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Abstract—Indoor navigation systems are very useful in large
complex indoor environments such as shopping malls. Current
systems focus on improving indoor localization accuracy and
must be combined with an accurate labeled floor plan to
provide usable indoor navigation services. Such labeled floor
plans are often unavailable or involve a prohibitive cost to
manually obtain. In this paper, we present IndoorWaze, a novel
crowdsourcing-based context-aware indoor navigation system
that can automatically generate an accurate context-aware floor
plan with labeled indoor POIs for the first time in literature.
IndoorWaze combines the Wi-Fi fingerprints of indoor walkers
with the Wi-Fi fingerprints and POI labels provided by POI
employees to produce a high-fidelity labeled floor plan. As a
lightweight crowdsourcing-based system, IndoorWaze involves
very little effort from indoor walkers and POI employees. We
prototype IndoorWaze on Android smartphones and evaluate it
in a large shopping mall. Our results show that IndoorWaze
can generate a high-fidelity labeled floor plan, in which all the
stores are correctly labeled and arranged, all the pathways and
crossings are correctly shown, and the median estimation error
for the store dimension is below 12%.

Index Terms—Indoor navigation, context-aware, labeling,
crowdsourcing.

I. INTRODUCTION

HERE is a strong need for usable navigation services

in large indoor environments such as shopping malls,
hospital, and museums. For example, shoppers often spend
much time looking for the stores they are interested in.
Although some shopping malls provide indoor maps at a few
locations, it is still not easy for shoppers to understand the
maps and reach the target stores. In particular, people with
poor spatial awareness, children, senior citizens, and visually
impaired users are more in need of a user-friendly indoor
navigation system.

We use the shopping-mall example in Fig. 1 to illustrate
how a usable indoor navigation system works in our opinion.
Alice is now standing beside the GAP store, but her target
store is Nike. Since Alice may not know the directions in
the shopping mall, it would be confusing for her if we give
instructions such as “Go north” or “Go east”. Instead, a more
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usable instruction can be “Go towards the next Coach store
and then keep walking”. The Coach store is adjacent to GAP
and is easy to find. When she approaches the Apple store,
we can give an instruction like “Turn right at the Apple store
and keep walking”. When she approaches the Nike store, we
can give the last instruction as “The Nike store is on your
right”. All the instructions can be given as audio signals
through the smartphone. Alice needs not to take time to
understand the physical mall map or watch her phone screen
while walking. Such voice instructions are particularly useful
for visually impaired users to reach their target stores and also
be well aware of the mall environment to gain similar shopping
experience enjoyed by sighted people.

To provide the above navigation service, the system needs
to keep tracking the shopper in a floor plan with context-
aware information such as store names. Most existing indoor
localization systems like [1], [2] focus on the localization
accuracy and must be combined with a labeled floor plan
with location-store mappings to provide the usable navigation
service. Such labeled floor plans are often unavailable or
quite difficult to obtain. For example, it would be infeasible
or incur a prohibitive cost for a national indoor navigation
service provider to obtain a labeled floor plan for each indoor
environment it intends to cover. While rough floorplans may
be available in some scenarios (e.g. shopping malls), they are
often only accessible through a static PDF or JPG file with
outdated store information. Without accurate dimension and
up-to-date store information, they are inadequate to provide
the localization and navigation services that we envision. Shen
et al. [3] and Wang et al. [4] explore crowdsourcing to build
an indoor pathway map which nonetheless does not contain
any store label. To the best of our knowledge, automatic
construction of a context-aware indoor floor plan with labeled
information is still an open challenge.

In this paper, we present IndoorWaze, a crowdsourcing-
based usable indoor navigation system. We use the shopping-
mall example throughout the paper for convenience, but
IndoorWaze can easily apply to any large complex indoor
environment where a usable indoor navigation service is
needed. Core to IndoorWave is a novel crowdsourcing-based
technique to automatically construct an accurate indoor floor
plan with labeled stores. Our technique is motivated by the
observation that shoppers often walk around in the shopping
mall, while store employees mostly stay in their respective
stores. The shoppers help geometrically connect the stores
they pass by. When a shopper passes a particular store, the
Wi-Fi fingerprints he senses there can be very similar to those
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Fig. 1. An indoor navigation example.

measured by the store employees. In addition, the employees
of each store can and are motivated to provide a store label.
We can then construct a high-fidelity context-aware indoor
floor plan by correlating the shoppers’ Wi-Fi fingerprints with
Wi-Fi fingerprints and store labels offered by store employees.

IndoorWaze is a lightweight crowdsourcing system that
involves little effort from participating shoppers and store
employees. The tasks of shoppers should be simple enough,
as otherwise they may lack incentives to participate. In our
system, the only thing shoppers need to do is to allow access
to the IMU and RSS data on their smartphones. All the data are
collected implicitly while they shop in their usual way. They
do not need to take photos [5] or check in manually [6] in
the stores. Note that such low requirements on crowdsourcing
workers have been proved quite feasible and effective in
Waze, Google Map, and other crowdsourcing-based traffic and
navigation apps. In contrast, store employees can do slightly
more work because they want shoppers to more easily find
their stores. In IndoorWaze, store employees are required to
collect fingerprints at a few locations near the store according
to the store dimension. This one-time work can be easily done
within a few minutes, which is quite acceptable.

