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Importance Sampling for Thermally Induced Switching
and Non-Switching Probabilities in Spin-Torque

Magnetic Nanodevices
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Spin-transfer torque magnetoresistive random access memory is a potentially transformative technology in the non-volatile memory
market. Its viability depends, in part, on one’s ability to predictably induce or prevent switching; however, thermal fluctuations
cause small but important errors in both the writing and reading processes. Computing these very small probabilities for magnetic
nanodevices using naive MC simulations is essentially impossible due to their slow statistical convergence, but variance reduction
techniques can offer an effective way to improve their efficiency. Here, we provide an illustration of how importance sampling can
be efficiently used to estimate low read and write soft error rates of macrospin and coupled-spin systems.
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I. INTRODUCTION

SPIN-TRANSFER torque magnetoresistive random
access memory (STT-MRAM) has been proposed as a

non-volatile replacement for random access memory that
offers high-speed, low-power consumption, non-volatility, and
unlimited endurance [1]–[5]. One of the primary obstacles
to its widespread deployment is physical scaling due to
an increased error rate that accompanies smaller volumes
of storage cells. A memory device should switch quickly
and reliably when switching is intended and otherwise
maintain its current state. However, thermal fluctuations in
the magnetization orientation can sometimes induce unwanted
switching during either storage or an attempted read event,
or failure to switch during an attempted write event. These
contribute to the write soft error rate (WSER), read soft error
rate (RSER), and retention failure rate [6]. The expected
values of WSER and RSER in STT-MRAM should not
exceed the order of 10−18 without error correction [2]. Due to
the importance of these extremely small rates in quantifying
the viability of experimental STT-MRAM configurations,
analytical and computational techniques that facilitate their
calculation are critically important.

One approach makes use of the Fokker–Planck equa-
tion (FPE) describing the time evolution of the switching
probability [7]–[9]. In the macrospin approximation, treating
each STT-MRAM bit as a single magnetic domain, the FPE
can be solved directly or can be further approximated by
the Brown–Kramers formula, which overestimates the RSER
for short read times [6]. However, both the effects of spa-
tial variations in the magnetization across a single memory
cell and interactions between adjacent cells obviously cannot
be captured in the macrospin approximation. These effects
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increase in importance as the size of each cell exceeds the scale
of above 50 nm in lateral size and must, therefore, be taken
into account to support development of magnetic nanodevices
at this scale [10]. Direct numerical simulations of the FPE
increase exponentially in computational cost as the dimension
of the coupled system of macrospins is increased, and this high
cost is exacerbated by the presence of boundary layers associ-
ated with the small size of thermal fluctuations. Efficient com-
putational methods are therefore needed to provide a means
of determining these small switching probabilities and rates.

The most common approach to computing switching prob-
abilities uses sampling to provide an empirical estimate of
the quantity of interest. However, the extremely low-switching
probabilities and rates relevant to micromagnetic devices
make naive Monte Carlo (MC) studies essentially impossible.
A common approach to recover the tails of the probabil-
ity distribution from MC simulations is via extrapolation
(see [11]–[13]). However, this may introduce large uncon-
trolled inaccuracies due to the failure of the fitting form to
capture the asymptotic behavior of the probability distribution
in the small noise limit [14], [15]. Alternatively, variance
reduction techniques such as importance splitting attempt to
concentrate the samples generated on those with a higher
likelihood of registering a rare event of interest [16]–[20].

Here, we demonstrate that accurate switching probabilities
and error rates of STT-MRAM devices can be computed
efficiently using another variance reduction technique known
as importance sampling (IS) in an ensemble of biased MC
simulations. We intentionally choose a particularly simple
micromagnetic setting to clearly illustrate the IS method-
ology in the context of STT-MRAM modeling. The main
point of this paper is to demonstrate that with the help of
IS, the events with extremely low probability of occurrence
can be accessed via direct MC sampling with an additional
post-processing step. This together with the simplicity of its
implementation could make the IS-based approach a powerful
tool in assisting the design of the next generation of spintronic
nanodevices.
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Our paper is organized as follows. In Section II, we review
IS and the strategies for optimal choices of bias. In Section III,
we formulate the stochastic micromagnetic model for a single
macrospin or a system of exchange coupled macrospins, and
then show how to apply IS to sample switching probabilities
in the macrospin approximation. In Section IV, we carry out
IS simulations for a single macrospin and a coupled system
of two identical macrospins with different choices of biases
to demonstrate the power and efficiency of IS in the context
of STT-MRAM applications. Finally, in Section V, we briefly
summarize our findings.

II. IMPORTANCE SAMPLING

Suppose we wish to estimate the probability P = E0[I (ω)]
of a system driven by random variable ω producing an event
with indicator function I (ω). Here, E0[·] denotes the expected
value with respect to the density ρ0(ω), such that

P = E0[I (ω)] =
∫

I (ω)ρ0(ω) dω. (1)

A naive MC method uses M independent draws ωi from ρ0
to approximate P according to

PMC = 1

M

M∑
i=1

I (ωi ). (2)

The coefficient of variation (CV), which measures the statis-
tical error of the sample, is given by

CV (PMC) =
√

Var(PMC)

E0[PMC] = 1√
M

√
1

PMC
− 1. (3)

For PMC � 1, smallness of CV (PMC) requires M �
1/PMC � 1. In the present case, this necessitates an imprac-
tically large number of simulations to produce a reasonable
estimate of the probability. The idea behind IS is to sample
ω from an alternative probability density ρu(ω) that depends
on a bias u chosen to increase the likelihood of the event of
interest. An unbiased estimator is then recovered by weighting
each result according to

