An Efficient Mixed-Mode Representation of Sparse Tensors

Israt Nisa Jiajia Li Aravind Sukumaran-Rajam
Ohio State University Pacific Northwest National Ohio State University
nisa.1@osu.edu Laboratory sukumaranrajam.1@osu.edu
Jiajia.Li@pnnl.gov

Prasant Singh Rawat
Ohio State University
rawat.15@osu.edu

Sriram Krishnamoorthy
Pacific Northwest National
Laboratory

P. Sadayappan
University of Utah
saday@cs.utah.edu

sriram@pnnl.gov

ABSTRACT

The Compressed Sparse Fiber (CSF) representation for sparse ten-
sors is a generalization of the Compressed Sparse Row (CSR) format
for sparse matrices. For a tensor with d modes, typical tensor meth-
ods such as CANDECOMP/PARAFAC decomposition (CPD) require
a sequence of d tensor computations, where efficient memory ac-
cess with respect to different modes is required for each of them.
The straightforward solution is to use d distinct representations of
the tensor, with each one being efficient for one of the d computa-
tions. However, a d-fold space overhead is often unacceptable in
practice, especially with memory-constrained GPUs. In this paper,
we present a mixed-mode tensor representation that partitions the
tensor’s nonzero elements into disjoint sections, each of which
is compressed to create fibers along a different mode. Experimen-
tal results demonstrate that better performance can be achieved
while utilizing only a small fraction of the space required to keep d
distinct CSF representations.

CCS CONCEPTS

« Theory of computation — Parallel algorithms;

KEYWORDS

Sparse tensors, MTTKRP, GPU, CANDECOMP/PARAFAC decom-
position

ACM Reference Format:

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sri-
ram Krishnamoorthy, and P. Sadayappan. 2019. An Efficient Mixed-Mode
Representation of Sparse Tensors. In The International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ’19), No-
vember 17-22, 2019, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3295500.3356216

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC ’19, November 17-22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6229-0/19/11...$15.00
https://doi.org/10.1145/3295500.3356216

RIGHTS L1 N Hig

1 INTRODUCTION

Tensors are multidimensional data commonly used in machine
learning [2], text analysis [4], healthcare analytics [16], [17], telecom-
munications [36], [37], and numerous other applications. Tensors
are useful because they provide a generalization of storing data for
arbitrary number of dimensions, where each dimension is termed
a mode. Real world tensors are extremely large and sparse, with
high irregularity in shape and distribution of nonzeros. Unlike
their dense counterparts, sparse tensors need a compressed storage
format to be space efficient.

There exists a vast research history on efficiently representing
sparse matrices, which are special tensors with two modes. A natu-
ral way of representing sparse matrices is to just store the indices
for the non-zero elements, along with its value. One can further
optimize the storage by reusing the same row pointer for all the
non-zeros in the same row. This format is called Compressed Sparse
Row (CSR), and is universally regarded as the de facto represen-
tation for sparse matrices. For hyper-sparse matrices with many
empty rows, Doubly Compressed Sparse Row (DCSR) format [10]
further compresses CSR by storing the row pointers for only the
non-empty rows. Compressed Sparse Fiber (CSF) is a generalization
of CSR (or DCSR) for higher dimensional tensors.

A full iteration of CANDECOMP/PARAFAC decomposition (CPD)
or Tucker Decomposition requires performing Matricized Tensor
Times Khatri-Rao Products (MTTKRP), or Tensor-Times-Matrix
products (TTM) on every mode. Therefore, many state-of-the-art
tensor factorization frameworks create a compact representation of
a tensor at each mode to achieve an overall high performance. For
illustration, consider an application that performs sparse matrix-
vector multiplication (SpMV), y = Ax, in tandem with sparse matrix-
transpose-vector multiplication (SpMTV), z = AT x. If A is stored
in CSR format, then parallelism can be achieved across rows while
computing y = Ax. However, computing z = AT x with CSR would
require explicit locks or atomic operations to update z. Similarly,
storing A in Compressed Sparse Column (CSC) format will achieve
parallelism for z = AT x, but introduce atomics for y = Ax. Explicit
synchronization is usually prohibitively expensive on multiple ar-
chitectures, including GPUs. A naive solution to this conundrum is
to store A in both CSR and CSC formats. The same logic extends
to tensors: to achieve parallelism and efficient accesses across d
modes, d representations of the tensor are maintained. Clearly, the
storage overhead will increase with the number of modes, making
this solution impractical for higher order tensors.

https://doi.org/10.1145/3295500.3356216
https://doi.org/10.1145/3295500.3356216
https://www.acm.org/publications/policies/artifact-review-badging/#available

SC ’19, November 17-22, 2019, Denver, CO, USA

This paper attempts to reconcile two conflicting objectives: re-
ducing the overall storage overhead for tensors by using a single
representation for all the modes, and achieving equal or better
performance compared to the naive approach of storing d repre-
sentations. A previous effort in this direction by Smith et al. was
proposed in the SPLATT library [32] — given d CSF representations
for d modes, their implementation selects the CSF where the short-
est dimension is at the outermost level as the only representative.
Computation on all the modes will use the same representative
CSF. We term this storage method SPLATT-ONE, in contrast to
SPLATT-ALL, which represents the strategy of creating a different
CSF representation for each mode. Even though selecting one out
of d CSF representations is an easy technique to reduce storage
overhead, often further analysis in identifying the sparsity structure
of the real-world tensors can further improve both parallelism and
compression.

In this paper, we propose a novel mixed-mode format termed
MM-CSF, where long fibers! on each mode are first identified and
then stored on their most suitable modes. Doing so achieves bet-
ter compression, which not only reduces space requirement, but
also provides performance improvement. Revisiting the illustrative
example, while performing SpMV (SpMTV) with the mixed-mode
format, the nonzeros in the CSR (CSC) representation can exploit
the parallelism and compression in the long rows (columns), and the
rest of the nonzeros in the CSC (CSR) representation will require
atomics. Figure 1 further elucidates our insight behind mixed-mode.
The matrix in the figure is sparse, with only one non-empty row
and column. Using either CSR or CSC representation would require
storing 38 elements in row pointers, column indices, and nonzeros;
simultaneously maintaining both CSR and CSC representations for
efficient computation would require storing 76 elements. In contrast,
the mixed-mode format will store the dense row in CSR format, and
the dense column in CSC format, reducing the overall storage to 32
elements. Furthermore, as illustrated later in the paper, mixed-mode
storage incurs fewer global memory transactions due to better com-
pression when compared to SPLATT-ONE, and uncovers a scope
for finer grained parallelism when compared to SPLATT-ALL. In
summary, this work makes the following contributions.

o It proposes MM-CSF, a novel storage format that exploits
the underlying sparsity structure of real-world tensors, and
provides compact storage without compromising on compu-
tational efficiency of tensor operations.

o It provides experimental data demonstrating that compared
to the storage formats used in the state-of-the-art CPU frame-
works, MM-CSF can save up to 75% space, while improving
MTTKRP performance by up to 63X.

e On a NVIDIA Volta GPU, it demonstrates that MM-CSF out-
performs the state-of-the-art GPU storage format, BCSF [26],
by up to a factor of 2x in computing MTTKRP, and reduces
up to 85% of the space requirement.

The rest of the paper is organized as follows. Section 2 describes
the tensor notations and gives an overview of tensor decomposition.
Section 3 gives a brief overview of the sparse tensor storage for-
mats used by the state-of-the-art tensor factorization frameworks.

!Generalization of matrix rows and columns, created by holding all but one index
constant.

RIGHTS L1 N Hig

Nisa et al.

% CSR:

%! #Row-pointers = 8
3 x T ir * % * | #Col-indx and #nnz = 15
Ck__*_:’_"i"_‘_"i_*_ o x, Storage = 8 +2*15= 38

1 * :

1! csc:

:a(- 1 #col-pointers = 8

[1 #Row-indx and #nnz = 15

:*: Storage =8 +2*15 = 38

Mixed-Mode: Store Row 3 in CSR & Column 3 except the
common nonzero in CSC

#Row-pointer = 1 #Col-pointer = 1
#Col-indx and #nnz =8 #Row-indx and #nnz =7
Storage = (1+2*8) +(1+2*7) = 32

Figure 1: Scope of compression using mixed-mode represen-
tation in a matrix

Terminologies | Description
X Tensor
d Tensor order
M Number of nonzeros in X
Sn Number of slices in X on mode-n
Fp Number of fibers in X on mode-n
Fg_n Number of fibers in BCSF on mode-n
A,B,C Factor matrices
R Tensor rank
CSF-n CSF representation of X on mode-n
*-ALL Implementation with d different CSF representations of X
*-ONE Implementation with one CSF representation of X
MM-CSF Mixed-mode single CSF representation of X

Table 1: Tensor notations

Sections 4 and 5 discuss our proposed MM-CSF representation in
detail and describe the acceleration of MTTKRP computation on
GPUs with the MM-CSF representation. Section 6 presents experi-
mental evaluation, Section 7 discusses the related work, and Section
8 concludes.

2 TENSOR BACKGROUND
2.1 Tensor Notation

The tensor notations used in this paper are adapted from Kolda
and Sun [21]. We represent tensors as X. Let us assume that X is a
third-order tensor of dimension I X J X K, and the rank of the tensor
is R. The dimensions of a tensor are also known as modes. This
third-order tensor X can be decomposed into three factor matrices,
A e RI*R B e RIXR and C € RKXR, The nonzero elements of X
can be represented as a list of coordinates, (i,j,k,vals). Individual
elements of X are expressed as Xjj.

Fibers are vectors generated by fixing all but one index con-
stant. X, ; ., X; . k., Xj,j,. are the examples of fibers. Similarly, slices
are generated by fixing all but two indices constant, e.g., (\’:’ ko
X, j,.» and Xj ... Throughout the paper, we append -ONE’ (or ‘-
ALL’) to the names of current state-of-the-art tensor factorization
frameworks/implementations that maintain one (or d) CSF repre-
sentation(s) of the input tensor. Table 1 summarizes the rest of the
terminologies used throughout the paper.

An Efficient Mixed-Mode Representation of Sparse Tensors

Algorithm 1: CPD-ALS for third-order tensors

SC ’19, November 17-22, 2019, Denver, CO, USA

Input :X e RP¥VUXK
Output:A € RI¥R B e RIXR C ¢ REXR
1 for iter = 1to outer iters or convergence do
2 > MTTKRP on mode-0
3 Y) « X(l) (C®B)
4 A< Y, BTB*cTo)f
5 normalize columns of A
6 > MTTKRP on mode-1
7 Y, « X(z) (CoA)
8 B« Y, (ATA*CT0)f
9 normalize columns of B
10 > MTTKRP on mode-2
11 Y3 X(g) (BoA)
12 C « Y, (ATA*BTB)"
13 normalize columns of C
4 return A, B, C

-

2.2 CANDECOMP/PARAFAC Decomposition
and MTTKRP

CPD is the higher level generalization of Singular Value Decom-
position (SVD), a popular matrix decomposition technique. CPD
decomposes a tensor into a sum of component rank-one tensors.
For example, the third-order tensor X is decomposed to a, € R,
by € R/ and ¢, € RX, where a,, by, by are the rank-one compo-
nents of the factor matrices A, B and C respectively [21]. We can
express the decomposition as:

R
Xzzarobrocr (1
r=1

We implement the alternating least squares (ALS) algorithm [11],
[15] to perform CPD in this work, which is also known as the
workhorse algorithm of it [21]. ALS aims to approximate X and
minimize ||X — X [l X is the approximated tensor generated from
the factor matrices (refer to Equation (1)). ALS solves one matrix
at a time while holding the others constant. For example, while
updating A, matrices B and C will be fixed. The update computation
can be described as:

A=Xy(CoB)BTBxCTC)", 2

The term X(1)(C © B) represents Khatri-Rao product between X(4),
B, and C; the algorithm computing it is known as the MTTKRP
(Matricized Tensor Times Khatri-Rao Product). X(;) is the mode-1
matricization of X. The output of the Khatri-Rao product is then
multiplied with (BT B = CTC)T, which is the pseudo-inverse of the
RxR matrix generated by BT Band CT C. Algorithm 1 demonstrates
the steps to update each matrix using the ALS algorithm. Line 3,
Line 7, and Line 11 show the MTTKRP operations to update A, B,
and C respectively. MTTKRP is the performance bottleneck in CPD,
primarily due to the access to the large, sparse tensor X, and the
scattered access to the factor matrices directed from X.

2.3 The Optimized MTTKRP Algorithm

In the MTTKRP computation, if (COB) is computed separately, then
the resulting dense JK X R matrix could cause memory overflow.

RIGHTS LI L)

I J K

'IEIE ' @ @ (D @

i 2| 2

2l . O@ @ ‘0@ @ &
28 1] 3

2j1]4] | kKO @OO@OW @O 0OV
[e]e]e] CSF (Compressed Sparse Fiber) B-CSF (Balanced CSF)

Figure 2: Storage formats of an illustrative sparse tensor

One way to avoid this issue is proposed by Kang et al. [19], which
uses operator distributivity to compute the Hadamard products
between B and X, and C and X. Based on this algorithm, Smith et
al. [31] provide an optimized formulation to save flops and memory
accesses, as shown below:

K-1J-1
G = D > X(0,j,k)(BG,:) * Clk,) 3)
k=0 j=0
K-1 J-1
= > Clk.)) X(i,j.k) * (BG,) @)
=0 j=0

k
In Equation (4), each X(; . x fiber has a scope to save R(J — 1)
multiplications.

3 SPARSE TENSOR FORMATS

There are two primary families of sparse tensor formats: coordinate-
based and tree-based. A straightforward approach to represent a
sparse tensor is to store, for each nonzero, its indices along each
dimension and the value. This storage format is called COO (Coor-
dinate) format. Recently, Li et al. [23] proposed Hierarchical COO
(HiCOO) format based on COO, which further compresses indices
by multi-level blocking. Flagged-COO format [25] also belongs to
the coordinate family. The tree-based format family compresses
the sparse tensor indices into a “tree structure”. CSF, proposed by
Smith et al. [35], and BCSF, proposed by Nisa et al. [26], belong to
this family. Since the tree-based formats are the focus of this work,
we now analyze CSF and BCSF formats in terms of storage, float-
ing point operations, memory access, and the number of required
representations.

3.1 Storage and Floating Point Operations

Figure 2 shows the data structures of COO, CSF, and BCSF for a
third-order tensor. COO requires 3 X 4 X M bytes to store the in-
dices, where M is the total number of nonzeros, and each index is
a 4-byte integer. CSF organizes the dimension of the tensor in a
hierarchical manner and compresses repetitive indices. As shown
in the CSF tree in Figure 2(b), the leaves at the lowest level store the
indices of the M nonzeros at K dimension. The nonzeros sharing
the same indices at J dimension are compressed to F fibers, and the
fibers sharing the same indices at I dimension are grouped into S
slices/roots. This particular hierarchical organization can be repre-
sented as I — J — K. In general, such hierarchical organizations
are called mode orientation. Thus, a tensor with S slices, F fibers,
and M nonzeros requires 4 X (2S + 2F + M) bytes to represent its
indices. For slices and fibers, two arrays are maintained to store

SC ’19, November 17-22, 2019, Denver, CO, USA

Nisa et al.

