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Abstract

Researchers and practitioners have for long worked on im-
proving the computational complexity of algorithms, focus-
ing on reducing the number of operations needed to per-
form a computation. However the hardware trend nowadays
clearly shows a higher performance and energy cost for data
movements than computations: quality algorithms have to
minimize data movements as much as possible.

The theoretical operational complexity of an algorithm is
a function of the total number of operations that must be ex-
ecuted, regardless of the order in which they will actually be
executed. But theoretical data movement (or, I/O) complexity
is fundamentally different: one must consider all possible
legal schedules of the operations to determine the minimal
number of data movements achievable, a major theoretical
challenge. I/O complexity has been studied via complex man-
ual proofs, e.g., refined from Q(n®//S) for matrix-multiply
on a cache size S by Hong & Kung to 2n®/V/S by Smith et al.
While asymptotic complexity may be sufficient to compare
I/O potential between broadly different algorithms, the accu-
racy of the reasoning depends on the tightness of these I/O
lower bounds. Precisely, exposing constants is essential to
enable precise comparison between different algorithms: for
example the 2n%/V/S lower bound allows to demonstrate the
optimality of panel-panel tiling for matrix-multiplication.
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1 Introduction

The performance impact of operations and data movement
latencies in current architectures can often be effectively
masked by using hardware-pipelined implementations. But
the volume of data movements required by even an idealized
implementation of an algorithm will impose fundamental
limits: any implementation of that algorithm will have its
performance and energy requirements bounded by this limit
[12, 18, 25, 26, 28, 29]. Providing algorithm designers with
tools to characterize this fundamental limit is crucial.
Memory movements can be efficiently tracked for a partic-
ular algorithm implementation, and it is standard practice for
performance debugging [1]: Hardware counters can be used
to measure cache misses and data traffic. But two different im-
plementations of the same algorithm may have dramatically
different memory movement profiles: for example a care-
fully tiled implementation of matrix multiplication would
significantly reduce cache misses versus a naive, untiled one.
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In general, determining whether an implementation is
sub-optimal or whether the fundamental nature of the algo-
rithm is the limiting factor for the observed cache miss count
is crucial. We propose an automatic system to answer this
question, potentially alleviating the need for the algorithm
designers to produce a concrete optimized implementation.
As we specifically target the production of non-asymptotic
I/0 lower bounds, our system also makes it possible for per-
formance experts to reason about the optimality of their
implementations with respect to data movement.

Our fully implemented framework IOLB (for I/O Lower
Bounds) automatically derives parametric lower bounds with
scaling constants on the data transfer volume, and thus also
provides a parametric upper bound on the achievable oper-
ational intensity for any possible legal schedule, for regular
(affine) programs on a system with a two-level memory hi-
erarchy. IOLB can be viewed as a proof environment, where
the input is a C program meeting specific restrictions, and
the output is an I/O lower bound for this program for any
valid schedule of operations. The formal proof itself can be
derived, understood, and reviewed from the output of IOLB.
The lower bound is parametric, therefore supporting para-
metric problem sizes as are typically used in loop bound
expressions in the input program. This paper describes:

1. The first static analysis for automatic derivation of
non-asymptotic I/O lower bounds for affine programs.

2. A complete automated implementation of the IOLB
framework, making it accessible to algorithm develop-
ers, producing clear parametric formula for the min-
imal I/O requirement given an input affine program.

3. An extensive evaluation of IOLB on 30 algorithms
specified in PoLYBENCH [23], with several first-time
I/0 lower bounds demonstrations on these algorithms.

The paper is organized as follows. A high-level overview
of the approach is presented in Sec. 2. The formalism for
data movement lower bounds based on the seminal red-blue
pebble game of Hong & Kung [18], along with the core def-
initions and theorems used to derive our algorithm, are de-
scribed in Sec. 3. Sec. 4 provides insights on how complex
programs can be decomposed to derive tighter bounds. An
overview of the complete framework is provided in Sec. 7. It
uses two proof techniques, namely the K-partition and the
wavefront based proofs that are respectively described in
Sec. 5 and Sec. 6. We demonstrate the power of our approach
by running it on a full benchmark suite of affine programs:
Sec. 8 reports the data movement complexities for the 30
algorithms benchmarked in PoLYBENcH. Related work is
discussed in Sec. 9 before concluding.

2 Key Concepts and Overview of Approach

Performance tools such as Intel’s Software Development
Emulator Toolkit (SDE) and VTune Amplifier (VTune) en-
able the automated measurement of the achieved operational
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intensity of a program, that is the number of memory move-
ments (e.g., cache miss) per actual operation executed. This
ratio suggests whether a computation is memory-bound
or compute-bound for a particular machine, e.g. using the
roofline model [35]. But this measures a particular implemen-
tation of an algorithm: for example such system is used to
fine-tune the particular tile size to be used to obtain maximal
performance [24]. It cannot provide information on the min-
imal number of movements required by any implementation of
the algorithm, and therefore does not bound the achievable
operational intensity. We call two codes implementations of
the same algorithm if they perform the same atomic oper-
ations with potentially different schedules (tiled vs. untiled
LU factorization are implementations of the same algorithm,
while LU with or without pivoting are not).

When facing subpar performance, the designer is left won-
dering whether the implementation is at fault, and should be
better tuned; or whether the implementation is already “opti-
mal”, and the performance is bound by a fundamental limit of
the implemented algorithm. A simple illustration is matrix-
multiplication on dense matrices: a simple (i, j,k) untiled
implementation will be memory-bound on most machines,
but a carefully tiled one will become compute-bound [35].
One can assess the I/O optimality of an implementation if a
(tight) non-asymptotic lower bound on I/O is known. IOLB
specializes in automatically computing such non-asymptotic
bounds. It enables algorithm designers to reason on the fun-
damental I/O limits of different algorithmic choices, and
enables practitioners to reason on the I/O optimality of their
implementation. IOLB works within a two-level memory
model: the I/O cost of an algorithm is the number of trans-
fers from the slow memory to the fast memory (see Sec. 3.1).

Affine programs. To make automation feasible and pro-
ducing accurate-enough I/O bounds, we specifically focus in
this work on affine (or, polyhedral) programs[14-16] as input
to IOLB. This class covers a wide set of key algorithms, as
exemplified with the 30 algorithms in PoryBENCH/C [23] that
span popular dense linear algebra, stencils/convolutions, and
dynamic programming techniques. Programs are restricted
to control-flow that is statically analyzable, where loops and
array-based accesses are expressed as affine functions of the
(surrounding) loop iterators, and program parameters (i.e.,
constants unknown at compile-time).

Automating 1I/0 lower bounds computation. We em-
ploy two very distinct approaches to finding lower bounds
on data movement: one based on the S-Partitioning approach
[18], and one based on graph wavefronts [12]. Combining
these two approaches is essential for handling of a large
class of programs, as they are complementary and work on
different data dependence patterns. A lower bound for a pro-
gram exhibiting a combination of both kind of patterns can
combine both. We first present a high-level overview of the
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Parameters: N, M; Parameters: N, M;

Input: A[N], C[MJ]; Output: A[NJ]; Input: A[N], C[MJ]; Output: Sp—1[NJ;

for (0<t<M and 0<i<N) t
if (t==0): So; = A[i] * C[e];
else: S;; = S;1,; * CLt];

for(t=0;t<M;t++)
for (i=0; i<N; i++)
ALi]l = A[i]l * C[t];

() (b)
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Figure 1. Example 1. (a) C-like code. (b) Corresponding single assignment form. (¢) Corresponding CDAG. Input nodes A[N]
(resp. C[N]) are in grey (resp. white), compute nodes are in black.

S-Partitioning approach, to intuitively familiarize the reader
with the reasoning and terminology used.