We make the following contributions. First, we present
the first crowdsourcing-based indoor navigation system that
can automatically generate a context-aware indoor floor plan.
Our system infers the shoppers’ walking traces from the
IMU sensors on their smartphones and then geometrically
connects the stores by mapping them to the walking traces.
By combining the walking traces from different shoppers, we
can get a high-fidelity floor plan which accurately delineates
the labeled stores, pathways, and turning positions. Second, we
develop techniques to conquer RSS signal fluctuations which
may cause large errors when inferring relative store positions.
We also present techniques to extract useful walking traces
from the complex data submitted by crowdsourcing shoppers.
Third, we implement the system on Android smartphones and
evaluate it in a large shopping mall. Our system can generate
a high-fidelity labeled floor plan, in which all the stores are
correctly labeled and arranged, all the pathways and crossings
are correctly shown, and the median estimation error for the
store dimension is below 12%.

The rest of the paper is organized as follows. Section II
describes the system model and architecture. Section III il-

lustrates the basic technique to construct a rough indoor floor
plan. Section IV presents an advanced technique to combine
walking traces from different shoppers to construct an accurate
labeled floor plan. Section V gives some implementation
details of our system. Section VI experimentally evaluates our
system. Section VII outlines the related work. Section VIII
concludes this paper.

II. SYSTEM MODEL AND ARCHITECTURE
A. System Model

There are three entities in the IndoorWaze system: the
IndoorWaze service provider, store employees, and shoppers.
The service provider releases an app that store employees
and shoppers can download and install to their smartphones.
The shoppers and employees then register in the app and are
required to allow access to the IMU sensors (accelerometer,
compass, and gyroscope) in the smartphones. In addition, store
employees need to provide their store names in the registration.
Store employees are responsible for collecting Wi-Fi RSS
fingerprints at a few locations near their store entrances and
submit them to the service provider. The sampling locations
are picked by the employees themselves and can be a few
meters apart from each other. The larger the store, the more
sampling locations needed. RSS data collection is a one-
time task for employees and takes only a few minutes. The
fingerprints provided by the employees of each store act as
labeled samples for the store. After that, the employees work
as normal. In contrast, the shoppers just walk and shop as
usual with their smatphones and do not need to do anything
else.

We do not consider security, privacy, and incentive problems
which are associated with any crowdsourcing-based system
and deserve to be explored in separate papers [7]-[10].

B. System Architecture

Fig. 2 illustrates the architecture of our system. IndoorWaze
first constructs the shoppers’ walking traces based on their
IMU sensors. It then extracts the walking traces which are
useful for later floor plan construction. Next, we compare the
RSS fingerprints from shoppers and store employees to infer
the stores shoppers passed in the walking traces. The system
then connects and combines walking traces from different
shoppers to form a labeled floor plan. IndoorWaze also rec-
ognizes pathways in the floor plan and connects stores along
the two sides of each pathway to improve the connectivity
of the graph representing the floor plan. When we combine
all the walking traces to form a labeled floor plan, the RSS
fingerprints are mapped to the floor plan to form a fingerprint
map as well. After a labeled fingerprint map is constructed,
IndoorWaze starts to accept navigation requests from users.
The user inputs the target store name and submits his current
RSS fingerprint readings. IndoorWaze calculates the user’s
realtime position using his RSS data and then finds a path
to his destination. At last, the system gives audio instructions
along the way to the user’s destination store according to his
changing RSS fingerprints and thus locations.
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Fig. 2. IndoorWaze system architecture.

In Section III, we assume that the shoppers only walk
along one side of a pathway for simplicity of descriptions. In
Section IV-D, we relax this assumption and present methods
to deal with more complex walking traces.

III. CONSTRUCTING A ROUGH FLOOR PLAN

In this section, we introduce how to construct a rough floor
plan using the RSS fingerprint samples collected by store
employees and shoppers.

We assume that there are n stores in the shopping mall.
According to the dimension of each store, its employees pick
a few locations along the exterior perimeter of the store to
collect RSS fingerprint samples. Let (S1,Ss,---,S,/) denote
the n' (n" > n) sampling positions on the floor plan. At
each sampling position, the employee of each store uses the
smartphone to collect a set of RSS fingerprints. Each RSS
fingerprint is represented by (rssi,rssa,...,rSSy,), where
each rss; is the received signal strength (RSS) for the ¢th
Wi-Fi access point (AP) for all 1 < ¢ < m, and m is the
number of APs in the environment.