Algorithm 2: slice-alg: MTTKRP using BCSF for third-order
tensors on GPUs [26]

Input :slicePtr[S], slicelnds[S], fiberPtr[Fg], fiberInds[Fg], indK[M],
vals[M], densgmatrices B[J][R], C[K][R]
Output:dense matrix A[I][R]

1 v slices-parallel across thread-blocks
2 for slice=0to S do

3 i = slicelnds[slice]

4 > fibers-parallel across warps
5 for fiber = slicePtr[slice] to slicePtr[slice + 1] do

6 j = fiberInds[fiber]

7 > nonzeros-cyclically processed by warps
8 for z = fiberPtr[fiber] to fiberPtr g[fiber + 1] do

9

k = indK[z]
10 > rank-parallel across threads
1 for r=0to Rdo
12 \ tmp[r]+ = vals[z] * C[k][r] > register accumulation
13 for r=0to Rdo
14 | tmp_2[r]+ = tmp[r] = B[j][r] > register accumulation
15 for r=0to Rdo
16 ‘ Ali[r]+ = tmp_2[r] > Atomic writes

17 return A

Algorithm 3: MTTKRP using d representations on d modes
for an order-d tensor

Input : indI[M), indj[M), indK[M], vals[M]

Output: A[I[R], BJI[R], C[K][R]

1 > create CSFs
2 for mode =0tod —1do

3 ‘ CSF[mode] = create_CSF (mode)

4 > execute MTTKRP
5 for mode =0tod —1do

6 ‘ slice-alg (CSF[mode])

their pointers and indices. SPLATT [35] library provides a highly
optimized MTTKRP implementation using CSF data structures on
the CPU. Figure 2(c) shows the balanced CSF structure. BCSF [26]
extends CSF to GPU platforms, and provides a balanced data struc-
ture to store the CSF. The nonzero elements per fiber and per slice
might vary significantly across a tensor. BCSF splits the heavy fibers
into sub-fibers and creates Fg fibers, where Fg > F. The slices are
grouped into multiple bins based on their length; each bin will have
a different number of thread blocks assigned to one slice. BCSF in-
creases GPU occupancy significantly with load balancing and other
relevant optimizations [26]. Algorithm 2 shows the computation
of MTTKRP on mode-0 to update A using BCSF. The first for loop
as shown in Line 2 will iterate over all the slices; each slice will in
turn iterate over its fibers in Line 2. Each nonzero element of the
fibers will perform a multiplication with the corresponding row of
C. The product will then be multiplied with the corresponding row
of B (Line 10) and written back to the row of A (Line 16).

In real-world tensors, S < M and F < M. Hence, CSF-based
structures have a potential to reduce the floating point operations
as well. As shown in Equation (4), and also in Algorithm 2, R(J — 1)
flops can be saved by factoring C out; doing so reduces the required
flops to R(S + 2 X (F + M)). In contrast, the flops requirement of
COO-based formats is 3 X M X R.

RIGHTS LI L)

fiber length of the selected mode fiber length of a candidate mode
0 ~100 100~5K 5K~10K >10K 0 ~100 100~5K 5K~10K >10K

deli 37M 76K 17 6 47TM 3K 5 0
nell1 17M 136K 233 77 113M 11K 4 0
nell2 46K 291K 5 0 16M 66K 0 0
flick 13M 166K 70 11 28M 1K 1 0
fr_m 61IM 19.4K 42 32 60M 19.6K 48 50
fr_s 91IM 28K 920 59 86M 30K 119 105
darpa 54K 22K 164 277 28M 0 0 0

Table 2: Comparison of fiber lengths (nonzeros per
fiber) between the selected mode by SPLATT-ONE and
a candidate/non-selected mode

3.2 Number of Representations

CSF based representations are compressed with respect to a certain
mode. Therefore, one may need to maintain d distinct representa-
tions to exploit the compression at each mode. For example, the
third-order tensor shown in Figure 3(a) would require three CSF
representations: CSF-0, CSF-1, and CSF-2; they are shown in Fig-
ure 3(b). Algorithm 2 (slice-alg) shows the computation of MTTKRP
on mode-0 to update A using CSF-0, where i indices are at the slice
mode. The intermediate modes in this case can either be mode-1
or mode-2. Similarly, to perform MTTKRP on mode-1 to update
B, CSF-1 will be used and the j indices will be at the slice mode.
A similar analogy can be drawn for mode-2. Both SPLATT and
BCSF by default use d representations for an order-d tensor. In both
the frameworks, the mode orientation are such that, at mode-n,
dimension n will be at the root, and the rest of the modes will be
sorted according to their dimension length to achieve the most com-
pressed representation. Algorithm 3 shows the steps to perform
MTTKRP at d modes. At Line 3, d number of CSFs are created, and
at Line 6, MTTKRP operations are performed at each mode.

COO on the other hand is invariable to mode orientation, and
uses a single representation to compute MTTKRP at all d modes.
SPLATT library also supports SPLATT-ONE, i.e., using a single
representation to perform MTTKRP on d modes [31]. For example,
since the tensor in Figure 3(a) is of dimension 3 X 5 X 6, CSF-0 will
be selected as the SPLATT-ONE representation — the shortest mode,
I, is slice mode, J is the fiber mode, and the longest mode, K, is
the nonzero mode. Although in this case, MTTKRP computation
at only one mode (e.g., mode-0 in CSF-0) will benefit from the
compression at both fiber- and slice-level. At the other modes (e.g.,
mode-1 and mode-2 in CSF-0), MTTKRP will be computed using
fiber-alg (Algorithm 7) exploiting compression only at the fiber-
level, and using nonzero-alg at the nonzero-level (Algorithm 8) with
no possible compression. We describe these algorithms in details
in the next section. Algorithm 4 shows MTTKRP computation on
d modes using a single representation. At Line 1, the dimension
for the slice-, fiber-, and nonzero-level is chosen according to the
length of the dimensions. MTTKRP on mode-0/mode-1/mode-2 is
performed at Line 6/Line 8/Line 10. Using the 2D matrix analogy,
computing MTTKRP at mode 1 using CSF-0 is similar to performing
SpMTYV using a CSR representation instead of CSC.

4 MM-CSF: A MIXED-MODE CSF

SPLATT-ALL and BCSF-ALL iteratively update the matrices which
correspond to the mode at its root/slice level. For a third-order

An Efficient Mixed-Mode Representation of Sparse Tensors

1 J K | 0

011

135 J @ @

235

0 42 K A @
CSF-0

(a) Tensor X (3x5x6)

K

Selected fibers/slices

(c) Selected as SPLATT-ONE

SC ’19, November 17-22, 2019, Denver, CO, USA

@ 6 @ <O @

k@ ® @ '@ ©

@ 0@ @ 0 @
CSF-1 CSF-2

(b) SPLATT-ALL (CSF with d representations)

“@ @ @ 'O
' @ @ — 00 «®
@ @ @@ 0@

CSF-2 CSF-p0 CSF-p1

MM-CSF constructed
from selected fibers

(d) Construction of MM-CSF (Mixed-Mode CSF)

Figure 3: Construction of MM-CSF

Algorithm 4: MTTKRP using one CSF representation on d
modes for a third-order tensor (d = 3)

Input : iEdI[A/I], irld][]\l],i‘ndK[A/I], vals[M], dims[d]

Output: A[I][R], B[J][R], C[K][R]
1 sMode = argmin(dims[0],dims[1],dims[2]) > find the mode to create CSF

2 CSF = create_CSF (sMode); > create CSF
3 > execute MTTKRP
4 for mode=0tod —1do

5 if mode == sMode then

6 ‘ slice-alg (CSF)

7 else if mode == fMode then
8

9

| fiber-alg (CSF)
else if mode == nMode then
nonzero-alg (CSF)

> Refer to Algorithm 7

10 | > Refer to Algorithm 8

tensor X, matrix A, B and C are updated sequentially using CSF-0,
CSF-1, and CSF-2 respectively, when mode-0, mode-1, and mode-2
are at the slice level. In the case of SPLATT-ONE representation,
one of these three matrices will use the mode at slice-level to update
itself, and the remaining two matrices will update the matrix at
fiber-level and nonzero-level respectively. For SPLATT-ONE, the
shortest dimension is selected as the slice (root) nodes, and the
longest as the nonzero (leaf) nodes; the intermediate modes are
sorted accordingly. The selected CSF thus has the highest average
slice length, which leads to a high slice compression compared to
other CSFs. However, the compression in the next fiber level is
not always guaranteed. As shown in Table 2, for tensors fr_s and
fr_m, instead of the CSF representation selected as SPLATT-ONE,
other CSF representations can have higher average fiber length,
and a higher number of fibers with length >10K. This phenome-
non can be more severe for higher order tensors. To incorporate
multi-level compression, we propose MM-CSF, a Mixed-Mode CSF
representation, where heavy fibers and slices are stored at their
most suitable modes. For a 2D matrix, this would imply storing the
dense rows in CSR format, and the dense columns in CSC format.
While performing y = Ax, the CSR part can efficiently parallelize

RIGHTS L1 N Hig

across rows. Similarly, while performing y = AT x, the CSC part
can efficiently parallelize across columns.

4.1 Partitioning of Nonzeros

The first step in forming MM-CSF is to create d disjoint partitions of
the nonzero elements of an order-d tensor X, where each partition
will have a different mode orientation. This aims to ensure that each
nonzero goes to a partition where it has the potential to achieve
the maximum compression. Thus, the resulting tensor partitions
should jointly be more compressed, a.k.a. have fewer, but longer
fibers. Figure 3(d) shows the construction of MM-CSF.

A nonzero element X; ; x of a 3D tensor belongs to three? possi-
ble fibers: fiber-0 of CSF-0, fiber-1 of CSF-1, and fiber-2 of CSF-2. Let
us assume that the lengths of fiber-0, fiber-1, and fiber-2 are Iy, I,
and Iy, respectively, and Iy > I3 > Iz. As fiber-0 is the longest fiber,
X; j k will be assigned to the partition Py orientated in mode-0.
When multiple fibers that the nonzero belongs to have same length,
to break the tie, we assign the nonzero to the partition where av-
erage fiber length is higher. Partitions P; and P, will be similarly
constructed.

In Figure 4, we demonstrate this strategy using fibers X, ; j and
Xi,j,. in the columns under static strategy. All the nonzeros ex-
cept Xp, 1,2 are assigned to partition Pg. However, this partitioning
scheme creates an additional fiber by splitting fiber Xo, 1,. into two
partitions. This shortens the length of fiber Xy 1 . but increases
the total number of fibers, leading to inefficient compression. The
main reason is that the partitioning decision is based on statically
pre-calculated fiber lengths at each mode orientation. We propose
a dynamic strategy by incrementally updating the fiber length.
Continuing with the aforementioned example, once the nonzero
X; j,k is assigned to partition Py since the length of fiber-0 (lo) is
the largest, the lengths of fiber-1 and fiber-2 will be reduced by
2For ease of explanation, we use natural mode orientations, i.e., [=J—K for CSF-0,

J—K—1 for CSF-1, and K—I—] for CSF-2. In reality, d! mode orientations are possible,
and the actual mode orientations of each CSF may differ from natural ones.

SC ’19, November 17-22, 2019, Denver, CO, USA Nisa et al.

Algorithm 5: MTTKRP using MM-CSF representation on d
modes for a third-order tensor (d = 3).
Input : indI[M], indf[M], indK[M], vals[M], A[I][R], B[J][R], C[K][R]
Output: A[I][R], B[J][R], C[K][R]

1 > select partition for each nonzero
2 for z=0to Mdo

3 i=indl[z];] = indJ[z]; k = indK[z];

4 if fiberLen(ij,:) >= max(fiberLen(i,:k), fiberLen(:,j,k)) then

5 partition = 0

6 ‘ fiberLen(i,:,k) -= 1, fiberLen(:,j,k) -= 1

7

8

9

else if fiberLen(i,;,k) >= max(fiberLen(i,j,:), fiberLen(:j,k)) then Figure 4: Adjusting fiber lengths during partitioning

partition = 1
fiberLen(i,j,:) -= 1, fiberLen(:,j.k) -= 1

. > . L. Reads on ‘Writes on Storage of X

10 else if ﬁ%;eirLen(, J.k) >= max(fiberLen(i,: k), fiberLen(i,j,:)) then Formats FLOPS matrices matrices in words
1 partition = 2 €00 33MR 32MR MR M
12 fiberLen(i,; k) -= 1, fiberLen(i,j,)) -= 1 SPLATT-ALL 3%(S+2F+2M)R 3*(F+M)R 3*SR 3*2(S+F)+M
13 MM-COO[partition] U = z > Add z to the selected partition SPLATT-ONE (S+4F+5M)R! 3*(F+M)R (S+F+M)R? 2(S+F)+M
14 > create CSF for partitions (Spo+4Fpo+5Mpo)R | (Fpo+Mpg)R (2Fpo+Mpo)R 3(Fpo+Fp1+Fpy)

. . MM-CSF +(Sp1+4Fp1+5Mp1)R 3 | +(Epy+Mp)R | +@2Fp1+Mp)R bor b1t P2
15 for partition = 0 to noOfPartition do +(Spa+4Fpy+5Mp)R | +(Fpa+Mpp)R | +(2Fpy+Mpy)R +Mpo+Mp1+Mp2

MM-CSF(partition]=create_ CSF(MM-COO|partition])

17 > execute MTTKRP using MM-CSF
18 for mode = 0 to nModes do

19 for partition = 0 to numPartitions do

20 sMode = MM-CSF[partition].modeOrder[0]
21 fMode = MM-CSF[partition].modeOrder[1]
22 nMode = MM-CSF[partition].modeOrder[2]
23 if mode == sMode then

2 | slice-alg (MM-CSF[partition])

25 else if mode == fMode then

26 ‘ fiber-alg (MM-CSF[partition])

27 else if mode == nMode then

28 ‘ nonzero-alg (MM-CSF[partition])

1 to record the processed nonzero. This is illustrated under the
Figure 4 dynamic strategy columns. The pre-calculated length of
fiber Xj,2,. is 3. Under static partitioning strategy, nonzero X, 1,2
will be assigned to partition 1, which creates a fiber in partition 1
with only one nonzero. This is not an efficient compression. On the
other hand, fiber X 1. with its length 2 can provide a compression
of 2 nonzeros. Compared to static partitioning, we have one less
fiber and better compression after dynamic partitioning. Therefore,
dynamic partitioning strategy reduces storage requirement, pro-
vides better compression, and consequently improves performance.

Algorithm 5 demonstrates the construction of MM-CSF parti-
tions. The construction scheme and the algorithms shown in this
paper are for 3D tensors. The extension to arbitrary dimensions is
straightforward. The for loop (Line 2) determines the partitions of
all nonzeros. A nonzero is assigned to the one with the longest fiber
length among fiber-0, fiber-1 and fiber-2, shown in Line 4 to 13.
After all the nonzeros have been processed, MM-CSF is constructed
by creating one CSF representation for each partition, like CSF-py,
CSF-p; in Figure 3(d). To perform MTTKRP on a particular mode,
each partition needs to perform its role by using either slice-, fiber-,
or nonzero-centric algorithms. For example, to perform MTTKRP
on mode-0, CSF-py will use the (optimized) slice-alg (Algorithm 6),
CSF-p; will use the fiber-alg (Algorithm 7) and finally, CSF—p,
will use the nonzero-alg (Algorithm 8). These algorithms will be
described in Section 5.

RIGHTS LI L)

1 (S+4F+5M)R = slice-mode: (S+2F+2M)R, fiber-mode: 2(F+M)R, nonzero-mode: 3MR

2 (S+F+M)R = slice-mode: SR, fiber-mode: FR, nonzero-mode: 3MR

3 Spx: S in partition x, Fp: F in partition x, Mp: M in partition x
Table 3: Theoretical comparison between formats in terms
of storage, flop computation, read and write transactions.

5 BALANCED MTTKRP ALGORITHMS USING
MM-CSF

The current state-of-the-art, BCSF-ALL [26], only performs slice-alg
for MTTKRP on GPUs. We propose balanced fiber-alg and nonzero-
alg for GPUs, and furthermore optimize the slice-alg of BCSF-ALL.
BCSF-ALL can take advantage of our optimized slice-alg. However,
the data structure to support these new algorithms consumes (3F +
M) space rather than (2S + 2F + M) in other formats; usually F > S.
For MM-CSF, the number of fibers, F, can be significantly reduced
(e.g., a 2X reduction in tensors fr_s and fr_m) by applying the
partitioning scheme described in Section 4. Reduced fiber count not
only improves space efficiency, but also improves the performance,
as less fibers lead to reduced memory accesses. Table 3 shows a
theoretical comparison of the read transactions, write transactions,
floating-point operations (flop) etc., among COO, SPLATT-ALL,
SPLATT-ONE and MM-CSF.

5.1 MTTKRP on Slice mode

Details of BCSF-ALL. Updating the matrix corresponding to the
slice-level incurs a minimum number of global write operations,
since the number of slices is traditionally less than the number of
fibers or non-zeros for tensors. The BCSF-ALL scheme shown in
Algorithm 2 comprises two steps. In the first step, all the nonzeros
are reduced to the corresponding fiber (Line 14). The second step
involves a subsequent reduction across all the fibers to the parent
slice (Line 12). These two steps are collectively termed as slice-mode
operation. The reductions are performed in registers since they have
the lowest access latency in the GPU memory hierarchy. However,
the indices of the nonzeros, the fibers and the slices must be read
from the global memory, so that corresponding rows can be fetched
from the factor matrices (Lines 6,8).

