve high positioning accuracy in both situations is

to fully utilize every AP’s information while limiting the impact of

any individual AP on the final decision. Specifically, making full

use of all available APs can improve positioning accuracy in the

absence of RSS attacks, whereas limiting each individual AP’s role

in final decision making can provide resilience against RSS attacks.

Based on this observation, we design MV-IPS based on the Borda

count [2], a family of single-winner preferential voting methods

widely used in practice. In MV-IPS, the IPS server uses every AP as

a voter to give a weighted vote for every reference (or candidate)

location in its RSS fingerprint database. A user still submits a lo-

cation query as usual, which contains the RSS measurement from

each available AP. Then the IPS server produces a ranked list of

reference locations per AP according to the similarity between the

received RSS and the RSS fingerprint for the AP at each reference

location. In addition, each reference location is assigned a point

value that corresponds to the AP’s weighted vote and depends on

both its rank and parameters pre-trained from RSS measurements.

Finally, the IPS server outputs the reference location that receives

the highest total point values from all APs as the querier’s most

likely location.

Our contributions can be summarized as follows.

• We identify a key limitation of existing defenses against

physical-layer signal strength attacks on RSS-IPSes, which

forces IPS operators to choose between attack resilience and

positioning accuracy.

• We propose MV-IPS, a novel RSS-IPS that explores Borda

count voting mechanisms for indoor localization, in which

WiFI APs cast weighted votes to jointly determine user loca-

tions.

• We formulate the location-weight assignment as an optimiza-

tion problem to accommodate different APs’ capabilities in

differentiating user locations and present the optimal solu-

tion based on the projected gradient descent.

• We conduct trace-driven simulation studies based on pro-

totype implementations and real RSS data to confirm the

effectiveness of MV-IPS in the presence and absence of RSS

attacks. Specifically, our evaluation results show that MV-

IPS can achieve an average distance error of 1.68 m in the

absence of RSS attacks in contrast to 1.96 m achieved by the

state-of-art defense [29] while being highly resilient to RSS

attacks.

The rest of the paper is structured as follows. Section 2 briefs the

related work. Section 3 presents the MV-IPS design. Section 4 e-

valuates the performance of MV-IPS via trace-driven simulations.

Section 5 concludes this paper.

2 RELATEDWORK

In this section, we review some most related work.

RSS-IPSes have been studied extensively in the past two decades,

and existing solutions differ in how a user’s RSS measurement is

matched with RSS fingerprints. In the deterministic RSS-IPS, on

receiving a location query from the user, the IPS operator evaluates

the similarity between the user’s RSS measurement and the stored

RSS fingerprints using a proper distance metric and returns the

reference location whose RSS fingerprint is most similar to the us-

er’s RSS measurement. As a representative deterministic-matching

RSS-IPS, Radar[5, 6] uses Euclidean distance as the distance metric.

In addition, cosine similarity [12] and Tanimato similarity [13] have

been shown to yield satisfactory positioning accuracy. Moreover,

Wu et al. [23] applied support vector machine, and Nuno et al. [19]

adopted linear discriminant analysis for RSS fingerprint matching.

Probabilistic matching has also been used in RSS-IPS. For exam-

ple, Horus [28] represents the RSS fingerprint at each reference

location as the probability distribution of the RSS value and deter-

mines the user’s location using maximum-likelihood estimation.

Other probabilistic matching algorithms have been proposed, in-

cluding Bayesian network [18], expectation-maximization [11], and

Gaussian process [10]. None of these works are resilient to RSS

attacks.

There have been some efforts to design RSS-IPS resilient to RSS

attacks. Li et al. [17] introduced a median-distance based defense

in which the distance between the user’s RSS measurement and

the RSS fingerprint is calculated with respect to every AP, and the

reference location with the smallest median distance is chosen as

the user’s location. The work [26] explored K-means cluster to dis-

tinguish good APs and attacked APs according to their geometric

relationship. Kushki et al. [14] proposed to select a subset of reliable

APs according to their confidence scores based on the covariance

matrix. Fang et al. [9] introduced an attack-resistant localization

scheme based on a probabilistic inclusive disjunction model. Yang et

al. [25] explored Trained Mean Matching (TMM) to detect the evil

twin attack in RSS-IPS. Most recently, Yuan et al. [29] introduced

a defense against RSS attacks. However, all these solutions would

force an IPS operator to choose between attack resiliency and po-

sitioning accuracy, which makes them less likely to be adopted in

practice.