Consider the program in Fig. 1a. For given values of the
parameters M and N (e.g., M=6, N=7), the program can be
abstracted as a graph called a computational directed acyclic
graph (CDAG, cf. Definition 3.1), as shown in Fig. 1c. Vertices
in the CDAG represent input values for the computation as
well as values computed by all statement instances (the latter
are colored black and the former have lighter shades, grey
or white). The set of vertices is also called the iteration space
of the program. Edges in the CDAG capture data flow depen-
dences, that is, relations between producers of data values to
consumers. We note that in this abstracted representation of
the computation, there is no association of any memory loca-
tions with values. Fig. 1b shows a single-assignment form of
the same computation as that in Fig. 1a, and both programs
have the same CDAG shown on Fig. 1c. The CDAG abstracts
all possible valid schedules of execution of the statement in-
stances: the only requirement is that all predecessor vertices
in the CDAG must be executed before a given vertex can be
executed. Data movement is modeled in a simplified two-
level memory hierarchy, with an explicitly controlled fast
memory of limited size S (e.g., a set of registers or a scratch-
pad), and a slow memory of unlimited capacity. At any point
in the execution at most S values corresponding to CDAG
vertices may be in fast memory. A computational CDAG
vertex can be executed only if the values corresponding to
all predecessor vertices are present in fast memory.

The main idea of the S-partitioning approach for proving
lower bounds can be understood as follows. Consider any
valid schedule for the execution of the vertices of a CDAG,
expressed as a sequence of instructions: load, store, or op-
eration execution (Op). A valid schedule must ensure that
values corresponding to predecessor vertices are available
in fast memory when the operation corresponding to each
CDAG vertex is executed. The sequence of instructions of
the schedule is partitioned into contiguous maximal sub-
sequences such that the total number of load instructions
in any sub-sequence (except the last one) is exactly equal
to a specified limit T (whose value will be chosen later in

the reasoning). Let us suppose (as explained shortly) that
no more than U Ops can be provably present within any
of the partitioned sub-sequences. Let V denote all computa-
tional vertices in the CDAG. There must be at least | |V|/U ]
sub-sequences with T loads, leading to a lower bound on the
number of loads of Qiow=T"-||V|/U].

We next use the simple example of Fig. 1c to explain how
an upper bound for U can be computed. The automated anal-
ysis based on partitioning in IOLB is centered around the use
of geometric inequalities that relate the cardinality of a set of
points in a multi-dimensional space to cardinalities of lower-
dimensional projections of those points. The set of points
here (P) are the computational vertices (Ops) in one of the
partitioned sub-sequences (SS) with T load instructions. The
In-set In(P) of P is the set of all predecessors of the vertices
in P that do not belong to P. Clearly, In(P) represents values
that were not computed in the current sub-sequence SS con-
taining P. Since all values in In(P) must be in fast memory
in order to execute the Ops corresponding to P, they must
either have already been in fast memory at the beginning
of the sub-sequence SS or must have been explicitly loaded
within SS. No more than S values from In(P) could have been
present at the beginning of SS, and T values were loaded in
SS. Thus the size of In(P) must be less than (S+T).

Pl<A-B

e o o o
proj, (P)| = B

(a) (b)

Figure 2. In-set, projections and geometric inequality
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In our simple example, vertices corresponding to the loop
statement are naturally represented as points in a two-dimen-
sional lattice. With that representation, it may be observed
that the size of the In-set of a vertex set of this particular
graph must be greater than or equal to the cardinality of the
orthogonal projections of P onto the vertical and horizontal
axes (i.e. the height and width of P). As illustrated on Fig. 2b,
the size of the vertex set in the two-dimensional space is
bounded by the product of the sizes of its two 1D projections.
This result can be generalized to arbitrary dimensions and
any set of (not necessarily orthogonal) projections, and is
called the Brascamp-Lieb inequality. Setting T =S5, a vertex
set with an In-set of size at most 2S cannot have projec-
tions of size more than 25, and therefore cannot itself be
greater than U = 452, This implies that any valid ordering
of the operations for this computation will result in at least
S-LMN /45| ~ MN/4S load operations'.

Lower bounds: algorithms vs. problems. The reader may
be familiar with the external memory model [2], or cache-
oblivious algorithms [17]. The memory model is very similar
to the one we use in this paper, except that the granularity
of memory transfers to and from fast memory is that of a
block of several words (typically hundreds), instead of indi-
vidual words. In these models, researchers are interested in
designing algorithms that minimize memory transfers, either
for a fixed fast memory size (external memory algorithms,
or cache-aware algorithms) or for any size (cache-oblivious
algorithms), as well as proving theoretical lower bounds on
the number of such memory transfers.

The fundamental difference with the work presented here
is that lower bounds in these models [2, 17] are over all pos-
sible algorithms solving a certain problem, while the lower
bounds provided by IOLB are over all possible valid schedules
for a specific algorithm (i.e. a fixed set of partially ordered
operations). As an example there exists many algorithms for
performing matrix-matrix multiplication. The lower bound
provided by IOLB gives information on what could possi-
bly be achieved by rescheduling the operations of the usual
O(N?) algorithm, but gives no information on other algo-
rithms such as Strassen’s [31].

The goal of IOLB is to provide information on whether a
given implementation of an algorithm might be improved with
respect to data movement or if it is fundamentally I/O-bound.

Overview of our contributions. To automate and gener-
alize this geometric reasoning on arbitrary affine programs,
we need to: (1) Generalize the geometric upper-bounding
for any number of projections with arbitrary dimensionality
(Sec. 3.3); (2) Build (derive from array accesses) a compact
representation (DFG) of the data-flow dependencies of the
program that is suitable for reasoning about reuse directions

!t is actually possible to improve this bound by a factor of 4 with more
advanced techniques, as shown in Sec. 5
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(Sec. 3.4); (3) Analyze this representation to extract reuse
directions (represented as DFG-paths - Sec. 3.4); (4) General-
ize the geometric reasoning for a perfectly nested loop with
one statement to any combination of loops with arbitrary
number of statements (embedding - Sec. 5).

The goal of IOLB is to go even further and automatically
derive parametric bounds that are as tight as possible (includ-
ing maximization of the scaling constants). For this purpose,
the developed algorithm: (5) Enables the combination (and
tightening) of constraints associated with different projec-
tions, even with an arbitrary number of them with lower
dimensionality; (6) Handles non-orthogonal projections even
if they are not linearly independent; (7) Develops a new rea-
soning strategy inspired from the wavefront reasoning of
Elango et al. [12] (Sec. 6); (8) Allows the combination of
individual complexities (obtained through potentially dif-
ferent methods) of overlapping program regions (Def. 4.1,
Lemma 4.2) even for an unbounded number of regions (pa-
rameterized regions inside loops — Sec. 4.3);

3 Foundations

In this section, we present some background and discuss
prior results needed for the developments in this paper.

3.1 CDAG and I/O Complexity

The formalism and methodology we use to derive schedule-
independent data movement lower bounds for execution of
an algorithm on a processor with a two-level memory hier-
archy is strongly inspired by the foundational work of Hong
& Kung [18]. In this formalism, an algorithm is abstracted
by a graph — called a CDAG —, where vertices model execu-
tion instances of arithmetic operations and edges model data
dependencies among the operations. We formalize the data
movement (or I/O) complexity of a CDAG via the red-white
pebble game (a variation we designed of Hong & Kung’s
red-blue pebble game). In this game, a vertex of a CDAG can
hold red and white pebbles. Red pebbles represent values in
the fast memory (typically a cache or scratchpad), and their
total number is limited. White pebbles represent computed
values, that can be loaded into the fast memory. A value can
be computed only when all its operands reside in the fast
memory: a red pebble can be placed on a vertex in the CDAG
if all its predecessors hold a red pebble, a white pebble is
placed alongside the red. Values that have been computed
can be loaded in and discarded from the fast memory at any
time: a red pebble can be placed or removed from a vertex
holding a white pebble. However a value can only be com-
puted once: once a vertex holds a white pebble, it cannot
be removed. The I/O cost of an execution of the game is the
number of loads into the fast memory: the number of times
a red pebble is placed alongside a white one.

