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ABSTRACT

Data movement between processor and memory hierarchy is a
fundamental bottleneck that limits the performance of many ap-
plications on modern computer architectures. Tiling and loop per-
mutation are key techniques for improving data locality. However,
selecting effective tile-sizes and loop permutations is particularly
challenging for tensor contractions due to the large number of
loops. Even state-of-the-art compilers usually produce sub-optimal
tile-sizes and loop permutations, as they rely on naive cost models.
In this paper we provide an analytical model based approach to
multi-level tile size optimization and permutation selection for ten-
sor contractions. Our experimental results show that this approach
achieves comparable or better performance than state-of-the-art
frameworks and libraries for tensor contractions.
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1 INTRODUCTION

A tensor contraction is a higher-dimensional generalization of
matrix-matrix multiplication. Tensor contractions represent the
computationally dominant component of many applications in
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computational science and machine learning. Consider the follow-
ing contraction from the CCSD(T) [5] method in computational
chemistry, where two 4D tensors are contracted to produce a 6D
tensor:

Cla,b,c,i,j, k] = Ali,b,a,1] % B[, c, j, k] (1)

It represents the computation:

Cla,b,c.d,i,j,kl = " Ali,b,a, 1] % Bll,c, j k]
1

Typically, the sizes of tensors in large-scale calculations vastly
exceed cache capacity, thus tiling is a critical loop transformation
for efficient implementation of tensor contractions. However, the
number of tiling loops is often very large, and much larger is the
number of possible permutations of the tiling loops. Further, multi-
level tiling must be considered, in order to optimize across a multi-
level cache hierarchy. Finally, a challenging modeling aspect that
has generally been ignored in prior attempts at analytical tile-size
optimization is that of inter-tile data reuse — thus for simplicity
the assumption is often made that no reuse of data occurs across
successive tiles. However, this assumption is avoided in the well
known panel-panel scheme [7] for optimal tiling of matrix-matrix
multiplication [12], which makes full use of inter-tile data reuse by
keeping a slice of the result matrix stationary across execution of
successive tiles.

In this paper we address the above challenges and develop an
effective analytical approach for selection of tile permutation and
tile-size for multi-level tiled execution of tensor contractions.We
will show that this approach is broadly applicable, but our primary
focus is that of effective tiling of arbitrary tensor contractions, a
fundamentally important primitive for many applications in com-
putational and data science. In this section we provide a high-level
sketch of the key ideas behind the developed approach to tile opti-
mization.

The computation for the tensor contraction in Eq. 1 can be ex-
pressed as a 7-dimensional loop nest, with one loop per unique
index. Allowing for any order of accumulation of additive contri-
butions for each result tensor element, all loops of an arbitrary
tensor contraction are fully permutable and hence fully tileable
with hyper-rectangular tiles. Considering a three-level memory
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hierarchy, up to three levels of tiling may be appropriate, leading
to an explosively large search space with three groups of 7 tiling
loops, with 7! possible permutations of the tiling loops within each
group, i.e., 1.28 x 10!! possible configurations.

However, this huge space of permuted orders for the tiling loops
can be drastically pruned by showing that only the innermost tiling
loop within each band can have a significant effect on performance.
This reduces the number of evaluated configurations from (7!)
(1.28 x 1011) to 73, i.e. only 343 cases. We will elaborate later in
the paper that this is a consequence of the fact that each tensor
dimension of any tensor is indexed by a distinct loop index in a
tensor contraction.

For a given permutation of tiling loops we develop an analytical
formulation for the volume of data movement as a set of condi-
tional expressions in terms of parametric tile sizes. A constrained
optimization solver is then used to find optimal solutions to the
formulated minimization problem of finding multi-level tile sizes
that minimize the effective time to transmit the transferred volume
of data at the different levels of the storage hierarchy.

This paper makes the following key contributions:

o It presents the first practically effective analytical formula-
tion (to our knowledge) for multi-level tile-size optimization
for arbitrary dimensional tensor contractions;

e It provides a solution for the multi-level tile-size optimiza-
tion problem that uses a standard constrained optimization
solver;

e It presents experimental validation of the proposed approach
using 36 benchmarks in the TCCG benchmark suite .

The rest of the paper is organized as follows. Section 2 presents
an overview of our approach. Section 3 details our data movement
model and loop permutation/tile-size selection strategy. Section 4
describes the micro kernel design and Section 5 describes buffer-
ing/packing to reduce data movement. Extensive experimental eval-
uation is shown in Section 6. Related works are presented in Section
7 and Sections 8 concludes the paper.

2 OVERVIEW OF MODELING APPROACH

Similar to the manner in which standard matrix-matrix multipli-
cation can be expressed as a 3-dimensional loop nest, the com-
putation for the tensor contraction in Eq. 1 can be expressed as
a 7-dimensional loop nest, with one loop for each of the indices
{a,b,c.i,j.k.1}. Since any order of accumulation of additive contribu-
tions for each result tensor element is generally considered to be
acceptable by application scientists, all loops of an arbitrary tensor
contraction are considered fully permutable and hence fully tileable
with hyper-rectangular tiles. Considering a three-level memory
hierarchy, up to three levels of tiling may be appropriate, leading
to an explosively large search space with three groups of 7 tiling
loops and 7! possible permutations of the tiling loops within each
group, i.e., 1.28 X 10!! possible configurations.

Zero/Full Inter-Tile Reuse The following key observation is used
to drastically prune the huge configuration search space: For any ar-
bitrary tensor contraction, each dimension of any tensor is indexed
by a distinct index from the surrounding perfectly nested loops. For
example, the four dimensions of tensor A in the contraction in Eq. 1
are respectively indexed by the four distinct loop indices i, b, a, and
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I. Hence, a loop index is either an explicit index in a given tensor or
is unused in indexing that tensor. For example, the loop index a is
an explicit index for A, and C, but is not used to access elements of
B. For a tiled code, we call the loops that iterate over tiles as tiling
loops. For example, for the matrix multiplication in Listing 2 with
tiles “i1,j1,k1”, the tiling loops are the ones indexed by i2, j2, and
k2. The innermost tiling loop is the one indexed by k2. Consider
again the CCSD(T) example of Eq. 1. If the innermost tiling loop
index is a, successive tiles along that tiled index would repeatedly
access exactly the same slice of data for B (because a does not at
all affect the addressing of B), while completely distinct slices of
data would be accessed by successive tiles for A and C (because a is
an explicit index for A and C, causing each tile to access a distinct
and disjoint range of values for the tensor dimension indexed by
it). Assuming that the combined data-footprint of a tile just fills
the cache/ scratchpad, we will have full inter-tile data reuse for
elements of B, but no data reuse for A and C. This observation will
always hold as soon as the available space in cache or scratchpad
memory is disjointly partitioned (thus avoiding conflicts) to hold
the slices of data accessed in a tile from the three tensors.