We use an illustrative example to demonstrate the total read-
/write computations involved in performing MTTKRP on mode-0

An Efficient Mixed-Mode Representation of Sparse Tensors

Algorithm 6: opt-slice-alg(): MTTKRP at slice level using
MM-CSF for third-order tensors on GPUs (d = 3).

Input :fiberPtr[F], sliceInds[F], fiberInds[F], indK[M], vals[M], dense
matrices BU]LR], C[K][R]

Output: dense matrix A[I][R]

1 fibersGrp = number of fibers in a group
2 > parallel across thread-blocks
3 for fiber = 0 to F/fibersGrp do

4 for fiberinGrp = 0 to fibersGrp do

5 localFiber = fiber + fiberInGrp;

6 i = slicelnds[localFiber]

7 j = fiberInds[localFiber]

8 > nonzeros-cyclically processed by warps
9 for z = fiberPtr[localFiber] to fiberPtr[localFiber + 1] do

10 k = indK[z]

11 > rank-parallel across threads
12 for r=0to Rdo

13 \ tmp[r]+ = vals[z] * C[k][r] > register accumulation
14 for r=0to Rdo

15 | tmp_2[r]+ = tmp[r] = B[j][r] > register accumulation
16 > fibers from different slices write back to DRAM
17 if slicelnds[localFiber] != slicelnds[localFiber+1] then

18 for r=0to Rdo

19 ‘ g[i][r]+ =tmp_2[r] > Atomic writes

20 return A

(i.e., MTTKRP at Line 2 of Algorithm 1) using the CSF-0 represen-
tation. Assume that the tensor X has only one slice, X; . ., and the
slice has exactly two fibers, Xj x,., and Xj, y,.. Further, assume that
each fiber has only three nonzeros, Xj x,p, X, x,q and Xj x,» for
fiber Xj x,:, and Xj, y, p, Xi,y,q and Xj y, » for fiber Xj 4 .. In the slice-
mode scheme, each nonzero will read the rows with indices p, ¢, and
r from the dense matrix C, use these to perform the computation at
Line 12 of Algorithm 2, and accumulate the result in registers (tmp).
Then, each fiber will read the rows with indices x and y from the
dense matrix B, use these to perform the computation at Line 14 of
Algorithm 2, and accumulate the result in registers (tmp_2). Finally,
the slice will perform a read-modify-write to the row i of A. In
general, the total number of reads is F (number of fibers) and M
(number of nonzeros); the number of read-modify-write is S (num-
ber of slices) as shown in Table 3. The flop count varies from 2MR
to 5SMR.

Improvement over BCSF-ALL. BCSF-ALL splits the exceptionally
large slices into sub-slices, and assigns multiple thread-blocks to
process each slice. In a similar spirit, multiple smaller slices can be
assigned to the same thread-block. To select these assignments, ex-
tra pre-processing time and a separate data structure are maintained.
The warps within a thread-block process the fibers (sub-fiber) in
the respective slice. Each warp reduces the nonzeros of its fiber, and
stores the accumulated result in a register. Figure 5(a) pictorially
represents the slice-mode algorithm using BCSF-ALL. The scope of
parallelism can be increased significantly by offering a finer-grained
parallelism. In the proposed format (Figure 5(b)), we assign thread-
blocks to fibers instead of slices and warps to nonzeros instead of
fibers. One limitation of this scheme is the increased number of
global writes. Previously, fibers from the same slice would have
accumulated the results in the register, and write back to global
memory at the end. To incorporate this compression benefit, we
group fibers into smaller chunks and assign one thread-block to

RIGHTS L1 N Hig

SC ’19, November 17-22, 2019, Denver, CO, USA

If same parent write to
reg else to DRAM

Slice
level

(a) slice-alg (Algorithm 2)

@ ©@ @ @
TB1 TB2 i TB1 TB2
Op: *;+ | DRAM i 9 ::i\l:eelr l l
o [QDA) @@ o (2)(39) i

warp1 warp2 warp1 warp2

(b) opt-slice-alg (Algorithm 6)

|

warp1 warp2 warp1 warp2

|1 |1

warp1 warp2 warp1 warp2

(c) fiber-alg (d) nonzero-alg

Figure 5: MTTKRP algorithm variants

process a chunk. Fibers at each chunk check whether their parent
slice is the same one or not. As long as they share the same slice,
it keeps accumulating in the register, otherwise, writes back to
global memory. Algorithm 6 demonstrates this optimized version
of slice-alg. Line 3 iterates over the chunks and Line 4 iterates over
the fibers at each chunk. Line 17 shows the comparison between
the parent slices before writing back to global memory. Note that,
this scheme might increase the number of atomic writes. Multiple
chunks of fibers can share the same slice, and the number of atomics
would increase with the number of chunks. To avoid race condition,
atomic operations are used to accumulate the values from sub-slices
of a slice.

In the original BCSF-ALL data structure, a fiber location was
accessed via slice pointers. In matrix terminology, it would imply
accessing the start point of the column indices using the row pointer.
If we parallelize across the fibers, we need to directly access the fiber
indices without fetching the start location from the slice pointers.
One expensive way to achieve this is to perform a search to find
parent slice of the fiber. Instead, we maintain an array of size F to
store the corresponding slice indices in lieu of two arrays (pointers
and indices) of size S. Now, each thread-block can directly access
the slice and fiber indices. This scheme outperforms BCSF-ALL by
increasing parallelism while preserving the compression, as we
demonstrate through evaluation in Section 6.

5.2 MTTKRP on Fiber Mode

We now describe the algorithm to compute MTTKRP on mode-1
(i.e., MTTKRP at Line 3 of Algorithm 1) to update matrix B using
CSF-0 representation. Algorithm 7 demonstrates the steps of the
algorithm. We continue with the illustrative example of Section
5.1. This time, instead of updating matrix A via the slice indices,
we will update B via the fiber indices. The indices of interest for B
are x and y. Recall that the fibers are Xj x,. and Xj ; .; these fibers
will read the row i from A, and rows p, ¢, and r from C. Therefore,
the number of read-modify-writes (i.e., atomics) is F (number of
fibers), instead of S (number of slices) in the previous slice-mode

SC ’19, November 17-22, 2019, Denver, CO, USA

Nisa et al.

Algorithm 7: fiber-alg(): MTTKRP at fiber level using MM-CSF
for third-order tensors on GPUs (d = 3)

Algorithm 8: nonzero-alg(): MTTKRP at nonzero level using
MM-CSF for third-order tensors on GPUs (d = 3)

Input :fiberPtr[F], sliceInds[F], fiberInds[F], indK[M], vals[M],
dense matriceiA[I] [R], C[K][R]
Output: dense matrix B[J][R]

1 > fibers-parallel across thread-blocks
2 for fiber = 0to F do

3 i = slicelnds[fiber]

4 j = fiberInds[fiber]

5 > nonzeros-parallel across warps
6 for z = fiberPtr[fiber] to fiberPtr[fiber + 1] do

7 k = indK[z]

8 > rank-parallel across threads
9 for r=0to Rdo

10 \ tmp[r]+ = vals[z] * C[k][r] > accumulation in registers
11 for r=0to Rdo

1 | BUIlr]+ = tmplr] Ali][r]

13 return A

algorithm. The total number of reads decreases from (F + M)R of
the slice-mode algorithm to (S + M)R.

Some tensors inherently show good sparsity structure, for ex-
ample, a low standard deviation in fiber length and slice length,
clustered nonzeros in one mode, etc.; and a totally different struc-
ture in another mode, like power law structure. A mode offering a
low number of writes with an imbalanced structure might under-
perform compared to a mode with a higher number of writes and
better workload balance. A good example of such case is tensor
Darpa. Darpa has 28 million nonzeros with the density of 2.37E — 9.
Both CSF-0 and CSF-1 have 22K slices and 281K fibers after splitting
the long fibers. But the standard deviation of nonzero per slice is
60K for mode 1 and 26K for mode0. So, in terms of sparsity struc-
ture, CSF-0 is more balanced. If we use slice-mode on CSF-1 to
compute MTTKRP on mode-1, the total number of reads and writes
are 28.7M and 22K respectively. Applying fiber-mode on CSF-0 will
result in 28.5M reads and 281K writes. Interestingly, 70% improve-
ment is achieved by using fiber-mode than slice-mode on model.
We verified our intuition by collecting metrics from NVPROF [1]
profiler provided by NVIDIA. The metric achieved_occupancy, de-
fined as the ratio of the average active warps per active cycle to the
maximum number of warps supported on an SM, increase to 60%
with fiber-mode from 40% for slice-mode on NVIDIA P100.

This algorithm exposes an opportunity for finer grained paral-
lelism and reduction in memory latency by allowing similar paral-
lelization strategy like the slice-mode algorithm. Figure 5(c) demon-
strates the parallelization techniques. Here, warps can still use
registers to reduce the nonzeros, but not to accumulate the sum
from fibers. This is because the write locations are now the fiber in-
dices, and fibers from other slices might write to the same location.
Hence, we need to use atomic operations to guarantee correctness.
But increased parallelism often mitigates the shortcoming of having
high atomic operations and achieves comparable performance.

5.3 MTTKRP on nonzero mode

In the nonzero-mode algorithm presented in Algorithm 8, the write
locations are fetched from the nonzero locations to update matrix C.
Referring back to the illustrative example of Section 5.1, the three
nonzeros are Xj x, p, Xj, x,q and Xj x, » and the update locations are

RIGHTS LI L)

Input :fiberPtr[F), sliceInds[F], fiberInds[F], indK[M], vals[M],
dense matrices~A[I] [R], B[J][R]
Output: dense matrix C[K][R]

> fibers-parallel across thread-blocks
for fiber = 0to F do
i = slicelnds[fiber]
j = fiberInds][fiber]
> nonzeros-parallel across warps
for z = fiberPtr[fiber] to fiberPtr[fiber + 1] do
k = indK[z]
> rank-parallel across threads

C ® N W R W N =

for r= 0to Rdo
10 | CIkI[r]+ = vals[z] = B[j1[r] ALi][r]

11 return A

p, q and r. Each nonzero reads row i row of A and, rows x and
y of B. We adopt a similar parallelization strategy as fiber-mode.
The total number of reads are further reduced to (S + F)R, and
the number of writes increases to M. Figure 5(d) demonstrates the
parallelization of this technique. Just like fiber-mode algorithm,
the performance of this algorithm also depends on the sparsity
structure of the tensor and the ratio between read and write. For
example, Nell-1 dataset shows 11% improvement using nonzero-
mode algorithm on mode-2 with CSF-0. Nell-1 has 140M nonzeros
with a density of 9.05E — 13. CSF-0 representation for Nell-1 has
2M slices and 17M fibers, and CSF-2 has 25M slices and 113M fibers.
If we use CSF-2 to compute mode-2 using slice-mode, the number
of reads and writes are 253M and 25M respectively. On the other
hand, if we use CSF-0, the number of reads and writes are 157M
and 140M.

6 EXPERIMENTAL EVALUATION

6.1 Evaluation Setup

We evaluate the performance of MM-CSF? in computing MTTKRP,
the computational kernel of a popular CANDECOMP/PARAFAC de-
composition (CPD), against five publicly available state-of-the-art
frameworks: SPLATT* [35], BCSF® [26], F-COO® [25], and ParTI’
[22] which provides HiCOO [23] and COO implementations. We
used the latest updated code in the SPLATT git repository in-
stead of the release version, as suggested by the authors. Of these
frameworks, HiICOO and SPLATT are CPU-based implementations;
ParTI-COO8, BCSF [26], and F-COO [25] are GPU-based frame-
works. SPLATT, BCSF, and F-COO each create d representations
for an order-d tensor by default. Additionally, SPLATT provides
extensions to select the number of representations for a tensor
[31]. Therefore, we present comparisons against both d represen-
tations (SPLATT-ALL), and single representation (SPLATT-ONE)
for SPLATT. Tiling is enabled for SPLATT while collecting the
performance data. For a fair comparison, we modify the default

Shttps://github.com/isratnisa/MM-CSF

“https://github.com/ShadenSmith/splatt

Shttps://github.com/isratnisa/B-CSF

Chttps://github.com/kobeliu85/mttkrp-gpu

"https://github.com/hpcgarage/ParTI

8Since the COO CPU of ParTl is significantly outperformed by HICOO, we only evaluate
HiCOO for CPU. All references to ParTI-COO refer to the GPU implementation.

An Efficient Mixed-Mode Representation of Sparse Tensors

Tensors order Dimensions #Nonzeros Density

deli 3 533K X 17M X 2M 140M 6.14E-12
nelll 3 3M X 2M X 25M 144M 9.05E-13
nell2 3 12K X 9K X 29K 77TM 9.05E-13
flick 3 320K X 28M X 2M 113M 7.80E-12
fr m 3 23M X 23M X 166 99M 1.10E-09
fr_s 3 39M X 39M X 532 140M 1.73E-10
darpa 3 22K X 22K X 23M 28M 2.37E-09
nips 4 2K X 3K X 14K x 17 3M 3.85E-04
enron 4 6K X 6K x 244K X 1K 5M 1.83E-06
ch-cr 4 6K X 24 X 77 X 32 54M 1.48E-01
flick 4 320K X 28M x 2M x 731 113M 1.07E-14
uber 4 183 X 24 X 1K X 2K 3M 5.37E-10

Table 4: Sparse tensor datasets

BCSF-ALL implementation of [26] to support BCSF-ONE (i.e., use
a single BCSF representation for all modes). We extend the fiber
splitting and binning concept used in BCSF-ALL to implement
well-optimized fiber- and nonzero-mode algorithms for BCSF-ONE.
HiCOO and ParTI-COO use a single representation HiCOO and
COO respectively.

The GPU data is collected on an NVIDIA Volta V100 GPU with
16GB memory. It has 80 SMs and a 6144 KB L2 cache. The CPU data
is collected on a Dell PowerEdge R740: a two-socket server with
40-core Intel Xeon 6148. It has 384GB memory with 2.40GHz clock
frequency. The CUDA code is compiled with NVCC-9.2, and the
CPU code is compiled with GCC-7.3.0. The execution on CPU is
parallelized over 40 threads. The results are collected using single-
precision data type and tensor rank, R, is set to 32.

The benchmarks comprise 3D and 4D sparse tensors collected
from real-world applications. Datasets like deli (delicious), nell1 and
nell2 (Never Ending Language Learner knowledge), flick (Flickr) are
from The Formidable Repository of Open Sparse Tensors and Tools,
FROSTT [30]. Darpa, fr_m (freebase-music) and fr_s (freebase-
sampled) are from the dataset used in HaTen2 [18]. Table 4 lists the
tensor order, dimensions, number of nonzeros (#Nonzeros), and the
density of these tensors.

6.2 Reduction in Fibers Using MM-CSF

Table 5 shows the reduction in fibers with MM-CSF for 3D tensors,
compared to BCSF-ALL and BCSF-ONE representation. To provide
better work balance on GPU, long fibers are split into sub-fibers,
which increases the number of fibers when compared to SPLATT-
ALL. This trend can be observed for some tensors in Table 5, e.g., a
5% increase in fiber count for nell-2. However, compared to BCSF-
ALL, MM-CSF achieves an average of 80% reduction in the total
fiber count. For most of the benchmarks, we observe a reduction
in fiber count with MM-CSF compared to BCSF-ONE as well. For
fr_m and fr_s dataset, a reduction of 55% (61M to 27M) and 50%
(91M to 45M) respectively in fiber count is observed. The primary
reason behind such drastic reduction in fiber count for fr m and
fr_s is the presence of long fibers in mode-2 and mode-0, as noted
in Table 2 of Section 4.

RIGHTS L1 N Hig

SC ’19, November 17-22, 2019, Denver, CO, USA

#Fibers (millions) Reduction %

BCSF- BCSF- MM- | BCSF- BCSF- MM-

ALL ONE CSF ALL ONE CSF
deli 122 38 26 0 69 78
nelll 149 18 18 0 88 88
nell2 18 1 1 -5 96 95
flick 55 14 9 -1 75 83
frm 183 62 28 0 66 85
fr s 269 92 45 0 66 83
darpa 29 0.28 0.28 -1 99 99

Table 5: Reduction in number of fibers using MM-CSF com-
pared to other GPU based CSF formats. Reduction (%) is
shown compared to SPLATT-ALL.