PIS = 1

M

M∑
i=1

I (ωi )L(ωi ), (4)

where L(ω) = ρ0(ω)/ρu(ω) is called the likelihood ratio and
assumes that ρu(ω) > 0 whenever ρ0(ω) > 0. The resulting
CV is then given by

CV(PIS) =
√

Var(PIS)

Eu[PIS] = 1√
M

√
Eu [I (ω)L2(ω)]

Eu[PIS]2 − 1, (5)

where Eu denotes the expectation with respect to ρu and
1/P ≥ Eu[I (ω)L2(ω)]/P2 ≥ 1. Expression (5) suggests that
a “good” bias to use in IS keeps Eu[I (ω)L2(ω)]/P2 close to 1.

In many cases of interest, including the one discussed here,
the underlying physical model is described by a stochastic
differential equation (SDE)

d X (t) = b(X (t))dt + εσ(X (t))dW (t), X (0) = X0, (6)

where X (t) ∈ R
N , for some N ≥ 1, is a randomly evolving

state variable, b(x) is its deterministic drift, σ(x) is the
noise strength matrix, dW is an infinitesimal increment of
an N-dimensional Brownian motion, and ε > 0 is the noise
strength. In many situations of interest, the noise is weak:
ε � 1. If we wished to observe the state X (t) exhibiting a
behavior that is very rare for typical realizations of the Brown-
ian motion W (t), we would have to simulate this equation a
very large number of times, even more so to produce an accu-
rate probability estimate from these empirical observations. In
the case of SDEs, the IS technique makes rare events happen
more often by introducing a bias ε−1u(X (t), t)dt to the mean
of the noise increment dW , such that CV of the estimate PIS is
reduced at the same time [21], [22]. This provides new paths
X̃(t) that evolve according to

d X̃ =
(

b(X̃) + σ(X̃)u(X̃ , t)
)

dt + εσ(X̃)dW. (7)

By Girsanov’s theorem [23], [24], for a time horizon T > 0,
the likelihood ratio is given by

L = exp

(
− 1

2ε2

∫ T

0
|u(X̃ , t)|2dt− 1

ε

∫ T

0
�u(X̃ , t), dW (t)�

)
,

(8)

where �·, ·� stands for the Euclidean inner product in R
N , W (t)

is the realization of the noise that produced X̃(t), and the last
integral is understood in the Itô sense. This expression may
then be incorporated into the IS estimator (4) to recover an
unbiased probability estimate. We emphasize that in the limit
M → ∞ one recovers from (4) the exact value of P for
the original, unbiased process. The effect of good biasing is
simply to concentrate the runs sampled in (4) on those with
highest likelihood of activating the indicator function, thereby
producing an accurate estimate of P with vastly fewer biased
MC runs.

Over finite-time horizons, an effective bias u = u∗ can be
obtained by minimizing the Freidlin–Wentzell large deviation
action. Namely, for a given time horizon T > 0, current time
t < T , current state x and the set of targeted outcomes A one
looks for the minimizer φT

t,x(s) of the functional

ST [φ] =
∫ T

t

1

2
|σ−1(φ(s))(φ̇(s) − b(φ(s)))|2ds, (9)

where φ̇(s) = dφ(s)/ds, over absolutely continuous paths
φ : [t, T ] → R

N satisfying φ(t) = x and φ(T ) ∈ A
[25]. The finite-time bias function u∗ = u∗

T is then given
by [21], [24], [26]

u∗
T (x, t) = σ−1(x)

(
φ̇T

t,x(t) − b(x)
)
. (10)

Over infinite-time horizons, i.e., when T → ∞, a convenient
reparametrization allows the action in (9) to be minimized
with respect to arclength rather than time. In this case, one
can choose u∗ = u∗∞, where u∗∞(x) is obtained from the
minimizer φx (α) of the functional [25], [27]

S∞[φ] =
∫ 1

0
(|σ−1(φ(α))φ�(α)
σ−1(φ(α))b(φ(α))|

−�σ−1(φ(α))φ�(α), σ−1(φ(α))b(φ(α))�)dα

(11)
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among all absolutely continuous paths φ : [0, 1] → R
N

satisfying φ(0) = x and φ(1) ∈ A. Here φ�(α) = dφ(α)/dα.
The infinite-time bias is then given by [21]

u∗∞(x) = σ−1(x)

( |σ−1(x)b(x)|
|σ−1(x)φ�

x(0)|φ
�
x(0) − b(x)

)
. (12)

One of the strategies discussed in the following is the use
of IS with infinite-time bias functions to obtain switching
probabilities over finite-time horizons. This strategy is based
on the observation that, when the characteristic speed obtained
by dividing the domain radius by the time horizon is small
relative to the maximum speed of the infinite-time minimizing
path, the finite-time, and infinite-time minimizing paths are
nearly identical outside of small neighborhoods around the
dynamic fixed points. As will be seen in Section IV, this strat-
egy is effective for intermediate times but does not correctly
promote the long periods spent near the stable fixed point
in the true dynamics. This manifests in reduced efficiency of
the IS strategy in these cases. To address this phenomenon,
we turn off the biasing for values of x within a diffusion
length of the stable fixed point, which leads to a significant
improvement of sampling efficiency.