Contrary to Hong & Kung’s original model, our formal-
ism does not allow recomputation of the value at a vertex.
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This follows many previous efforts [4, 5, 8, 9, 11-13, 19, 28].
This assumption is necessary to be able to derive bounds
for complex CDAGs by decomposing them into subregions.
Another slight difference of IOLB with prior work is that
it only models loads and not stores — this means the gener-
ated bounds are clearly also valid lower bounds for a model
that counts both loads and stores. Since the number of loads
dominates stores for most computations, the tightness of the
lower bounds is not significantly affected. We provide formal
definitions below.

Definition 3.1 (Computational Directed Acyclic Graph). A
Computational Directed Acyclic Graph (CDAG) is a tuple G=
(V,E,I) of finite sets such that (V,E) is a directed acyclic
graph, I CV is called the input set and every v € I has no
incoming edges.

Definition 3.2 (Red-White Pebble Game). Given a CDAG
G=(V,E,I), we define a complete S-red-white pebble game
(S-RW game for short) as follows: In the initial state, there
is a white pebble on every input vertex v €1, S red pebbles
and an unlimited number of white pebbles. Starting from
this state, a complete game is a sequence of steps using the
following rules, resulting in a final state with white pebbles
on every vertex.

(R1) A red pebble may be placed on any vertex that has a
white pebble.

(R2) If a vertex v does not have a white pebble and all its im-
mediate predecessors have red pebbles on them, a red
pebble may be placed on v. A white pebble is placed
alongside the red pebble.

(R3) A red pebble may be removed from any vertex.

The cost of a S-RW game is the number of applications
of rule (R1), corresponding to the number of transfers from
slow to fast memory.

Here, red pebbles mark operations whose results are cur-
rently stored in fast memory, and white pebbles mark oper-
ations whose results have been computed. A result resides
in fast memory immediately after it has been computed, and
we consider that it is always present in slow memory as
well (since stores are not taken into account). Computation
can happen at most once due to rule (R2), and this is the
fundamental difference with Hung & Kung’s model.

Definition 3.3 (I/O complexity). The I/O (or data movement)
complexity of a CDAG G for a fast memory capacity S, de-
noted Q(G), is the minimum cost of a complete S-RW game
on G.

This quantity is the fundamental measure for which this
work tries to establish lower bounds.

3.2 Partitioning

One key idea from Hong & Kung was the design of a mapping
between any valid sequence of moves in the red-blue pebble

PLDI ’20, June 15-20, 2020, London, UK

game and a partition of the vertices of a CDAG and thereby
the assertion of an I/O lower bound for any valid schedule in
terms of the minimum possible count of the disjoint vertex-
sets in any valid 2S-partition (see below) of the CDAG.

The argument is the following: any execution can be de-
composed into consecutive segments doing exactly (but for
the last one) S loads. There are at most S vertices in fast
memory before the start of each segment. Considering the
set of computed vertices in one of these segments, we can
bound the size of its “frontier” (or In-set) by 2S: there can
be at most S vertices in fast memory before the execution of
the segment, and by construction there are exactly S loads.

Smith et al. [30] introduced a generalization of this ar-
gument, leading to tighter bounds in many cases. The idea
is to decompose the execution into segments with T (not
necessarily tied to be equal to S) loads . This leads to a (S+T)-
partitioning lemma instead of the original 2S.

Definition 3.4 (In-set, K-bounded set, K-partition). Let G=
(V,E) be a CDAG, PCV be a vertex set in G.

The In-set of P is the set of vertices outside P with a suc-
cessor inside P.

A vertex set PCV is called K-bounded if In(P) <K.

A K-partition of G is a partition of V into subsets with no
cyclic dependencies, such that every subset has an In-set of
size <K.

Lemma 3.5 ((S+7)-Partitioning I/O lower bound, no in-
put case [12]). Let S be the capacity of the fast memory, let
G=(V,E,0) be a CDAG, and let h be the minimum number of
subsets in a (S+T)-partition of Gy = (V,E,I = Sources(V)) for
someT >0. Then, the minimum I/O for G satisfies:

Q(G)=T-(h—1)—|Sources(V)|.

where Sources(V) is the set of vertices with no predecessors inG.

3.3 Using Projection
to Bound the Cardinality of K-bounded Sets

The key idea behind the automation of I/O lower bound
computation is the use of geometric inequalities through an
appropriate program representation. Vertices of a CDAG are
mapped to points in a multidimensional geometric space & ~
Z? through some mapping p (where dimensions are typically
loop indices), and regular data dependencies in the CDAG
are represented as projections on a lower-dimensional space.
The condition “set of vertices P C V is K-bounded” in the
CDAG corresponds to a condition of the form “the size of
the projections of p(P) in & is bounded by K”. Finding a
bound on the size of a K-bounded set in a CDAG can thus
be reduced to: finding a bound on the size of a set E in a
geometric space, given cardinality bounds on some of its
projections. This correspondence is developed in Sec. 5.
The mathematical result we use is a discrete version of the
Brascamp-Lieb inequality, introduced by Christ et al. [10].
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Intuitively, this inequality is a generalization of the fol-
lowing, 3-dimensional continuous one:

If the surfaces of all three projections of a 3-dimensional
volume V on planes x=0, y=0, z=0 are bounded by some
constant C, then |V| < C?/2.

This result can be generalized to arbitrary dimensions
(giving |V| < C4/(4=) and further to any set of projections,
even on lower-dimensional subspaces.

More details are provided in the full technical report [22].

3.4 A Compact Representation
of the CDAG: the Data-flow graph
el
for (0<t<M and 0<i<N) .'\ o
if (t==0): S[0,i]=A[i]*C[0]; eg
else: S[t,i]=S[t-1,i1%C[t]; @/
2

(a) Single assignment form (b) DEG
Da=[N]— {A[i]: 0<i<N}
De=[N]— {C[t]: 0<t<M)
Ds=[M,N]— {S[t,i]: 0<t<M A 0<i<N}
|Ds|=MN

(c) Node domains

Re, =[N]—= {A[i] > S[0,i]: 1<i<N}
Re, =[M,N]—= {C[t]—>S[t,i]: 0<t<M A 0<i<N}
Rey; =[M,N]— {S[t,i] > S[t+1,i]: 0<t<M-1 A 0<i<N}

(d) Edge relations

Figure 3. DFG for Example 1

A CDAG (see Fig. 1c) represents a single dynamic execu-
tion of a program, and can be very large. To be able to analyze
programs of realistic size with reasonable resources, we use
a compressed representation called a Data-flow graph (DFG).
Another advantage of such a representation is that it is para-
metric, i.e. a single DFG can represent CDAGs of different
sizes, depending on program parameters. A DFG represents
an affine computation, which is the class of programs that
can be handled by the polyhedral model [14-16]. We use the
terminology and syntax from the ISL library [32], and illus-
trate them with the example of Fig. 1. Formal definitions can
be found in the manual [33].

Vertex domains. As one can see on Fig. 1c, to each loop
is associated a “geometric” space dimension (¢ and i here) so
that each vertex of the CDAG lives in a multidimensional iter-
ation space, its domain, that can be algebraically represented
as a union of parametric Z-polyhedra (sets of integer points
in a multidimensional space bounded by affine inequalities).
A domain is an set (in ISL terms) for which standard oper-
ations (union, intersection, difference,...) are available, as
well as a cardinality operation (denoted |D|). As an example
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(see Fig. 3c), the domain Dg of statement S is a Z-polyhedron
with parameters M and N made up of all integer points (t,i)
such that 0 <t <M and 0 <i < N. The number of points in
this set (cardinality) is |Ds| = MN. Note that the space within
which all the points of a statement (S here) live is identified
with the name of the statement, using the notation S[t,i].