There are also some works loosely related to our work. For ex-

ample, Li et al. [16] introduced several mechanisms to filter out fake

RSS data in crowdsourced IPS systems. As another example, PriWFL

[15] protects user’s location privacy by encrypting a user’s location

query using Pallier cryptosystem, which is subsequently improved

by Yang et al. [27] to further protect the fingerprint database at the

IPS operator. There are also several IPSes that do not solely rely on

RSS. For example, BSurroundSend [4] explores ambient information

such as sound and light information to enrich the fingerprint and

improve positioning accuracy. As another example, PinLoc [20]

explores detailed physical layer information such as channel fre-

quency responses to improve the position accuracy of WiFi-based

IPS. Wu et al. [24] showed that signal fingerprints based on Channel

State Information (CSI) can improve the indoor localization perfor-

mance. Similarly, DeepFi [21, 22] adopts deep learning to perform

indoor localization using fine-grained CSI-based fingerprints.

3 MV-IPS DESIGN

In this section, we first give an overview of MV-IPS and then detail

its design.
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3.1 Overview

The design of MV-IPS is inspired by the Borda count, a family of

single-winner preferential voting methods widely used in both

political and non-political elections. In a typical Borda count voting,

every voter ranks candidates in order of preference and assigns

a point value, i.e., weight vote, to every candidate based on the

candidate’s ranking such that higher-ranked candidates receive

more point values. When all votes are cast, the candidate who

receives themaximum total points is chosen as the winner. Different

Borda count methods vary in how point values are assigned in

accordance with rankings.

In MV-IPS, we view APs as voters and reference locations as

candidates. A user still submits a location query as usual, which

contains the RSS from each AP. Each AP is associated with a set of

RSS fingerprints and corresponding reference locations in the IPS

server’s fingerprint database. So the IPS server can easily generate

a ranked list of reference locations for each AP according to the

difference between the received RSS and corresponding fingerprint

in the database: smaller difference leads to higher ranking. The

IPS server also assigns a point value to each reference location for

each AP, which corresponds to the AP’s weighted vote. Finally, the

reference location that receives the maximum total point values is

considered the user’s most likely location.

A key difference between MV-IPS and the standard Borda count

voting lies in how APs assign point values to their rankings. In par-

ticular, we observe that different APs could have diverse capabilities

in determining user locations. For example, an AP of which the RSS

exhibits large variation across different locations can provide more

reliable evidence about a user’s location than the one with extreme-

ly low or very similar RSS values at many reference locations. As a

result, unlike traditional Borda count methods in which all voters

share the same point assignment rule, the APs follow different point

assignment rules under MV-IPS. In MV-IPS, we formulate the point

assignment as an optimization problem based on RSS training data

and then find an optimal point assignment rule via the projected

gradient decent.

3.2 Detail Design

As many other RSS-IPSes, MV-IPS consists of two phases. In the

offline training phase, we collect RSS fingerprints at both reference

locations and training locations in the indoor venue of interest

and train the system parameters. In the online positioning phase,

the IPS server answers location queries from users based on the

received RSS measurements and its RSS fingerprint database. In

what follows, we first introduce how system parameters are trained

based on RSS measurements and then explain how the IPS operator

determines a user’s location on receiving a location query.

3.2.1 Data Collection. Wefirst choosen reference locationsx1, · · · , xn
andm training locations y1, . . . ,ym in the indoor venue. We then

pre-compute d[i, j] as the Euclidian distance between reference

location xi and training location yj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.
We then collect one RSS fingerprint at each of the n reference

locations. The RSS measurement collected at reference location

xi is denoted by rssi = (rssi ,1, . . . , rssi ,p ), where rssi ,z is the zth
AP’s RSS at reference location xi for all 1 ≤ z ≤ p and 1 ≤ i ≤ n,

and p is the number of APs in the indoor venue. These RSS mea-
surements serve as the RSS fingerprint of the reference locations.

We also collect the RSS measurements atm training locations. We

denote the RSS measurement collected at training location yi by
rss′i = (rss

′
i ,1, . . . , rss

′
i ,p ), where rss

′
i ,z is the jth AP’s RSS at train-

ing location yi for all 1 ≤ z ≤ p and 1 ≤ i ≤ m.