200
150

100

GFLOPS

50

mode-0 model mode2 mixed-mode

(a) fr_m (b) fr_s
Figure 6: Achieved GFLOPS by assigning all elements to any
single-mode vs. using a mixed-mode (MM).

6.3 Impact of Partitioning

We use the partitioning described in Section 4.1 for efficient com-
pression. To evaluate the impact of the implemented partitioning
scheme, we compare the results by assigning all elements of the
tensor to a single partition against the mixed-mode partitioning,
where nonzeros are assigned to multiple partitions. Both variations
use the same underlying data structure for a fair comparison. Fig-
ure 6a and Figure 6b demonstrate the benefit of partitioning on
two representative tensors, fr_s, and fr_m. In both cases, the mixed
mode partitioning creates two partitions and assigns nearly 50%
nonzeros to each one. In both the tensors, we observe that perform-
ing mixed mode partitioning provides a significant performance
improvement. On our evaluation over all 3D and 4D tensors, we
consistently observe an improvement with partitioning over using
an arbitrarily selected single representation.

6.4 Improvement in GPU Occupancy and
DRAM Transactions

The kernels for MM-CSF increase GPU occupancy by applying fine-
grained parallelism. Table 6 documents the achieved occupancy for
3D tensors, measured via NVPROF. As evident, MM-CSF improves
the device occupancy by 45% on average compared to BCSF-ALL.
For fr_s dataset, the achieved occupancy improves by almost 2x.
Additionally, MM-CSF consistently reduces the global load trans-
actions for all, and DRAM read transactions for majority of the
tensors. In cases like deli, where the occupancy improvement is
insignificant, the performance improvement can be attributed to a
reduction in DRAM reads. However, MM-CSF incurs more DRAM

SC ’19, November 17-22, 2019, Denver, CO, USA

GFLOPS occup.in % | glb. loadsin GiB | DRAM in GiB

BCSF MM- | BCSF MM- | BCSF MM- BCSF MM-

-ALL CSF -ALL CSF | -ALL CSF -ALL CSF
deli 333 382 73 80 104 86 43 34
nelll 270 285 68 77 112 80 55 55
nell2 607 763 58 76 45 35 4 4
flick 327 435 50 79 76 59 33 27
frm 194 235 42 83 97 69 48 50
fr_s 203 228 53 84 140 102 70 73
darpa 209 327 35 52 28 13 12 11

Table 6: Improved occupancy, global loads, and DRAM read
transactions using MM-CSF compared to BCSF-ALL (Data
collected using NVPROF profiler on V100).

BEmode1 M mode?2 mode 3

Speedup

1.2 I
o il i

123 123 123 123 123 123 123
deli nelll nell2 flick fr_m fr_s darpa

Figure 7: Speedup using MM-CSF compared to BCSF-ALL at
d modes on Tesla V100 GPU

transactions for fr_m and fr_s. This can be explained by the dimen-
sionalities of these two tensors. For example, fr_m has dimensions
23M X 23M X 166, which implies that A and B matrices are signifi-
cantly large, C matrix is small enough to be cached entirely in L2
cache of the Volta GPU. We compute the volume of data (in GiB)
read from DRAM from the metrics collected by NVPROF. MM-CSF
reads 17, 16 and 16 GiB data from DRAM in mode-0, mode-1 and
mode-2 respectively, whereas BCSF-ALL reads 14, 14, and 20 GiB
data from DRAM. BCSF-ALL for fr_m has 60M fibers in each mode
(refer to Table 5). Therefore, while updating A and B in mode-0 and
mode-1, the 60M accesses to the fibers come from C, which will
likely to be cached in L2. However, while updating C in mode-2,
the fiber accesses come from A, resulting in a dramatic increase in
DRAM reads. In contrast, with MM-CSF, all A, B, C matrices will
potentially be accessed at each mode due to the mixed-mode rep-
resentation. This results in a consistent DRAM read in all modes,
but slightly elevated DRAM reads in the first two modes compared
to BCSF-ALL. However, the increase in DRAM transactions with
MM-CSF in these two cases is compensated by an overall reduc-
tion in global memory transactions and the improved occupancy,
resulting in performance enhancement over BCSF-ALL.

6.5 Performance Comparison with BCSF-ALL

An important metric to demonstrate the utility of MM-CSF is to
show that by using it, one can match the performance achieved by
the current state-of-the-art frameworks in computing MTTKRP,
while simultaneously reducing the space requirement. To the best

RIGHTS LI L)

Nisa et al.

Figure 8: Achieved GFLOPS by MM-CSF compared to theo-
retically achievable GFLOPS in V100

MM- BCSF BCSF- PARTI Hi- SPLATT SPLATT
CSF ALL ONE COO COO ALL ONE
deli 106 121 125 149 5,403 5,342 3,284
nell1 145 153 152 235 8,683 2,184 1,969
nell2 29 37 37 71 262 140 94
flick 75 99 92 110 8,374 3,753 1,175
fr m 122 148 208 225 5,136 5,021 6,897
fr s 177 199 259 - 7,853 9,344 9,591
darpa 25 39 29 82 1,124 1,078 705
uber 3.72 2.6 4.05 - 298 93 109
nips 2.09 3.2 3.27 - 64 32 18
chicago 3.26 6.4 7.98 - 38 49 10
flickr-4d 130 176 183 - 5,632 9,392 2,076
enron 29 57 38 - 1,085 1,101 1,393

Table 7: Time (ms) to run MTTKRP using MM-CSF and state-
of-the-art benchmarks

of our knowledge, BCSF-ALL on GPU offers the maximum per-
formance compared to the other existing frameworks. Figure 7
presents the speedup achieved by MM-CSF compared to BCSF-ALL
for 3D tensors. On darpa and fr_m dataset, we outperform BCSF-
ALL by a factor of 1.8x. Consistent speedup is observed for the rest
of the tensors. For the cases where BCSF-ALL already provides high
occupancy, we do not observe any further speedup.

6.6 Performance Model

Figure 8 plots the achieved performance versus the theoretically
achievable performance in computing MTTKRP on 3D tensors using
MM-CSF representation. The theoretically achievable GFLOPS is
computed by multiplying the operational intensity (OI) of MTTKRP
kernel with the peak bandwidth of V100 GPU device. The gap
between realized and theoretical peak performance of GPUs is
challenging to bridge, even for compute-bound GEMM kernels. For
MTTKRP, the significant gap can primarily be attributed to the
poor data locality due to the sparsity of the input tensors. The
performance gap is less pronounced for nell-2 dataset. This can be
explained by the fact that it is the smallest among all evaluated
tensors, with a dimension of 12K x 9K X 29K, and consequently
has the highest L2 hit rate (82%).

6.7 Overall Performance

Figure 9 shows the performance achieved by using MM-CSF as
the representation to compute MTTKRP, against other state-of-the-
art representations/frameworks on both CPU and GPU platforms.

An Efficient Mixed-Mode Representation of Sparse Tensors

(a) GFLOPS comparison on an NVIDIA V100 GPU

SC ’19, November 17-22, 2019, Denver, CO, USA

(b) GFLOPS comparison between MM-CSF (on GPU) and CPU-
based framework on an Intel 40-core CPU.

Figure 9: Achieved performance of MM-CSF compared to other frameworks.

SPLATT SPLATT BCSF ParTI Hi o0 MM-

-ALL -ONE -ALL -COO COO F- CSF

deli 2690 824 2691 1604 2955 3260 838
nelll 3006 697 3010 1643 3062 3341 759
nell2 1012 296 1019 880 250 1789 303
flick 1940 535 1943 1292 1309 2627 539
fr m 2893 849 2894 1139 1040 2316 700
fr s 4249 1232 4250 1601 1566 3256 1051
darpa 723 109 726 325 200 662 112

Table 8: Storage comparison in MiB

For a uniform comparison, the floating-point operations of COO-
MTTKRP are used as a baseline in computing the GFLOPS for
all the frameworks. MM-CSF achieves 510 GFLOPS on average,
outperforming BCSF-ONE by a factor of 1.4x, and ParTI-COO by a
factor of 2x (Figure 9a). Note that the missing data for F-COO in
Figure 9a is due to the failure of successful completion of MTTKRP
computation at all modes. For nell2 dataset, MM-CSF achieves the
highest performance of 966 GFLOPS.

Figure 9b presents the performance comparison of MM-CSF with
CPU-based formats. MM-CSF outperforms SPLATT-ALL by 35x
on average. Recently published state-of-the-art COO-based format,
HiCOO, is 47% slower than MM-CSF. We also present the execution
time of the CPU- and GPU-based benchmarks in Table 7.

6.8 Overall Storage

We present a comparison in space requirements of MM-CSF against
state-of-the-art frameworks based on both CSR and COO format
families in Table 8. We only use the indices to compute storage of
the tensors, as storing the values of each nonzero needs the same
space regardless of formats. MM-CSF significantly reduces the space
requirement compared to SPLATT-ALL and BCSF-ALL. We now
explain the slight increase observed in the storage requirement for
MM-CSF compared to SPLATT-ONE. Apart from the fiber splitting
for load balancing, MM-CSF also creates an extra data structure
of size of F to trace the slice indices along with the fiber indices.
Despite these factors that can cause an increase in MM-CSF storage
when compared to SPLATT-ONE, we observe an improvement in
storage for fr_m and fr_s dataset with MM-CSF in Table 8.

RIGHTS LI L)

GPU-based F-COO stores d representations of the tensor in COO
format. MM-CSF consumes 50% lower space than COO-based frame-
works, and 40% lower space than HiCOO. A 3x space reduction
is achieved for nell2 and darpa. This is expected as both of these
tensors have long fibers and slices, providing good compression
that only a CSF based format can exploit.

6.9 Format Conversion to MM-CSF

We compare the pre-processing time involved in constructing MM-
CSF vs. BCSF-ALL. While constructing BCSF-ALL, sorting is per-
formed at each mode to identify the nonzeros belonging to the same
fiber and same slice. CSF is then constructed on the sorted tensor.
Load balancing is achieved via binning [3], where slices with similar
lengths are binned together. To construct MM-CSF, we first collect
the fiber lengths of > d modes, then create p disjoint partitions of
nonzeros, and finally, construct CSF for each partition. There is no
binning required for MM-CSF. The available BCSF-ALL implemen-
tation of [26] uses an unoptimized sort in its preprocessing step. For
an unbiased comparison, we replaced it with an optimized version
that is used in MM-CSF preprocessing step. Figure 10 presents the
normalized time to construct BCSF-ALL and MM-CSF for 3D ten-
sors, including memory copy time for one iteration (i.e., time taken
to copy the data from host to GPU device). We observe that on
average, MM-CSF incurs merely 15% extra preprocessing overhead
over BCSF-ALL. Additionally, MM-CSF consumes significantly less
space than BCSF-ALL to store the tensor. Since one might need to
perform memory copy with each CPD iteration depending on the
size of the tensor, MM-CSF will have a significant advantage over
BCSF-ALL in such cases.

6.10 Application speedup

Figure 11 demonstrates the speedup achieved in CPD computation
of 3D tensors by using MM-CSF as the storage format in conjunc-
tion with the optimized MTTKRP kernels. The reported time is an
average of ten iterations. Apart from MTTKRP, all the remaining
kernels in the application are invocations of CPU BLAS functions.
After each MTTKRP iteration, the updated matrix is copied back
to the CPU, where it is used as an input by the BLAS kernels,

SC ’19, November 17-22, 2019, Denver, CO, USA

1

0.8
0.6
0.4
0.2

0

Normalized Time

deli nelll nell2 flick fr_m fr_s darpa
M BCSF-ALL MM-CSF

Figure 10: Pre-processing time of BCSF-ALL and MM-CSF

*

3
s .
- 2
3 [] 1 * & ¢
o Ll
@ 1 " " 2

0

deli nelll nell2 flick from fr_s darpa
m SPLATT-ONE ¢ MM-CSF

Figure 11: Speedup in CP decomposition using MM-CSF and
SPLATT-ONE compared to SPLATT-ALL

followed by a normalization on the column vectors (Line 5 in Algo-
rithm 1). This normalized matrix needs to copied back to GPU to be
used in the next MTTKRP computation. Despite the GPU memory
copy overhead at each iteration, we outperform SPLATT-ALL from
SPLATT by a factor of 1.8 on average. One of our future endeavor
involves replacing the CPU BLAS functions with cuBLAS routines
to avoid the back-and-forth memory copy time.

7 RELATED WORK

Sparse tensor decompositions and their related operations have
attracted attention of researchers to improve their performance
and storage. Like matrix factorization [40], [39], [27], tensor fac-
torization is also gaining significant popularity. We briefly discuss
prior performance optimization work of MTTKRP operation and
CANDECOMP/PARAFAC decomposition (CPD) for sparse tensors.

Tensor Toolbox [5] and Tensorlab [38] packages implement CPD
and MTTKRP based on COO format, where an MTTKRP operation
is computed as a series of sparse tensor-times-vector. DFacTo [13]
performs an MTTKRP by computing multiple sparse matrix-vector
multiplication (SpMV) routines which can be computed efficiently
through existing high performance libraries. However, the inter-
mediate storage of it could be very large by saving the outputs
of SpMV. Smith et al. [29, 35] proposed the CSF storage format,
an extension of Compressed Sparse Row (CSR) format for sparse
matrices, and optimized the performance and memory access of
MTTKRP in the SPLATT library along with the support of different
tensor decompositions and completion algorithms [33]. Choi et al.
[12] employed two blocking strategies to further optimize MTTKRP
using the CSF format. A new Hierarchical COOrdinate (HiCOO)
format, derived from the COO format, was recently proposed by
Li et al. [23]. HICOO compresses tensor indices as units of sparse
blocks, to save storage and to reduce a sparse tensor algorithm’s

RIGHTS L1 N Hig

Nisa et al.

memory footprint. However, HICOO does not work well for hyper-
sparse tensors, a.k.a. tensors with extreme low density, sometimes
even after reordering [24], thus the other formats like CSF and
COO still play important roles. Baskaran et al. proposed multiple
optimization techniques to address load imbalance, sparsity, etc. of
sparse tensor computation in [6-8].

Some research targeted on other platforms. GigaTensor [19] tar-
gets on large-scale sparse tensors by providing a scalable framework
using the MapReduce paradigm. Blanco et al. [9] accelerated tensor
decompositions using a queuing strategy to exploit the dependency
and data reuse using Spark engine on distributed platforms. Kaya et
al. [20] scaled CPD on distributed memory systems using message
passing interface (MPI), the implementation of which is also based
on COO format. Smith et al. [34] improved MTTKRP performance
on Intel Xeon Phi Knights Landing manycore processor. A Paral-
lel Tensor Infrastructure (ParTI!) supports COO stored tensors to
do MTTKRP on NVIDIA GPUs by parallelizing nonzeros and us-
ing atomic operations. Liu et al. [25] proposed a more compressed
Flagged COO (F-COO) format uses a fast parallel scan routine on
GPUs to reduce write conflicts. However, F-COO closely depends
on a particular MTTKRP operation, which affects its flexibility.
Nisa et al. [26] optimized MTTKRP performance by proposing load-
balanced data structure (BCSF) and parallel strategies, which makes
CSF variant MTTKRPP being efficient on GPUs. Phipps et al. [28]
leverages the Kokkos framework [14] to optimize MTTKRP on
CPUs and GPUs using a single code implementation. Our work
further improves MTTKRP by making CSF and BCSF formats more
adaptable and efficient to MTTKRP and CPD.

8 CONCLUSION

Inrecent years, tensors have become mainstream in high-performance
computing. Several frameworks and libraries are being developed to
optimize operations on sparse tensors. Efficient and compact repre-
sentations of high-order sparse tensors are crucial on architectures
with limited global memory and low energy footprint, like GPUs.
In this paper, we devise MM-CSF, a mixed-mode storage format for
sparse tensors of arbitrary dimensions. Through extensive evalu-
ation on an NVIDIA Volta GPU, we demonstrate the efficacy of
MM-CSF in (a) reducing the storage requirement for sparse tensors,
and (b) improving the performance of computations like tensor
factorizations.

ACKNOWLEDGMENTS

We thank the reviewers for the valuable feedback and the Ohio
Supercomputer Center for use of their GPU resources. This material
is based upon work supported by the National Science Foundation
under Grant No. 1816793 and 1513120. This research is also par-
tially funded by the US Department of Energy, Office for Advanced
Scientific Computing (ASCR) under Award No. 66150: "CENATE:
The Center for Advanced Technology Evaluation" and the Lab-
oratory Directed Research and Development program at PNNL
under contract No. ND8577. Pacific Northwest National Laboratory
(PNNL) is a multiprogram national laboratory operated for DOE by
Battelle Memorial Institute under Contract DE-AC05-76RL01830.
This research was partially supported by the Exascale Comput-
ing Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations 4AS the Office of Science and the
National Nuclear Security Administration.