Edgerelations. A set of edges of the CDAG is represented
using a relation (map in ISL), which is a set of pairs be-
tween two spaces, from the domain space to the image space.
As an example (see Fig. 3d), the data flow from statement
S[t,i] (definition of A[i] in S) to statement S[t + 1,i] (use
of A[i] in S) is represented using the relation R,. In addi-
tion to standard set operations, ISL can compute the tran-
sitive closure of a relation, denoted R* (this will be needed
is Sec. 6). Binary relations are also supported: image of a
domain D through a relation R (denoted R(D)), and compo-
sition of two relations R; and R,, denoted R; o R, (this is
left composition, going the opposite way from usual func-
tional notation). Composition restricts the image domain
of the resulting relation to points where the composition
relation makes sense: Dom(R; oR;) =R;(Im(R;)NDom(R,)),
Im(R;oR;) = Ry (Im(R;)NDom(R,)). As with domains, we
will sometimes manipulate unions of such relations.

Data-flow graph (DFG). A DFG is a graph G = (S,D).
Each vertex S€ S of the graph represents a (static) statement
or an input array of the program. Each vertex S is associated
with a parametric iteration domain Ds and a list of enclosing
loops (empty for input arrays). Each edge d = (S,,S,) € D
represents a flow dependency between statements or input
arrays. Each edge is associated with an affine relation Ry
between the coordinates of the source and sink vertices.
The DFG is a compact (exact) representation of the dynamic
CDAG where a single vertex/edge of the DFG represents
several vertices/edges of the dynamic CDAG. While all the
reasoning and proofs can be done by visualizing a CDAG,
the actual heuristic described in this paper manipulates its
compact representation, allowing to translate graph meth-
ods [13] into geometric reasoning. Fig. 3b shows the DFG
for our simple stencil code.

DFG-paths. A fundamental object in our lower bound
analysis is a DFG-path, which is simply a directed path in
a DFG. The relation R, of a DFG-path p = (ey,...,ex) is the
composition of the relations of its edges: R, =R, 0+-0R,, .
We are only interested in two specific types of DFG-paths,
depending on their relation:

e chain circuits, which are cycles from one DFG-vertex S
to itself, such that the path relation R, is a translation
S[%] - S[Z+b].

e broadcast S,, Sp-paths, which are elementary paths
(from a S, to Sp — Sp, possibly equal to S;) in which all
DFG-edges but the first one are injective edges, such
that the inverse of the corresponding relation R, is an
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affine function S,[xX] — Su[A- X + l;], where A is not
full-rank.

Intuitively, a chain circuit corresponds in the CDAG to
“iterative” dependencies, for instance every statement S; ;
in a 2-dimensional loop depending on the result of state-
ment S;_; ;. Broadcast paths correspond to a same data being
reused multiple times, for instance a variable x being used by
every statement S; in a one-dimensional loop. The dimension
of the kernel of A in the definition above corresponds to the
dimension of the set of statements that use a single piece of
data: it is of dimension d if it is used in every iteration of a d-
dimensional loop. In both cases, these are regular data reuse
patterns that can be exploited by our geometric approach.

In Fig. 3, path p =(es) is a chain circuit, going from S to
itself with translation vector b = (1,0). Path p’ = (e3) is a
broadcast path, with relation Ry =R, ={C[t] — S[t,i]: 0<
t <M A 0<i< N} The inverse relation is the linear
function I+ A-T+b, with A= (1 O),E: (0). The kernel of A
is {(0,i),ieR}.

4 CDAG Decomposition

To derive data movement lower bounds for a complex pro-
gram, it is essential to be able to decompose it into subregions
for which we can compute lower bounds, and then sum the
complexity for each subregion. The no recomputation condi-
tion (see Sec. 3.1) is necessary for such a decomposition. Un-
der this hypothesis, it is quite straightforward to see that a de-
composition into disjoint subregions is sufficient. In this sec-
tion, we provide a more general decomposition lemma, using
the fact that vertices of a subregion that will not be counted as
loads can also be part of another subregion. We then explain
how it is applied on the DFG representation, distinguishing
two cases: combining a fixed number of program regions (see
example in Fig. 5); and summing over all iterations of a loop
(see example in Fig. 4), which amounts to combining an un-
bounded (parametric) number of program regions. We stress
that the CDAG partitioning method (Sections 3.2 and 3.3) and
the CDAG decomposition method (this section) are two dis-
tinct things, used at different stages in the global algorithm.

4.1 Non-disjoint Decomposition Lemma
Definition 4.1 (sub-CDAG, no-spill set). Let G=(V,E,I) be
a CDAG, and V; C V. The sub-CDAG Gy, of G is the CDAG
with vertices V;, edges E; = EN(V; XV;) and input vertices
Ii =In ‘/l
The no-spill set of Gy, is the subset of vertices of V;\ I;
with either:
1. no outgoing edges in E;, or
2. no incoming edges in E; and at most one outgoing
edge in E;
The may-spill set of G|y, is the complement of its no-spill
set in V;.
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Lemma 4.2 (CDAG decomposition). Let G = (V,E,I) be a
CDAG. Let V1,V,,..., Vi be subsets of V such that for any i # j,
the may-spill sets of G|y, and Gy, are disjoint.

Then, the I/O complexity of G is bounded by the I/O complex-
ities of the sub-CDAGs Gy,

k
Q(G)= ) QGy,).
i=1

To prove this lemma, it suffices to show that it is possible to
build a RW-game for G from RW-games for subgraphs G|y,
and that this game is valid and has a cost greater than the
sum of the individual games. This poses no great difficulty,
and the full proof can be found in the technical report [22].

s
for(t=0; t<M; t++) { ‘\“ \" \“ \.
s = 0; oo
for(i=0; i<N; i++) O\H\\'QQO%

S1: s += A[j]; ~ |
for(i=0; i<N; i++) \"%o>

S2: ALj] += s;

) (b) CDAG
for M=4, N=4. White
(a) Code vertices correspond to

S1, gray vertices to S2.

—— N
NN

may-spill set

(c) Decomposition of the CDAG

Figure 4. Example 2

IOLB implements two different mechanisms that make
use of the non-disjoint decomposition lemma. The basic one
(bounded combination — Sec. 4.2) simply decomposes the
CDAG into a bounded number of sub-CDAGs (e.g. corre-
sponding to different sub-regions of the code), computes the
corresponding I/O complexities, and combines them. The
more complex one (loop parametrization — Sec. 4.3), decom-
poses the CDAG into an unbounded number of sub-CDAGs
by “slicing” the iteration space of a loop nest. IOLB combines
the two mechanisms. The following example illustrates the
decomposition lemma for loop parametrization.

INlustrating example. Consider Example 2 in Fig. 4. The
CDAG can be decomposed into M —1 identical subgraphs,
as shown on Fig. 4c (each subgraph Gy,,t=1,...,M—1 cor-
responds to iteration ¢ of the loop around S;, and iterations
t—1and t of the loop around S;). On each of these subgraphs,
the may-spill set contains the two “bottom” rows (because
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vertices in the “top” row have no successor in the sub-CDAG).
Thus the may-spill sets of these subgraphs are pairwise dis-
joint and the I/O for the whole CDAG is greater than the
sum of the individual I/O for each subgraph by Lemma 4.2.
On each subgraph Gy, the wavefront method (Sec. 6) can
be applied, giving a lower bound on /O of Q(Gy,) > N-S.
As the may-spill set of the different subgraphs do not in-
tersect, the individual complexities can be summed over
t=1,....M—1, providing a lower bound for the whole CDAG:

Q(G)=(M-1)(N-S).