III. MICROMAGNETIC FRAMEWORK AND THERMALLY

INDUCED SWITCHING

We consider a region � ⊂ R
3 occupied by a ferromag-

netic film with in-plane shape D ⊂ R
2 and thickness d ,

i.e., � = D×(0, d), characterized by saturation magnetization
Ms , exchange stiffness A and an in-plane uniaxial anisotropy
constant Ku , at temperature kB T in energy units. To model
the free layer of an in-plane STT-MRAM cell, we use the
stochastic Landau–Lifshitz–Gilbert equation [28], [29] for the
unit magnetization vector m = (mx , my, mz), written in
the Landau–Lifshitz form
∂m
∂ t

= −m × h − αm × m × h + αm × τSTT + τSTT, (13)

where time and lengths are measured in the units of τ0 =
(1+α2)/(γμ0 Ms ) and lex = √

2 A/(μ0 M2
s ), respectively, α

is the Gilbert damping, γ is the gyromagnetic ratio, and τ ST T

is the spin-transfer torque. The effective field is given by

h = − δE

δm
+ √

ση, (14)

where

E[m] = 1

2

∫
D

(|∇m|2 + Qm2
y + m2

z

)
d2r (15)

is the leading order thin-film micromagnetic energy measured
in the units of 2Ad , and Q = 2Ku/(μ0 M2

s ) is the quality
factor [30]. The thermal fluctuation term η(r, t) is a delta-
correlated, suitably regularized 3-D spatiotemporal Gaussian
white noise [31], with noise strength

σ = αkB T

Ad(1 + α2)
(16)

by the fluctuation–dissipation theorem [32], [33].
Equation (13) is to be interpreted in the Stratonovich sense,
so that it preserves the norm constraint |m| = 1 [28], [33].

The spin-transfer torque τSTT is given by

τSTT = aJ m × m × mp + bJ m × mp, (17)

where aJ = −η j h̄/(2deμ0 M2
s ) and bJ = βaJ are dimen-

sionless Slonczewski and fieldlike torque strengths [29]. Here,
j is the density of electric current passing perpendicularly
through the film, e is the elementary charge, η ∈ (0, 1] is the
spin polarization efficiency, β is the relative strength of the
field-like spin torque, and mp is the spin-polarization direc-
tion. In this paper, we consider mp = (1, 0, 0)T , i.e., when the
spin current is polarized along the easy axis in the film plane,
as is the case in the basic in-plane spin valve [2], [34], [35].

The macrospin approximation assumes spatial uniformity
across the ferromagnet, such that the first term in (15) is zero
and (13) is an ordinary differential equation. In this case,
E(m) = 1

2 (Qm2
y + m2

z )S, where S is the area of D in the
units of l2

ex , and the effective field is given by

h = −S−1∇m E +
√

2αε

1 + α2 Ẇ(t), (18)

where ε = kB T/(2Ad S), and W(t) is a 3-D Brownian
motion. The noise coefficient

√
2αε/(1 + α2) is consistent

with the Gibbs distribution, in which ε plays the role of the
dimensionless temperature.

When the dimensionless parameters satisfy

α ∼ 1 and aJ ∼ bJ ∼ Q � 1, (19)

i.e., in soft materials with relatively high damping and low
spin torques, the magnetization is always constrained to lie
almost entirely in the film plane [36]–[38]. In this case,
the system (13) may be simplified to an equation for the angle
θ such that m � (cos θ, sin θ, 0) (see the Appendix)

θ̇ = b(θ) + 1√
�

Ẇ , (20)

where

b(θ) = (IJ − cos(θ)) sin(θ), (21)

IJ = bJ /Q, 1/� = 2ε/Q, and the unit of time is now
τQ = α/(γμ0 Ms Q). We point out that even though (20) was
obtained for an in-plane STT-MRAM cell, exactly the same
equation arises in the modeling of perpendicular cells [6].
Therefore, a direct comparison with the results obtained by
Butler et al. [6], who used the analysis of the FPE is also
possible.

Equation (20) with 0 ≤ IJ < 1 will be used as the simplest
example of a stochastic micromagnetic model with bistability,
for which several IS biasing strategies will be illustrated.
A more realistic model of an STT-MRAM cell would need to
incorporate spatial heterogeneity within the cell, which may
be captured by considering a system of N exchange-coupled
macrospins associated with the magnetization in each of
the polycrystalline grains. If each grain has a dimensionless
area Si , 1/�i = kB T/(Ad Si Q), and θi are such that the
magnetization in each grain is mi � (cos θi , sin θi , 0), then
(20) may be generalized to [39]–[41]

θ̇i = b(θi) +
N∑

j=1

ai j S−1
i sin(θ j − θi) + 1√

�i
Ẇi , (22)
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using Heisenberg exchange with dimensionless strengths ai j =
a j i ≥ 0 for the interactions between the grains, with Wi being
N uncorrelated Brownian motions. Note that this equation
is a stochastic version of a gradient system governed by an
effective potential

VN (θ1, . . . , θN ) =
N∑

i=1

Si

(
IJ cos θi + 1

2
sin2 θi

)

−
N−1∑
i=1

N∑
j=i+1

ai j cos(θi − θ j ) (23)

and obeying detailed balance. The coupling coefficients ai j

are non-zero only for the nearest neighbors and may, in prin-
ciple, be determined from the geometric characteristics of the
individual grains. For simplicity, in this paper, we will limit
ourselves to the consideration of the case of two identical
macrospins only, which may correspond, e.g., to exchange-
coupled synthetic bilayers [42].