Only Innermost Tiling Loop Matters: Tile sizes at each level are
generally chosen to be large enough such that the data-footprint
of a tile is close to the cache/scratchpad capacity but does not ex-
ceed it. In that case, as successive tiles of the innermost tiling loop
are executed, the data for tensors not indexed by that loop stays
invariant, while the data slices for other tensors will be completely
disjoint from those used in the previous tiles. In the example con-
sidered, if a is the index corresponding to the innermost tiling loop,
the data slices for B would be invariant for successive tiles, while
complete replacement of data slices for A and C would occur. A
direct consequence is that no inter-tile reuse is possible for A and C,
irrespective of the permutation of the outer six tiling loops. Further,
any additional reuse for B through outer tiling loops would only
have a marginal effect on total data volume. Indeed, a significant
degree of reuse is already achieved for B through the innermost
tiling loop, implying that the total data movement for B is already
much lower than that for A and C.

The significant implication of the above observation is the fol-
lowing: Consider a given level in the memory hierarchy and its
corresponding tiling level. Only the choice of the innermost tiling
loop affects the total data volume (ignoring second order effects)
for all tensors from/to that memory level. In other words, among
all possible tiling loop permutations, we only need to consider the
different possible choices for innermost tiling loop, and choose any
single arbitrary permutation for all surrounding tiling loops. For the
tensor contraction example, this reduces the number of evaluated
configurations from (7!)3 (1.28 x 10!!) to 73, that is, to only 343
cases.

Conditional Analytical Expressions for Data Volume: In the
next section, we develop an approach to analytical modeling of the
impact of tile sizes on data volume using the example of matrix-
matrix multiplication. The key idea here is that for a restricted but
important class of dense tensor computations, including arbitrary
tensor contractions, all tensor dimensions are indexed by distinct
loop iterators. With such computations, the data footprint of a tile
with respect to any operand tensor is simply the product of tile
extents along indices that appear in the indexing of the tensor. An
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o for(int i = 0; i < Ni; i++)
for(int j = 0; j < Nj; j++)
for(int k = 0; k < Nk; k++)

Cli][j] += A[i][k] « B[k][j]

Listing 1: Matrix Multiplication

1 // Tile sizes are assumed to be perfect multiples of problem sizes

,» for(int i2 = 0;

RIGHTS

i2 < Ni; i2+=Til)
j2 < Nj; j2+=Tj1)
k2 < Nk; k2+=Tk1)

for(int j2 = 0;
for (int k2 = 0;
il = 0

for (int ;11 < Til; il++)
for(int j1 = 0; jl1 < Tjl; jl++)
for(int k1 = 0; k1 < Tk1l; kl++)

Clit+i2 J[j1+j2]+=
A[il+i2 ][k1+k2]«B[k1+k2][j1+j2]
Listing 2: Tiled Matrix Multiplication

inner-to-outer traversal of the loop structure enables the develop-
ment of conditional symbolic expressions for total data movement
as a function of parametric tile sizes. The conditional analytical
expressions are then optimized by use of a non-convex optimization
solver to determine optimal tile sizes.

3 ANALYTICAL CACHE MODELING

This section presents a new model based approach for predicting
the volume of data movement for tiled tensor contraction. For sim-
plicity, we begin by assuming that the caches are programmable
(scratchpad) and that the cache-line size is one word. We also as-
sume that the performance is only limited by the cache bandwidth.
Later we will address issues that reflect a real cache.

3.1 Single level cache modeling

Loop tiling (loop blocking) is a widely used technique to improve
data locality. Tiling chunks the iteration space into multi-dimensional
blocks, which enables better reuse of data in hyper-rectangular
slices. Tiled loop iterators corresponding to a loop i are represented
by an ordered list of iterators iy, iy, ..., ij;1, Where [ represents the
tiling level. Iterator ij, | represents the outermost loop and the i;
represents the innermost loop. I == 0 denotes the statement level.
The tile sizes corresponding to each iterator are represented using
Tiq, Tig, ..., Tij,q. Listings 1 and 2 illustrates this notation using
matrix multiplication as an example. Listing 2 corresponds to one
level tiling of the i, j, k loops in Listing 1. The tiled i loop is repre-
sented using i1 and i2. i2 (inter tile iterator) iterates over different
blocks of i and i1 (intra tile iterator) iterates within a block.

For a given tensor contraction code with fixed loop structure
(loop permutation), and parametric tile size variables, our objective
is to model the data movement between the cache and main mem-
ory. The cost modelling is illustrated using Listing 2, which shows
pseudo code for matrix multiplication. The number of elements in
each array is assumed to be much larger than the cache capacity.
Let DF(A, i) represent the data footprint of array A corresponding
loop to i (number of unique elements of the array A accessed by

Ay
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i for each loop i from bottom to top
if (i == 0){ // statement level
; for each tensor A
. DM(A, i) = DF(Ai) = 1;
}
else {
for each tensor A if i € indices
8 DM(A, i) = DM(A, i — 1) * range(i)
. DF(A,i) = DF(A, i — 1) * range(i)
}
else {
DF(A,i) = DF(A,i—1)
if Y aDF(A i—1) < CacheCapacity

of A{

1 DM(A, i) = DM(A,i — 1)

else
DM(A, i) = DM(A, i — 1) * range(i)
}

Listing 3: Algorithm for computing data movement

loop nest starting at i). Let DM(A, i) represent the data movement
between cache and the main memory corresponding to array A
at loop i. Listing 3 shows the pseudo-code to compute the data
movement. At the statement level, only a single element of an array
is accessed (DM(A, 0) == DF(A,0) == 1). If an array is indexed
by a given loop iterator i then its data footprint (data movement)
corresponding to the i loop is equal to the product of data footprint
(data movement) corresponding to the immediate inner loop and
the number of i loop iterations. For example, array A is indexed by
k1. Hence, for each k1 loop iteration, a distinct element of the array
A is accessed. Thus the data footprint for A at k1 is the product of
DF(A, 0) and Tk1 which is equal to 1x Tk1. Similarly, the DF(B, k1)
is k1. Since the array C is not indexed by k1, multiple k1 iterations
accesses the same C element (DF(C, k1) == DF(C,0) == 1).