4.2 Bounded Combination

The main procedure of IOLB (Sec. 7.3) selects a bounded set
of (possibly overlapping) sub-CDAGs and computes their
individual complexities. The objective of this procedure is
to combine (sum) as many non-interfering (disjoint may-
spill sets) complexities as possible. It does so using a greedy
approach: Assume there are two sub-CDAGs both with a
“high” complexity but with non-disjoint may-spill sets. The
procedure will select the one with the highest complexity,
recompute the complexity of the second after removing the
intersecting part, and then sum them up. The overall set of
sub-CDAG:s is iteratively processed this way (and the com-
plexities summed-up) until empty or negligible complexities
remain. The comparison (what is “higher”) is done using in-
stances of parameter values, simply evaluating the correspond-
ing symbolic expressions. It should be emphasized that the
final bound is a valid lower bound for any parameter values,
the instances of parameter values are only used for heuristics.
Let us have a look at the example on Fig. 5. In the origi-
nal code (5a), notice that k is the outer loop index, meaning
that A[k] will have been modified either in the current loop
iteration or the previous one depending on the order be-
tween i and k (Floyd-Warshall exhibits the same pattern,
with three loops instead of two). This is made clear in the
single-assignment form (5b), and can be visualized in the
CDAG representation (5d). The dependences on input values
are grayed out in (5b) and omitted in (5d), and we will ignore
them in the discussion to keep the explanations simple.
Considering only the statement vertex S in the DFG, the
dependency analysis gives the following relations:

Ri={S[k-1,i] > S[k,i]: 1<k<N A 0<i<N}
Ry={S[k-1,k] > S[k,i]: 1<k<N A 0<i<k}
Ry={S[k,k] — Slk,i]: 0<k<N A k<i<N}

The image domains of R, and R; provide a natural decom-
position of the CDAG into two non-interfering sub-CDAGs,
as shown in (5e). On each part, the pattern is similar to
that of Example 1 on page 3 the geometric approach gives a
lower bound (omitting lower order terms) Q(G;) > ]2\]—52 Since
they do not interfere, the procedure will return their sum
Q(G)= N?z independently of the parameter instance.

A. Olivry, J. Langou, L. Pouchet, P. Sadayappan and F. Rastello

4.3 Loop Parametrization

As done on the example above, IOLB can compute the I/O
complexity of some inner loop nests of a bigger enclosing
loop nest and sum them. To this end, our scheme performs
what we call loop parameterization. Loop parameterization
considers each individual sub-CDAGs where the outermost
indices are fixed (our algebraic formulation obviously allows
to consider such indices as parameters without the need to
explicitly enumerate them) enriched by their input vertices.
This is formalized in the full technical report [22].

5 K-partition Bound Derivation

In this section, we explain how to apply the geometric rea-
soning of Sec. 3.3 on a CDAG G =(V,E), using its compact
representation as a DFG. To apply Lemma 3.5 on G, we need
to find a lower bound on the minimum number of subsets
h in any K-partition of G. The general reasoning is as fol-
lows: First, we embed V in a geometric space through a map
p:V —7Z2, such that two disjoint subsets of V are mapped
to disjoint subsets of Z¢, and |p(P)| < |P|.

Second, we use the DFG representation to find a subset
V’ C V and a set of projections (group homomorphisms)
@1,-.-,pm Wwith the property that:

Any K-bounded set PCV’\Sources(V") satisfies
|¢;(p(P)| <K. (1)

To do so, we primarily use broadcast and chain circuit
structures (cf. Sec. 3.4). These are two special cases that
are easy to detect from the DFG, common in applications,
and convenient from the stand point of (1). Third, using the
Brascamp-Lieb inequality [10], we derive an upper bound U
on |p(P)| for any (S+T)-bounded P. This provides a lower

w] on the number h of disjoint (S+T)-
bounded sets in V’\Sources(V").

bound [

DFG-paths and projections. Let Si be some fixed DFG-
vertex (corresponding to one program statement).
Let Q1,...,Qm be DFG-paths all ending in Sk.

Definition 5.1 (embedded projections). For a given path Q,
the associated projection ¢¢ is defined as:
® ¢o(i1,...,iq) = (ji,...,ja), for a broadcast path with
relation Rg ={S;[j1,....jar] = Skli,....ial: ...},
e the orthogonal projection on the hyperplane in Z¢ de-
fined by vector § =(dy,...,04), for a chain circuit with
Ro ={Skli1,..ia] = Sklir+81,..,ig+84]: ... }.

It is straightforward to check that ¢¢ satisfies (1) in both
cases.

Summing projections. In some cases, the parts of the
In-set of a vertex set associated with two given path rela-
tions are actually disjoint. Let Q; and Q, be two such paths,
such that Ra (P)OREZ (P)=0 for any P C V\ Sources(V). If
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Parameters: N;

Input:

Parameters: N;
Input: A[N]; Output: A[NI];
for (k=0;k<N;k++)

for (i=0; i<N; i++)

A[i]l = f(ALi],ALKD);

(a) C-like code

AN G N W g Wi W Wi e |

(d) CDAG for N=5. Dotted, plain
and dashed edges respectively cor-
respond to DFG-edges e1,e2 and e3.

(b) Corresponding single assignment form

ALN]; Output: Sy-1[NJ; e1
for (0<k<N and 0<i<N)

Ty

@362
else if (i<=k): Sk; = f(Sk-1,i, Sk-1,k); 3

else if (i>k): Sk; = f(Sk-1i, Skk); voes

(c) DFG

(e) Decomposition into two non-interfering
sub-CDAGs. Sources are in gray. May-spill sets are encircled.

Figure 5. Example 3

these are two broadcast paths, then since Réll (P)cIn(P), any
K-bounded set P satisfies the stronger inequality:

|p0, (p(P))|+[¢0, (p(P)| <K

The same holds if Q; is a chain circuit and Ra (P)OREZ (P)=0,
by a similar argument. When this is the case, we say the two
paths are independent.

Example. Consider paths p; = (e;) and p, = (e3) in Fig. 3.
p1 is a broadcast path with relation {C[¢] — S[t,i]}, so the cor-
responding projection is ¢;(¢,i) =(t). p; is a chain path with
relation {S[t,i] — S[t+1,i]}, so the corresponding projection
is ¢a(t,1) = proj; o) (t,i) = (0,i) (see Fig. 2). It is straightfor-
ward to check that paths p; and p, are independent, so a
K-bounded set P actually satisfies |¢;(P)|+|¢2(P)| < K.

Here the geometric inequality gives:

[P <1¢1(P)lI=(P)].

Setting a=|¢1(P)|,b=|@2(P)|, the following optimization
problem gives a bound on |P|:

Minimize ab
such that a+b<(S+T)

This is minimal for a=b=(5+T)/2, giving
[PI<((S+T)/2)%.
We can then set T =S (this is optimal for this case), getting:

|P| < S2.

The iteration domain is of cardinality MN and the frontier
is of size N+ M, so in the end Lemma 3.5 gives:

XS—N-M.

MN

Q= {?

This summing argument can be generalized to an arbitrary
set of projections (see the full technical report [22]).

The whole procedure can be automated and applied to any

parametrized DFG, with an arbitrary number of projection

constraints of any dimensionality, that do not need to be

orthogonal or even linearly independent. The full algorithm
is provided in the full technical report [22].

6 Wavefront Bound Derivation

Figure 6. Application of the wavefront method.

An alternative way to derive data movement lower bounds
in the no-recomputation model is the wavefront abstraction
introduced by Elango et al. in [12]. At any point in an execu-
tion of a RW-game, the wavefront is the set of vertices that
have been computed but whose result is still needed by some
successor (sometimes called the set of live vertices). If the size
of the wavefront at some point in the execution is greater
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than the size of the fast memory, then vertices have to be
spilled to the slow memory and thus loaded (using rule (R1)).

There are many possible ways of finding a bound on the
size of the minimum wavefront in a CDAG. In this work we
use the following simple characterization, which is sufficient
to obtain very strong bounds in cases like Example 2 (Fig. 5).

Let us start with an example: Fig 6 shows one of the sub-
graphs of Fig. 5e. In this CDAG, every vertex in the top row
V; (indirectly) depends on every vertex in the bottom row V;.
Furthermore there is a one-to-one correspondence between
Vi and V; through bold edges. So all vertices in V; have to
be computed before any vertex in V; can be computed, and
every single vertex in V; is a direct dependency of a vertex in
V. Thus, right before the computation of the first vertex in
Vs, all vertices in V; belong to the wavefront, making the I/O:

Q>|V1|-S=N-S.