The RSS value at each sampling position typically exhibits
fluctuation. For example, Fig. 3 shows the histogram of RSS
values for a single AP at the same location during a period
of five minutes. Although the RSS values fluctuates over a
large range of 11 dBm, they generally follow a Gaussian
distribution. As a result, we represent the RSS value at each
sampling position S; for each AP; using a Gaussian distribu-
tion G(pi j,07 ;) fitted from the employee’s RSS fingerprint
samples, where u;; and o;; are the mean and standard
deviation, respectively. Let xi,...,zs are the RSS samples
measured at sampling positon .S; from AFP; by the employee.
The mean and standard deviation of the Gaussian distribution
are computed as
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We can then estimate the store passed by a shopper using
the maximum likelihood estimation. Specifically, for an RSS
fingerprint f,, = (r$Sy,1,...,75Sy,m) submitted by a shopper,
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Fig. 3. Histogram of RSS values collected from an AP when the user is static
for about 5 minutes.
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Fig. 4. An exemplary floor plan.

the likelihood of RSS value rss,, ; generated by the Gaussian
distribution G(p; j,07 ;) is given by
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where we set rss,, ; to -100 dbm if the user does not detect any
Wi-Fi signal from AP; for any 1 < ¢ < m [11]. Considering
all m RSS values, the likelihood of RSS fingerprint f,, being
measured at sampling position S; is then given by

Li(fu) =[] Lij(rssui), (3)
=1

where £; ;(rss, ;) is given in Eq. (2). The sampling position
passed by the shopper is then estimated as

max
1,....m

jt=arg L;(fu)- “)
J ¥

For an RSS fingerprint trace (fi,...,f;) submitted by a

shopper when walking in the mall, we can infer the shopper’s

location in realtime based on each RSS fingerprint along the

trace.

Fig. 4 illustrates a simple floor plan which has two rows of
stores and a pathway in the middle. Each store has a sampling
position (red dot). The shopper walks from store 1 to store 5
along the upper side of the pathway. The server calculates the
shopper’s realtime location by comparing the RSS fingerprints
from the shoppers and employees based on likelyhood. Fig. 5
shows a sequence of inferred locations when the shopper
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Fig. 5. The inferred stores of each fingerprint sample when the user walks from Store 1 to Store 3.
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Fig. 6. A simple graph corresponding to the walking trace in Fig. 4

walks, where each location is represented by an inferred
store index. Normally, when the shopper passes a store, the
system ought to pick the store as his current location. Due
to signal fluctuations, the system may nevertheless associate
the shopper’s position with an adjacent store especially when
the shopper is in the middle of two stores. The system may
also pick the stores on the opposite side of the pathway by
mistake. Our remedy comes from the observation that it takes
a normal shopper a few seconds to pass a store. By contrast,
the mistakes caused by instant signal fluctuations do not last
long. For example, assume that w is the store dimension, v
is the walking speed, and s is the RSS signal sampling rate.
Then the shopper can get °7 - s RSS samples when passing
the store. Common shoppers walk slowly in the shopping
mall with speed v less than 1 m/s, and most stores are wider
than 4 meters. If the RSS sampling rate is 1 Hz as in our
prototype, the shopper can at least collect 4 RSS fingerprints
which are most similar to the fingerprints collected by the store
employees. So we search in Fig. 5 for the stores that appear
continuously for at least four times with a sliding window.
Finally, we can get a simple graph like Fig. 6.

It is possible that a store may get a wrong adjacent store
from a single walking trace for many reasons. For example, the
shopper walks so fast that the system cannot capture enough
fingerprint samples especially when he passes a small store. In
addition, a crowd of people in the mall may cause long-time
signal fluctuations which lead to large localization errors. We
solve these problems by considering the walking traces from
different shoppers. As long as the results from most shoppers
are correct, the overall system performance is satisfactory.

IV. CONSTRUCTING AN ACCURATE FLOOR PLAN

The rough graph generated in the above section only gives
the label of each store and the relative positions between
adjacent stores. To find the target store with the rough labeled
floor plan, the shopper has to look for stores one by one,
which is still not user-friendly enough. To make the navigation
system more usable, we should give more instructions as
described in Section I. As a result, we need a more accurate
labeled floor plan which contains the shape and dimension of
each store as well as the pathway information. In this section,
we combine IMU sensors and the walking traces submitted by
multiple shoppers to achieve the above ambitious goal.
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Fig. 7. A walking trace with a sequence of stores the shopper passed.

A. Dealing with a Single Walking Trace

With the help of IMU sensors (accelerometer, gyroscope,
and compass), we can recover the shopper’s walking trace. In
particular, the accelerometer can capture the motion caused
by the shopper’s walking. After recognizing each step, we
can count the steps to infer the shopper’s walking distance.
The walking direction can be extracted from the electronic
compass, but the magnetic signals needed are not stable due
to indoor magnetic interference. In contrast, the gyroscope
can provide an accurate short-term angle estimation which
is free from indoor signal interference, but it can introduce
large cumulative errors in the long term. Our system thus
combines gyroscope and compass to get a more accurate and
stable direction estimation.

Fig. 7 illustrates the walking trace submitted by a shopper,
which corresponds to part of the floor plan in a large shopping
mall in Fig. 8. The shopper starts from store “PANDORA”,
walks around, and stops at store “NOBILITEA”. The server
compares the fingerprints submitted by the shopper with the
data from the employees of each store using the method in
Section III. Fig. 7 shows that we can correctly infer each store
the shopper passed in the walking trace. In addition, we can
recover the shape of the original floor plan, so we are able
to give more accurate instructions like “Turn right at store
APEX”. By counting the steps of the shopper when passing
the stores, the system can know the dimension of each store as
well, which is particularly useful for visually impaired users.