The total data movement for an array for loop i is dependent
on the data movement for inner loops and the cache capacity. For
example, the data movement cost of the j1 loop is dependent on
the data movement cost of k1. Thus DF(B, j1) == DM(B, j1) ==
Tkl Tj1 and DF(C, j1) == DM(C, j1) == 1 % Tj1. Since array A is
not indexed by j1, the data footprint of A at j1 is the equal to the data
footprint at k1 (DF(A, j1) == DF(A, k1)). However, data movement
for A at j1 depends on whether the cache capacity has already been
exceeded or not. If the data footprint corresponding to all arrays at
k1 (immediate inner loop) is less than cache capacity (DF(A, k1) +
DF(B, k1)+ DF(C, k1) <= CacheCapacity), we can load A once and
reuse it at j1 level (DM(A, j1) == DM(A, k1)). However, if the data
footprint corresponding to all arrays at k1 exceeds cache capacity,
A has to be loaded multiple times (DM(A, j1) == DM(A, k1) = Tj1).

Table 1 shows the method to traverse all the small dimension
size branches. It is built from a one level cache hierarchy with
one tiling group GEMM. The table lists all possible combinations
whether each of the dimension problem sizes can fit into cache.
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loop range | tile condition A B C

i2 Ni Til <Ni, Tj1 <Nj, Tk1 <Nk Nix Nk *Nj/Tj1 | Njx Nk *Ni/Til | Nix Nj
Til <Ni, Tj1 <Nj, Tkl ==Nk Ni x Tkl Nj x TK1 * Ni/Til | Nix Nj
Til <Ni, Tjl == Nj, Tkl <Nk | Nix Nk * Nj/TjI | Tjl x Nk * Ni/Til | Nix Tj1
Til <Ni, Tj1 == Nj, Tk1== Nk Ni x Tk1 Tj1 x Tk1 Ni x Tj1
Til == Ni, Tj1 <Nj, Tkl <Nk Til x Nk * Nj/Tj1 | Njx Nk * Ni/Til | Til x Nj
Til == Ni, Tj1 <Nj, Tkl ==Nk | Til x Tk1 Nj x Tk1 * Ni/Til | Til x Nj
Til == Ni, Tj1 == Nj, Tk1 <Nk | Til x Nk * Nj/Tj1 | Tj1 x Nk * Ni/Ti1 | Til x Tj1
Til == Ni, Tjl == Nj, Tkl== Nk | Til x Tkl Tj1 x Tkl Til x Tj1

j2 Nj Tj1 <Nj, Tk1 <Nk Til x Nk * Nj/Tj1 | Nj x Nk Til x Nj
Tj1 <Nj, Tk1 ==Nk Til x Tk1 Nj x Tk1 Til x Nj
Tj1 == Nj, Tk1 <Nk Til x Nk * Nj/Tj1 | Tj1 x Nk Til x Tj1
Tj1 == Nj, Tk1== Nk Til x Tk1 Tj1 x Tk1 Til x Tj1

k2 Nk Tk1 <Nk Til x Nk Til x Nk Til x Tj1
Tk1 == Nk Til x Tkl Tj1 x Tkl Til x Tj1
L1 capacity

i1 Til Til x Tk1 Tj1 x Tk1 Til x Tj1

i1 Tj1 1x Tk1 Tj1 x Tk1 1x Tjl

k1 Tk1 1 x Tk1 1 x Tk1 1x1

statement 1x1 1x1 1x1

Therefore, for a GEMM problem on one tiling group with three
levels of tiling loops, there would be 23 = 8 different combinations
to be considered, which are already in the row of the top tiling loop

i2.

The reason to consider data movement of each combination
separately is, if some of the dimension can fully fit in cache, the
footprint for tensors using this index would not change. That means
it would not start to swap out other data at this level. For example,
if Nk can fully fit in cache, Tk1 == Nk, then the Ti1 X Tk1 amount
of data footprint of A would not be swapped out. As a result, this
part of A will starts to get reuse in the loop level j2. However in the
normal case where NK is very large, Tk1 < Nk, accesses of A will
starts to go over the whole dimension of Nk, and because of LRU
replacement policy, the beginning segment of A will be replaced,
which makes the reuse in loop j2 impossible.

3.2 Multi-Level cache modeling

Most modern processors have multiple levels of cache. The fastest
cache (L1-cache) is designed to have high bandwidth but has low
capacity. Higher caches such as L2 and L3 have higher capacity than
L1 but lower bandwidth. Multi-level tiling is used to take advantage
of multiple levels of cache. The data movement model presented in
Section 3.1 can be extended to support multiple cache levels. We
assume that each loop is tiled one for each cache level. Listing 4
shows 2-level tiled matrix multiplication code for a machine with
2 levels of cache. Similar to Listing 2, the loop iterators i1, i2, and
i3 represents the tiled i loop. The DF() function presented in Sec-
tion 3.1 is not dependent on number of cache levels, hence it can
be directly used. The DM() function is modified to include cache
level as a parameter — DM(A, i, [) represents the data movement
between memory hierarchy [ and I + 1 for array A correspond-
ing to i loop. Listing 3 can be adapted for multi-level tiling by

RIGHTS

i,

1

Table 1: Table for traversing combinations of dimension size

// Tile sizes are assumed to be perfect multiples of problem sizes

» for(int i3 = 0; i3 < Ni; i3+=Ti2)
for(int j3 = 0; j3 < Nj; j3+=Tj2)
for(int k3 = 0; k3 < Nk; k3+=Tk2)

for(int i2 = 0; i2 < Ti2; i2+=Til)
for(int j2 = 0; j2 < Tj2; j2+=Tj1)
for(int k2 = 0; k2 < Tk2; k2+=Tk1)
for(int i1 = 0; i1 < Til; il++)
for (int j1 = 0; j1 < Tjl; jl++)

for (
Cl

int k1 =

0; k1 < Tki;
i1+i2+i3 ][j1+j2+j3] +=
[

Alit+i2+13 ][k1+k2+j3 ]«
B[k1+k2+k3][j1+j2+j3]
Listing 4: Multi-Level tiling for Matrix Multiplication

k1l++)

changing DM(A, i) to DM(A, i, ). Line 13 should be modified to ‘if
>4 DF(A,i — 1) < CacheCapacity(l)’.