This argument can be generalized to any CDAG exhibit-
ing a similar structure, and this structure can be discovered
in a parametric DFG using operations on polyhedral rela-
tions, in particular by computing the transitive closure of
the dependence relation between two “layers” of the graph.
A complete algorithm as well as proper formalizations are
provided in the full technical report [22].

As in our example, the common case to use this technique
to get a strong data movement lower bound is to combine
it with the parametric CDAG decomposition (Sec. 4.3).

7 Complete Framework
7.1 DFG Construction

Our front end (PET [34]) takes as input a program in C where
the to-be analyzed regions (SCoPs - Static Control Parts) are
delimited by #pragma scop and #pragma endscop annota-
tions. For PET, all array accesses are supposed not to alias
with one another. Any scalar data is assumed to be atomic
and all of the same size: our CDAG is not weighted (which
is a limitation of our implementation and not a conceptual
limitation of the approach). As illustrated by the example
of Fig. 1 and 3 (multidimensional-)array accesses are affine
expressions of static parameters and loop indices. A static
parameter can be the result of any complex calculation but
has to be a fixed value for the entire execution of the re-
gion. Loop bounds and more generally control tests follow
the same rules (affine expressions). As a consequence, the
iteration space is a union of (parametric) polyhedra, and
memory accesses (read and writes) are piecewise affine func-
tions. This representation of the region execution that fits
into the polyhedral framework [16] allows to compute data
dependencies using standard data-flow analyses.

PET outputs a polyhedral representation of the input C
program, from which we extract a Data-flow graph (DFG)
G=(8,D) (see Sec. 3.4).
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7.2 Instances of Parameter Values

As briefly explained in Sec. 4, to generate bounds that are as
tight as possible, our heuristic needs to make decisions. Such
decisions are based on our ability to compare the size of two
different domains sizes or even the complexity of two differ-
ent sub-CDAGs. The overall framework being parametric (it
provides complexities that are functions of parameter values
and cache size), a total order is obtained by considering a
specific instance of parameter values, taken as an additional
input alongside the C program. One needs to outline that a
specific instance of parameter values is not considered by the
algorithm as a precondition: for a given instance, the com-
puted lower bound expression is universal i.e. is correct for
any parameter values. For completeness, several instances
are considered, and to each instance Iis associated a com-
plexity Q'. As we have Q > Q' for any instance, denoting 7
the set of all considered instances, they are simply combined

as: Q=maxjes (QI)

7.3 Main Algorithm

Alg. 1 contains the skeleton of the main part of IOLB, with
links to corresponding subsections.

for(k = 0; k < n; k++)
ALkI[k] = sqrt(ALKkI[kD); //51
for(i = k+1; i < n; i++)
ALil[k] /= ALkICk]; //S2
for(i = k+1; i < n; i++)
for(j = k+1; j <= 1i; j++)

ALil[j] -= ALilCk] = A[Lj1Ck]1; //S3

(a) Source code

€6
€4
€2
€5
€3

(b) DFG (input nodes are omitted)

={S3[k-1,i,j] > S3[k,i,j]: 1<k<N A k+1<i<N A k+1<j<i}
={S;[k,j]— S3[k,i,j]: 0<k<N A k+1<i<N A k+1<j<i}
={S,[k,i] > S3[k,i,j]: 0<k<N A k+1<i<N A k+1<j<i}
={Ss[k-1,i,k] > Sy|k,i]: 1<k<N A k+1<i<N}
={S1[k]—>S2[k,i]: 0<k<N A k+1<i<N}
={S1[k-1,k,k] > Si[k]: 1<k<N A k+1<i<N}

(c) Edge relations
Figure 7. Cholesky decomposition
To make it concrete, we first show a step-by-step execution

of the algorithm on the cholesky kernel. The pseudo-code
and associated DFG for cholesky are reported in Fig. 7.
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1 function program_Q
input :Data-flow graph G=(S,D), an instance I
output :lower bound Qg
2 Q=0;

3 Let D be the max loop depth;

4 foreach looplevel 0<d <D do Sec. 4.3
5 foreach S €S surrounded by at least d+1 loops do
6 Qg :=L...Jq) = {Sli1,...ip|: i1=L A.ig=1Ig};
7 Let G’ be a copy of G;
8 while elapsedTime < timeout do
9 Let Dg be the parametrized domain of S in G’;
10 P:=0,L:=0;
1 foreach P; € genpaths(G’,S,Qy4) do
12 if [DsNDom(P;)| >y-|Ds| then
13 K;:=Ker(P;);
14 if £ :=subspace_closure(8,K;)
changed then
15 Ds :=DsNDom(P;);
16 P:=PUP;; Sec. 5
17 if # =0 then exit while loop;
18 (Q,G’)=combine_paramQ(Q,G’,
sub_paramQ_bypartition(,Ds,L,Qy));
19 (Q,G’)=combine_paramQ(Q,G’,
sub_paramQ_bywavefront(S,Qy)); Sec. 6

20 Qlow =input_size(G)+max(0,combine_subQ(Q)); Sec. 4.2
21 function combine_paramQ
input :set of global

bounds Q, DFG G’, parametrized bound Q(Q)
output :updated Q, G’
22 if [Q# Q= Q.interf(Q)NQ.interf(Q")=0] then
5| | 0=200@)

24 Q.may-spill:=JoQ.may-spill(Q);
25 Q=QuU{Q};
26 G’:=G’\Q.may-spill;

27
Algorithm 1: Main procedure that computes Qjoy for
the program by combining lower bound of sub-CDAGs
obtained through K-partition or wavefront reasoning

In this example, the K-partition method is the method that
yields the strongest bound. To keep things tractable, we will
detail only the parts of the algorithm that contribute to this
bound: the iteration of the outer loops (lines 4 and 5) for
which d =0 and S =53, and only the K-partition part (lines
8 to 18, corresponding to Sec. 5). High-level insights of the
rest of the algorithm are provided at the end of this section,
and more complete explanations are available in [22].

The DFG contains three statement vertices {S,55,9;} (the
vertex corresponding to input array A and the correspond-
ing dependences are omitted as they do not play a role in
the lower bound derivation). The main loop of Alg. 1 iter-
ates on those statements and computes some lower bound
complexities for each of them.

Procedure genpaths (called at line 11 in Alg. 1) traverses
the DFG, searching for chain or broadcast paths ending in S

PLDI ’20, June 15-20, 2020, London, UK

(cf. Sec. 3.4). Here, it finds three “interesting paths” for state-

ment S;. These are the three paths pointing to S5, namely:

Py =(ey) (chain path), P, =(e;) and P; =(e3) (broadcast paths).

Their relations are: Rp, =R,,, Rp, =Re,, Rp, =R,, (cf. Fig. 7c).
The corresponding projections and kernels are:

$1(k,i.j) =proj g,0)(k,i.j)=(0,ij) Ki=Ker(¢1)=((1,0,0))

$a(k,inj) = (k.j) Kz =Ker(¢2)=((0,1,0))

$s3(k,i.j) = (k.i) K3 =Ker(¢3)=((0,0,1))
The domain Dy is initialized at line 9 to

Ds:=Ds, ={Ss3[k,i,jl: 0<k<N A k+1<i<N A k+1<j<i}.

The foreach loop then iterates over {P;,P;,P;}. Here the
three paths have domains that almost span the entire domain
of S3, so the condition at line 12 is always true (y is a constant
between 0 and 1). They also have pairwise orthogonal ker-
nels, so the condition at line 14 is also true at each iteration,
and at the end of the foreach loop:

Ds =((Ds,NDom(P;))NDom(P;))NDom(Ps)
={S3]k,i,j]: 1<k<N A k+1<i<N A k+1<j<i}
P ={P1,P,P3}

At line 18, function sub_paramQ_bypartition derives a
lower bound from the set of paths P, which is then added
to the set of lower bounds Q by function combine_paramQ.