B. Combining Walking Traces from Multiple Users

For a large shopping mall, a single shopper may only walk
on part of the floor plan, so we need to connect walking traces
from multiple shoppers to cover the whole floor plan. Even
for the same part of the floor plan, we can combine the data
from multiple users to improve performance. The sampling
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Fig. 8. The original floor plan where the walking trace in Fig. 7 was extracted.

locations of each store provide good landmarks to combine or
connect walking traces from different shoppers.

Algorithm 1: Iterative Floor-Plan Construction

: Graph G = (V, E), coordinates
{e;|1 < < n'}, number of adjacent vertexes
of ith vertex NV;, displacement measurements
{Fijpll Sk <N 1<j<Nj1<i<n'},
number of edges NN, threshold a.

output: {¢;|1 <i <n'}.

input

1 forall i € {1,...,n'} do

2 LCZ(—(O,O)

3 5 <+ o0;

4 while S > a do

5 S« 0;

6 | foralliec{l,...,n'} do

7 N; + 0;

8 S; + (0,0);

9 forall j € {i+1,...,n'} and e(4,j) € E do
10 N; <~ N; +1;

11 Ci;’j%Ci—Cj;

12 i, < (0,0);

13 forall & € {1,. ,J} do
14 an,j<_nzg+N ngk»
15 S<—S+77” dJ,

16 Ci it x SZ,

17 S<—S+N \S

18 S<—W’

19 return {¢;|1 <i<n'};

We design an iterative algorithm similar to the one in Shen
et al. [3] to combine data from multiple shoppers to construct
a more accurate floor plan. Note that the graph in Section III
only shows the connectivity between different stores, while
Algorithm 1 adds displacements between stores in the graph.
Let G denotes the graph that represents the floor plan. In

graph G, there are n’ vertexes which represent the n’ sampling
positions in n stores. The edges between vertexes represent
displacements between stores.

Let ¢; be the current coordinate for vertex ¢ and J;] =
c; — ¢; the current displacement between vertexes ¢ and j
in the graph. Assume there are N edges (displacements)
between vertexes in the graph. By combining the data from
multiple shoppers, the system may receive N; ; measurements
{7kl < k < N;;} for every displacement d; ;, where
measurement 75 ;5 is extracted from the smartphone’s IMU
sensor readings. We first initialize all the vertex coordinates
to the origin (Lines 1 to 2), so all initial displacements are also
zero. We then iteratively update the vertex coordinates based
on the measurements. In each iteration (Lines 4 to 18), we first
average all the measurements for each current displacement
as 7;; = Zk 1 75,5, (Lines 12 to 14). We then sum
up the adjustment Vectors over all N; neighboring vertexes

Z Tij — dij (Lme 15). The coordlnate for vertex

i is updated as ¢; = ¢; + Sl, where ~; S is the average
adjustment vector across N nelghbormg vertexes (Line 16).
The iteration terminates if the average of S = -7 27;1 ‘Ifhl
(Lines 17 to 18) is below a threshold « at which point the
algorithm outputs the coordinates of each of the n’ sampling
positions (Line 19).

The running time of Algorithm 1 largely depends on how
fast the algorithm converges, which further depends on how
consistent the input walking traces are. For each iteration, the
running time increases as the number of stores, i.e., the number
of vertexes n’, and the number of edges N increase. Given the
same set of stores, the more walking traces from shoppers, the
less uncertainty of the graph GG and thus the higher accuracy
of constructed floor plan, and vice versa.

When the shopper passes two adjacent sampling positions
for a store, the system may not locate the shopper correctly
especially in a large environment with a very small RSS
fingerprint database. If we incorporate the adjacent sampling
positions in the algorithm, the results would not be good.
However, it is relatively easy to locate the shopper between
two sampling positions of adjacent stores because of the large
interval. As a result, we only use one sampling position for a
store in the construction algorithm and explore other sampling
positions as well to infer the store dimensions.

C. Pathway Recognition

Fig. 9 illustrates a representive distribution of stores in
a shopping mall. The stores can be adjacent to each other
like stores 1 and 2, on the opposite sides of a pathway like
stores 3 and 8, or back-to-back with each other like stores
7 and 12. The adjacency relations have been inferred by our
techniques in previous sections. The back-to-back stores are
not directly reachable and thus do not affect the performance
of IndoorWaze. The stores on the opposite sides of the pathway
are often directly reachable, but their relations cannot be
captured by previous techniques. For example, stores 3 and 8
are physically directly reachable from each other, but they are
not directly connected in the graph formed with our previous
techniques. The disconnectivity of stores on the opposite sides

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 18,2020 at 04:13:45 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.2993545, IEEE

Transactions on Wireless Communications

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. YY, FEBRUARY 2019

Fig. 9. An exemplary floor plan with three common geometric store relations.

of the pathway may cause problems in the navigation. For
example, a shopper is now at store 3, but his destination is
store 10. The system may navigate the shopper along the blue
solid route in Fig. 9, because the system thinks by mistake
that stores 1 and 6 are adjacent to each other, but stores 3 and
8 are not directly reachable. Actually, the shortest path from
store 3 to store 10 should be the red dashed line.