3.3 Predicting execution time based on data
movement

Our model predicts the execution time of a program as the maxi-
mum time required to transfer data between different cache levels.
This prediction is based on the assumption that the memory/cache
bandwidth is the main performance bottleneck. Memory/cache la-
tency could also affect the execution time; however, they can be
hidden using prefetching.

Let L denote the number of cache levels, C; | [ € 1 to L denote
the cache at level I, Cy denote the compute unit, and Cr 1 denote
the main-memory. Let BW; | I € 1 to L denote the maximum
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bandwidth of cache at level [ and BW} . denote the maximum
main-memory bandwidth. Let C_DM(I) denote the volume of data
transferred between C; and Cj_;. Let C_time(l) denote the time
required to move C_DM(I) elements between C; and C;_;. For a
given loop permutation P, C_time can be computed as follows

C_time(P,1) = C_DM(l)/BW; (2)
The predicted execution time is:
TotTime(P) = max (C_time(P,1)) 3)
lel to L+1

Note that the above equation is predicting the time for a fixed
loop structure with fixed tile sizes. Next we present how to select
the tile sizes and loop permutation.

3.4 Tile size and loop permutation selection

Finding efficient tile-sizes for a fixed loop permutation can be for-
mulated as a constrained optimization problem. Our objective is to
find the tile sizes such that minimizes the total execution time.

arg min (TotTime(P)) =
tile-sizes
argmin ( max (C_time(P,1)))
tile-sizes [€1 to L+1
In order to reduce the search space, the sum of data movement
for all arrays at each cache level I (C_DM(!)) is constrained to be
less than or equal to cache capacity at that level. Let group_outer(l)
denote the outermost tiling loop corresponding to cache level I. The
capacity constraint can be expressed as

VieltoL Z

A€tensors

4

DM(A, group_outer(l)) < CacheCapacity(l)

®)
where L is the number of cache levels.

The tile selection model in Equation (4) relies on an optimistic
assumption that reducing the data movement cost corresponding to
the most constrained cache level will achieve the best performance.
However, the tile sizes obtained by solving this optimization prob-
lem only reduces the data movement of the most constrained cache
level; the tile-sizes of other cache levels may not be optimal. In real
machines, even though the performance is mostly limited by the
most constrained cache, the data movement cost of other cache
levels also impact the performance. Hence, we modify the previ-
ous single level optimization problem to a multi-level optimization
problem.

Let T be set of all tile sizes. Let T; be set of tile sizes such that all
tile sizes in T affect the data movement at cache level I (C_DM(])).
In other words, varying any ¢ € T; will change C_DAM(I) and chang-
ing any t ¢ T; wont affect C_DM(I).

Let j be the most constrained cache level. In other words

VieltoL+1,(C_DM(j)/C_BW(j)) = (C_DM(i)/C_BW (i)
After fixing the tile sizes for j-th cache level, the next constrained

cache level can be found using

i C_time(P, 1 6
e g P “
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The solution to Equation (6) can be used to identify the second
most constraining cache level. This processes can then be repeated
for each level of cache.

In order to compute the best permutation, we could iterate over
all possible permutations and select the one with best-predicted
execution time (Equation (4)). However, this search space grows
exponentially with the degree of the tensor/array. Even for a sim-
ple example such as 2-level tiled matrix multiplication (Listing 4),
there are 362880 (9!) possible permutations. The search space can
be reduced by relying on the fact that interleaving tiling loops
corresponding to different cache levels are not beneficial. In other
words, we only need to consider permutations of tiling loops which
correspond to the same cache level. For the matrix multiplication
example, this property reduces the search space from 9! to 216 (3!
X 3! X 3!). As explained in the overview section, the data reuse
at any cache level is dominantly determined solely based on the
innermost loop within a set of tiling loops which correspond to the
same cache level determines reuse. For the matrix multiplication
example, this property further reduce the search space from 216
to 9 (3 X 3 X 3). Let R represent reduced search space. The final
solution is given by

final_solution = argmin( arg min (TotTime(%P))) (7)
PeR tile-sizes

3.5 Solver

The optimization problem presented in Equation (7) is a non-convex,
constrained optimization problem. We use a non-convex, nonlin-
ear programming problem from Couenne[2] (https://projects.coin-
or.org/Couenne), released by the COIN-OR (Computational Infras-
tructure for Operations Research) to solve Equation (7). Couenne
(Convex Over and Under Envelope’s for Nonlinear Estimation) is
a branch and bound algorithm to solve Mixed-Integer Nonlinear
Programming (MINLP) problems of the form:

min fo(x, y),
fikty) <0i=12..m ®)
x€R" yezP

where all fi(x,y) are nonlinear functions.

4 MICRO KERNEL: MAXIMIZE SIMD
INSTRUCTION UTILIZATION

Many modern processors include SIMD (vector) instructions to
improve parallelism. In order to achieve peak machine throughput,
it is important to keep the functional unit busy. Functional units
can be kept busy if i) sufficient Instruction Level Parallelism (ILP)
is maintained and ii) the memory stalls are avoided/minimized by
effectively using the cache.

Let MaxIssue be the maximum number of SIMD instructions
that can be issued per clock cycle. Let WordPerVec be the width
of vector instructions. Let Latency be the number of clock cycles
needed for the instruction to finish all pipeline stages. During each
of the clock cycles corresponding to the Latency, MaxIssue inde-
pendent instructions have to be issued to keep the pipeline full.
Thus MaxIssue * Latency is the minimum number of independent
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Figure 1: Data packing

instructions to keep the pipeline full. Since each of these instruc-
tions should be independent, the results of these instructions should
be kept in distinct registers. Thus the minimum register capacity
required is MaxIssue * Latency * WordPerVec. BLIS micro-kernel 8]
for matrix multiplication follows this design. Our micro-kernels for
tensor contraction are based on the BLIS micro-kernel and follows
this design.

5 PACKING

A packing routine is a transformation that copies a tile of a tensor
into a contiguous buffer. The elements in the buffer are ordered
based on the order in which the elements are accessed by the kernel.
Thus, consecutive accesses to the tensor are guaranteed to be unit-
stride apart. Unit-stride accesses enables usage of efficient load
and store SIMD instructions. In addition, packing also provides a
tunable mechanism to reduce conflict misses.

5.1 Contiguous Loads and Stores

Efficient use of SIMD instructions in our kernel requires that the
input data is stored contiguously in memory in the order that
is accessed by the microkernel. Consider the tensor contraction
Cli, j, 1] = A[j, i, k] = B[l, k]. Assume that the innermost loops cor-
respond to dimensions i and [. In the original tensor A and B, the
unit-stride access corresponds to dimension k. However, since the
innermost loops correspond to dimensions i and [, the data should
be packed such that the unit-stride for A is along i and B is along [.