3.2.2 Parameter Training. LetW = [w]p×n be the weight matrix,
wherew[z, i] is weight assigned by AP z to the reference location
ranked ith for all 1 ≤ z ≤ p and 1 ≤ i ≤ n. We use the following
method to trainW using the collected RSS measurements {rssi |1 ≤

i ≤ n}
⋃
{rss′i |1 ≤ i ≤ m}.

First, for every training location yj , 1 ≤ j ≤ m, with RSS mea-
surement rss′j = (rss

′
j ,1, · · · , rss

′
j ,p ), we first find its ranking under

each AP. Specifically, each AP z, 1 ≤ z ≤ p, calculates the difference
between rss′j ,z and the fingerprint of reference location xi as

�z (i, j) = |rssi ,z − rss
′
j ,z |,

for all 1 ≤ i ≤ n. Each AP z, 1 ≤ z ≤ p, then ranks then reference lo-
cations based on �z (i, j). Let (ϕz, j (1),ϕz, j (2), . . . ,ϕz, j (n)) be a per-
mutation of (1, 2, . . . ,n), such that �z (ϕz, j (1), j) < �z (ϕz, j (2), j) <
· · · < �z (ϕz, j (n), j). Reference position xϕz , j (i) is then ranked ith

by AP z for all 1 ≤ z ≤ p and 1 ≤ i ≤ n. We also define ϕ−1z, j (·)

as the inverse of permutation ϕz, j (·), i.e., reference location xi is

ranked ϕ−1z, j (i)th by AP z.

We repeat the above procedure for allm training locations to

obtainm rank matrixes Φ1, . . . ,Φm , where

Φj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1, j (1) ϕ1, j (2) . . . ϕ1, j (n)
ϕ2, j (1) ϕ2, j (2) . . . ϕ2, j (n)
...

...
. . .

...

ϕp, j (1) ϕp, j (2) . . . ϕp, j (n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
for all 1 ≤ j ≤ m.
Second, for every training location yj , 1 ≤ j ≤ m, we find the

returned reference location according rank matrix Φj under weight
matrixW . Specifically, under a given weight matrixW , each AP

z gives reference location i a weighted vote w[z,ϕ−1z, j (i)] for all

1 ≤ z ≤ p and 1 ≤ i ≤ n. The total weight that reference location
xi receives from all n APs is then given by

w[i |j] =

p∑
z=1

w[z,ϕ−1z, j (i)], (1)

for all 1 ≤ i ≤ n. Given w[1|j], . . . ,w[n |j], the reference location
x j∗ with the highest total weight is estimated as the location for
RSS measurement rss′j , where

j∗ = argmax
i ∈{1, ...,n }

w[i |j],

which results in a distance error d[j∗, j].
We now formulate the training of weight matrixW as an op-

timization problem where we seek to find a weight matrix that

minimizes the average error distance acrossm training locations.

Our cost function is inspired by softargmax function widely used

in multiclass classification. Consider training location yj as an ex-
ample. There are n possible reference locations x1, . . . , xn that rss

′
j

may be estimated into under MV-IPS. Since the distance between
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yj and reference location xi is d[i, j], we define the loss function
with respect to training location yj as

Lj (W ) =

∑n
i=1 exp(γ ·w[i |j]) · d[i, j]∑n

i=1 exp(γ ·w[i |j])
(2)

wherew[i |j] is given in Eq. (1) and γ > 0 is a system parameter. It

is easy to see that as γ → ∞, the term exp(γ ·w[j∗ |j]) dominates
other terms and L(j) converges to d[j∗, j]. We further define the
cost function as

J(W ) =
1

m

m∑
j=1

Lj (W ). (3)

To find the optimal weight assignment, we seek to solve the follow-

ing optimization problem

Minimize J(W )

Subject to

n∑
i=1

w[z, i] = 1, ∀1 ≤ z ≤ p,
(4)

where the constraint indicates that every AP has a total weight of

one.

We use the projected gradientmethod [7] to find a local minimum

for J(W ). Specifically, let us first consider loss function Lj (W ) by

rewriting it in terms of {w[z, i]|1 ≤ z ≤ p, 1 ≤ i ≤ n} as

Lj (W ) =

∑n
i=1 exp(γ ·

∑p
z=1w[z,ϕ

−1
z, j (i)]) · d[i, j]∑n

i=1 exp(γ ·
∑p
z=1w[z,ϕ

−1
z, j (i)]))

. (5)

Let i ′ = ϕ−1z, j (i). It follows that i = ϕz, j (i
′). Substituting ϕ−1z, j (i) and

i by i ′ and ϕz, j (i
′), respectively, we can rewrite Lj (W ) as

Lj (W ) =

∑n
i′=1 exp(γ ·

∑p
z=1w[z, i

′]) · d[ϕz, j (i
′), j]∑n

i′=1 exp(γ ·
∑p
z=1w[z, i

′]))
. (6)

We observe that every w[z, i ′], 1 ≤ z ≤ p, 1 ≤ i ′ ≤ n appears in
both the numerator and denominator of Lj (W ).