From the discussion above, it is important to recognize
each pathway in the graph and correctly associate the stores
on its two sides. For example, we need to know there is a
pathway between stores 1 and 6 but not between stores 6
and 11. We use some simple criteria to identify such relations
with stores 1, 6, and 11 as an example, which are situated
around the intersection of pathways. First, there exist straight
(e.g., north-south in Fig. 9) walking traces between two stores.
Second, there are walking traces that pass either store in other
directions (e.g., west-east in Fig. 9). The walking traces under
these two criteria should cross with each other. Third, the
likelihood of collecting similar fingerprints along the walking
trace between the two stores is relatively low. For example, the
walking trace from store 6 to store 1 meets the third criterion,
but the one from store 6 to store 11 does not because there is
a big space gap between stores 1 and 6 but not between stores
6 and 11. Our previous techniques have identified adjacent
stores along either side of a pathway. After we know the
pathway between stores 1 and 6, we can correctly associate
the other stores along the two sides of the pathway. Fig. 10 is
the new graph after we add edges (dotted lines) to stores on
the opposite sides of the pathway. Sometimes two stores on
the opposite sides may not be directly reachable in practice,
so we need to double-check if there is a direct walking trace
between each pair of opposite stores in the original walking
traces.

D. Dealing with Complex Walking Traces

Previous sections only consider the shoppers walking along
one side of the pathway, but some shoppers may walk between
stores on the opposite sides of the pathway. As a result, the
walking traces from many shoppers become too complex to
construct a floor plan. Now we present methods to extract
walking traces which are useful in the floor-plan construction.
We observe that the indoor layout imposes different patterns on
the shoppers’ walking traces. For example, many people tend

1 2 3 4 5
4 A4 * * *
' o ® ® )
7 8 9 10
o ® ® °
) 12 13 14 15

Fig. 10. A refined graph representation of the floor plan in Fig. 9.

to make a turn at the intersection stores (e.g., stores 1 and 6 in
Fig. 9) rather than around the stores in the middle of one row
(e.g., stores 2 to 4). As a result, we can count the number of
shoppers who turn at each store to infer the stores at turning
positions. Then we search for straight walking traces between
turning stores. For example, a walking trace from store 1 to 5 is
a valid trace which can be used in the floor-plan construction.
By contrast, a walking trace that passes store 1, 2, 3, 8, 9, and
10 is rejected because there is a turn at store 3. Other walking
traces in the original data set are not useless and can still be
used to infer the connectivity between stores on the two sides
of the pathway.

E. Navigation

With the aforementioned techniques, the system can con-
struct a labeled indoor map with Wi-Fi RSS fingerprints to
provide usable indoor navigation services. Let us continue
the previous shopping-mall example. The shopper first inputs
his target store into the IndoorWaze app. The system then
estimates the shopper’s current location based on his current
fingerprint readings and the fingerprint map. After that, the
system searches in the floor plan and finds a shortest path from
his current location to the target store. Based on the path and
the shopper’s current location, the system provides context-
aware audio instructions to the shopper. The system also tracks
the shopper’s realtime positions using his RSS fingerprints and
provides new instructions if he deviates from the path. The
RSS fingerprints the shopper measures may not be stable when
walking. If we infer his realtime locations based on only the
most recent RSS fingerprints, the calculated positions would
be back and forth because of signal fluctuations. Similar to
what we have proposed previously, we can determine whether
the shopper is passing a store only when he can report at least
4 continuous RSS fingerprints which are most similar to those
collected by the store employees. In addition, we can combine
the shopper’s IMU sensors and the floor plan to detect false
position estimates. For example, the shopper in Fig. 9 started
from store 2 and wants to reach store 5, and he is currently
at store 3. From his IMU sensors, the system knows that he
walks in a straight line. If the position estimate changes from
store 3 to 2, our system can immediately catch this wrong
location estimate. Such navigation details are well considered
in our system.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 18,2020 at 04:13:45 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.2993545, IEEE

Transactions on Wireless Communications

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. YY, FEBRUARY 2019

F. RSS Fingerprint Update

The RSS distribution at a sampling position may change due
to indoor layout update. While the employee of nearby stores
can easily notice the change and recollect the RSS fingerprint
samples, such change may not be noticed by the employee of
stores that are further away. It is possible to design and develop
an automatic mechanism for detecting RSS fingerprint change
to keep the RSS distribution up-to-date at each sampling
location. Specifically, we can maintain the RSS distribution
using the most recent RSS fingerprints from users at the same
sampling location using a sliding window. For example, the
most recent RSS distribution can be fitted from the 100 most
recent ones or the ones received within the last 24 hours. If
the difference between the most recent RSS distribution and
the original RSS distribution exceeds certain threshold, we can
update the RSS distribution at the sampling location using the
most recent RSS fingerprint samples and let the app inform
the nearby store’s employee to collect additional samples if
needed. We leave the detailed investigation of this issue as
our future work.