Figure 1 illustrates a simplified version of packing for dense
matrix-matrix multiplication (GeMM) micro-kernels. Typical high-
performance GeMM micro-kernels perform a set of outer products
corresponding to a column vector of A and a row vector of B. As-
suming row-major layout, the elements corresponding to B vector
are laid out contiguously in memory. However, the elements of A
are not contiguous and hence packing is required. During packing,
the columns of A are transposed and placed in packedA. The mi-
crokernel can then use vector loads to load elements of A using the
packedA buffer. In addition to efficient loads and stores, packing
also helps to reduce TLB misses.
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. packCounter = 0
> for(int i3 = 0; i3 < Ni; i3+=Ti2)

for(int k3 = 0; k3 < Nk; k3+=Tk2)
for(int 12 = 0; i2 < Ti2; i2+=Til)
for(int k2 = 0; k2 < Tk2; k2+=Tk1)
for(int i1 = 0; il < Til; il++)
for(int k1 = 0; k1 < Tk1l; kl++)
A_Buffer [packCounter++]
= A[i1+i2+i3 J[k1+k2+k3]
Listing 5: Psuedocode for packing elements of A
corresponding to code in Listing 4

Listing 5 shows the pseudo-code for packing the elements of A
corresponding to the 2-level tiled matrix multiplication example
(Listing 4)

5.2 Reducing Conflict Misses

One of the major advantages of packing is reduced conflict misses.
Typical caches in modern architecture are set-associative. The entire
cache is divided into sets and the sets are further sub-divided into
lines/ways. A mapping function determines the memory address to
set mapping. Within each set, a given memory address can occupy
any cache line. In such a design, a memory access can produce
conflict misses, where a line in cache is swapped out and replaced
even if that line was not the Least Recently Used (LRU) element. By
carefully choosing the tile sizes and rely on the fact that the packing
routine is designed such that the order in which data elements are
arranged is same as the order that they will be accessed, conflict
misses can be avoided.

Note that the packed buffers occupy contiguous regions of mem-
ory. Hence, the packed buffers are distributed along all the sets
in the cache. Since most caches are not programmable, loading
elements of one tensor could evict elements of other tensors. In
order to prevent this the number of cache lines each tensor occupies
is carefully controlled. For the matrix-multiplication example the
number of lines dedicated for A, B and C at cache level [ can be
computed as

Lineg = [DF(A, 1)/ (NumO fSets(l) = lineSize(l))]
Lineg = [DF(B,1)/(NumO fSets(l) * lineSize(l))] 9)
Linec = [DF(C,1)/(NumO f Sets(l) * lineSize(l))]

Line(1), Lineg(l)andLinec(l) satisfy the constraint Line4(l) +
Lineg(l) + Linec(l) < Associativity(l).

In order understand how packing helps to buffer a particular
array in a particular cache level, consider a simplified version of ma-
trix multiplication where arrays A and B are only accessed (accesses
to C are ignored). Consider an [ level tiling loop corresponding to j.
Since A is not indexed by j, A should be buffered at cache level I.
During the execution of the j loop, the lines corresponding to A are
accessed multiple times. Assuming LRU policy the lines correspond-
ing to A are expected to remain in the cache as they are accessed
multiple times. When the cache is full lines corresponding to B
have a higher probability of being evicted as they have a lower time
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stamp. Thus the B elements will be streamed through the cache
and A elements will remain stationary.

5.3 Packing Data Movement Model

The packing routine adds additional data movement and compu-
tations which could increase the time cost. In tiled execution of
a code, the same tile may be packed multiple times. In order to
reduce the cost of packing, the packed data must be reused. Due to
cache constraints, full reuse of all packed arrays is not possible. The
packing cost can be modeled as follows. Assume that A is the only
tensor that needs to be packed. Let the IS represent the iteration
space (the set of all loops). Let IS 4 be a subset of IS which contains
all indices used to access A. Assume that the packing is done at the
last level of cache (II). The cost for packing includes the cost to load
the data from the main memory and the cost to store the elements
to the I cache.

PackCost’>buf €mem _ 1_[ idx (10)

mem—I3
idx €lSy

Assume the loop order of L3 tiling group is if3, izL3, sy

, and assume iy, ij are the only reuse index of A, that is i, ij € IS,.
If a buffer for packing A is created at L3 level then we have the
following:

i3-1,i

;L3
for loop i
L3

for loop i,
for loop ilL3
Packing buffer resides here;

Note that the A packing buffer must be filled at each iteration of
loop iy, even if iy is a reuse index for A. This means that the total
data movement for inside-cache-packing of a given tensor is the
product of the tensor size and the ranges of all level of reuse loops
above of the packing buffer’s resident level. We can describe this
scenario as follows:

RDX™ = (il3ig ¢ IS4 A (i, € ISOIL > i1} (1)

l_[ idx *

iderSA

PackCostAbufELS =

mem—1L3

l_[ Niter(rdx) (12)

rdxeRDXL3

Where we define i{;3 > i{f to mean that loop i{f is above loop
i{f in L3 tiling group. Additionally, let NI ter(iff) be the number of

iterations of loop i1€3. Finally, let Tile(iILf) be the tile size at L3 level
for index p. Let N, be the problem size or global range of index p.

In the previous case the packing buffer is an explicitly allocated
block in memory. If the buffer reside in an inner level cache, say
L2, then it may not get reuse in the L3 level. This is because in the
L2 level, the packing buffer is continually rewriting data to itself
and those rewrite may also pollute data in L3.

Therefore, for arbitrary cache L,

RDXYe = {ig¢lig € ISa A By € ISQ[ige > ik<]}  (13)
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A,buf €L, .
PackCostme’Z];Lc = 1_[ idx * H Nlter(rdx)
idxelSa rdxeRDXLec
) L (14)
= l_[ idx = 1_[ (Np/Tlle(lp )
idx€lSa ip€RDXLe

A simple combination of the packing model and the computation
model stated in Section 4 is added to the packing cost computed
here to the DM; of the computation model. However, from the
packing model it is clear that moving the buffer to inner cache
will significantly increase the data movement and the number of
instructions to be executed. Leaving the packing buffer in memory
level will multiply the total required memory. Therefore, it would
be the best option to leave the buffers at the L3 level.