We nowderive partial derivative ofLj (W )with respect toLj (W ).

Specifically, let us define two additional functions as

f =
n∑

i′=1

exp(γ ·

p∑
z=1

w[z, i ′]) · d[ϕz, j (i
′), j],

and

д =
n∑

i′=1

exp(γ ·

p∑
z=1

w[z, i ′]).

The partial derivatives of f and д with respect tow[u,v] are given
by

∂ f

∂w[u,v]
= γ · exp(γ ·

p∑
z=1

w[z,v]) · d[ϕz, j (v), j] (7)

and

∂д

∂w[u,v]
= γ · exp(γ ·

p∑
z=1

w[z,v]), (8)

respectively, for all 1 ≤ u ≤ p and 1 ≤ v ≤ n. We can then compute
the partial derivative Lj (W ) with respect to eachw[u,v] as

∂Lj

∂w[u,v]
=

∂f
∂w [u ,v]

· д − f ·
∂д

∂w [u ,v]

д2
, (9)

Algorithm 1:Weight Matrix Training

input : Initial weight matrixW (0), error distances

{d[i, j]|1 ≤ i ≤ n, 1 ≤ j ≤ m}, rank matrices
Φ1, . . . ,Φm , learning rate η, and terminal
parameter ϵ

output :Weight matrixW (t )

1 t ← 1;

2 while True do

3 foreach j ∈ {1, . . . ,m} do
4 foreach i ∈ {1, . . . ,n} do
5 Computew[i |j] according to Eq. (1);

6 end

7 Compute Lj (W
(t−1)) according to Eq. (6);

8 end

9 J(W (t−1)) ← 1
m

∑m
j=1 Lj (W

(t−1));

10 Compute �J(W (t−1)) according to Eq. (10);

11 W (t ) ←W (t−1) − ηP�J(W (t−1));

12 if |J(W (t−1)) − J(W (t ))| < ϵ then
13 break;

14 else

15 t ← t + 1;

16 end

17 end

18 returnW (t );

for all 1 ≤ u ≤ p, 1 ≤ v ≤ n, where
∂f

∂wu ,v
and

∂д
∂wu ,v

are given

in Eqs. (7) and (8), respectively. Finally, we can derive the partial

derivative of cost function J(W ) with respect tow[u,v] as

∂J

∂w[u,v]
=

1

m

m∑
j=1

∂Lj

∂w[u,v]
. (10)

To apply the projected gradient method [7], we rewrite the con-

straint in the optimization problem as

AW = b,

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 1 . . . 0

...
...
. . .

...

0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

0 = (0, . . . , 0), 1 = (1, . . . , 1), W = [W1,W2, . . . ,Wp ]
T , Wz =

(w[z, 1], . . . ,w[z,n]) for all 1 ≤ z ≤ p, and b1×p = (1, 1, . . . , 1)
T .

We can then compute the orthogonal projector matrix as

P = Inp −AT (AAT )−1A, (11)

where Inp is thenp×np identity matrix andT on superscript denotes

matrix transposition.

LetW (0) be the initial weight matrix, where we set w[z, i] =
2(n−i+1)
n(n+1)

for all 1 ≤ i ≤ n and 1 ≤ z ≤ p as in the standard Borda

count voting. We repeatedly compute

W (t ) =W (t−1) − ηP�J(W (t−1)) (12)
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for t = 1, 2, 3, . . . , where η is the learning rate and �J(W (t−1)) is

the gradient of J with respect toW (t−1) given by Eq. (10). The

learning rate η is usually set dynamically via backtracking line

search [3]. The process terminates if

|J(W (t )) − J(W (t+1))| < ϵ,

where ϵ is a small constant.
We summarize the training process in Algorithm 1. Line 1 initial-

izes the iteration index t = 1. In Lines 2-17, we iteratively update
the weight matrix until the terminal condition is met. Specifically,

in Line 4-6, for every training location yj , we compute the total
weight each reference location xi receives according to Eq. (1). Nex-
t, based on {w[i |j]|1 ≤ i ≤ n}, the loss function of each training
location yj is calculated according to Eq. (6) in Line 7. We then
calculate the cost function as the average loss across allm training

locations in Line 9. In Lines 10-11, we compute the gradient of the

cost function using Eq. (10) and then update the weight matrix

updating according to Eq. (12). If the difference between the cost

function of the new weight matrix and the cost function of the

previous weight matrix is less than ϵ , we terminate the process and
output the current weight matrix. Otherwise, we repeat the same

procedure in the next iteration.