The single macrospin drift term defined in (21) has stable
fixed points θ = 0 and θ = ±π , separated by unstable fixed
points θ = ±θJ , where θJ = arccos(IJ ) ≤ π/2. Therefore, for
a trajectory starting close to θ = 0 at t = 0, a switching event
for the time horizon T > 0 would be defined as one in which
|θ | is close to π at t = T . For the purposes of this paper,
we consider a switching event to have occurred if |θ(Tsw)| =
π/2 for some 0 < Tsw ≤ T , starting with θ(0) = 0, i.e., the
macrospin changes its direction along the easy axis. Similarly,
for the system of two-coupled macrospins governed by (22)
and starting with θ1(0) = θ2(0) = 0, we define a switching
event to have occurred if max(|θ1(Tsw)|, |θ2(Tsw)|) = π/2 for
some 0 < Tsw ≤ T , i.e., at least one macrospin changes its
direction along the easy axis.

The exact finite-time switching probability for a single
macrospin exhibited by (20) can be computed by solving the
backward FPE for the probability Psw(θ, t) that a trajectory
starting at a given value of θ ∈ (−π/2, π/2) reached the value
of θ = ±π/2 by time t [43]. This probability satisfies

∂ Psw

∂ t
= b(θ)

∂ Psw

∂θ
+ 1

2�

∂2 Psw

∂θ2 (24)

for (θ, t) ∈ (−π/2, π/2) × (0, T ), with initial and boundary
conditions, respectively,

Psw(θ, 0) = 0, Psw(±π/2, t) = 1. (25)

In particular, the probability of having switched by time T ,
given the initial state θ(0) = 0 is equal to Psw(0, T ).

As an alternative to solving (24), we incorporate IS in the
estimation of Psw by sampling controlled dynamics

˙̃θ = b(θ̃) + u∗ + 1√
�

Ẇ , θ̃ (0) = 0 (26)

for t ∈ (0, T ). For finite-time bias, we have u∗ = u∗
T , where

u∗
T (θ̃ , t) = θ̇T

θ̃ ,t
(t)−b(θ̃ ) is the bias function obtained through

(10) by interpreting (26) as an instance of (7) with ε = 1/
√

�,
using the minimizer θT

θ̃ ,t
(s) of the finite-time action

ST [θ ] =
∫ T

t

1

2
|θ̇ (s) − b(θ(s))|2ds (27)

among all θ(s) with θ(t) = θ̃ and |θ(T )| = π/2. For
sufficiently large time horizons, we set instead u∗ = u∗∞,
where the ininfite-time bias u∗∞ is obtained from the minimizer
of the infinite-time action S∞. In the single macrospin case,
the latter is simply given by a straight line segment, resulting
in a particularly simple explicit form of the bias

u∗∞(θ̃) =
{

−2b(θ̃), −θJ � θ̃ � θJ ,

0, otherwise.
(28)

To account for switching events, we stop the trajectory at
time t = Tsw as soon as the switching criterion |θ̃ (t)| = π/2
is satisfied, or otherwise set Tsw = T . The likelihood ratio is
recovered from (8), which in this case is

L = exp

(
−�

2

∫ Tsw

0
|u∗(t)|2dt − √

�

∫ Tsw

0
u∗(t) dW (t)

)
,

(29)

where either u∗(t) = u∗
T (θ̃ (t), t) or u∗(t) = u∗∞(θ̃ (t)),

depending on whether we use the finite- or infinite-time bias
function, respectively, and θ̃ (t) is the solution of (26) with a
particular realization W (t) of the noise.

IV. SIMULATIONS

This section describes the results obtained from IS simula-
tions of macrospin and coupled-spin systems using the physi-
cal parameters drawn from [6] for the purpose of comparison.
All simulations use the Euler–Maruyama method with a fixed
time step τ = 0.1.

The IS results presented in the following are obtained
using bias functions based on either finite- or infinite-time
minimizers of the action given by (9). Infinite-time bias
functions are based on (28) in the macrospin case and,
therefore, do not require additional computation. Infinite-time
bias functions for the coupled-spin system are obtained by
minimizing the action in (9) through the geometric minimum
action method (GMAM) with 50 gridpoints [27]. Finite-time
bias functions are obtained by minimizing the action in (9)
through a combination of Newton’s method for the associated
Euler–Lagrange equation and the improved adaptive minimum
action method [44], with 500 gridpoints in the macrospin case
and 100 in the coupled-spin case.

A. Single Macrospin

The discretized version of (26) reads explicitly

θ̃ k+1 = θ̃ k + (b(θ̃ k) + u∗(θ̃ k, tk))τ +
√

τ√
�

ξk, θ̃0 = 0,

(30)

where θ̃ k = θ̃ (tk), tk = kτ for k = 0, 1, . . . , K , and ξk are
independent and drawn from the standard normal distribution.
The value of K is chosen so that either |θ̃k| < π/2 for all
k < K < �T/τ� and |θ̃ K | ≥ π/2, or K = �T/τ�, i.e., we
stop the simulation if a switching event occurs at time tk < T .
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Fig. 1. IS estimate for switching probability (RSER) and CV of the RSER with sample size M = 103. (a) RSER versus reading pulse duration T and
reading current IJ with thermal stability factor � = 60. Solid lines denote numerical solutions of FPE (24). Open circles and open diamonds denote estimates
generated by IS with finite-time bias functions and infinite-time bias functions, respectively, color coded by current amplitude. For T ≥ 5, infinite-time bias
functions are used; whereas for IS and for T ≤ 6, finite-time bias functions are used. IS results at T = 5 and T = 6 obtained using the infinite- and finite-time
bias functions are indistinguishable. (b) CV of the RSER.