Packing in L3 vs. lower levels of cache. Packing at inner levels
increases the number of times each data element is packed, which
in turn increases the data movement. The number of times each
element is packed depends on the tile-level at which the packed-
buffer is placed. Since the tile-sizes corresponding to the L3 cache
are the highest, our model correctly predicts that the data movement
will be lowest for L3 packing. In addition to the data movement cost,
packing also requires expensive modulo and division operations.
For example, on the Broadwell processor, for the "abcd-aebf-dfce (all
72)" Tensor contraction, L3 packing achieved 43.5 GFLOPS whereas
packing at L2 only achieved 19.0 GFLOPS.

5.4 Cache Line Reuse

For our machine model the cache line is the basic unit for moving
data between memory hierarchy. Maximum cache line reuse can be
achieved by accessing the tensor along the fastest accessing index
(the unit stride dimension). We can extend our model to incorporate
this as follows.

The packed data automatically obtain the maximum cache line
reuse, because the packing order is exactly the order accessed by
loop iterations. However the original data do not have this property.
To obtain cache line reuse for loading original data, a tiling loop for
the fastest index of original tensor layout can be added under the
innermost level of packing routine, where tile size is equal to the
cache line size. When the original packing routine is not accessing
original data layout continuously in fastest index, this added tiling
loop will always reduce the total cache lines to be removed, to
1/cacheLineSize of original.

5.5 Discussion

The modeling approach imposes a constraint that tile sizes for later
levels of the cache must be greater than or equal to the correspond-
ing tile sizes for earlier level caches. If the per-core capacity of
an L2 cache is less than the capacity of the private L1 cache, then
the generated solution will satisfy the capacity constraints at all
levels of cache, and may leave some L1 capacity unused. In such a
situation, we do not see any way of fully utilizing L1 capacity while
not exceeding L2 capacity. We note that the modeling approach
assumes an inclusive multi-level cache - exclusive caches can also
be handled by using the sum of L1+L2 capacities as the modeled L2
capacity in the modeling.
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Computation, Total Cache Mis‘ses, Operation Intensity, Operation.lntensity,
Computation Total Computation
Benchmark Cache | Actual Predict Actual Predict | Actual | Predict Actual | Predict
abcdef-degb-gfac L1 8.26E+06 | 8.13E+06 8.06E+06 | 7.84E+06 | 219.43 222.84 224.79 231.23
L2 7.08E+06 | 6.80E+06 6.96E+06 | 6.51E+06 | 256.02 266.41 260.48 278.48
L3 4.80E+06 | 5.05E+06 4.78E+06 | 4.76E+06 | 377.38 358.77 379.18 381.02
abcd-aebf-dfce L1 2.64E+09 | 2.47E+09 2.50E+09 | 2.44E+09 | 105.68 112.73 111.37 114.28
L2 3.29E+08 | 3.01E+08 2.94E+08 | 2.68E+08 | 846.04 924.52 949.12 1039.8
L3 1.32E+08 | 1.34E+08 1.04E+08 | 1.01E+08 | 2103.2 2079.22 2676.06 | 2769.79
abcde-efbca-fd L1 7.67E+07 | 3.30E+07 2.35E+07 | 2.36E+07 | 89.66 208.28 293.36 291.6
L2 7.33E+07 | 3.10E+07 2.17E+07 | 2.16E+07 | 93.87 221.86 316.64 318.94
L3 2.86E+07 | 3.07E+07 2.15E+07 | 2.12E+07 | 240.55 224.3 319.42 324
abcd-ea-ebed L1 4.36E+07 | 7.85E+07 3.49E+07 | 1.34E+07 | 88.80 49.32 110.92 288.00
L2 1.48E+07 | 2.18E+07 7.06E+06 | 6.83E+06 | 261.70 177.16 548.39 566.96
L3 6.78E+06 | 1.35E+07 6.77E+06 | 6.72E+06 | 571.15 285.73 571.76 575.94
Table 2: Measured Cache Misses and Model Predicted Data Movement
abcd-aebf-fdec abcdef-degb-gfac
4.00E+09 7.00E+07
3.508+09 6.00E+07
& 2.50E+09 b
E 5 00E+09 i 4.00E+07
[ [
S 1508409 £ 3006407
© L 00Es0 © 2.00e+07
0.00E+00 0.00E+00
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g 3.50E+08 7.00E+07
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Figure 2: Measured Cache Misses for ACMTC, TBLIS, and TCL

6 EXPERIMENTS

This section presents experimental results. We conducted experi-
ments on two target platforms: an Intel Core i7-6700K dual socket
28-core Broadwell processor and an Intel Xeon CPU E5-2680 v4
single socket quad core Skylake processor. We compared our im-
plementation with two tensor contraction libraries, TBLIS [9] and
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TCL[13]. TBLIS is a BLIS [15] based library to perform tensor con-
traction without explicit transpose. TCL is a library for computing
tensor contractions using explicit transpose and high-performance
GEMM. TCL uses the HPTT[14] library to perform the transpo-
sition, and either the Intel MKL library [17] or BLIS for GEMM.
ACMTC denotes our approach. We used the GNU GCC 7.3.0 com-
piler with -O3 and -std=c99 flags. For TCL-MKL, we used MKL
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2018 to perform BLAS operations. We perform comprison with both
versions of TCL: with the TCL-MKL version because it is the higher
performing version, as well as TCL-BLIS because it reprrsents a
better “apples-to-apples” comparison with ACMTC since it also
uses the same BLIS micro-kernel as TCL-BLIS. Table 4 lists all
the information of contraction examples we used, from the TCCG
benchmarks [13].

This paper focuses on modeling data movement at the different
levels of the memory hierarchy for sequential multi-level tiled
execution of tensor contractions. The model can be extended for
parallel multicore execution of a tensor contraction, where different
cores execute adjacent tiles along a parallelizable dimension of
the iteration space. The handling of shared levels of cache will
depend on whether the tile data footprints of the arrays are the same
across the cores or disjoint: for the disjoint data slices the capacity
must be partitioned. The development of a model-driven tiled code
generation strategy for parallel execution of a tensor contraction
is still under development. However, we carried out experiments
for parallel execution in the simpler scenario of “batched” tensor
contractions, where a batch of independent tensor contractions
on disjoint data needs to be performed. With this scenario, since
all data processed by the different cores is completely disjoint, we
simply model the shared-level L3 cache as having a capacity of ﬁ
the per-socket L3 caches in the i7 processor and ﬁ of the L3 cache
capacity for the quad-core processor.