3.2.3 Online Positioning. In the online positioning phase, the IPS

operator processes location queries from the user. Assume that

the user issues a location query with RSS measurement rssu =

(rssu ,1, . . . , rssu ,p ). The IPS operator first computes

�z (i,u) = |rssi ,z − rssu ,z |,

for all 1 ≤ z ≤ p and 1 ≤ i ≤ n. Each AP z (1 ≤ z ≤ p) then ranks
the n reference locations based on �z (i,u). The IPS operator then
computes

w[i |u] =

p∑
z=1

w[z,ϕ−1z,u (i)], (13)

for all 1 ≤ i ≤ n, where ϕ−1z,u (i) is the rank of reference location
xi under AP z given rssu . Givenw[1|u], . . . ,w[n |u], the reference
location xu∗ with the highest total weight is estimated as the user’s
location, where

u∗ = argmax
i ∈{1, ...,n }

w[i |u].

4 PERFORMANCE EVALUATION

In this section, we report the simulation results for MV-IPS.

4.1 Simulation Settings

We have implemented a prototype of MV-IPS. The prototype system

is based on Android studio/Java on a Huawei Honor8 smartphone,

which has a 2.3 GHz octa-core CPU and 4 GB RAM. The sampling

frequency of the WiFi module is 0.67 Hz. We deploy the prototype

on a square zone of 17.8×17.8m2 inside an office building with

m = 35 WiFi APs. Fig. 1 shows the floor plan of the indoor venue.

We collect RSS measurements at n = 72 reference locations

and m = 360 training locations as shown in Fig. 1, where every

reference location is surrounded by five reference locations. We use

the RSS measurements collected at the 72 reference locations as the

RSS-fingerprint database and the ones collected at the 360 training

locations to train the weight matrix and evaluate the performance of

Test locationReference location

Figure 1: The floor plan of the indoor venue.

Figure 2: An example of weighted matrix under MV-IPS.

the MV-IPS. In particular, we divide the 360 training measurements

into five groups of equal size, in which every group contains one

training measurement close to each reference location.

We use 5-fold cross-validation to evaluate the performance of

MV-IPS. Specifically, we select 4 groups of training measurements

to train the weight matrix and use the remaining group as the

testing RSS measurements. We repeat this process for five times

such that every group is used as the testing set once. The results

we report below are the average across the 5 runs.

We mainly use mean distance error (MDE) to evaluate the perfor-

mance of MV-IPS. For every rss′j in a testing group G, let yj be the

training location at which it was was taken and x j∗ the reference
location returned by MV-IPS. We define the MDE as

MDE =

∑
rss′

j
∈G d[j∗, j]

|G |
.

We consider an attacker model similar to the one in [29]. In

particular, we assume that the attacker is able to impersonate a

subset of k APs of his choice with fake ones under his control.

He can also fine-tune the transmission powers of the fake APs to

manipulate the RSS values experienced by a target user.We consider

the following two attack strategies.
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Figure 3: Comparison of the CDFs of dis-

tance error under Radar, TDFM, Median,

and MV-IPS.

Figure 4: MDE vs. λ in the absence of RSS
attack.

Figure 5: MDE vs. # of fake APs under

DEM attack.

• Distance error maximization (DEM) attack [29]: The attacker

aims to maximize the distance error experience by a target

user. In this attack, the attackers first learns the RSS fin-

gerprints stored at the IPS operator by acting as a normal

user repeatedly issuing location queries and then finds the

furthest reference location from the target user’s location

that he can mislead the IPS operator into returning through

impersonating and manipulating the transmission powers of

the k fake APs. With respect to MV-IPS, we assume that the

attacker knows the weight matrix used by the IPS operator

and is able to perfectly control the fake APs’ RSS values

experienced by the target user.