Fig. 2. Similar to Fig. 1, but with � = 30. For T ≥ 4, infinite-time bias functions are used, and for T ≤ 5, finite-time bias functions are used. IS estimates at
T = 4 and T = 5 obtained using infinite- and finite-time bias functions are indistinguishable. (a) RSER versus reading pulse duration T . (b) CV of the RSER.

The likelihood ratio corresponding to (29) is then given
explicitly by

L = exp

(
−τ�

2

K∑
k=0

|u∗(θ̃ k, tk)|2 − √
τ�

K∑
k=0

u∗(θ̃ k, tk) ξk

)
.

(31)

The following figures are generated using switching probabil-
ities and their coefficients of variation computed by applying
formulas (4) and (5), respectively, to ensembles of M runs,
where I (ωi ) = 1 for runs that generate a switching event and
I (ωi ) = 0 otherwise.

Figs. 1 and 2 show the RSER as a function of time for
seven values of IJ between 0 and 0.6 with thermal stability
factors � = 60 and � = 30, respectively. Runs at both
temperatures are included here to facilitate comparison with
the results presented in [6]. Both show a comparison between
numerical solutions of backward FPE (24) and IS simulations
for the macrospin model. For T ≥ 5 in Fig. 1 and T ≥ 4
in Fig. 2, infinite-time bias functions are used for IS, while

for T ≤ 6 in Fig. 1 and T ≤ 5 in Fig. 2, finite-time bias
functions are used. On the logarithmic scale, the agreement
between the FPE and IS results is excellent throughout the
range of times and currents, as can be seen from Figs. 1(a)
and 2(a). In relative terms, for M = 103, the values of Psw
obtained using IS typically agree with the FPE results to
within 10% − 20%, while capturing correctly the magnitudes
of Psw that vary by many orders. Note that in this case,
the IS sampling error dominates the discretization error of the
Euler–Maruyama scheme, with the values of CV giving a good
idea of the relative error for Psw. We verified that increasing
the sample size M decreases both the value of the CV and
the relative error. For example, the relative error goes down
to a few percent for M = 105 for most of the data points
in Figs. 1 and 2. However, this unnecessary improvement in
accuracy comes at the expense of a hundred-fold increase
in the runtime. Finally, one can see that the IS results are
internally consistent between the finite- and infinite-time bias
functions used at T = 5 and T = 6 in Fig. 1, and used at
T = 4 in Fig. 2.
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Fig. 1(b) shows the CV for the IS estimates in Figs. 1(a)
and Fig. 2(b) shows those for the estimates shown in Fig. 2(a).
The CV values for the IS estimates range from approxi-
mately 0.05–0.5. We note that with an inappropriate choice
of bias, the CV can be an imperfect measure of accuracy for
MC estimates using variance reduction [45]. However, this is
precluded by our choice of an asymptotically optimal bias
function that is based on the large deviation theory [24], [46],
as can also be seen from the excellent agreement with the
solutions to FPE (24). The low CV values obtained for such
extremely small probabilities with moderate sample size of
M = 103 are, therefore, a clear demonstration of the efficiency
of the bias functions used here.

In both figures, the CVs are observed to increase when
T is decreased from T = 10 to T = 5, indicating that
the infinite-time bias function used for these runs becomes
progressively less efficient at capturing the switching events
as the time horizon shrinks. The application of finite-time
bias functions for smaller times lowers the CVs as expected.
Furthermore, Figs. 1(b) and 2(b) show a similar pattern in
the CVs generated by IS with infinite-time bias functions,
where the CVs also increase for large times T , leading to
a deterioration of the sampling accuracy. Fig. 3 illustrates this
sudden increase in CV in the context of longer times, as well
as a histogram of switching times, and the time evolution of
the spread in values of likelihood ratio.

This decrease in efficiency of the infinite-time bias function
for large but finite-time horizons is due to the fact that exits
have a natural finite-time scale dictated by diffusion near
the fixed points with the action minimizer bridging the gap
between them. When the time horizon of the simulation is
large relative to this time scale, it allows for exit events that
hover near the stable fixed point before exiting just prior to
the horizon time. These events occur with considerably higher
likelihood under the unbiased dynamics than under the biased
dynamics, leading to a very large likelihood ratio that causes
them to dominate the CV computation. Since the diffusion
time grows as the noise strength decreases, this phenomenon
can be regarded as a finite-noise effect, and it, indeed, vanishes
as � → ∞. We address this issue for finite noise by turning
off the biasing near the stable fixed point, i.e., for |θ | < θ0,
with the results plotted for different values of θ0 in Fig. 4.
It is clearly seen that as θ0 increases, the anomalous behavior
for large horizon time is mitigated, at the expense of sampling
efficiency for small horizon times.

B. Two-Coupled Identical Macrospins: Model

To demonstrate that the IS method can also be effective in
coupled systems, we simulate two spins with identical volume
and dynamics given by (22), which, in this case, is explicitly

θ̇1 = c sin(θ2 − θ1) + b(θ1) +
√

2

�
Ẇ1, (32)

θ̇2 = c sin(θ1 − θ2) + b(θ2) +
√

2

�
Ẇ2, (33)

where c > 0 is the ferromagnetic exchange coupling strength
favoring parallel alignment of the two spins. The initial

Fig. 3. CVs of IS estimators for IJ = 0.3 with infinite-time bias functions
and sample size 105. Inset (a) is a histogram of exit times for the biased
system. Inset (b) is the estimated likelihood ratio vs. time. Inset (c) is the
probability of switching before time T . The sample size here is M = 105.