Without delving into details, sub_paramQ_bypartition
derives an upper bound on the size of a K-bounded set in
the CDAG, using paths in £ as geometric constraints. A
high-level description is given in Sec. 5, and a thorough ex-
planation (detailing in particular the use of the lattice of
subgroups L) is available in the full technical report [22].

We can check that P; is independent from P, and Ps, but P,
and P; are not (that is R, (D)NR! (D) =0, R (D)NR,! (D) =
0 and Rl’,z1 (D) ﬁRI’,S1 (D)#0).

Thus the following inequality holds for any K-bounded
set E in the CDAG:

BB+ 12 (E) |+ S 15(E)| <K. @)

Let s1,52,53 be the solutions to the following optimization
problem:

0<51,52,53<1
. 1<s3+s
Minimize a::Zsj s.t. 2mes (3)
- 1<5s1+s3
j

1<s1+s,

The discrete Brascamp-Lieb theorem [10], combined with
Lemma 5.2 from [22], applied on projections ¢;, guarantee
that, for any K-bounded set E:

251\ (2527 [s3)\°
|E|sK”(ﬂ) (ﬁ) (2)". (4)
o o o

1

The solution to (3) is sy =sy=s3= 3550

|E| <2-(K/3)*2.
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Lemma 3.5 tells us that, if U is an upper bound on the size
of a (S+T)-bounded-set in G, then:

|V \Sources(V)|
—
Here V=DUR;}(D)UR;21(D)UR;,;(D), giving:
V\Sources(V)={S;[k,i,j]: 1<k<N
A k+1<i<N A k+1<j<i}
Sources(V)={S3[0,i,j]:1<i<N A 1<j<i;
Solk,i]: 1<k<N A k+1<i<N}

0(G)>T-

J —|Sources(V)|.

So |V\Sources(V)| = NTg and |Sources(V)| = N2. 2 Taking
for U our upper bound on |E| provides the following in-
equality for which the objective is to set a value for T that
maximizes its right hand side:

N3/6 2. T N ’/6
2.(K/3)3/2 C(SHT)? 2. (1/3)32

Setting T = 2S (so K =S+T =3S) leads to the following
lower bound on Q:

QZTX{

N’/6 N’
2832 g5’

Concerning the parts of the algorithm that were not de-
tailed here: the outermost loop (Line 4) corresponds to the
loop parametrization detailed in Sec. 4.3: for each loop depth
d, outermost indices are fixed (as parameter Q; — Line 6),
and parametrically computed lower bounds are summed
(when not interfering — Line 22) over all iterations (Line 23
in combine_paramQ). The loop on statements S (Line 5) al-
lows to decompose the full CDAG into as many “S-centric”
sub-CDAGs. The so-obtained bounded set of lower bounds
Q are combined using procedure combine_subQ (Line 20)
as described in Sec. 4.2. To take compulsory misses into ac-
count, the size of the input data of the program is added to
the expression.

For each statement S, both techniques (K-partition and
wavefront resp. Line 18 and Line 19) generate lower bounds.
As opposed to the implicitly considered “S-centric” sub-
CDAGs for the wavefront reasoning, an “S-centric” sub-
CDAG for the K-partition reasoning (which is built by find-
ing a set P of DFG-paths that terminate at S — Lines 10-17
through function genpaths) does not necessarily span all the
S-vertices (Ds) of the CDAG. So several (non-intersecting)
sub-CDAGs can be built until no more interesting lower
bound can be derived (Line 17).

Oy =(28)x

8 Experimental Evaluation

IOLB was implemented in C, using ISL-0.13 [33], barvinok-
0.37 [6] and PET-0.05 [34]. We also used GiNaC-1.7.4 [7] for
the manipulation of symbolic expressions, and PIP-1.4.0 [14]

2From here on, we omit lower-order additive terms to keep things readable.
The full formula output by IOLB is available in App. C of the full report [22].
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for linear programs. IOLB takes as input an affine C program
and outputs a symbolic expression for a lower bound on I/O
complexity as a function of the problem size parameters of
the program and capacity of fast memory.

IOLB was applied to all programs in the PoLyBEncH/C-
4.2.1 benchmark suite [23]. For each kernel, our tool outputs
an I/O lower bound expression Qjoy, from which we derive
an upper bound on operational intensity Ol, by forming the
ratio of the number of operations and Qjv. To evaluate the
quality of the results produced by IOLB, we manually gen-
erate tiled versions of each kernel, then manually compute
parametric data-movement costs as a function of tile sizes
and cache size, then manually find the optimal tile sizes and
thereby, finally, derive a manually optimized data-movement
cost for this kernel. By forming the ratio of the total number
of operations and the data-movement cost, we then generate
Olhanual- In this derivation, we assume that we have explicit
control of the cache. Then Ol a1 is compared with an oper-
ational intensity upper-bound obtained by forming the ratio
of the number of operations and the data movement lower
bound generated by IOLB: Ol.

IOLB runs in less than one second on each of these kernels
on a standard computer.

Let us use jacobi-1d as an example to illustrate this. IOLB
computes a lower bound expression Qjow on the number of
loads needed for any schedule of the jacobi-1d kernel:

TN
Qlow =2+ N +max| 0, 1S N-T 15713 S+5].

The first term is the input data size, and the second term is
obtained by the partitioning technique. Since the expression
of Qlow can be quite large, we automatically simplify to Q>
by only retaining the asymptotically dominant terms, assum-
ing all parameters N,M... and cache size S tend to infinity,
and S =0(N,M,...). Finally, from Ql‘:’w and the fact that the
jacobi-1d kernel performs 6T N operations, we compute an
upper bound for the OI of any schedule of the jacobi-1d
kernel:

TN 6TN
o =— Ol,, = ——=24S
Qlow 4S p fow

8.1 Parametric Bounds for OI
Table 1 reports, for each kernel in PoLYBENCH:
o the size of the input data and the number of operations;
o the simplified I/O lower bound Qf:w from IOLB;
o the parametric lower and upper bounds on operational
intensity Olpanual and Ol = %, and their ratio;
low
o the best known published Ol,,, when it exists.
The 30 reported benchmarks can be divided into four cat-
egories, corresponding to table divisions:

1. (19 kernels) The ratio #ir:;z% is high, and we man-

ually find that high OI is achievable through tiling.
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Table 1. Results on PoLYBENCH benchmarks

kernel # input data # ops Ql":w OlLyanual < OI<Olyp ratio Published Ok,
2mm N; N+ N N; 2(NiNjNg 2(N; N; Ny, VS<or<vs 1 -
+N;N;+N; N +N;N;Nj) +N;N;N)/VS
3mm N; Ny +Ni N; 2(NiNjNi+N;jN; Ny, || 2(N;NjNg+N;N;N; VS<or<vs 1 -
+N;j Ny, + N, Ny +N;N;Ny) +N;N;N,,)/VS