• Random RSS attack: In this attack, the attacker controls the

RSSes of k APs randomly chosen from all the APs. The user’s

RSS measurement under this attack is assumed to be uniform

at random in the range from −30 dB to −95 dB.

We compare the MV-IPS with the following RSS-IPSes.

• Radar [5, 6]: As the most representative RSS-IPS, Radar re-

turns the reference location whose RSS fingerprint is the

closest to the user’s RSS measurement under the Euclidean

distance.

• Median [17]: As a defense against RSS attack, the median-

based defense uses the median among the p element-wise
distances as the metric to measure the similarity between the

user’s RSS measurement and the stored RSS fingerprint. The

reference location with the smallest median element-wise

distance is selected as the user’s location.

• TDFM [29]: As the state-of-art defense against RSS attacks,

TDFM generalizes Median [17] and Radar. Specifically, the

IPS operator calculates p element-wise distances between
the user’s RSS measurement and each RSS fingerprint with

each corresponding to one AP. The similarity between the

user’s RSS measurement and an RSS fingerprint is measured

by the λ-truncated distance [29], which is the sum of p − λ
element-wise distances after dropping the λ/2 largest and
λ/2 smallest element-wise distances. When λ = 0, TDFM is

equivalent to Radar. When λ = (p−1)/2, TDFM is equivalent

to the median-based defense.

Figure 6: MDE vs. λ under DEM attack.

Table 1 summarizes the default parameters in our simulation unless

stated otherwise.

Table 1: Default Settings

Para. Value Description

n 72 # of reference locations

m 360 # of training locations

p 35 # of APs

γ 200 The exponential parameter in Eq. (2)

η 0.1 Learning rate

ϵ 0.9 The terminating condition

4.2 Simulation Results

We now report our simulation results.

4.2.1 An Example Of Weight Matrix In MV-IPS. Fig. 2 shows an

example of the weighted matrix trained in MV-IPS, where the x-
axis represents the IDs of APs and y-axis represents the indexes of
reference locations. As we can see, different APs have very differ-

ent weight assignments over their rankings. This clears highlights

the key difference between MV-IPS and the standard Boada count

voting where all the voters use the same weight assignment.
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(a) CDF of MDE where k = 1 (b) CDF of MDE where k = 2 (c) CDF of MDE where k = 4

Figure 7: CDF of MDEs under DEM attack.

Figure 8: MDE vs. # of fake APs under random RSS attack.

4.2.2 Performance In The Absence Of RSS Attack. Fig. 3 compares

the CDFs of the error distance under Radar, Median, TDFM, and

MV-IPS in the absence of RSS attack. As we can see, MV-IPS not only

outperforms Median and TDFM, but also achieves smaller MAE

than Radar that is designed for benign environment. For example,

83% of distance errors are smaller than 2.5m under MV-IPS, whereas

78 % and 71 % of distance errors are smaller than 2.5m under TDFM

and Median, respectively. These results demonstrate that MV-IPS

achieves higher positioning accuracy than prior defenses and Radar

in the absence of RSS attack and is thus more appealing to IPS

operators in reality.

Fig. 4 compares the MDEs under Radar, Median, TDFM, and

MV-IPS as λ varying from 0 to 34, where the MDEs under Radar,

Median, and MV-IPS are not affected by the change in λ and are
plotted for reference only. We can see that MV-IPS has the smallest

MDE among the four. In addition, the MDE under TDFM increases

as λ increases. This is expected, because the more element-wise
distances dropped, the lower the positioning accuracy for TDFM in

the absence of RSS attack, and vice versa.

4.2.3 Performance Under DEMAttack. Figure. 5 compares theMDE

under TDFM andMV-IPS under the DEM attack with the number of

fake APs varying from 0 to 14. We can see that the MDE increases

as the number of fake APs increases under both TDFM and MV-IPS.

In particular, when the number of fake APs is small, e.g., 2, MV-

IPS outperforms TDFM with smaller MDE. As the number of fake

Figure 9: MDE vs. λ under random RSS attack.

APs increases to 3, MV-IPS still outperforms other mechanisms

except for TDFM with λ = 8. This is anticipated as when λ is

set to be slightly larger than twice of the number of fake APs, all

the element-wise distances involving fake APs are likely dropped

and the remaining good RSS values can ensure sufficiently high

positioning accuracy. However, properly setting λ would require
the IPS operator to know the number of fake APs in advance, which

is usually unavailable in practice. On the other hand, when λ is set
too small or too large, either some fake RSS values will be used

for determining user’s location or too many good RSS values are

dropped, leading to the increase in MDE and thus lower positioning

accuracy. In contrast, MV-IPS does not require the IPS operator

to tune any parameter and can always maintain high positioning

accuracy.