6.1 Assessment of Data Movement Model

In this section, we assess the accuracy of the data movement pre-
diction model by comparing the predicted volume of data move-
ment with measured cache misses obtained using PAPI on the
Intel i7-4770K Broadwell processor. We select four tensor contrac-
tions as the test cases. The label for each test case specifies the
order of indices in the output and input tensors. For example, the
label abcdef-degb-gfac represents the contraction C[a,b,c,d,e,f] =
Ald,e,g,b]"B[g.f,a,c]. The number of tensor dimension varies from
four to seven. Each example maps to one of the cases in (small A, B,
large C), (small A, large B, C), (small C, large A, B), (large A, B, C).
The table 2 shows the measured cache line misses and the predict
data movement in cache lines during the computation phase. Our
predicted data movement is close to the actual data movement.

Figure 2 compares cache misses for ACMTC to TBLIS and TCL
for the four representative tensor contraction expressions (one each
from CCSD, CCSD(T), contractions involving tensor multiplication
and two-electron integrals transform). In order to obtain accurate
cache miss data, we disabled the hardware prefetcher. The combined
data movement of our approach is consistently lower than all the
other approaches.

6.2 Performance Evaluation

We created a set of micro-benchmarks to measure the bandwidths
of the machines at the different levels. Each micro-benchmark con-
sists of a sequence of Load-FMA-Store instructions on a continuous
memory block of a given size with no reuse. We start running the
micro-benchmark from a small memory block whose size is less
than half of the L1 cache and increase the size of memory to be
accessed exponentially, till it is close to two times of the size of
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L3 cache. We recorded the total accessed data amount and time
needed, and the bandwidth for that size of data is computed by
dividing time by the volume of the accessed data. When the amount
of data accessed in micro-benchmark is closest but smaller than
some level of cache, it can fit into that level of cache, and the band-
width of this amount of data could be seen as the bandwidth of
that level of cache. We did not use STREAM benchmark or PMBW
benchmark as the bandwidth reported by these benchmarks reflects
the maximum achievable bandwidth under the assumption that a
load/store instruction can be issued every clock cycle. Since ten-
sor contractions require other instructions such as FMA, it is not
feasible to issue load/store instructions every clock cycle. Using
the PMBW bandwidth reduced the quality of our model. For exam-
ple, for abcdef-dega-gfbc TC, the performance achieved using our
microbenchmark bandwidth was 29 GFLOPS; using bandwidths
reported by the PMBW benchmark reduced the performance to 25
GFLOPS.

The measured bandwidths for the Intel Core i7-6700K processor
and the Intel Xeon E5-2680 v4 processor measured by the micro-
benchmark is listed in the Table 3.

Measured Bandwidth

(byte/cycle) L1 L2 L3 Memory
i7-6700K Skylake 19.36 | 18.32 | 12.8 6.4

Xeon E5-2680 Broadwell | 25.28 | 19.68 | 11.44 | 6.08

Table 3: Measured Bandwidth on Skylake and Broadwell

As shown in 3 ACMTC achieves higher performance for single
core on all benchmarks when compared to TBLIS. We outperformed
TCL in most cases.

For Broadwell architecture, as shown in Figure 3, the geometric
mean of the speedup is 1.25x versus TBLIS, 1.41x versus TCL-MKL,
and 1.51x versus TCL-TBLIS. On Skylake architecture, as shown in
Figure 3, the geometric mean speedup is 1.34x versus TBLIS, 1.27x
versus TCL-MKL, and 1.34x versus TCL-BLIS respectively.

We also conducted experiments for the multi-core environment
for a “batched” contraction scenario where a number of identical
contractions are performed on different operands. We modeled
the shared L3 cache as logically divided into equal-sized parts for
each core on a socket. For each core, the same tensor contraction
benchmark was launched on each core simultaneously on inde-
pendent data. An MPI barrier was set at the beginning and end
of the computation. The average performance per core is shown
in (b) and (d) of figure 3 in GFLOPS. Overall, on the Broadwell
CPU, the geometric mean of speed up is 1.25x versus TBLIS, 1.21x
versus TCL-MKL, and 1.38x versus TCL-BLIS. On the Skylake CPU,
the geometric mean of speedup is 1.23x versus TBLIS, 1.31 versus
TCL-MKL, and 1.47 versus TCL-BLIS. We observe that ACMTC as
well as TBLIS and TCL achieve lower per-core performance for the
multi-core scenario than the single-core case. A significant reason
for this is the lower per-core capacity available in the shared L3
cache. Further, we note that the speedup of ACMTC over TBLIS and
TCL for the multi-core case is lower for some of the benchmarks
and higher for others. A significant reason appears to be differ-
ences in the cross-thread interference in the shared L3 cache. For
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Figure 3: Tensor Contraction Performance Comparison on TCCG benchmarks (a) Broadwell single core, (b) Broadwell multi-

core, (c) Skylake single core, (d) Skylake multi-core

example, for benchmark No.1, where ACMTC suffers the greatest
loss of the performance relative to TCL for the multi-core scenario,
the L3 miss count increases from 6.2 million misses per core to 41
million misses per core on 28 threads for ACMTC, but only rises
from around 9 million to 15 million misses for the TCL-MKL and
TCL-BLIS versions.
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6.3 Discussion