An Efficient Mixed-Mode Representation of Sparse Tensors

REFERENCES

(1]

[2

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[n. d.]. nvprof-metrics. https://docs.nvidia.com/cuda/profiler-users- guide/index.
html. Accessed: 2018-09-30.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P
Sadayappan. 2014. Fast sparse matrix-vector multiplication on GPUs for graph
applications. In Proceedings of the international conference for high performance
computing, networking, storage and analysis. IEEE Press, 781-792.

Brett W Bader, Michael W Berry, and Murray Browne. 2008. Discussion tracking
in Enron email using PARAFAC. In Survey of Text Mining II. Springer, 147-163.
Brett W. Bader, Tamara G. Kolda, et al. 2015. MATLAB Tensor Toolbox Version
2.6. Available online. http://www.sandia.gov/~tgkolda/TensorToolbox/

M. Baskaran, T. Henretty, B. Pradelle, M. H. Langston, D. Bruns-Smith, J. Ezick,
and R. Lethin. 2017. Memory-efficient parallel tensor decompositions. In 2017
IEEE High Performance Extreme Computing Conference (HPEC). 1-7. https://doi.
org/10.1109/HPEC.2017.8091026

Muthu Baskaran, Benoit Meister, and Richard Lethin. 2014. Low-overhead Load-
balanced Scheduling for Sparse Tensor Computations. In IEEE High Performance
Extreme Computing Conference. Waltham, MA.

Muthu Baskaran, Benoit Meister, Nicolas Vasilache, and Richard Lethin. 2012. Ef-
ficient and Scalable Computations with Sparse Tensors. In IEEE High Performance
Extreme Computing Conference. Waltham, MA.

Zachary Blanco, Bangtian Liu, and Maryam Mehri Dehnavi. 2018. CSTF: Large-
Scale Sparse Tensor Factorizations on Distributed Platforms. In Proceedings of
the 47th International Conference on Parallel Processing (ICPP 2018). ACM, New
York, NY, USA, Article 21, 10 pages. https://doi.org/10.1145/3225058.3225133
Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on. IEEE, 1-11.

J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in
multidimensional scaling via an N-way generalization of AAIJEckart-YoungaAl
decomposition. Psychometrika 35, 3 (1970), 283-319.

Jee Choi, Xing Liu, Shaden Smith, and Tyler Simon. 2018. Blocking Optimization
Techniques for Sparse Tensor Computation. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 568-577.

Joon Hee Choi and S Vishwanathan. 2014. DFacTo: Distributed factorization of
tensors. In Advances in Neural Information Processing Systems. 1296-1304.

H Carter Edwards, Christian R Trott, and Daniel Sunderland. 2014. Kokkos:
Enabling manycore performance portability through polymorphic memory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202-3216.

Richard A Harshman. 1970. Foundations of the PARAFAC procedure: Models
and conditions for an" explanatory" multimodal factor analysis. (1970).

Joyce C Ho, Joydeep Ghosh, Steve R Steinhubl, Walter F Stewart, Joshua C Denny,
Bradley A Malin, and Jimeng Sun. 2014. Limestone: High-throughput candidate
phenotype generation via tensor factorization. Journal of biomedical informatics
52 (2014), 199-211.

[17] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: high-throughput

[18

[19]

RIGHTS

phenotyping from electronic health records via sparse nonnegative tensor fac-
torization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 115-124.

Inah Jeon, Evangelos E Papalexakis, U Kang, and Christos Faloutsos. 2015. Haten2:
Billion-scale tensor decompositions. In Data Engineering (ICDE), 2015 IEEE 31st
International Conference on. IEEE, 1047-1058.

U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012.
Gigatensor: scaling tensor analysis up by 100 times-algorithms and discoveries.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 316-324.

0. Kaya and B. UAgar. 2015. Scalable Sparse Tensor Decompositions in Dis-
tributed Memory Systems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 77:1-77:11.

. A ""1}

[21

[22]

[23]

[24]

[25]

[26

[27

[28

[29

'@
=

[31

[32

[33

[34

@
2

[36

(37]

[38

[39

[40

SC ’19, November 17-22, 2019, Denver, CO, USA

https://doi.org/10.1145/2807591.2807624

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications.
SIAM review 51, 3 (2009), 455-500.

Jiajia Li, Yuchen Ma, and Richard Vuduc. 2017. ParTI!: A Parallel Tensor In-
frastructure for Multicore CPU and GPUs. Available from https://github.com/
hpcgarage/ParTL

Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical Storage of
Sparse Tensors. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’18). ACM, New York, NY, USA.
Jiajia Li, Bora Ugar, Umit V. Catalyiirek, Jimeng Sun, Kevin Barker, and Richard
Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. In Proceedings of
the ACM International Conference on Supercomputing (ICS °19). ACM, New York,

NY, USA, 227-237. https://doi.org/10.1145/3330345.3330366
Bangtian Liu, Chengyao Wen, Anand D Sarwate, and Maryam Mehri Dehnavi.

2017. A Unified Optimization Approach for Sparse Tensor Operations on GPUs.
In Cluster Computing (CLUSTER), 2017 IEEE International Conference on. IEEE,
47-57.

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard W. Vuduc, and P. Sadayap-
pan. 2019. Load-Balanced Sparse MTTKRP on GPUs. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Vol. abs/1904.03329.
Israt Nisa, Aravind Sukumaran-Rajam, Rakshith Kunchum, and P Sadayappan.
2017. Parallel ccd++ on gpu for matrix factorization. In Proceedings of the General
Purpose GPUs. ACM, 73-83.

Eric T Phipps and Tamara G Kolda. 2019. Software for Sparse Tensor Decom-
position on Emerging Computing Architectures. SIAM Journal on Scientific
Computing 41, 3 (2019), C269-C290.

Shaden Smith. 2019. Algorithms for Large-Scale Sparse Tensor Factorization. Ph.D.
Dissertation. University of Minnesota, Minneapolis, MN, USA. http://hdLhandle.
net/11299/206375

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu,
and George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse
Tensors and Tools. http://frostt.io/

Shaden Smith and George Karypis. 2015. Tensor-matrix products with a com-
pressed sparse tensor. In Proceedings of the 5th Workshop on Irregular Applications:
Architectures and Algorithms. ACM, 5.

Shaden Smith and George Karypis. 2016. A medium-grained algorithm for sparse
tensor factorization. In Parallel and Distributed Processing Symposium, 2016 IEEE
International. IEEE, 902-911.

Shaden Smith, Jongsoo Park, and George Karypis. 2016. An Exploration of
Optimization Algorithms for High Performance Tensor Completion. Proceedings
of the 2016 ACM/IEEE conference on Supercomputing (2016).

Shaden Smith, Jongsoo Park, and George Karypis. 2017. Sparse Tensor Factor-
ization on Many-Core Processors with High-Bandwidth Memory. 31st IEEE
International Parallel & Distributed Processing Symposium (IPDPS’17) (2017).
Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George Karypis.
2015. SPLATT: Efficient and parallel sparse tensor-matrix multiplication. In
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International.
IEEE, 61-70.

Jimeng Sun, Spiros Papadimitriou, and S Yu Philip. 2006. Window-based Tensor
Analysis on High-dimensional and Multi-aspect Streams.. In ICDM, Vol. 6. 1076~
1080.

Jimeng Sun, Dacheng Tao, and Christos Faloutsos. 2006. Beyond streams and
graphs: dynamic tensor analysis. In Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM, 374-383.
Nico Vervliet, Otto Debals, and Lieven De Lathauwer. 2016. Tensorlab 3.04ATNu-
merical optimization strategies for large-scale constrained and coupled ma-
trix/tensor factorization. In Signals, Systems and Computers, 2016 50th Asilomar
Conference on. IEEE, 1733-1738.

Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. 2014. Parallel matrix
factorization for recommender systems. Knowledge and Information Systems 41,
3 (2014), 793-819.

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-
scale parallel collaborative filtering for the netflix prize. In International conference
on algorithmic applications in management. Springer, 337-348.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://www.sandia.gov/~tgkolda/TensorToolbox/
https://doi.org/10.1109/HPEC.2017.8091026
https://doi.org/10.1109/HPEC.2017.8091026
https://doi.org/10.1145/3225058.3225133
https://doi.org/10.1145/2807591.2807624
https://github.com/hpcgarage/ParTI
https://github.com/hpcgarage/ParTI
https://doi.org/10.1145/3330345.3330366
http://hdl.handle.net/11299/206375
http://hdl.handle.net/11299/206375
http://frostt.io/

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

The results for GPU are collected on an NVIDIA Volta V100 GPU
with 16GB memory. The results for CPU are collected using a Dell
PowerEdge R740 two-socket servers with Intel Xeon 6148. For the
GPU codes, NVCC-9.2 compiler is used, and for the CPU code gcc
(GCC) 7.3.0 is used with the OpenMP flag. Number of threads is set
to 40.

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-
facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

10.5281/zenodo.3379102
https://github.com/isratnisa/MM-CSF

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Volta V100 GPU, Intel(R) Xeon(R) Gold
6148 CPU

Operating systems and versions: Red Hat Enterprise Linux Server
VERSION=7.5

Compilers and versions: NVCC 9.2, gcc (GCC) 7.3.0
Libraries and versions: boost 1.67, OpenBLAS-3.6, openMP
Key algorithms: MTTKRP, CPD

Input datasets and versions: http://frostt.io

Output from scripts that gathers execution environment informa-
tion.

LMOD_FAMILY_COMPILER_VERSION=18.0.3
MKLROOT=/opt/intel/18.0.3/compilers_and_libraries_20
— 18/1linux/mkl

RIGHTS L

MANPATH=/opt/mvapich2/intel/18.0/2.3/share/man:/opt/
«— 1intel/18.0.3/itac_latest/man:/opt/intel/18.0.3/d,
ocumentation_2018/en/debugger/gdb-igfx/man:/opt/
intel/18.0.3/inspector_2018/man:/opt/intel/18.0.
3/compilers_and_libraries_2018/1linux/man/common: |
/opt/torque/share/man:/opt/moab/man:/apps/1mod/1
mod/share/man: /usr/share/man/overrides:/usr/shar
e/man:/usr/local/share/man:/opt/ibutils/share/ma
n:/opt/ddn/ime/share/man:/opt/puppetlabs/puppet/
share/man:/opt/intel/18.0.3/vtune_amplifier/man:
/opt/intel/18.0.3/advisor/man
__LMOD_REF_COUNT_FPATH=/opt/intel/18.0.3/compilers_a
— nd_libraries_2018/1linux/mkl/include:1
XALT_ETC_DIR=/apps/xalt/etc
ModuleTable@03=ZE9yZGVyI10INCxwcmOwVD17fSxbInNOYWN |
rRGVwdGgiXTOxLFsic3RhdHVZzI109ImFjdG12ZSIsWyJ1c2V
yTmFtZSJdPSJTtdmFwaWNoMiIsfSx4YWxOPXtbImZuIle9Ii9
hcHBzL 2xtb2RmaWx1cy9Db3J1L3hhbHQVbGFOZXNOLmx1YST |
sWyImdWxsTmFtZSJdPSJ4YWxOL2xhdGVzdCIsWyJsb2FkT3J
kZXIiXT@OxLHByb3BUPXt9LFsic3RhY2tEZXBOaCJdPTESWyJ
zdGFOdXMiXT@iYWNOaXZ1IixbInVzZXJOYW11I1@9InhhbHQ
iLHOsfSxtcGFRaEE9eyIvYXBwcy9sbWIkZmlsZXMvTVBIL21 |
udGVsLzE4L jAvbXZhcGljaDIvMi4zIiwil 2FwcHMvbG1vZGZ |
pbGVzLONvbXBpbGVyL21udGVsLzE4L jAiLCIVYXBwcy9sbW9 |
— kZmlsZXMvTGludXgilLCIvYXBwcy9sbW9kZmlsZXMvQ29y
PBS_VERSION=TORQUE-6.1.2
MPI_FFLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
IPPROOT=/opt/intel/18.0@.3/compilers_and_libraries_20,
— 18/linux/ipp
MPICH_HOME=/opt/mvapich2/intel/18.0/2.3
MPI_F9QFLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
F90=ifort

SHELL=/bin/bash

TERM=xterm-256color
__LMOD_REF_COUNT_MODULEPATH=/apps/1lmodfiles/MPI/inte
— 1/18.0/mvapich2/2.3:1;/apps/1lmodfiles/Compiler/i
— ntel/18.0:1;/apps/1lmodfiles/Linux:1;/apps/1modfi
— les/Core:1;/apps/1lmod/1mod/modulefiles/Core:1
HISTSIZE=1000

PBS_JOBNAME=STDIN

MODULEPATH_ROOT=/apps/1lmodfiles
TMPDIR=/tmp/pbstmp.472725
LMOD_SYSTEM_DEFAULT_MODULES=modules
XALT_EXECUTABLE_TRACKING=yes

LMOD_PACKAGE _PATH=/apps/lmodfiles/site

L

L

LIBRARY_PATH=/opt/intel/18.0.3/compilers_and_librari
— es_2018/linux/linux/lib/intel64_lin:/opt/intel/1
— 8.0.3/compilers_and_libraries_2018/1linux/daal/li
— b/intel64_lin:/opt/intel/18.0.3/compilers_and_1i,
— braries_2018/linux/ipp/lib/intel64_lin:/opt/inte,
— 1/18.0.3/compilers_and_libraries_2018/1linux/mkl/
— lib/intel64_lin:/opt/intel/18.0.3/compilers_and_,
— libraries_2018/linux/tbb/lib/intel64_lin/gcc4.4
__LMOD_REF_COUNT_COMPILER_PATH=/apps/xalt/xalt/bin:1
LD_PRELOAD=/apps/xalt/xalt/1ib64/1libxalt_init.so
PBS_ENVIRONMENT=PBS_INTERACTIVE
LMOD_PKG=/apps/1mod/1mod
FPATH=/opt/intel/18.0.3/compilers_and_libraries_2018
— /linux/mkl/include

COMPILER=intel

QTDIR=/usr/lib64/qt-3.3

IMEDIR=

LMOD_VERSION=7.8

QTINC=/usr/1ib64/qt-3.3/include
PBS_HOME=/var/spool/torque

CC=icc
__LMOD_REF_COUNT_LOADEDMODULES=xalt/latest:1;cxx17/7
< .3.0:1;intel/18.0.3:1;mvapich2/2.3:1;modules/au2
— 018:1

QT_GRAPHICSSYSTEM_CHECKED=1
INTEL_DIR=/opt/intel/18.0.3

USER=USER

PBS_TASKNUM=1

MV2_CPU_BINDING_POLICY=hybrid

COMPILER_MINOR=0

RIGHTS LI L)

Nisa, et al.