Fig. 6 compares the MDEs under TDFM and MV-IPS with λ
varying from 0 to 30, where the MDE under MV-IPS is not affected

by the change in λ and plotted for reference only. As we can see
that for any given number of fake APs, the MDE under TDFM first

decreases and then increases as λ increases. The reason is that when
λ is set too small, some fake RSS values are included for location
determination, which results in lower positioning accuracy. When

the λ is large enough, all fake RSS values are likely dropped, leading
to higher positioning accuracy of TDFM. Even in this scenario, we

can see that the MDE under MV-IPS is still very close to that under

TDFM. Furthermore, as λ further increases, MV-IPS outperforms
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(a) CDF of distance error where k = 1 (b) CDF of distance error where k = 2 (c) CDF of distance error where k = 4

Figure 10: CDFs of distance error under random RSS attack.

TDFM again. Since λ is normally difficult to set without knowing
the number of fake APs in advance, these results highlight the

significant advantage of MV-IPS over the state-of-art defense TDFM.

Figs. 7(a) to 7(c) show the CDFs of distance error under Radar,

TDFM, Median, and MV-IPS where the number of fake APs is 1,

2, and 4, respectively. Generally speaking, MV-IPS outperforms

other three mechanisms in most cases. In particular, as shown in

Figs. 7(a) to 7(c), the MDE under MV-IPS is always smaller than

those under Radar, Median, and TDFM except for TDFM with λ = 2.
We can also see from Fig. 7(c) that when k = 4, the MDE under

Median is acceptable and is close to that under MV-IPS, but the

MDE under Radar increases drastically. The MDE under TDFM is

always between that under Radar and that under Median but still

larger than that under MV-IPS. These results show that MV-IPS

is highly resilient to DEM attack when the number of fake APs is

small.

4.2.4 Performance Under Random RSS Attack. Fig. 8 shows the

MDEs under Radar, TDFM, Median, and MV-IPS under random RSS

attack with the number of fake APs varying from 0 to 15. We can

see that the MDEs under Radar, TDFM, and MV-IPS all increase

as the number of fake APs increases. This anticipated as the more

fake APs, the more fake RSS values being used for determining the

user’s location. In contrast, the MDE under Median decreases as

the number of fake APs increases. We can also see that the MDE

under MV-IPS grows much slower than under TDFM and Radar.

While the MDE under MV-IPS is not as low as that under Median

when there are more than ten fake APs, it outperforms Median by

a large margin when there are fewer than ten fake APs.

Fig. 9 compares the MDEs under TDFM and MV-IPS under ran-

dom RSS attack with λ varying from 0 to 32, where the MDEs of

MV-IPS are not affected by the change in λ and are plotted for
reference only. We can see that the MDE under TDFM first declines

and then increases as λ increases, which once gain highlights the
importance of properly setting λ for TDFM. Furthermore, while the
MDE under TDFM is acceptable when λ is in the range of (5, 15),
the MDE under MV-IPS is either very close to or smaller than that

under TDFM.

Figs. 10(a) to 10(c) show the CDFs of distance error under Radar,

TDFM, Median, and MV-IPS under random RSS attack. Once again,

Figure 11: Impact of weight matrix on MDE where the num-

ber of fake APs varying from 0 to 14.

we can see that MV-IPS outperforms the other three mechanisms in

most cases. While we can see from Fig. 10(b) that TDFM achieves

a MDE comparable to MV-IPS when λ = 2, properly setting λ
is difficult without knowing the number of fake APs in advance.

Finally, the MDEs under all four mechanisms are smaller than the

corresponding cases under the DEM attack, which is anticipated

as random RSS attack is less effective than DEM attack. It is thus

not surprising that Median always has the highest MDE even when

k = 4.

4.2.5 Impact of Different Weight Matrices. While the weight matrix

is trained from RSS data under MV-IPS, we also evaluate the impact

of different weight matrices. Specifically, we compare MV-IPS with

the mechanisms based on the following two weight matrices.

• Linear vote: theweightmatrix is the same as the initial weight

matrixW (0), where w[z, i] = 2(n−i+1)
n(n+1)

for all 1 ≤ i ≤ n and

1 ≤ z ≤ p.
• Majority vote: the weight matrix is defined by w[z, 1] = 1

and [z, j] = 0 for all 1 ≤ z ≤ p and 2 ≤ j ≤ n.