Fig. 4. Switching probabilities and CVs of IS estimators for IJ = 0.6 with
infinite-time bias functions active outside of a region containing the stable
fixed point, defined by θ0 < |θ | < θJ , for different values of θ0. The sample
size is 105.

conditions are θ1(0) = θ2(0) = 0. Recall that as a switching
criterion, we adopt that at least one of the angles reaches π/2
in absolute value.

At finite temperature, the rare events of switching for the
coupled spin system occur along the maximum likelihood
paths, which are also the minimum energy paths of the system.
When the system undergoes a transition, it switches by coher-
ent rotation for strongly coupled spins, asymmetric coherent
rotation for weakly coupled spins, or single particle reversal
for extremely weakly coupled spin [47]. More precisely, in the
limit of infinite coupling strength c, the coupled spin system
collapses to the macrospin model with θ1 = θ2, and the
most probable path terminating at max(|θ1|, |θ2|) = π/2
is identical to that of a single macrospin. As the coupling
strength decreases, the dynamics of the coupled spin system
changes significantly, ultimately leading to spins that evolve
independently. Note that in N-dimensional coupled spin sys-
tems, the sequence of bifurcations from single macrospin
dynamics to N-fold macrospin dynamics as c decreases from
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infinity [48] further exacerbates the challenge in finding appro-
priate bias functions.

C. Two-Coupled Identical Macrospins: Biased Dynamics

The biased dynamics associated with (32) and (33) reads

˙̃θ1 = c sin(θ̃2 − θ̃1) + b(θ̃1) + √
2 u∗

1 +
√

2

�
Ẇ1, (34)

˙̃θ2 = c sin(θ̃1 − θ̃2) + b(θ̃2) + √
2 u∗

2 +
√

2

�
Ẇ2. (35)

In contrast to the single macrospin case, for two coupled
macrospins, an exact analytical bias function is no longer
available even for infinite-time biasing. Therefore, it is nec-
essary to obtain numerical bias functions by minimizing
the Freidlin–Wentzell action (9) with terminal condition
max(|θ1(Tsw)|, |θ2(Tsw)|) = π/2 for some 0 < Tsw ≤ T ≤ ∞.

For finite-time bias, the action functional ST is given
explicitly by

ST [θ1, θ2] = 1

4

∫ T

t
(θ̇1 − c sin(θ2 − θ1) − b(θ1))

2ds

+1

4

∫ T

t
(θ̇2 − c sin(θ1 − θ2) − b(θ2))

2ds, (36)

and the corresponding finite-time bias (u∗
1, u∗

2) = (u∗
T ,1, u∗

T ,2)
is

u∗
T ,1(θ̃1, θ̃2, t) = 1√

2

(
θ̇T
θ̃1,θ̃2,t,1

(t) − c sin(θ̃1 − θ̃2) − b(θ̃1)
)
,

(37)

u∗
T ,2(θ̃1, θ̃2, t) = 1√

2

(
θ̇T
θ̃1,θ̃2,t,2

(t) − c sin(θ̃2 − θ̃1) − b(θ̃2)
)
,

(38)

where θT
θ̃1,θ̃2,t

(s) = (θT
θ̃1,θ̃2,t,1

(s), θT
θ̃1,θ̃2,t,2

(s)) is the min-

imizer of ST satisfying θT
θ̃1,θ̃2,t

(t) = (θ̃1, θ̃2) and

max(|θT
θ̃1,θ̃2,t,1

(T )|, |θT
θ̃1,θ̃2,t,2

(T ))| = π/2.
For infinite-time bias, we minimize

S∞[θ1, θ2] = 1

2

∫ 1

0

(
λ(θ1, θ2)

√
|θ �

1|2 + |θ �
2|2

−(c sin(θ2 − θ1) + b(θ1))θ
�
1

−(c sin(θ1 − θ2) + b(θ2))θ
�
2

)
ds,

(39)

where

λ(θ1, θ2) = [(c sin(θ2 − θ1) + b(θ1))
2

+(c sin(θ1 − θ2) + b(θ2))
2]1/2, (40)

and express the bias as

u∗∞,1(θ̃1, θ̃2) = 1√
2

×

⎛
⎜⎜⎝

λ(θ̃1, θ̃2)θ
�
θ̃1,θ̃2,1

(0)√∣∣θ �
θ̃1,θ̃2,1

∣∣2 + ∣∣θ �
θ̃1,θ̃2,2

∣∣2

−c sin(θ̃2 − θ̃1) − b(θ̃1)

⎞
⎟⎟⎠ , (41)

u∗∞,2(θ̃1, θ̃2) = 1√
2

×

⎛
⎜⎜⎝

λ(θ̃1, θ̃2)θ
�
θ̃1,θ̃2,2

(0)√∣∣θ �
θ̃1,θ̃2,1

∣∣2 + ∣∣θ �
θ̃1,θ̃2,2

∣∣2

−c sin(θ̃1 − θ̃2) − b(θ̃2)

⎞
⎟⎟⎠ , (42)

where θθ̃1,θ̃2
= (θθ̃1,θ̃2,1

, θθ̃1,θ̃2,2
) is the minimizer of S∞ with

θθ̃1,θ̃2,t
(0) = (θ̃1, θ̃2) and max(|θθ̃1,θ̃2,t,1

(1)|, |θθ̃1,θ̃2,t,2
(1))| =

π/2. Finally, the discretized version of the biased equations
and the likelihood ratio are straightforward generalizations of
(30) and (31).