LS_COLORS=rs=0:di=38;5;27:1n=38;5;51:mh=44;38;5;15:p
— 1=40;38;5;11:50=38;5;13:d0=38;5;5:bd=48;5;232;38
;5;11:cd=48;5;232;38;5;3:0r=48;5;232;38;5;9:mi=0
5;48;5;232;38;5;15:5u=48;5;196,;38;5;15:5g=48;5;1
1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1,
6:0w=48;5;10;38;5;21:5t=48;5;21;38;5;15:ex=38;5; |
34:x.tar=38;5;9:%.tgz=38;5;9:*.arc=38;5;9:%.arj=
38;5;9:%.taz=38;5;9:%.1ha=38;5;9:%.124=38;5;9:*. |
1zh=38;5;9:*%.1zma=38;5;9:%.t1z=38;5;9:*.txz=38;5
;9:%.t20=38;5;9:%.172=38;5;9:*%.21ip=38;5;9:%.2=38
;5;9:%.7=38;5;9:%.dz=38;5;9:*%.g2z=38;5;9:%.1rz=38
;5;9:%.12=38;5;9:%.120=38;5;9:%.x2=38;5;9:%.bz2=)
38;5;9:%.bz=38;5;9:%.thz=38;5;9:*.tbz2=38;5;9:*.
tz=38;5;9:%.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9
tx.war=38;5;9:%.ear=38;5;9:%.sar=38;5;9:*%.rar=38
;5;9:%.al1z=38;5;9:*%.ace=38;5;9:%.200=38;5;9:%.cp
10=38;5;9:*%.72=38;5;9:%.rz=38;5;9:*.cab=38;5;9: %,
.Jpg=38;5;13:*.jpeg=38;5;13:x.gif=38;5;13:x.bmp=
38;5;13:%.pbm=38;5;13:%.pgm=38;5;13:%.ppm=38;5;1
3:%.1ga=38;5;13:%.xbm=38;5;13:%.xpm=38;5;13:%.ti
f=38;5;13:%.tiff=38;5;13:%.png=38;5;13:%.svg=38; |
5;13:%.svgz=38;5;13:%.mng=38;5;13:%.pcx=38;5;13:
*.mov=38;5;13:%.mpg=38;5;13:%.mpeg=38;5;13:%.m2v
=38;5;13:%.mkv=38;5;13:%.webm=38;5;13:%.0gm=38;5
;13:%.mp4=38;5;13:%.mdv=38;5;13:%.mpdv=38;5;13:%
.vob=38;5;13:%.qt=38;5;13:%.nuv=38;5;13:%.wmv=38
;5;13:%.asf=38;5;13:%.rm=38;5;13:x.rmvb=38;5;13:
*.flc=38;5;13:%.avi=38;5;13:%.f1i=38;5;13:%.flv=
38;5;13:%.g1=38;5;13:%.d1=38;5;13:%.xcf=38;5;13:
*.xwd=38;5;13:%.yuv=38;5;13:%.cgm=38;5;13:x.emf=
38;5;13:%.axv=38;5;13:%.anx=38;5;13:%.0gv=38;5;1
3:%.0gx=38;5;13:%.aac=38;5;45:%.au=38;5;45:%.fla
c=38;5;45:%.mid=38;5;45:%x.midi=38;5;45:*.mka=38; |
5;45:%.mp3=38;5;45:%.mpc=38;5;45:%.0gg=38;5;45:%
.ra=38;5;45:x.wav=38;5;45:*%.axa=38;5;45:%.0ga=38 |
;5;45:%.spx=38;5;45:x.xspf=38;5;45:
LMOD_sys=Linux
LD_LIBRARY_PATH=/opt/mvapich2/intel/18.0/2.3/1ib:/ap,
ps/gnu/7.3.0/1ib64:/apps/gnu/7.3.0/1ib:/opt/inte
1/18.0.3/debugger_2018/1libipt/intel64/1ib:/opt/i
ntel/18.0.3/compilers_and_libraries_2018/1linux/1
ib/intel64_lin:/opt/intel/18.0.3/compilers_and_1
ibraries_2018/linux/daal/lib/intel64_lin:/opt/in
tel/18.0.3/compilers_and_libraries_2018/1linux/ip
p/lib/intel64_lin:/opt/intel/18.0.3/compilers_an
d_libraries_2018/linux/mkl/1lib/intel64_lin:/opt/
intel/18.0.3/compilers_and_libraries_2018/1linux/
tbb/1lib/intel64_lin/gcc4.4:/opt/torque/1ib64:/op
t/torque/lib::

L

!

!

rrerrrrrrre

XXX_COMPILER_MAJOR=18

XXX_FAMILY_MPI=mvapich2

PBSCOREDUMP=""
CPATH=/opt/intel/18.0.3/compilers_and_libraries_2018
— /linux/mkl/include:/opt/intel/18.0.3/compilers_a
— nd_libraries_2018/1inux/tbb/include

An Efficient Mixed-Mode Representation of Sparse Tensors

ModuleTable@04=7SIsIi9hcHBzL2xtb2QvbG1vZCItb2R1bGV
— maWx1lcy9Db3J1Iix9LFsic31zdGVtQmFzZUTQQVRII109I1i9
— hcHBzL2xtb2RmaWx1cy9MaW51eDovYXBwcy9sbWOkZmlsZXM
— vQ29yZTovYXBwcy9sbWIkL2xtb2QvbWIkdWx1ZmlsZXMvQ29
— yZSIsfQ==

PBS_WALLTIME=10740

XXX_CXX=icpc
__LMOD_REF_COUNT__LMFILES_=/apps/lmodfiles/Core/xalt
— /latest.lua:1;/apps/lmodfiles/Compiler/intel/18.
— ©0/cxx17/7.3.0.1ua:1;/apps/1lmodfiles/Core/intel/1,
— 8.0.3.1lua:1;/apps/1lmodfiles/Compiler/intel/18.0/,
« mvapich2/2.3.1lua:1;/apps/lmodfiles/Core/modules/
< au2018.lua:1

PBS_MOMPORT=15003
PBS_GPUFILE=/var/spool/torque/aux//472725. gpu
LMOD_SITE_NAME=XXX

MPIEXEC_COMM=pmi

PBS_0_QUEUE=batch

LMOD_PREPEND_BLOCK=normal

LMOD_FAMILY_MPI_VERSION=2.3
MPI_CFLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
MPI_CXXFLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
MPI_LIBS=-L/opt/mvapich2/intel/18.0/2.3/1ib -1mpich
— -libverbs -1lpthread
NLSPATH=/opt/intel/18.0.3/debugger_2018/gdb/intel64/
— share/locale/%1_%t/%N:/opt/intel/18.0.3/compiler
— s_and_libraries_2018/1inux/lib/intel64_lin/local,
— e/%l_%t/%N:/opt/intel/18.0.3/compilers_and_libra,
— ries_2018/linux/mkl/1lib/intel64_lin/locale/%1_%t
— /%N
PATH=/apps/xalt/xalt/bin:/opt/mvapich2/intel/18.0/2.
— 3/bin:/apps/gnu/7.3.0/bin:/opt/intel/18.0.3/itac,
— _latest/bin:/opt/intel/18.0.3/advisor/bin64:/opt
— /intel/18.0.3/vtune_amplifier/bin64:/opt/intel/1
— 8.0.3/inspector_2018/bin64:/opt/intel/18.0.3/com,
— pilers_and_libraries_2018/1inux/bin/intel64:/app
— s/software_usage:/opt/torque/bin:/usr/1ib64/qt-3,
— .3/bin:/opt/XXX/bin:/opt/moab/bin:/bin:/usr/bin:
— /usr/local/bin:/usr/local/sbin:/usr/sbin:/opt/ib
— utils/bin:/opt/ddn/ime/bin:/opt/puppetlabs/bin
PBS_O_LOGNAME=USER

MAIL=/var/spool/mail/USER
__LMOD_REF_COUNT_NLSPATH=/opt/intel/18.0.3/debugger_
— 2018/gdb/intel64/share/locale/%1_%t/%N:1;/opt/in,
— tel/18.0.3/compilers_and_libraries_2018/1inux/1i
— b/intel64_lin/locale/%1_%t/%N:1;/opt/intel/18.0.
— 3/compilers_and_libraries_2018/linux/mkl/1lib/int
— el64_lin/locale/%l_%t/%N:1

RIGHTS LI L)

ModuleTable@@1=X01vZHVsSZVRhYmx1Xz17WyJNVHZ1cnNpb24 |
iXTOzLFsiY19yZWJ1aWxkVG1tZSJdPTg2NDAWLFsiY19zaG9
ydFRpbWUiXT1mYWxzZSxkZXB0@aFQ9e30sZmFtaWx5PXtbImN |
vbXBpbGVyI109ImludGVsIixbImlwaSJdPSTtdmFwaWNoMiI
sfSxtVD17Y3h4MTc9e1siZm4iXTOiL 2FwcHMVbGTvZGZpbGY |
zLONvbXBpbGVyL21udGVsLzE4L jAvY3h4MTcvNy4zL jAubHV |
hIixbImZ1bGxO0YW11I109ImN4eDE3LzcuMy4wIixbImxvYWR
PcmR1ciJdPTIscHIvcFQ9e30sWyJzdGF ja@R1cHRoI109Mix |
bInNOYXR1cyJdPSIhY3RpdmUiLFsidXN1ck5hbWUiXT@iY3h
4MTcilLHOsaW50ZWw9e1siZm4iXTOil 2FwcHMvbG1vZGZpbGV
— zLONvcmUvaW50ZWwvMTguMC4zLmx1YSIsWyImdWxsTmFt
PBS_O_LANG=en_US.UTF-8
PBS_JOBCOOKIE=8DD3E1D6A361CA28088AEFA814243CC6
LMOD_SETTARG_CMD=:

XXX_FAMILY_COMPILER=intel
XXX_MVAPICH2_DIR=/opt/mvapich2/intel/18.0/2.3
TBBROOT=/opt/intel/18.0.3/compilers_and_libraries_20
— 18/linux/tbb

L

PDSH_RCMD_TYPE=ssh
LMFILES=/apps/lmodfiles/Core/xalt/latest.lua:/apps
— /lmodfiles/Compiler/intel/18.0/cxx17/7.3.0.1lua:/
— apps/lmodfiles/Core/intel/18.0.3.1lua:/apps/1lmodf
— 1iles/Compiler/intel/18.0/mvapich2/2.3.1lua:/apps/
— 1modfiles/Core/modules/au2018.1lua
LANG=en_US.UTF-8

PBS_NODENUM=0
MODULEPATH=/apps/1lmodfiles/MPI/intel/18.0/mvapich2/2
— .3:/apps/lmodfiles/Compiler/intel/18.0:/apps/1mo
— dfiles/Linux:/apps/1lmodfiles/Core:/apps/1lmod/1mo
— d/modulefiles/Core

MOABHOMEDIR=/var/spool/moab
XXX_FAMILY_COMPILER_VERSION=18.0.3

PBS_NUM_NODES=1

KDEDIRS=/usr

LOADEDMODULES=xalt/latest:cxx17/7.3.0:intel/18.0.3:m
— vapich2/2.3:modules/au2018

_ModuleTable_Sz_=4

PBS_O_SHELL=/bin/bash
XXX_MVAPICH2_LIB=/opt/mvapich2/intel/18.0/2.3/1ib
LMOD_CMD=/apps/1mod/1mod/libexec/1mod
XXX_MPI_CC=mpicc

PBS_JOBID=472725.

LMOD_AVAIL_STYLE=system
DAALROOT=/opt/intel/18.0.3/compilers_and_libraries_2
— 018/1linux/daal

HISTCONTROL=ignoredups
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
ENVIRONMENT=BATCH
INTEL_PYTHONHOME=/opt/intel/18.0.3/debugger_2018/pyt
— hon/intel64

XXX_F77=ifort

SHLVL=2
XXX_FC=ifort

XXX_MPI_CXX=mpic++
__LMOD_REF_COUNT_PATH=/apps/xalt/xalt/bin:1;/opt/mva,
— pich2/intel/18.0/2.3/bin:1;/apps/gnu/7.3.0/bin: 1,
— ;/opt/intel/18.0.3/itac_latest/bin:1;/opt/intel/,
— 18.0.3/advisor/bin64:1;/opt/intel/18.0.3/vtune_a,
— mplifier/bin64:1;/opt/intel/18.0.3/inspector_201,
— 8/bin64:1;/opt/intel/18.0.3/compilers_and_librar
— 1es_2018/linux/bin/intel64:1;/apps/software_usag
— e:1;/opt/torque/bin:1;/usr/1ib64/qt-3.3/bin:1;/0,
pt/XXX/bin:1;/opt/moab/bin:1;/bin:1;/usr/bin:1;/
usr/local/bin:1;/usr/local/sbin:1;/usr/sbin:1;/0
— pt/ibutils/bin:1;/opt/ddn/ime/bin:1;/opt/puppetl
— abs/bin:1

__LMOD_REF_COUNT_CPATH=/opt/intel/18.0.3/compilers_a
— nd_libraries_2018/1linux/mkl/include:1;/opt/intel
— /18.0.3/compilers_and_libraries_2018/1linux/tbb/i
— nclude:1

ModuleTable@02=ZSJdPSJIpbnR1bC8x0C4WL jMiLFsibGOhZEY
— yZGVyIl09MyxwcmOwVD17fSxbInNOYWNrRGVwdGgiXTOXLFs |
< ic3RhdHVZI1@9ImFjdG12ZSIsWyJ1c2VyTmFtZSIdPSIpbnR
— 1bCIsfSxtb2R1bGVzPXtbImZuIl@9Ii9hcHBzL2xtb2RmaWx
— 1lcy9Db3J1L21vZHVSZXMvYXUyMDE4Lmx1YSIsWy JmdWxsTmF
«— tZSJdPSJtb2R1bGVzL2F1MjAX0CIsWyJsb2FkT3JkZXIiXTQ
— 1LHByb3BUPXt9LFsic3RhY2tEZXB@aCJdPTAsWyJzdGFOdXM
— 1XT@iYWN@aXZ1IixbInVzZXJOYW111109Im1vZHVSZXMiLHO
— sbXZhcGljaDI9e1siZm4iXT@iL 2FwcHMvbG1vZGZpbGVzLeN
— VbXBpbGVyL21udGVsLzE4L jAvbXZhcGljaDIvMi4zLmx1YSI
— sWyJImdWxsTmFtZSJdPSJtdmFwaWNoMi8yL jMiLFsibG9h
__LMOD_REF_COUNT_INCLUDE=/opt/intel/18.0.3/compilers
— _and_libraries_2018/1linux/daal/include:1;/opt/in
— tel/18.0.3/compilers_and_libraries_2018/linux/ip
— p/include:1;/opt/intel/18.0.3/compilers_and_libr
— aries_2018/1linux/mkl/include:1
XALT_SCALAR_AND_SPSR_SAMPLING=yes

PBS_VNODENUM=0

BASH_ENV=/apps/1mod/1mod/init/bash
XXX_MPI_FC=mpifort

LOGNAME=USER

LMOD_arch=x86_64

MV2_IBA_HCA=m1x5_0

CVS_RSH=ssh

QTLIB=/usr/lib64/qt-3.3/1ib
XXX_FAMILY_MPI_VERSION=2.3

PBS_QUEUE=serial
PDSH_SSH_ARGS_APPEND=-0StrictHostKeyChecking=no

— -oUserKnownHostsFile=/dev/null -olLoglLevel=ERROR
MODULESHOME=/apps/1mod/1mod

RIGHTS LI L)

Nisa, et al.