Fig. 11 compares the MDEs under MV-IPS, Linear note, and Ma-

jority vote. As we can see, as the number of fake APs increases,

the MDEs under all three mechanisms increase, which is expect-

ed. Moreover, MV-IPS that uses the trained weight matrix always
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(a) CDF of distance error where k = 1 (b) CDF of distance error where k = 2 (c) CDF of distance error where k = 4

Figure 12: CDF of distance error under DEM attack under different weight matrices.

Figure 13: Comparison of different cost functions.

has the lowest MDE among the three, which demonstrates the

effectiveness of training in finding a good weight assignment.

Figs. 12(a) to 12(c) show the CDFs of MDEs under MV-IPS, Linear

vote, and Majority vote where the number of fake APs is 1,2, and

4, respectively. Not surprisingly, MV-IPS outperforms both Linear

Vote and Majority Vote by large margins, especially for the case

where k = 4. These results confirm the advantages of MV-IPS based

on the weight matrix trained by RSS data.

4.2.6 Impact of Different Cost Functions. We also evaluate the im-

pact of different cost functions on the positioning accuracy of MV-

IPS. In particular, we evaluate MV-IPS under the following three

cost functions.

• Mean Absolute Error (MAE): the cost function used by MV-

IPS and given in Eq. (3).

• Mean Square Error (MSE): the cost function is given by

J(W ) =
1

m

m∑
j=1

(Lj (W ))2.

• Root Mean Square Error (RMSE): the cost function is given

by

J(W ) =

√√√
1

m

m∑
j=1

(Lj (W ))2.

Figure 14: Impact of γ on loss function Lj (W ).

Fig. 13 compares the distance errors under three cost functions

where the number of fake APs is 0,2, and 4. We can see that the

MDEs under MAE and RMSE cost functions are approximately 3.2m

when the number of fake APs is 4, whereas that that under MSE is

above 4.2m. In addition, the MDE under MSE is always the lowest

among the three cost functions. These results indicate that the cost

function chosen by MV-IPS outperforms the other two options and

leads to high positioning accuracy.

4.2.7 Impact of Parameter γ . The loss function given in Eq. (2)
involves the parameter γ . Intuitively, as γ approaches∞, loss func-

tion Lj (W ) approaches to d[j∗, j]. We also evaluate the impact of
γ . Fig. 14 plots the values of Lj (W ) and d[j∗, j] as γ increases from

10 to 1000. We can see that as γ increases, the difference between
Lj (W ) andd[j∗, j] decreases. Whenγ exceeds 200, the difference be-
tween Lj (W ) and d[j∗, j] becomes negligible. By choosing Lj (W )

as the loss function, we are able to derive the close form of the

gradient of the cost function J(w).

4.3 Summary

We summarize the simulation result as follows.

• MV-IPS achieves higher positioning accuracy than Radar,

Median, and TDFM in the absence of RSS attacks.

• In the presence of RSS attacks, MV-IPS achieves higher po-

sitioning accuracy than Radar and Median. It also either
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outperforms TDFM or achieves a positioning accuracy clos-

er to TDFM when the parameter λ is set to be approximately
twice of the number of fake APs.

• Unlike TDFM whose performance is highly dependent on

properly setting of parameter λ that requires the knowledge
of the number of APs, MV-IPS is oblivious to the number

of fake APs and can always achieve satisfactory positioning

accuracy no matter whether RSS attacks are present.

• MV-IPS relies on a weight matrix properly trained from

the RSS data and significantly outperforms other weight

matrices used in the standard Borda count and majority

vote.

5 CONCLUSION

In this paper, we have introduced the design and evaluation of

MV-IPS, a novel RSS-IPS based on weighted multi-voting. Inspired

by the Borda count voting, MV-IPS treats every AP as a voter to

cast a weighted vote for every reference location, and the reference

location that receives the highest accumulative vote is considered

as the user’s location. Unlike existing RSS-IPSes that suffer from the

inherent tradeoff between indoor positioning accuracy and attack

resilience, MV-IPS can achieve high indoor positioning accuracy

no matter whether RSS attacks are present. Trace-driven simula-

tion studies based on real RSS measurements have confirmed the

significant advantages of MV-IPS over prior RSS-IPSes.
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