Fig. 5(a) shows the IS estimates of switching probabilities
obtained using finite-time bias functions and infinite-time bias
functions with a suitable cutoff near the origin applied to the
coupled system with non-dimensional temperature � = 60
and coupling strength c = 0.8. The coupling strength c = 0.8
is an example of strong coupling, for which the spins rotate
coherently along optimal switching paths. The open circles
and open diamonds denote the estimates generated by IS using
infinite-time and finite-time bias functions, respectively. With
the sampling size of M = 103, the infinite-time bias functions
allow us to sample switching probabilities for T ≥ 5 with IJ

ranging from 0 to 0.6. For T ≤ 4, finite-time bias functions
are used with IS. For infinite-time biasing, the bias is switched
off, i.e., u∗∞ is set to zero, when the effective potential from
(23) of a configuration (θ̃1, θ̃2) falls below that of (θ0, θ0)
with θ0 ∈ [0, 0.3] chosen to minimize the CV. The accuracy
of the obtained values of Psw is expected to be similar to that
obtained for the macrospin model in Section IV-A.

Fig. 5(b) shows the CVs becoming larger as time T
decreases, indicating that the infinite-time bias functions
become less efficient. The effectiveness of using finite-time
bias functions is evident in the CV values in Fig. 5(b), where
the CV values with open diamonds at time T = 4 are much
smaller than the CV values with open circles at times T = 4
and T = 5. This improved effectiveness comes with a cost of
computing updated finite-time bias functions at each time step.

Similar results for a weakly coupled system are shown in
Fig. 6. Fig. 6(a) shows the switching probabilities as a function
of time for different read currents with non-dimensional tem-
perature � = 60 and coupling strength c = 0.2. The coupling
strength c = 0.2 is an example of weak coupling, for which
the spins rotate incoherently along optimal switching paths.
With a sampling size of M = 103, IS using infinite-time
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Fig. 5. IS estimate for switching probability (RSER) and CV of the RSER with sample size M = 103 for a strongly coupled two-spin system. (a) RSER
with applied currents ranging from 0 to 0.6 versus time T with thermal stability factor � = 60 and coupling strength c = 0.8. (b) CVs of IS estimates in (a).
Open circles and open diamonds denote the estimates generated by IS using infinite-time and finite-time bias functions, respectively. The colors correspond
to different current amplitudes indicated in (a).

Fig. 6. IS estimate for switching probability (RSER) and CV of the RSER with sample size M = 103 for a weakly coupled two-spin system. (a) RSER
with applied currents ranging from 0 to 0.6 versus time T with thermal stability factor � = 60 and coupling strength c = 0.2. (b) CVs of IS estimates
in (a). Open circles and open diamonds denote the estimates generated by IS using infinite-time and finite-time bias functions, respectively, and black dots
denote the estimates generated by naive MC simulations for IJ = 0.6 with sample size M = 105. The colors correspond to different current amplitudes
indicated in (a).

bias functions allows us to sample switching probabilities for
T ≥ 4 with IJ ranging from 0 to 0.6. As shown in Figs. 5, 6(b)
shows a decrease in efficiency of IS using infinite-time bias
functions as T decreases.

Fig. 6(a) also shows the switching probabilities generated
using naive MC simulations with a sample size of M = 105

for read current IJ = 0.6 at various pulse durations. Naive MC
simulations at this sample size fail to accurately capture proba-
bilities less than 10−5 while IS is able to estimate probabilities
as low as 10−28. This is reflected in Fig. 6(b) where the CV is
seen to diverge as the probability estimate decreases. Finally,
a few representative switching trajectories corresponding to
the results in Figs. 5 and 6 are shown in Fig. 7. Fig. 8 shows
a comparison between the CV for IS with sample size of
103 and the CV for naive MC with a sample size of 105

for IJ = 0.6. For time 6 ≤ T ≤ 15, the CVs for naive
MC exceed the CVs for IS, by a factor ranging from 1 to
6 as the value of T is decreased. This means that the number
of IS samples required to achieve an estimate with the same
or better accuracy than an estimate generated by naive MC

is smaller by several orders of magnitude. For example, for
switching probability by time T = 6, where the CV ratio is
about 6.2, at least 3.8 × 106 naive MC samples are required
to achieve the same accuracy of an IS estimate generated
using only M = 103. This contrast is even more stark for
smaller applied currents with much lower associated switching
probabilities, where the computational effort required by naive
MC simulations is prohibitive. Sampling-based probability
estimates are only available using IS at these parameter
values.

D. Failure to Switch (WSER)

In this section, we estimate the WSER using MC and IS
for both the macrospin model and two coupled-spin system,
where the current is set sufficiently high as to drive the origin
unstable, such that a switching event is expected to occur
in the majority of random realizations. The two-spin state is
considered to have switched when max(|θ1(Tsw)|, |θ2(Tsw)|) =
π/2 for some 0 < Tsw ≤ T .
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Fig. 7. Sample paths from IS for two-spin systems with current IJ = 0.1 and thermal stability factor � = 60: (a) strongly coupled spins with c = 0.8
and (b) weakly coupled spins with c = 0.2. False color corresponds to the effective potential in (23).

Fig. 8. CVs of estimates generated by IS (brown open circles) and naive
MC (black dots) in Fig. 6.