cholesky iN? %NS éNa/\/g VS<or<2vs 2 8VS [3]
correlation MN M?N %MZN/\/g VS<or<2vs 2 -
covariance MN M?N %MZN/\/§ VS<or<2vs 2 -
doitgen NpNgN,+N2 2NZNgN; 2NJNgN,/VS Vs<or<vs 1 -
fdtd-2d 3Ny Ny +T 1INy N, T 75 NxNy T/VS HV3VS<0r<$3Vs 36 -
floyd-warshall N? 2N3 2N3 /s VS<or<vs 1 8VS [3]
gemm N;Nj+N;jNi+N; Ny 2N;N;Nj 2N;N; Ny /VS Vs<or<vs 1 VS [30]
heat-3d N? 30N3T 32N3T/NS 3US<01<40-2237/S | 16-22/3 -
jacobi-1d N 6NT iINT/S 3s<o0r<24S 16 485 [12]
jacobi-2d N2 10N2T Si\/gNZT/\/? 34/S<0r<15v3vs 1243 | 40vV2VS [12]
lu N2 N IN3/VS VS<or<vs 1 8VS [3]
ludemp N? %N3 %NS/\/E VS<or<vs 1 8VS [3]
seidel-2d N? IN?T SZNAT/VS IVS<Or< S 6V3 -
symm IM2+2MN 2M2N 2M2N/VS VS<or<vs 1 8VS [3]
syr2k IN?+2MN 2MN? MNZ?/VS VS<or<2vs 2 8VS [3]
syrk iNZ+MN MN? 1MN?/VS VS<or<2vs 2 8VS [3]
trmm IM?+MN M2N M2N/VS VS<or<vs 1 8VS [3]
atax MN 4MN MN 4<0I<4 1 -
bicg MN 4MN MN 4<0I<4 1 -
deriche HW 32HW HW ¥ <or<32 6 -
gemver N? 10N? N? 5<0I<10 2 -
gesummy 2N? 4N? 2N? 2<0I<2 1 -
mvt N2 4N? N? 4<0I<4 1 -
trisolv %NZ N? %Nz 2<0I<2 1 -
adi N2 30N%T N2T 5<0I<30 6 -
durbin N 2N? 3N? f<or<4 6 -
gramschmidt MN 2MN? MNZ?/VS 1<0I<2VS 2VS -
nussinov iN? iN3 IN3/VS 1<0I<2VS 2Vs -

IOLB gives a non-trivial OI upper bound that is within
a constant of the manually obtained OI lower bound
Olmanual- The bound is asymptotically tight for 9 of
them, and within a factor of 2 for an additional 5. Ex-
cept for matrix multiplication (gemm), where it matches
the best published bound, these are all improvements
over previously published results.

. (7 kernels) The ratio #ini‘)ﬁ%
these cases do not provide enough operations to en-
able data reuse. The reported lower bound by IOLB
is # input data, which is asymptotically tight for 5 of
them, and within a factor of 2 for 1 more.

. (2 kernels) The ratio % is high which does not
discard potential for tiling and high OI. Our best man-
ual schedule leads to a constant OI which is arbitrarily

far from this optimistic ratio. IOLB proves that the

is a constant: clearly,

code is not tileable, the best achievable OI is a con-
stant. IOLB finds this upper bound on OI thanks to
the wavefront technique. This is better by at least a
factor of VS than any bound that could be obtained by
geometric reasoning.

. (2 kernels) There is an arbitrarily large discrepancy

between Ol, and Olnanyal- Visual examination shows
that, for these cases, IOLB is too optimistic. These
codes are actually not tileable in all dimensions, and
we believe that it is possible, using more advanced
techniques that are currently out of the scope of IOLB,
to prove a matching OI upper bound.

The complete symbolic expressions output by IOLB are
available in the full technical report [22] (Appendix C).
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9 Related Work

The seminal work of Hong & Kung [18] was the first to
present an approach to derive lower bounds on data move-
ment for any valid execution schedule of operations in a
computational DAG. Their work modeled data movement in
a two-level memory hierarchy and presented manually de-
rived decomposability factors (asymptotic order complexity,
without scaling constants) for a few algorithms like matrix
multiplication and FFT. Several efforts have sought to build
on the fundamental lower bounding approach devised by
Hong & Kung, usually targeting one of two objectives: i) gen-
eralizing the cost model to more realistic architecture hierar-
chies [8, 9, 28], or ii) providing an I/O complexity with (tight)
constant for some specific class of algorithms (sorting/FFT [2,
26], relaxation [27], or linear algebra [4, 5, 11, 19]).

In the context of linear algebra, Irony et al. [19] were the
first to use the Loomis-Whitney inequality [21] to find a
lower bound on data movement. This was in the context
of gemm (one of the kernels of PoLYBENCH). The asymptotic
upper bound on OI from this paper is 4V2VS. IOLB returns
V/S. This result was then extended in [3] to 7 more kernels of
PoLyBENcH: cholesky, floyd-warshall, 1u, symm, syr2k,
syrk, and trmm, where their upper bound on OI is 84S for all
of them. IOLB returns VS for 4 of these kernels, and 2VS for
the other 3. The method presented in [3] is limited to a few
algorithms. Kwasniewski et al. [20] implemented an algo-
rithm for parallel matrix-matrix multiplication that matches
the communication lower bound for any combinations of
matrix dimensions, processors counts and memory sizes. See
discussion on [10] for more details on these limitations.

The studies that are the most related to this paper are
those from Christ et al. [10], and Elango et al. [12, 13].

The idea of using a variant of the Brascamp-Lieb inequal-
ity to derive bounds for arbitrary affine programs comes
from Christ et al. [10]. However, the approach they propose
suffers from several limitations: 1. The model is based on
association of operations with data elements and does not
capture data dependencies in a computational DAG. Con-
sequently, it can lead to very weak lower bounds on data
movement for computations such as Jacobi stencils. 2. There
is no way to (de-)compose the CDAG, and they view all the
statements of the loop body (that has to be perfectly nested)
as an atomic statement. As a consequence, it is incorrect to
use this approach for loop computations where loop fission
is possible. 3. The lower bounds modeling is restricted to
S-partitioning, leading to very weak lower bounds for algo-
rithms such as adi or durbin. 4. Obtaining scaling constants,
in particular with non-orthogonal reuse directions, is diffi-
cult, and only asymptotic order complexity bounds can be
derived. 5. No automation of the lower bounding process was
proposed, but manually worked out examples of asymptotic
complexity as a function of fast memory capacity (without
scaling constants) were presented.
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Elango et al. [12] used a variant of the red-blue pebble
game without recomputation, enabling the composition of
several sub-CDAGs, and the use of a lower-bounding ap-
proach based on wavefronts in the DAG. Manual application
of the approach for parallel execution was done on specific
examples, but no approach to automation was proposed.

The later work of Elango et al. [13] was the first to make
the connection between paths in the data-flow graph and
regular data reuse patterns and to propose an automated com-
piler algorithm for affine programs. However, their proposed
approach suffers from several limitations: 1. Only asymp-
totic Q(...) data movement bounds were obtainable, without
any scaling constants. In contrast, IOLB generates meaning-
ful non-asymptotic parametric I/O lower bound expressions.
From these expressions, we can derive asymptotic lower
bounds with scaling constants, critical for use in deducing
upper limits on OI for a roofline model. 2. Since they were
only trying to provide asymptotic bounds without constants,
they did not address (de-)composition (asymptotic bounds
can be safely summed up even if they interfere). Also, they
only considered enumerative decomposition, and not dimen-
sion decomposition through loop parameterization that is
necessary to obtain a tight bound for their Matmult-Seidel
illustrative example. They also only considered the simple
non-overlapping notion of interference, and did not allow
decomposition of the same statement, required in order to
obtain a tight bound for computations like floyd-warshall.
3. Finally, their approach only used the S-partitioning par-
adigm for lower bounds but not the wavefront-based par-
adigm, thus leading to very weak bounds for benchmarks
such as adi or durbin.

10 Conclusion

This paper presents the first compile-time analysis tool to
automatically compute a non-asymptotic parametric lower
bound on the data movement complexity of an affine pro-
gram. For a cache/scratchpad of limited size S, the minimum
required data movement in the two-level memory hierar-
chy is expressed as a function of S and program parameters.
As a result, the tool enables, for a representative class of
algorithms that fit in the polyhedral model, to automatically
derive a bound on the best achievable operational intensity
for all possible valid schedule of a given algorithm. Its ef-
fectiveness has been illustrated on a full benchmark suite of
dense algorithms, the POLYBENCH suite, with results match-
ing or improving over the current state of the art for many of
them. We believe our automated tool has strong potential to
assist algorithm developers reasoning and understanding the
fundamental memory movement limits of their algorithms,
by alleviating the need to manually reason and prove I/O
lower bounds.
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