__LMOD_REF_COUNT_LIBRARY_PATH=/opt/intel/18.0.3/comp
ilers_and_libraries_2018/linux/linux/lib/intel64
_lin:1;/0pt/intel/18.0.3/compilers_and_libraries
_2018/1inux/daal/lib/intel64_lin:1;/opt/intel/18,
.0.3/compilers_and_libraries_2018/1linux/ipp/lib/
intel64_lin:1;/opt/intel/18.0.3/compilers_and_l1i
braries_2018/1linux/mkl/1lib/intel64_lin:1;/opt/in,
tel/18.0.3/compilers_and_libraries_2018/1linux/tb
— b/lib/intel64_lin/gcc4.4:1
PBS_O_MAIL=/var/spool/mail/USER
PBS_O_SUBMIT_FILTER=/usr/local/sbin/torque_submitfil
— ter

rrerertre

LESSOPEN=| | /usr/bin/lesspipe.sh %s
LMOD_SETTARG_FULL_SUPPORT=no
COMPILER_PATH=/apps/xalt/xalt/bin
__LMOD_REF_COUNT_LD_LIBRARY_PATH=/opt/mvapich2/intel
/18.0/2.3/1ib:1;/apps/gnu/7.3.0/1ib64:1;/apps/gn
u/7.3.0/1ib:1;/opt/intel/18.0.3/debugger_2018/11
bipt/intel64/1ib:1;/opt/intel/18.0.3/compilers_a
nd_libraries_2018/linux/lib/intel64_lin:1;/opt/i
ntel/18.0.3/compilers_and_libraries_2018/1linux/d
aal/lib/intel64_lin:1;/opt/intel/18.0.3/compiler
s_and_libraries_2018/1linux/ipp/lib/intel64_lin:1
;/opt/intel/18.0.3/compilers_and_libraries_2018/
linux/mkl/1lib/intel64_lin:1;/opt/intel/18.0.3/co,
mpilers_and_libraries_2018/1linux/tbb/lib/intel64
_lin/gcc4.4:1;/opt/torque/lib64:1;/opt/torque/li
- b:1

MV2_USE_RDMA_CM=0

__Init_Default_Modules=1

LMOD_FULL_SETTARG_SUPPORT=no
__LMOD_REF_COUNT_LD_PRELOAD=/apps/xalt/xalt/1ib64/11i
— bxalt_init.so:1

LMOD_FAMILY_COMPILER=intel

PBS_NP=28

L

PBS_NUM_PPN=28
QT_PLUGIN_PATH=/usr/1ib64/kde4/plugins:/usr/lib/kde4
— /plugins

LMOD_CACHED_LOADS=yes
LMOD_DIR=/apps/1lmod/1mod/libexec
INCLUDE=/opt/intel/18.@.3/compilers_and_libraries_20,
— 18/linux/daal/include:/opt/intel/18.0.3/compiler
— s_and_libraries_2018/linux/ipp/include:/opt/inte
— 1/18.0.3/compilers_and_libraries_2018/1linux/mkl/
— include

An Efficient Mixed-Mode Representation of Sparse Tensors

__LMOD_REF_COUNT_MANPATH=/opt/mvapich2/intel/18.0/2.

XXX_

3/share/man:1;/opt/intel/18.0.3/itac_latest/man:
1;/opt/intel/18.0.3/documentation_2018/en/debugg
er/gdb-igfx/man:1;/opt/intel/18.0.3/inspector_20
18/man:1;/opt/intel/18.0.3/compilers_and_librari
es_2018/linux/man/common:1;/opt/torque/share/man
:1;/opt/moab/man:1;/apps/1lmod/1lmod/share/man:1;/,
usr/share/man/overrides:1;/usr/share/man:1;/usr/
local/share/man:1;/opt/ibutils/share/man:1;/opt/
ddn/ime/share/man:2;/opt/puppetlabs/puppet/share
/man:1;/opt/intel/18.0.3/vtune_amplifier/man:1;/,
opt/intel/18.0.3/advisor/man:1
XALT_DIR=/apps/xalt/xalt

__LMOD_Priority_PATH=/apps/xalt/xalt/bin:-100

LMOD_COLORIZE=yes
LMOD_FAMILY_MPI=mvapich2

PBS_

—
—
s
—
s
s
—
s

—

BASH_FUNC_module()=() {

—

}

BASH_FUNC_m1()=() {

3

O0_PATH=/apps/xalt/xalt/bin:/opt/mvapich2/intel/1
8.0/2.3/bin:/apps/gnu/7.3.0/bin:/opt/intel/18.0.
3/itac_latest/bin:/opt/intel/18.0.3/advisor/bin6
4:/opt/intel/18.0.3/vtune_amplifier/bin64:/opt/i
ntel/18.0.3/inspector_2018/bin64:/opt/intel/18.0
.3/compilers_and_libraries_2018/1linux/bin/intel6
4:/apps/software_usage:/opt/torque/bin:/usr/1ib6
4/qt-3.3/bin:/opt/XXX/bin:/opt/moab/bin:/usr/loc
al/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/i
butils/bin:/opt/ddn/ime/bin:/opt/puppetlabs/bin
eval $($LMOD_CMD bash "$@")
&& eval $(${LMOD_SETTARG_CMD:-:} -s sh)

eval $($LMOD_DIR/ml_cmd "$@")

_=/bin/env
++ 1sb_release -a

LSB Version: :core-4.1-amd64:core-4.1-noarch:
— cxx—4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:d,
— esktop-4.1-noarch:languages-4.1-amd64:languages-

—

Distributor ID:

4.1-noarch:printing-4.1-amd64:printing-4.1-noarch
RedHatEnterpriseServer

Model: 85

Model name: Intel(R) Xeon(R) Gold 6148 CPU
— @ 2.40GHz

Stepping: 4

CPU MHz: 2400.000
BogoMIPS: 4800.00
Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 28160K

NUMA node@ CPU(s):

—

NUMA nodel CPU(s):

0,2,4,6,8,10,12,14,16,18,20,22
,24,26,28,30,32,34,36,38
1,3,5,7,9,11,13,15,17,19,21,23,
,25,27,29,31,33,35,37,39

Description: Red Hat Enterprise Linux Server
— release 7.5 (Maipo)

Release: 7.5

Codename: Maipo

++ uname -a

++ 1scpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40

On-line CPU(s) list: 0-39

Thread(s) per core: 1

Core(s) per socket: 20

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel
CPU family: 6

RIGHTS LI L)

Flags: fpu vme de pse tsc msr pae mce
— cx8 apic sep mtrr pge mca cmov pat pse36 clflush
— dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
— pdpelgb rdtscp 1m constant_tsc art arch_perfmon
— pebs bts rep_good nopl xtopology nonstop_tsc

— aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
— ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr
— pdcm pcid dca ssed4_1 sse4_2 x2apic movbe popcnt
— tsc_deadline_timer aes xsave avx fl16c rdrand

— lahf_1lm abm 3dnowprefetch epb cat_13 cdp_13

— intel_pt ssbd mba ibrs ibpb stibp tpr_shadow vnmi
— flexpriority ept vpid fsgsbase tsc_adjust bmil
— hle avx2 smep bmi2 erms invpcid rtm cgm mpx rdt_a
— avx512f avx512dq rdseed adx smap clflushopt clwb
— avx512cd avx512bw avx512v]l xsaveopt xsavec

— xgetbvl cgm_llc cgm_occup_llc cgm_mbm_total

— cgm_mbm_local dtherm ida arat pln pts pku ospke
— spec_ctrl intel_stibp flush_1l1d

++ cat /proc/meminfo

MemTotal: 394800924 kB

MemFree: 379435860 kB

MemAvailable: 381470572 kB

Buffers: 208484 kB

Cached: 2844152 kB

SwapCached: 0 kB

Active: 2252220 kB

Inactive: 2267268 kB

Active(anon): 1543664 kB

Inactive(anon): 517340 kB

Active(file): 708556 kB

Inactive(file): 1749928 kB

Unevictable: 4292464 kB

Mlocked: 4292464 kB

SwapTotal: 50331644 kB

SwapFree: 50331644 kB

Dirty: 236 kB

Writeback: 0 kB

AnonPages: 5759336 kB

Mapped: 564880 kB

Shmem: 551848 kB

Slab: 1804840 kB

SReclaimable: 714332 kB
SUnreclaim: 1090508 kB
KernelStack: 30432 kB
PageTables: 26380 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 247732104 kB
Committed_AS: 7106576 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 1810776 kB
VmallocChunk: 34156619752 kB
HardwareCorrupted: 0 kB
AnonHugePages: 5318656 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free:]
HugePages_Rsvd: 0
HugePages_Surp: (]
Hugepagesize: 2048 kB
DirectMap4k: 4712256 kB
DirectMap2M: 110243840 kB
DirectMapi1G: 288358400 kB

++ inxi -F -c@
./collet_env.sh: line 15:
++ 1sblk -a

NAME MAJ:MIN RM
sda 8:0 0 931.5G

Lsda1 8:1 0 931.5G
|-vgo-lv_state 253:0 @ 166
— /var/lib/stateless/state
vgo-lv_rw 253:1 0 166
— /var/lib/stateless/writable
tvg@—lv_swap 253:2 @ 48G

253:3 0 851.5G

inxi:

vgd-1v_tmp
++ 1lsscsi -s
[2:0:0:0]
— /dev/sda
++ module list

disk
1.00TB

ATA

SIZE RO

0
0
0

[\

0

command not found

TYPE MOUNTPOINT

disk
part
lvm

lvm

lvm [SWAP]
lvm /tmp

HUS722T1TALA60Q MU@2

+++ /apps/lmod/1mod/libexec/lmod bash list

Currently Loaded Modules:
1) xalt/latest 2) cxx17/7.3.0
— 4) mvapich2/2.3

RIGHTS LI L)

3) intel/18.0.3

5) modules/au2018

A A A N A A A+

!

¢ A A A A A A A A A A A A A

+

!

—

—

+++

Nisa, et al.

eval 'MODULEPATH=/apps/lmodfiles/MPI/intel/18.0/m
vapich2/2.3:/apps/lmodfiles/Compiler/intel/18.0:
/apps/1modfiles/Linux:/apps/1lmodfiles/Core:/apps
/1mod/1mod/modulefiles/Core;"' export
'MODULEPATH; ' ' _ModuleTable@@1_=X@1vZHVsZVRhYmx1
Xz17WyJINVHZ1cnNpb24iXTOzLFsiY19yZWI1aWxkVG1tZSJd
PTg2NDAWLFsiY19zaG9ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9
€30sZmFtaWx5PXtbImNvbXBpbGVyI1@9ImludGVsIixbImlw
aSJdPSJtdmFwaWNoMiIsfSxtVD17Y3h4MTc9e1siZm4iXTO1 |
L2FwcHMvbG1vZGZpbGYVzL@ONvbXBpbGVyL21udGVsLzE4L jAv |
Y3h4MTcvNy4zL jAubHVhIixbImZ1bGxOYW11I109ImN4eDE3
LzcuMy4wIixbImxvYWRPcmR1ciJdPTIscHIvcFQ9e30sWyJz
dGFja0R1cHRoI109MixbINNOYXR1cyJdPSThY3RpdmUiLFsi |
dXN1ck5hbWUiXT@1iY3h4MTcilHOsaW50ZWw9e1siZm4iXTo1 |
L2FwcHMvbG1vZGZpbGYzLONvemUvaW50ZWwvMTguMC4zLmx1 |
YSIsWyJmdWxsTmFt;' export '_ModuleTable@@l_;'
'_ModuleTable@02_=ZSJdPSJpbnR1bC8XOC4WL jMiLFsibG
9hZE9yZGVyI1@9Myxwcm9wVD17fSxbInNOYWNrRGYwdGgiXT
OxLFsic3RhdHVZI1Q9ImFjdG12ZSIsWyJ1c2VyTmFtZSJTdPS
JpbnR1bCIsfSxtb2R1bGVZzPXtbImZuIl@9Ii9hcHBzL2xtb2
RmaWx1cy9Db3J1L21vZHVSZXMvYXUyMDE4Lmx1YSIsWyJmdW
xsTmFtZSJdPSJtb2R1bGVzL2FTMjAXOCIsWyJsb2FKT3JkZX |
IiXT@1LHByb3BUPXtILFsic3RhY2tEZXBOaCJdPTAsWyJzdG
FOAXMiXTOiYWNOaXZ1IixbInVzZXJOYW11I109Im1vZHVSZX
MiLHOsbXZhcGljaDI%e1siZm4iXTOiL 2FwcHMvbG1vZGZphG
VzLONvbXBpbGVyL21udGVsLzE4L jAvbXZhcGljaDIvMi4zLm
x1YSIsWyJImdWxsTmFtZSJdPSJtdmFwaWNoMi8yL jMiLFsibG
9h;' export '_ModuleTable0@2_;'
'_ModuleTable@@3_=ZE9yZGVyI1@INCxwcmIwVD17fSxbIn
NOYWNrRGVwdGgiXTOxLFsic3RhdHVzI109ImF jdG12ZSIsWy
J1c2VyTmFtZSJdPSJTtdmFwaWNoMiIsfSx4YWx@PXthbImZull
09Ii9hcHBzL2xtb2RmaWx1cy9Db3J1L3hhbHQVbGFOZXNOLm |
x1YSIsWyImdWxsTmFtZSJdPSJ4YWxOL2xhdGVzdCIsWyJsb2
FkT3JkZXIiXT@OxLHByb3BUPXt9LFsic3RhY2tEZXBOaCJdPT
EsWyJzdGFOdXMiXT@iYWN@aXZ1IixbInVzZXJOYW111109In
hhbHQiLHOsfSxtcGFOaEE9eyIvYXBwcy9sbWIkZmlsZXMvTV
BJL21udGVsLzE4L jAvbXZhcGljaDIvMi4zIiwil 2FwcHMvbG
1vZGZpbGVzLONvbXBpbGVyL21udGVsLzE4L jAILCIVYXBwcy |
9sbW9kZm1sZXMvTGLludXgiLCIvYXBwcy9sbWIkZmlsZXMvQ2
9y;' export '_ModuleTable0@3_;'
'_ModuleTable@04_=ZSIsIi%hcHBzL2xtb2QvbG1vZCIth2
R1bGVmaWx1cy9Db3J1Iix9LFsic31zdGVtQmFzZUTQQVRIIL
09Ii9hcHBzL2xtb2RmaWx1cy9MaW51eDovYXBwcy9sbWOkZm
1sZXMvQ29yZTovYXBwcy9sbWIkL2x tb2QvbWIkdWx1ZmlsZX |
MvQ29yZSIsfQ==;"' export '_ModuleTable0o4_;'

' _ModuleTable_Sz_=4;' export '_ModuleTable_Sz_;'
MODULEPATH=/apps/1modfiles/MPI/intel/18.0/mvapic
h2/2.3:/apps/1lmodfiles/Compiler/intel/18.0:/apps
/1modfiles/Linux:/apps/1lmodfiles/Core:/apps/lmod
/1mod/modulefiles/Core

export MODULEPATH

An Efficient Mixed-Mode Representation of Sparse Tensors

+++

+++

ModuleTable@@1=X01vZHVsSZVRhYmx1Xz17WyJNVHZ1cnN
pb24iXTOzLFsiY19yZWI1aWxkVG1tZSTdPTg2NDAWLFsiY19
zaG9ydFRpbWUiXT1mYWxzZSxkZXB@aFQ9e30@sZmF taWx5PXt |
bImNvbXBpbGVyI109ImludGVsIixbImiwaSJdPSJtdmFwaWN
oMiIsfSxtVD17Y3h4MTc9e1siZm4iXTOiL2FwcHMVbGIvVZGZ
pbGVzLONvbXBpbGVyL21udGVsLzE4L jAvY3h4MTcvNy4zL jA |
UubHVhIixbImZ1bGxOYW11I109ImN4eDE3LzcuMy4wIixbImx
VYWRPcmR1ciJdPTIscHIvcFQ9e30sWyJzdGF ja@R1cHR0I1O
9MixbINNQYXR1cyJdPSJThY3RpdmUiLFsidXN1ck5hbWUiXT@
1Y3h4MTcilLHOsaW50ZWw9e1siZm4iXTOiL 2FwcHMVbG1vZGZ
pbGVzLONvcmUvaW50ZWwvMTguMC4zLmx1YSIsWy ImdWxsTmFt
export _ModuleTable@@1_
ModuleTable@@2=7SJdPSJpbnR1bC8x0C4wL jMiLFsibG9
hZE9yZGVyI109MyxwcmOwVD17fSxbInNOYWNrRGVwdGgiXTa
XLFsic3RhdHVzI109ImF jdG12ZSIsWyJ1c2VyTmFtZSIdPST
pbnR1bCIsfSxtb2R1bGVzPXtbImZuIl@9Ii9hcHBzL2xtb2R
maWx1cy9Db3J1L21vZHVSZXMvYXUyMDE4Lmx1YSIsWyJmdWx |
sTmFtZSJdPSJtb2R1bGVzL2FTMjAXOCIsWyJsb2FKT3JKZXT
iXT@1LHBYb3BUPXt9LFsic3RhY2tEZXBOaCJdPTAsWyJzdGF
0dXMiXT@OiYWN@aXZ1IixbInVzZXJOYW11I109Im1vZHVSZXM
iLHOsbXZhcGljaDI%1siZm4iXTOiL 2FwcHMvbG1vZGZpbGV
zLONvbXBpbGVyL21udGVsLzE4LjAvbXZhcGl jaDIvMi4zLmx |
1YSIsWyImdWxsTmFtZSJdPSJtdmFwaWNoMi8yL jMiLFsibG9h
export _ModuleTable0@2_
ModuleTable@03=7ZE9yZGVyI109INCxwcmOwVD17fSxbInN
OYWNrRGVwdGgiXTOxLFsic3RhdHVzI1@9ImF jdGl2ZSIsWyJ
1c2VyTmFtZSJdPSTtdmFwaWNoMiIsfSx4YWxOPXtbImZullo
9Ii9hcHBzL2xtb2RmaWx1cy9Db3J1L3hhbHQVbGFOZXNOLmx |
1YSIsWyImdWxsTmFtZSJdPSJ4YWxOL2xhdGVzdCIsWyJsb2F
kT3JkZXIiXT@OxLHByb3BUPXt9LFsic3RhY2tEZXBOaCJdPTE
sWyJzdGFOdXMiXTO@iYWN@aXZ1IixbInVzZXJOYW11I109Inh
hbHQiLHOsfSxtcGF@aEE9eyIvYXBwcy9sbWIkZmlsZXMvTVB
JL21udGVsLzE4L jAvbXZhcGl jaDIvMi4zIiwil 2FwcHMvbGT |
VZGZpbGVzLONvbXBpbGVyL21udGVsLzE4L jAiLCIVYXBwcy9 |
sbW9kZmlsZXMvTGludXgilLCIvYXBwcy9sbW9kZmlsZXMvQ29y
export _ModuleTable@@3_
ModuleTable@04=7SIsIi9hcHBzL2xtb2QvbG1vZCIth2R
1bGVmaWx1cy9Db3J1Iix9LFsic31zdGVtQmFzZUT1QQVRII1O
9Ii%hcHBzL2xtb2RmaWx1cy9MaW51eDovYXBwcy9sbWokzZml
SZXMvQ29yZTovYXBwcy9sbWIkL2xtb2QvbWIkdWx1ZmlsZXM
vQ29yZSIsfQ==

export _ModuleTable@@4_

_ModuleTable_Sz_=4

export _ModuleTable_Sz_

-s sh

++ eval
++ nvidia-smi

Thu

Apr 11 06:33:06 2019

| NVIDIA-SMI 410.79 Driver Version: 410.79

—

CUDA Version: 10.0 |

| GPU Name Persistence-M| Bus-Id Disp.A

—

RIGHTS

| Volatile Uncorr. ECC |

Ay

| Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage

— | GPU-Util Compute M. |
| +]

<, ===+ |

| @ Tesla V10Q-PCIE... On | 00000000:3B:00.0 Off

o off |

| N/A 31C PO 43W / 250W | 11MiB / 16130MiB
- | 0% E. Process |

B et o |
ey mmmtm +

B et T e et e T |
O et +

| Processes:

o GPU Memory |

| GPU PID Type Process name

[N Usage |

| No running processes found

++ cat
++ 1lshw -short -quiet -sanitize
WARNING: you should run this program as super-user.