V. SYSTEM IMPLEMENTATION

We implemented IndoorWaze with Java on a Google Nexus
6 smartphone which has a Quad-core 2.7 GHz Krait 450
CPU, 3 GB RAM, a 5.96-inch display, and four relevant
IMU sensors (magnetometer, compass, accelerometer, and
gyroscope). The sampling frequencies for IMU sensors and
the Wi-Fi module are 16.7 Hz and 1 Hz, respectively. Below,
we briefly describe some implementation details about step
detection, turn detection, and AP filtering.

A. Step Detection

The system estimates the walking distance of shoppers by
counting their steps. The accelerometer can capture the motion
caused by walking and recognize each step. For example, let
(az, ay, a.) denote an accelerometer reading which represents
the acceleration along the three axes. In each step, the ampli-
tude
heel strikes the ground. As a result, we just need to count the
amplitude peaks in a sequence of readings to infer the number
of steps.

Fig. 11(a) illustrates the amplitudes of a sequence of ac-
celeration readings. It is difficult to count the peaks caused
by each step because the shopper’s random movements can
introduce many peaks in the signal. We first process the data
using a moving average filter to obtain Fig. 11(b) which
is much smoother than Fig. 11(a). We then use a low-pass
filter to remove some high-frequency components caused by
random phone movements. Fig. 11(c) illustrates the signal after
filtering, from which we can easily identify the peak caused
by each step. To count the peaks, we have to know a rough
period of the signal, which can be inferred by doing a signal
autocorrelation. After that, we use a sliding window to search
and count the peaks in the signal. The length of the sliding
window t,, can be equal to the period of the signal. The ith
data sample is a peak if it is larger than all the samples in

a2 + a2 + a? reaches a maximum when the shopper’s

acceleration amplitude

time (s)

Fig. 11. Acceleration data processing for step detection

[t(7) — tw/2,t(i) 4 tw/2], where t(i) is the time stamp of the
ith data sample.

B. Turn Detection

The compass in the smartphone works well in the outdoor
environment. However, the indoor magnetic environment is so
complex that the compass cannot provide reliable direction
estimation. Fortunately, the gyroscope can provide accurate
short-term angle changes and is not affected by indoor mag-
netic signals. In our system, we combine the accelerometer
and gyroscope to provide stable turn detection.

The gyroscope reading (g, gy, g.) represents realtime
phone angle changes in the 3-axis smartphone coordinate
system. To detect the direction changes of walking users, we
need to convert the gyroscope readings to those in the Earth
coordinate system. Before the axis rotation, we have to know
the realtime altitude of the phone. Assume that (¢, 6, 1)
represents the phone’s altitude angles in the three axes of the
Earth coordinate system. Based on the gravity sensor (i.e., the
vertical component of the accelerometer), we can only infer ¢
and 6 which seem not enough to calculate the exact altitude
in the 3-axis coordinate system. Fortunately, the user normally
walks in a two-dimensional z —y plane, so what we care about
is not the exact yaw angle ¢ but an angle change around
the z axis. Therefore, we can calculate the gyroscope data in
the Earth coordinate system as (eg, ey, €;) = Ry (8) - Ry (¢)-

1 0 0

(9z> 9y» 9-), where Ry(¢) = |0  cos(¢) sin(¢)| and
0 —sin(¢) cos(9)
cos(6) 0 —sin(0)
R,(6) = 0 1 0 are the rotation matrices
sin(0) 0 cos(9)

around the x and y axes, respectively. After the axis rotation,
we use e, to measure the angle changes of the walking user.

C. Filtering Access Points

The Wi-Fi environment in the shopping mall is very com-
plex. In addition to the APs set up by the shopping mall, every
store can install its own APs. Sometimes we may even find
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some hotspots served by mobile devices which are not stable
signal sources. In the experiment area, we found 487 APs
in total. If we incorporate all the APs into the experiments,
the performance would be bad. We therefore consider three
possible criteria to classify the APs as shown in Table I based
on the information we collected. In particular, we observed that
the signals from the APs with names are more stable, because
these APs are often installed by shopping mall operators
and stores (e.g. AT&T store) and have fixed locations. In
contrast, the signals from those APs without names exhibit
large fluctuation and are thus less stable. In addition, the
signals of the APs classified under the other two criteria do
not differ too much. We therefore only use named APs in our
experiments.

TABLE I
WI-F1 AP ANALYSIS

Frequency Encrypted? Has a name?
2.4 GHz: 250 Yes: 411 Yes: 281
5 GHz: 237 No: 76 No: 206

VI. SYSTEM EVALUATION

IndoorWaze was evaluated in a large shopping mall in our
metropolitan area. The mall covers 120,000 m?2 and consists
of 213 stores. In the experiment, we mimicked both shoppers
and store employees. The mall is so large that we cannot cover
the whole area or all the stores. Therefore, the experiment was
done in part of the shopping mall as illustrated in Fig. 12. The
experiment area is about 6,000 m?2 and contains 25 stores. We
chose this area because it contains all possible indoor features
such as pathways and crossings.