Time prediction. Even though the primary focus of our modeling
is to aid the choice of tile-loop permutation and tile sizes, our model
can also be used to predict the execution time. The error rate of our
time prediction model was less than 10% in most cases. This time
prediction model can be used to evaluate different architectural
choices. As an example, consider the contraction: abcdef-degb-gfac
(problem size a to g: 24,16,16,24,16,16,24). On an Intel Xeon E5-2680
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Expression Problem size
1 ab-acd-dbc a:312 b:312 ¢:312 d:312
2 ab-cad-dcb a:312 b:312 ¢:312 d:312
3 abc-acd-db a:312 b:312 ¢:312 d:312
4 abc-ad-bdc a:312 b:312 ¢:312 d:312
5 abc-adc-bd a:312 b:312 ¢:312 d:312
6 abc-adc-db a:312 b:312 ¢:312 d:312
7 abc-bda-dc a:312 b:312 ¢:24 d:312
8 abcd-aebf-dfce a:72 b:72 ¢:72 d:72 e:72 £:72
9 abcd-aebf-fdec a:72 b:72 ¢:72 d:72 e:72 £:72
10 | abcd-aecf-bfde a:72 b:72 ¢:72 d:72 e:72 £:72
11 | abcd-aecf-fbed a:72 b:72 ¢:72 d:72 e:72 £:72
12 | abcd-aedf-bfce a:72 b:72 ¢:72 d:72 e:72 £:72
13 | abcd-aedf-fbec a:72 b:72 ¢:72 d:72 e:72 £:72
14 | abcd-aefb-fdce a:72 b:72 ¢:72 d:72 e:72 £:72
15 | abcd-aefc-fbed a:72 b:72 ¢:72 d:72 e:72 £:72
16 | abcd-dbea-ec a:72 b:72 ¢:72 d:72 e:72 £:72
17 | abcd-deca-be a:72 b:72 ¢:72 d:72 e:72 £:72
18 | abcd-ea-ebed a:72 b:72 ¢:72 d:72 e:72
19 | abcd-eafb-fdec a:72 b:72 ¢:72 d:72 e:72 £:72
20 | abcd-eafc-bfde a:72 b:72 ¢:72 d:72 e:72 £:72
21 | abcd-eafd-fbec a:72 b:72 ¢:72 d:72 e:72 £:72
22 | abcd-eb-aecd a:72 b:72 ¢:72 d:72 e:72
23 | abcd-ebad-ce a:72 b:72 ¢:24 d:72 e:72
24 | abcd-ec-abed a:72 b:72 ¢:72 d:72 e:72
25 | abcde-ecbfa-fd a:48 b:32 ¢:32 d:24 e:48 £:48
26 | abcde-efbad-cf a:48 b:32 ¢:24 d:32 e:48 £:32
27 | abcde-efcad-bf a:48 b:24 ¢:32 d:32 e:48 £:32
28 | abcdef-dega-gfbc | a:24 b:16 c:16 d:24 e:16 f:16 g:24
29 | abcdef-degb-gfac | a:24 b:16 c:16 d:24 e:16 f:16 g:24
30 | abcdef-degc-gfab | a:24 b:16 c:16 d:24 e:16 £:16 g:24
31 | abcdef-dfga-gebc | a:24 b:16 c:16 d:24 e:16 :16 g:24
32 | abcdef-dfgb-geac | a:24 b:16 c:16 d:24 e:16 :16 g:24
33 | abcdef-dfgc-geab | a:24 b:16 c:16 d:24 e:16 £:16 g:24
34 | abcdef-efga-gdbc | a:24 b:16 c:16 d:24 e:16 £:16 g:24
35 | abcdef-efgb-gdac | a:24 b:16 c:16 d:24 e:16 £:16 g:24
36 | abcdef-efgc-gdab | a:24 b:16 c:16 d:24 e:16 :16 g:24

Table 4: Tensor Contraction Benchmarks for Performance
Evaluation

v4 processor (Broadwell), with 128 GB RAM, our data movement
model shows that the performance of the above TC is bottlenecked
by the Memory to L3 bandwidth. From an architectural standpoint,
there are two main ways to alleviate this bottleneck: i) increase
Memory bandwidth ii) increase L3 cache size. Our time prediction
model predicts that if the Memory bandwidth is increased by 5%,
the performance (GFLOPS) will also increase by 5%. It also predicts
that increasing memory bandwidth beyond 21% will change the
bottleneck to L1-to-Register bandwidth. On the other hand, if we
increase the L3 cache size, our model predicts that the performance
will not improve.

7 RELATED WORK

There has been extensive prior work on loop optimization. Poly-
hedral compilers [1, 3, 6, 16] have developed very powerful loop
transformation strategies for tiling complex imperfectly nested
affine loop computations. Tensor contractions are special cases of
affine loop computations and therefore polyhedral compilers can
tile code for arbitrary tensor contractions. However the cost mod-
els used for guiding choice of loop transformations in polyhedral
compilers are constrained to be linear functions, while the tile size
optimization problem is inherently a nonlinear optimization prob-
lem, as discussed in detail in this paper. The linear cost models used
internally in polyhedral compilers are too imprecise to effectively
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choose the best among the exponential number of permutations of
the tiled loops.

All previously proposed performance modeling approaches in
compilers either suffer from imprecision or an exponential blow-up
in the number of cases that have to be evaluated in optimizing the
tiling configurations (permutations of the tiling loops) and tile size
selection.

The topic of analytical modeling for tile size optimization has
been addressed by a number of prior research efforts [4, 10, 11,
18]. However, previous modeling approaches suffer from one or
more of the following shortcomings: a) they use a model of nested
tiles that are optimized in some fixed sequence (in contrast to our
approach of solving the multi-level tile size selection problem in a
coupled fashion); b) they do not model inter-tile reuse. Finally, prior
efforts on tile size optimization generally compare performance or
speedup of the optimized tiled code with untiled baseline codes;
comparisons with the best available manually optimized code or
code from state-of-the-art libraries are rarely done. In contrast,
we demonstrate the effectiveness of the modeling approach over
an extensive public benchmark suite for tensor contractions, by
comparing performance with the best-known implementations for
those contractions from state-of-the-art libraries.

8 CONCLUSION

In this paper we have presented a new methodology for multi-level
tile-size optimization for a class of nested loop tensor computations.
It is based on observations that enable significant reduction of the
search space and an approach to analytical characterization of data
volume at each level of a multi-level storage hierarchy along with
solution using a constrained optimization solver. The effectiveness
of the modeling and optimization approach was demonstrated over
a large set of tensor contractions. The approach is more broadly
applicable and is being extended to optimize machine learning
kernels.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

The experiments were performed on a single core of and Intel Core
i7-6700K processor, and an Intel Xeon CPU E5-2680 v4 processor.
The used GNU GCC 7.3.0 compiler with flag -O3 —std=c99. For TCL
we are using MKL 2018 for performing BLAS operations.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:
https://github.com/yurikamome/sc19

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER
Relevant hardware details: Haswell, Broadwell, Skylake Desktop

Compilers and versions: g++ 7.3.0

Libraries and versions: TBLIS, TCL, MKL2019, BLIS

ARTIFACT EVALUATION

Verification and validation studies: Experiments were performed
using the TCCG benchmarks on two systems, a Broadwell processor
with Xeon E5-2680 v4, and a Skylake processor with Core i7-6700K.
The performance achieved with the new modeling approach was
compared with TBLIS and TCL (using both BLIS and MKL kernels).

Accuracy and precision of timings: The timing measurements
used omp_get_wtime. The omp_get_wtime function returns a
double-precision floating-point value equal to the elapsed wall
clock time in seconds since some "time in the past".

Used manufactured solutions or spectral properties: N/A.

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: N/A

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. Each
experiment was repeated five times and the average was reported.
The variance was under 5%.
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