H/W path Device Class Description
system Computer

/0 bus Motherboard

/0/0 memory 382GiB System

— memory

/0/1 processor Intel(R)

< Xeon(R) Gold 6148 CPU @ 2.40GHz

/0/3 processor Intel(R)

— Xeon(R) Gold 6148 CPU @ 2.40GHz

/0/100 bridge Sky Lake-E DMI3

— Registers

/0/100/5 generic Sky Lake-E

— MM/Vt-d Configuration Registers

/0/100/5.2 generic Intel

— Corporation

/0/100/5.4 generic Intel

— Corporation

/0/100/8 generic Sky Lake-E Ubox

— Registers

/0/100/8.1 generic Sky Lake-E Ubox

— Registers

/0/100/8.2 generic Sky Lake-E Ubox

— Registers

/0/100/11 generic Intel

— Corporation

/0/100/11.5 storage Lewisburg

— SSATA Controller [AHCI mode]

/0/100/14

— 3.0 xHCI Controller

/0/100/14.2

— Thermal Subsystem

/0/100/16

— CSME: HECI #1

/0/100/16.1

— CSME: HECI #2

/0/100/16.4

— CSME: HECI #3

/0/100/17

bus

generic

communication

communication

communication

storage

— Controller [AHCI mode]

/0/100/1c

— Express Root Port #1

/0/100/1c/0

— Network Connection

/0/100/1c/0.1

— Network Connection

/0/100/1c.4

— Express Root Port #5

/0/100/1c.4/0

/0/100/1c.4/0/0

bridge
network
network
bridge

bridge
display

— Matrox G200eW3 Graphics Controller

/0/100/1F

— Controller

/0/100/1f.2

— controller

/0/100/1f .4
/0/100/1f.5

— Controller

/0/2

— Express Root Port C

/0/2/0

bridge

memory

bus

bus
bridge

network

— Controller X710 for 10GbE SFP+

/0/2/0.1

network

— Controller X710 for 10GbE SFP+

/0/4
/0/6

generic

generic

— Configuration Registers

/0/7
/0/9
— Registers
/0/a
— Registers
/0/b
— Registers
/0/c
— Registers
/0/d
— Registers
/0/e
— Registers
/0/f
— Registers

RIGHTS L1 N Hig

generic

generic

generic

generic

generic

generic

generic

generic

Lewisburg USB
Lewisburg
Lewisburg
Lewisburg
Lewisburg
Lewisburg SATA
Lewisburg PCI
1350 Gigabit
1350 Gigabit
Lewisburg PCI

PLDA
Integrated

Lewisburg LPC

Memory

Lewisburg SMBus

Lewisburg SPI
Sky Lake-E PCI
Ethernet

Ethernet

Intel Corporation

Sky Lake-E RAS

Intel Corporation

Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA

Sky Lake-E CHA

/0/10
— Registers
/0/11
— Registers
/0/12
— Registers
/0/13
— Registers
/0/14
— Registers
/0/15
— Registers
/0/16
— Registers
/0/17
— Registers
/0/18
— Registers
/0/19
— Registers
/0/1a
— Registers
/0/1b
— Registers
/0/1c
— Registers
/0/1d
— Registers
/0/1e
— Registers
/0/1f
— Registers
/0/20
— Registers
/0/21
— Registers
/0/22
— Registers
/0/23
— Registers
/0/24
— Registers
/0/25
— Registers
/0/26
— Registers
/0/27
— Registers
/0/28
— Registers
/0/29
— Registers
/0/2a
— Registers

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky

Sky

Nisa, et al.

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

An Efficient Mixed-Mode Representation of Sparse Tensors

/0/2b
— Registers
/0/2c
— Registers
/0/2d
— Registers
/0/2e
— Registers
/0/2f
— Registers
/0/30
— Registers
/0/31
— Registers
/0/32
— Registers
/0/33
— Registers
/0/34
— Registers
/0/35
— Registers
/0/36
— Registers
/0/37
— Registers
/0/38
— Registers
/0/39
— Registers
/0/3a
— Registers
/@/3b
— Registers
/0/3c
— Registers
/@/3d
— Registers
/0/3e
— Registers
/0/3f
— Registers
/0/40
— Registers
/0/41
— Registers
/0/42
— Registers
/0/43
— Registers
/0/44
— Registers
/0/45
— Registers

RIGHTS LI L)

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky

Sky

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

PCU

/0/46 generic
— Registers

/0/47 generic
— Registers

/0/48 generic
— Registers

/0/49 generic
— Registers

/0/4a generic
— Registers

/0/4b generic
— Registers

/0/101 bridge
— Express Root Port A
/0/101/0 display
— V100 PCIe]

/0/4c generic
/0/4d generic
— Configuration Registers
/0/4e generic
/0/4f generic
/0/50 generic
/0/51 generic
/0/52 generic
/0/53 generic
/0/54 generic
/0/55 generic
/0/56 generic
/0/57 generic
/0/58 generic
/0/59 generic
/0/5a generic
/0@/5b generic
/0/5c generic
/0/5d generic
/0/5e generic
/0/5f generic
/0/60 generic
/0/61 generic
/0/62 generic
/0/63 generic
/0/64 generic
/0/65 generic
/0/66 generic
/0/67 generic
/0/68 generic
/0/69 generic
/0/6a generic
— Configuration Registers
/0/6b generic
/0/6¢ generic
/0/6d generic
/0/6e generic
/0/6f generic
/0/70 generic
/0/71 generic

Sky
Sky
Sky
Sky
Sky
Sky
Sky
GV1

Intel
Sky

Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Sky

Intel
Intel
Intel
Intel
Intel
Intel
Intel

Lake-E PCU

Lake-E PCU

Lake-E PCU

Lake-E PCU

Lake-E PCU

Lake-E PCU

Lake-E PCI

Q0GL [Tesla

Corporation
Lake-E RAS

Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Lake-E RAS

Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation

/0/72 generic
— M3KTI Registers

/0/73 generic
— M3KTI Registers

/0/74 generic
— M3KTI Registers

/0/75 generic
— M3KTI Registers

/0/76 generic
— M3KTI Registers

/0/77 generic
— M2PCI Registers

/0/78 generic
— M2PCI Registers

/0/79 generic
— M2PCI Registers

/0/7a generic
— M2PCI Registers

/0/7b generic
— MM/Vt-d Configuration Registers
/0/7c generic
/0/7d generic
/0/7e generic
— Registers

/0/7f generic
— Registers

/0/80 generic
— Registers

/0/102 bridge
— Express Root Port A

/0/102/0 ibo network
— [ConnectX-5]

/0/102/0.1 ib1 network
— [ConnectX-5]

/0/81 generic
/0/82 generic
— Configuration Registers
/0/83 generic
/0/84 generic
— Registers

/0/8.1 generic
— Registers

/0/8.2 generic
— Registers

/0/85 generic
— Registers

/0/86 generic
— Registers

/0/87 generic
— Registers

/0/88 generic
— Registers

/0/89 generic

— Registers

RIGHTS L1 N Hig

Sky Lake-E
Sky Lake-E
Sky Lake-E
Sky Lake-E
Sky Lake-E
Sky Lake-E
Sky Lake-E
Sky Lake-E
Sky Lake-E

Sky Lake-E

Intel Corporation
Intel Corporation
Sky Lake-E Ubox
Sky Lake-E Ubox

Sky Lake-E Ubox

Sky Lake-E PCI
MT27800 Family

MT27800 Family

Intel Corporation

Sky Lake-E RAS

Intel Corporation

Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA
Sky Lake-E CHA

Sky Lake-E CHA

/0/8a
— Registers
/0/8b
— Registers
/0/8c
— Registers
/0/8d
— Registers
/0/8e
— Registers
/0/8f
— Registers
/0/90
— Registers
/0/91
— Registers
/0/92
— Registers
/0/93
— Registers
/0/94
— Registers
/0/95
— Registers
/0/96
— Registers
/0/97
— Registers
/0/98
— Registers
/0/99
— Registers
/0/9a
— Registers
/0/9b
— Registers
/0/9c
— Registers
/0/9d
— Registers
/0/9%e
— Registers
/0/9f
— Registers
/0/a0
— Registers
/0/al
— Registers
/0/a2
— Registers
/0/a3
— Registers
/0/a4
— Registers

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky

Sky

Nisa, et al.

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

An Efficient Mixed-Mode Representation of Sparse Tensors

/0/a5
— Registers
/0/ab
— Registers
/0/a7
— Registers
/0/a8
— Registers
/0/a9
— Registers
/0/aa
— Registers
/0/ab
— Registers
/0/ac
— Registers
/0/ad
— Registers
/0/ae
— Registers
/0/af
— Registers
/0/b0@
— Registers
/0/b1
— Registers
/0/b2
— Registers
/0/b3
— Registers
/0/b4
— Registers
/0/b5
— Registers
/0/b6
— Registers
/0/b7
— Registers
/0/b8
— Registers
/0/b9
— Registers
/@/ba
— Registers
/0/bb
— Registers
/@/bc
— Registers
/0/bd
— Registers
/0/be
— Registers
/0/bf
— Registers

RIGHTS LI L)

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

generic

Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky
Sky

Sky

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

Lake-E

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

CHA

PCU

PCU

/0/c0o generic
— Registers

/0/cl generic
— Registers

/0/c2 generic
— Registers

/0/c3 generic
— Registers

/0/c4 generic
— Registers

/0/103 bridge
— Express Root Port A
/0/103/0 ib2 network
— [ConnectX-5]

/0/103/0.1 ib3 network
— [ConnectX-5]

/0/c5 generic
/0/c6 generic
— Configuration Registers
/0/c7 generic
/0/8 generic
/0/c8 generic
/0/c9 generic
/@/ca generic
/0/cb generic
/0/cc generic
/0/cd generic
/0/ce generic
/0/cf generic
/0/de generic
/0/d1 generic
/0/d2 generic
/0/d3 generic
/0/d4 generic
/0/d5 generic
/0/d6 generic
/0/d7 generic
/0/d8 generic
/0/d9 generic
/0/da generic
/0/db generic
/0/dc generic
/0/dd generic
/0/de generic
/0/df generic
/0/e0 generic
/0/104 bridge
— Express Root Port A
/0/104/0 display
— V100 PCIe]

/0/5 generic
/0/5.2 generic
— Configuration Registers
/0/5.4 generic

— Corporation

Sky Lake-E PCU

Sky Lake-E PCU

Sky Lake-E PCU

Sky Lake-E PCU

Sky Lake-E PCU

Sky Lake-E PCI

MT27800 Family

MT27800 Family

Intel

Corporation

Sky Lake-E RAS

Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel

Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation

Sky Lake-E PCI

GV100GL [Tesla

Intel

Corporation

Sky Lake-E RAS

Intel

/0/el generic Intel Corporation
/0/e2 generic Intel Corporation
/0/e3 generic Intel Corporation
/0/e4 generic Intel Corporation
/0/e5 generic Intel Corporation
/0/e6 generic Intel Corporation
/0/e7 generic Sky Lake-E

— M3KTI Registers

/0/e8 generic Sky Lake-E

— M3KTI Registers

/0/e9 generic Sky Lake-E

— M3KTI Registers

/0/ea generic Sky Lake-E

— M3KTI Registers

/@/eb generic Sky Lake-E

— M3KTI Registers

/0/ec generic Sky Lake-E

— M2PCI Registers

/0/ed generic Sky Lake-E

— M2PCI Registers

/0/ee generic Sky Lake-E

— M2PCI Registers

/0/ef generic Sky Lake-E

— M2PCI Registers

/0/f0 system PnP device

— PNPQb00@

/0/f1 system PnP device

— PNPQc02

/0/f2 communication PnP device

— PNP0@501

/0/f3 communication PnP device

— PNP0501

/0/f4 system PnP device

— PNP0Oc02

/0/f5 system PnP device

— PNPQc02

WARNING: output may be incomplete or inaccurate, you
— should run this program as super-user.

ARTIFACT EVALUATION

Verification and validation studies: We evaluate the performance
of the proposed MM-CSF format against six benchmarks. Among
these six frameworks, BCSF-ALL, ParTI-COO, and FCOO are GPU
based frameworks. HICOO, SPLATT-ALL and SPLATT-ONE are
CPU based frameworks. We show performance in terms of GFLOPS
on six datasets: deli, nell1, nell2, flick, fr_m, fr_s and darpa. The steps
to collect datasets and the running procedure can be found in the
repository. We expect MM-CSF to outperform all other benchmarks
for all the cases.

Accuracy and precision of timings: The following two tables sum-
marize the GFLOPS achieved by MM-CSF and other state-of-the-art
benchmarks on CPUs and GPUs.The column header represents the
name of the benchmarks. The row header represents the datasets.

GFLOPS of MM-CSF and other GPU based frameworks:

RIGHTS L1 N Hig

Nisa, et al.

MM-CSF, ALL-BCSF, ParTI-COO, FCOO deli: 364, 333, 271, fails
nelll: 285, 270, 176, fails nell2: 763, 607, 313, fails flick: 435, 327,
295,fails fr_m: 235, 194, 127, fails fr_s: 228, 203, fails, fails darpa:
327, 209, 100, 29

GFLOPS of MM-CSF and other CPU based frameworks:

MM-CSF, HiCOO, SPLATT-ALL, SPLATT-ONE deli: 364, 7, 8, 13
nelll: 285, 5, 17, 18 nell2: 763, 78, 150, 225 flick: 435, 4, 7, 25 fr_m:
235,5,5,4fr s:228,5,4,4 darpa: 327,7,7,1

	Abstract
	1 Introduction
	2 Tensor Background
	2.1 Tensor Notation
	2.2 CANDECOMP/PARAFAC Decomposition and MTTKRP
	2.3 The Optimized MTTKRP Algorithm

	3 Sparse Tensor Formats
	3.1 Storage and Floating Point Operations
	3.2 Number of Representations

	4 MM-CSF: A Mixed-Mode CSF
	4.1 Partitioning of Nonzeros

	5 Balanced MTTKRP algorithms using MM-CSF
	5.1 MTTKRP on Slice mode
	5.2 MTTKRP on Fiber Mode
	5.3 MTTKRP on nonzero mode

	6 Experimental Evaluation
	6.1 Evaluation Setup
	6.2 Reduction in Fibers Using MM-CSF
	6.3 Impact of Partitioning
	6.4 Improvement in GPU Occupancy and DRAM Transactions
	6.5 Performance Comparison with BCSF-ALL
	6.6 Performance Model
	6.7 Overall Performance
	6.8 Overall Storage
	6.9 Format Conversion to MM-CSF
	6.10 Application speedup

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