Our evaluation mainly focuses on the construction of the
labeled floor plan which is the main contribution of this paper.
For completeness, we also test the room level localization
and navigation based on the generated floor plan using Horus
[12]. Tt is difficult to compare the IndoorWaze with prior work
quantitatively, since different works use different data sources,
provide different functions, or work in different settings. In
addition, quantitative comparison will be affected by many
factors and parameters in real experiment that we cannot
control. Instead, we provide a qualitative comparison with
prior work in Table II.

A. Evaluation of Floor Plan Construction

Data Collection. We collected data during the normal oper-
ating hours of the shopping mall. We first acted as the store
employees to collect fingerprints along each store in the floor
plan. For this purpose, we picked the number of sampling
positions according to the dimension of each store. Fig. 13
illustrates a histogram of the number of sampling positions
along the stores. Most stores are not very large and just
need three sampling positions. We first collected Wi-Fi RSS
fingerprints at every sampling position for 20 seconds. We
then held the phone and walked around for about 20 minutes
at a normal speed (0.8 m/s). During the 20-minute collection

BUILD-ABEAR
WORKSHOP

g,

BOX
LUNCH
YANKEE "ty

CANDLE iy

THE BOOY i
sHOP i

LOVESAC

Fig. 12. The real floor plan in our experiment.

12

107

number of stores
D

3 4 5 6 7 8
number of sampling positions

Fig. 13. Number of sampling positions for stores.

period, we collected 14 fingerprint traces to cover each store
at least twice.

Fingerprint collection by shoppers under IndoorWaze is the
same as in Walkie-markie [3] and UnLoc [4] and thus they
incur similar time cost. IndoorWaze additionally requires store
employees to collect fingerprint samples at sampling locations
near their stores. Such cost is very acceptable in practice, as it
suffices to take samples for about 20 seconds at each sampling
location. While we expect that more samples can improve
the localization accuracy, the benefit from additional samples
diminishes as the number of samples increases. As a result,
the cost of data collection under IndoorWaze is similar to that
under prior solutions Walkie-markie [3] and UnLoc [4] and is
significantly lower than prior floor plan construction systems
that require more complex information such as image [15],
video [16], and check-in [6] that require explicit participation
of shoppers.

Visual Comparison. Fig. 14 depicts the graph representation
of the floor plan generated by our system. The stores at
the crossings are represented by red dots, the edges along
either side of a pathway are shown by solid lines, and edges
across the pathways are represented by dotted lines. Fig. 14
only shows the relative positions among adjacent stores, and
the resulting floor plan is still too rough for usable indoor
navigation. Fig. 15 to Fig. 17 show the generated floor plan
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TABLE I
SUMMARY OF RELATED WORK
System Method User’s task | Navigation | Floor plan Granularity Flexibility | labelling
Foﬁﬂcﬁa’&g?\ig]{?]{l 4] Leader-follower Not required v - - Low -
SemSense [6] Manual check-in Explicit - - - Low v
ercl)%ls caill\“//la[ss[]l’é] Image, Video Explicit - v Room Level High -
‘Walkie-markie [3], .. .
UnLoc [4] RSS, IMU Implicit - v Pathway Level High -
RSS, IMU
IndoorWaze from both shoppers Implicit v v Room Level High v
& employees
Navigation. We also tested the navigation service based on the
cLosep Buitb  H&M . . .
ALDO ° ° generated floor plan. In this experiment, we randomly picked
PANDORA four destination stores (“BUILD”, “CLAIRE’S”, “AT&T”, and
NOBILITEA *—o—o DISNEY “JOURNEYS”) and a starting store “LOVESAC” in Fig. 14.
BOXLUNCH & =, 2 2 ¢ GYMBOREE We successfully reached each destination store at ease by
YANKEE €8 2 § ¢ SKECHERS following IndoorWaze’s audio instructions.
A ® JOURNEYS
THE BODY SHOP @ o AT&T
® HOLLISTER VII. RELATED WORK
LOVESAC e L L L
¢ICING [ CHILDREN'S Most existing indoor localization/navigation systems focus
HAT CLUB ¢ PLACE . . . . .
on improving the localization accuracy. To provide a user-
APEX CLTANIES JUSTICE friendly navigation service, these systems need a labeled floor

Fig. 14. Graph representation of the floor plan with IndoorWaze.

after 5, 10, and 20 iterations, respectively. The floor plan in
Fig. 17 is very similar to the ground truth in Fig. 12. It clearly
identifies the pathways and differentiates the stores along two
sides of the pathways. All the store labels are also correct.
Dimension Estimation. In addition to the relative store po-
sitions, our system can estimate the dimension of each store.
Fig. 18 illustrates the errors in the store-dimension estimation,
where the median error is about 2.5 steps. Actually, the esti-
mation errors are closely related to the true store dimensions.
Fig. 19 illustrates the ratio of errors to the store dimension,
where the median error ratio is about 12%. By accurately
estimating the store dimensions, we can infer the duration for
a shopper to pass a particular store.