Fig. 9. Non-switching probability as a function of time horizon for several
values of the writing current, using thermal stability factor � = 60. The
current IJ is identified by color and ranges from 3 to 6. Solid lines denote
numerical solutions of the backward FPE for single macrospin, while the
dashed lines are simply visual guides. Filled circles denote IS estimates of
the non-switching probabilities for a single macrospin. Open circles denote IS
estimates of non-switching probabilities for two coupled spins with c = 0.2.

Fig. 9 shows a comparison between the numerical solu-
tion of the FPE and simulation results using IS for a sin-
gle macrospin. Independent realizations of the macrospin
evolution were computed with the same initial conditions,

currents IJ = 3, 4, 5, and 6, and independent thermal noise
with � = 60. The estimates obtained using M = 104 IS
samples show good agreement with the numerical solution
of the backward FPE for moderate and long times. For the
two-spin system, 103 IS samples are used to estimate non-
switching probabilities.

V. CONCLUSION

In conclusion, we have applied IS to estimate error rates
in reading and writing spin-torque memory devices in the
macrospin limit and for the case of two coupled spins, using
a variety of applied currents and thermal stability factors.
We have demonstrated how IS is able to compute probabilities
well below those computable using naive MC simulations,
while producing accurate estimates with improved efficiency
in cases where the probability is computable using naive
MC but still very small. Depending on the time horizon of
the read or write event relative to the drift dynamics of the
spin system, IS simulations using infinite- or finite-time bias
functions are appropriate. Infinite-time bias functions require
only moderate computational cost; however, the increased cost
can be significant in computing finite-time bias functions. Fur-
ther improvement of the infinite-time biasing can be achieved
by introducing a threshold that turns on the bias only some
distance away from the metastable equilibrium whose thermal
stability is investigated.

While, in this paper, we intentionally restricted our attention
to the particularly simple modeling setups involving either a
single macrospin or two ferromagnetically coupled identical
macrospins to make a clear illustration of the IS technique,
we believe that IS can be used equally well for systems of
many interacting macrospins of spatially nonuniform switch-
ing described by the stochastic Landau–Lifshitz–Gilbert equa-
tion. As we already noted, spatial nonuniformity starts to play
an important role for noise-assisted magnetization reversal or
failure for ferromagnetic elements exceeding a critical size of
a few tens of nanometers. Here, the only limitation of the IS
technique is the amount of computational resources that may
be needed to compute the action minimizers for a good bias
and to sample the biased trajectories sufficiently well.
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APPENDIX

In this appendix, we derive a reduced model for the
macrospin dynamics of the in-plane magnetization component
in the regime of (19), which is done in the spirit of [36]–[38].
Our starting point is (13) for a macrospin m, in which h
satisfies (18). Introducing cylindrical coordinates, we can write

m =
(√

1 − z2 cos θ,
√

1 − z2 sin θ, z
)

. (43)

Then, changing the unit of time to τQ we arrive, after some
algebra and a change from Stratonovich to Itô formulation,
to the following Itô SDEs for θ(t) and z(t):

Q(1 + α2)

α
θ̇ = −∂ E

∂z
− α

1 − z2

∂ E

∂θ
+ (aJ + αbJ )

sin θ√
1 − z2

+(bJ − αaJ )
z cos θ√
1 − z2

+ Q

√
1 + α2

�(1 − z2)
Ẇ1,

(44)
Q(1 + α2)

α
ż = ∂ E

∂θ
− α(1 − z2)

∂ E

∂z
− Qαz

�

+(aJ + αbJ )z
√

1 − z2 cos θ

−(bJ − αaJ )
√

1 − z2 sin θ

+Q
√

�−1(1 + α2)(1 − z2) Ẇ2, (45)

where W1 and W2 are two uncorrelated Brownian motions and

∂ E

∂z
= z − Qz sin2 θ,

∂ E

∂θ
= Q(1 − z2) sin θ cos θ. (46)

We now assume that Q � 1, while aJ = β−1 IJ Q, bJ =
IJ Q and ε = Q/(2�), with IJ , β and � of order unity. In this
case, any deviations of z from zero are strongly suppressed.
Therefore, linearizing the above-mentioned equations in z and
introducing ζ = Q−1z, we obtain

Q(1 + α2)

α
θ̇ = −∂ E

∂z
− α

∂ E

∂θ
+ QIJ (β−1 + α) sin θ

+Q2 IJ (1 − αβ−1)ζ cos θ

+Q
√

�−1(1 + α2) Ẇ1 (47)
Q2(1 + α2)

α
ζ̇ = ∂ E

∂θ
− α

∂ E

∂z
− Q2αζ

�

+Q2 IJ (β−1 + α)ζ cos θ

−QIJ (1 − αβ−1) sin θ

+Q
√

�−1(1 + α2) Ẇ2 (48)

where

∂ E

∂z
= Qζ,

∂ E

∂θ
= Q sin θ cos θ. (49)

Substituting (49) into (47) and (48), to the leading order in
Q � 1, we then arrive at

(1 + α2)

α
θ̇ = −ζ − α sin θ cos θ + IJ (β−1 + α) sin θ

+
√

�−1(1 + α2) Ẇ1 (50)

0 = sin θ cos θ − αζ − IJ (1 − αβ−1) sin θ

+
√

�−1(1 + α2) Ẇ2. (51)

Finally, solving for ζ in (51) and substituting it back into (50),
with the help of the fact that αW1 − W2 = √

1 + α2 W , where
W is another Brownian motion, we obtain (20). It is interesting
to note that only the contribution of the fieldlike spin torque
appears in the reduced equation, while the contribution of the
Slonczewski torque cancels out to the leading order.
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