Impact of Participation. IndoorWaze is a crowdsourcing-
based system, and not all the stores may participate in data
collection. In the experiment, we randomly removed a few
stores from the dataset and evaluated the impact on the floor-
plan construction. Fig. 20 shows the floor plan after we
randomly removed three stores. The floor plan is not as good
as the one in Fig. 17, but it is still sufficient for highly usable
indoor navigation.

B. Localization and Navigation

Static localization. We evaluated the localization performance
of IndoorWaze when the shopper is static. In this experiment,
we stood still at the center of each store’s exterior perimeter
for about 10 seconds. Then, we computed the average of all
the collected RSS fingerprints to find the best match in the
RSS fingerprint database. Our system found the correct stores
for all the 25 location queries.

plan with location-store mappings. However, such context-
aware labeled floor plans are often unavailable or quite pro-
hibitive to obtain. Our work fills this gap and generates a
high-fidelity labeled floor plan that can be used with most ex-
isting indoor localization/navigation system. In what follows,
we describe some representative work on indoor localization
systems, indoor navigation systems, and indoor floor-plan
construction. Table II summarizes some most germane work.

Fingerprint-based techniques are the most popular ap-
proaches for indoor localization. As probably the first work
along this line, Radar [17] is a deterministic localization
method that employs RSS for indoor localization. Horus [12]
improves Radar by keeping a fingerprint distribution for every
position in the floor plan and then finding a maximum like-
lihood match in the database. SurroundSense [18] introduces
more indoor features (such as light and sound) in addition to
RSS fingerprints.

Model-based indoor localization techniques estimate indoor
locations using statistic models. A popular approach is to build
a relation between RSS and signal propagation distance based
on the RF propagation model (e.g., the log-distance path loss
(LDPL)) [19]. The work in [20] evaluates some self-calibrating
algorithms in office environments and finds that the median
errors are consistently greater than 5Sm. In addition to LDPL-
based schemes, there are other techniques based on Angle of
Arrival (AoA) [21], Time of Arrival (ToA) [22], and Time
Difference of Arrival (TDoA) [23].

Simultaneous Localization and Mapping (SLAM) is a tech-
nique originating from the robotics community. SLAM relies
on a robot to explore the space of interest with discrete land-
marks or obstacles. Based on the laser ranging and cameras
in the robot, we can determine the relative locations of the
landmarks, and the robot can infer its relative location. WiFi-
SLAM [24] uses a Gaussian process to model the relation
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Fig. 18. Accuracy of store-dimension estimation.
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Fig. 20. Floor plan after 20 iterations with 3 non-participating stores.
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Fig. 16. Floor plan after 10 iterations.
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Fig. 17. Floor plan after 20 iterations.

of Wi-Fi signal strengths. With more sensors embedded in
the smartphone, many techniques combine IMU sensor data
with human movements to realize SLAM. For example, the
schemes in [25], [26] use the indoor constraints to map
human mobility traces to the floor plan and then generate the
fingerprint database. LiFS [27] maps fingerprints by comparing
the similarity between the high-dimensional fingerprint space
and the stress-free floor plan.

There are also systems based on a leader-follower navi-
gation model. Escort [3] navigates users based on crowd-
encounter information and dead reckoning. Magnetic infor-
mation is adopted by some systems [13], [14] for navigation.
The leader first records the magnetic signal along the route.
The user then compares the magnetic signals he collects with
the signals from the leader to determine his location. Travi-
Navi [5] is a vision-guided navigation system. The leader
(store employee) first takes photos along the route to the store.
The system then gives the instructions based on the photos
and dead-reckoning techniques. This line of systems do not
construct a context-aware floor plan.

People have also studied indoor floor-plan construction.
SemSense [6] presents a floor-plan labeling method based on
a given unlabeled floor plan and shoppers’ manual check-ins
in each store. Jigsaw [15] presents a floor-plan construction
technique by combing IMU sensors and landmarks extracted
from images taken by crowdsourcing workers. CrowdMap
[16] is a sensor-rich video-based approach for indoor floor-
plan construction, which furnishes the consistent video frame
relation to generate spatial information for the indoor environ-
ment. Unloc [4] constructs the floor plan by sensing natural
indoor landmarks such as elevators and stairs, which are then
connected via dead reckoning. Walkie-markie [3] generates
the floor plan based on the RSS trend when the user passes
the AP. Other IMU-based floor-plan construction methods
are presented in [28]-[30]. None of these techniques could
automatically generate a high-fidelity indoor floor plan with
accurate POI labels and dimensions. In addition, our system
IndoorWaze incurs minimal effort on crowdsourcing users.

VIII. CONCLUSION

This paper presented IndoorWaze, the first indoor navigation
system which can automatically construct an accurate labeled
indoor floor plan. We prototyped IndoorWaze on Android
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smartphones and evaluated it in a large shopping mall. The
experiment confirmed the high efficacy and usability of In-
doorWaze.
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