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Abstract
Researchers and practitioners have for long worked on im-

proving the computational complexity of algorithms, focus-

ing on reducing the number of operations needed to per-

form a computation. However the hardware trend nowadays

clearly shows a higher performance and energy cost for data

movements than computations: quality algorithms have to

minimize data movements as much as possible.

The theoretical operational complexity of an algorithm is

a function of the total number of operations that must be ex-

ecuted, regardless of the order in which they will actually be

executed. But theoretical data movement (or, I/O) complexity

is fundamentally different: one must consider all possible

legal schedules of the operations to determine the minimal

number of data movements achievable, a major theoretical

challenge. I/O complexity has been studied via complex man-

ual proofs, e.g., refined from Ω(n3/
√
S) for matrix-multiply

on a cache size S by Hong & Kung to 2n3/
√
S by Smith et al.

While asymptotic complexity may be sufficient to compare

I/O potential between broadly different algorithms, the accu-

racy of the reasoning depends on the tightness of these I/O

lower bounds. Precisely, exposing constants is essential to

enable precise comparison between different algorithms: for

example the 2n3/
√
S lower bound allows to demonstrate the

optimality of panel-panel tiling for matrix-multiplication.
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1 Introduction
The performance impact of operations and data movement

latencies in current architectures can often be effectively

masked by using hardware-pipelined implementations. But

the volume of data movements required by even an idealized

implementation of an algorithm will impose fundamental

limits: any implementation of that algorithm will have its

performance and energy requirements bounded by this limit

[12, 18, 25, 26, 28, 29]. Providing algorithm designers with

tools to characterize this fundamental limit is crucial.

Memory movements can be efficiently tracked for a partic-

ular algorithm implementation, and it is standard practice for
performance debugging [1]: Hardware counters can be used

tomeasure cachemisses and data traffic. But two different im-

plementations of the same algorithm may have dramatically

different memory movement profiles: for example a care-

fully tiled implementation of matrix multiplication would

significantly reduce cache misses versus a naive, untiled one.

https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3385412.3385989
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In general, determining whether an implementation is

sub-optimal or whether the fundamental nature of the algo-

rithm is the limiting factor for the observed cache miss count

is crucial. We propose an automatic system to answer this

question, potentially alleviating the need for the algorithm

designers to produce a concrete optimized implementation.

As we specifically target the production of non-asymptotic

I/O lower bounds, our system also makes it possible for per-

formance experts to reason about the optimality of their

implementations with respect to data movement.

Our fully implemented framework IOLB (for I/O Lower
Bounds) automatically derives parametric lower bounds with

scaling constants on the data transfer volume, and thus also

provides a parametric upper bound on the achievable oper-

ational intensity for any possible legal schedule, for regular

(affine) programs on a system with a two-level memory hi-

erarchy. IOLB can be viewed as a proof environment, where

the input is a C program meeting specific restrictions, and

the output is an I/O lower bound for this program for any

valid schedule of operations. The formal proof itself can be

derived, understood, and reviewed from the output of IOLB.

The lower bound is parametric, therefore supporting para-

metric problem sizes as are typically used in loop bound

expressions in the input program. This paper describes:

1. The first static analysis for automatic derivation of

non-asymptotic I/O lower bounds for affine programs.

2. A complete automated implementation of the IOLB

framework, making it accessible to algorithm develop-

ers, producing clear parametric formula for the min-

imal I/O requirement given an input affine program.

3. An extensive evaluation of IOLB on 30 algorithms

specified in PolyBench [23], with several first-time

I/O lower bounds demonstrations on these algorithms.

The paper is organized as follows. A high-level overview

of the approach is presented in Sec. 2. The formalism for

data movement lower bounds based on the seminal red-blue

pebble game of Hong & Kung [18], along with the core def-

initions and theorems used to derive our algorithm, are de-

scribed in Sec. 3. Sec. 4 provides insights on how complex

programs can be decomposed to derive tighter bounds. An

overview of the complete framework is provided in Sec. 7. It

uses two proof techniques, namely the K-partition and the

wavefront based proofs that are respectively described in

Sec. 5 and Sec. 6. We demonstrate the power of our approach

by running it on a full benchmark suite of affine programs:

Sec. 8 reports the data movement complexities for the 30

algorithms benchmarked in PolyBench. Related work is

discussed in Sec. 9 before concluding.

2 Key Concepts and Overview of Approach
Performance tools such as Intel’s Software Development

Emulator Toolkit (SDE) and VTune Amplifier (VTune) en-

able the automated measurement of the achieved operational

intensity of a program, that is the number of memory move-

ments (e.g., cache miss) per actual operation executed. This

ratio suggests whether a computation is memory-bound

or compute-bound for a particular machine, e.g. using the

roofline model [35]. But this measures a particular implemen-
tation of an algorithm: for example such system is used to

fine-tune the particular tile size to be used to obtain maximal

performance [24]. It cannot provide information on the min-
imal number of movements required by any implementation of
the algorithm, and therefore does not bound the achievable

operational intensity. We call two codes implementations of

the same algorithm if they perform the same atomic oper-

ations with potentially different schedules (tiled vs. untiled

LU factorization are implementations of the same algorithm,

while LU with or without pivoting are not).

When facing subpar performance, the designer is left won-

dering whether the implementation is at fault, and should be

better tuned; or whether the implementation is already “opti-

mal”, and the performance is bound by a fundamental limit of

the implemented algorithm. A simple illustration is matrix-

multiplication on dense matrices: a simple (i, j,k) untiled
implementation will be memory-bound on most machines,

but a carefully tiled one will become compute-bound [35].

One can assess the I/O optimality of an implementation if a

(tight) non-asymptotic lower bound on I/O is known. IOLB

specializes in automatically computing such non-asymptotic

bounds. It enables algorithm designers to reason on the fun-

damental I/O limits of different algorithmic choices, and

enables practitioners to reason on the I/O optimality of their

implementation. IOLB works within a two-level memory

model: the I/O cost of an algorithm is the number of trans-

fers from the slow memory to the fast memory (see Sec. 3.1).

Affine programs. To make automation feasible and pro-

ducing accurate-enough I/O bounds, we specifically focus in

this work on affine (or, polyhedral) programs[14–16] as input

to IOLB. This class covers a wide set of key algorithms, as

exemplified with the 30 algorithms in PolyBench/C [23] that

span popular dense linear algebra, stencils/convolutions, and

dynamic programming techniques. Programs are restricted

to control-flow that is statically analyzable, where loops and

array-based accesses are expressed as affine functions of the

(surrounding) loop iterators, and program parameters (i.e.,

constants unknown at compile-time).

Automating I/O lower bounds computation. We em-

ploy two very distinct approaches to finding lower bounds

on data movement: one based on the S-Partitioning approach

[18], and one based on graph wavefronts [12]. Combining

these two approaches is essential for handling of a large

class of programs, as they are complementary and work on

different data dependence patterns. A lower bound for a pro-

gram exhibiting a combination of both kind of patterns can

combine both. We first present a high-level overview of the
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Parameters: N, M;

Input: A[N], C[M]; Output: A[N];

for(t=0;t<M;t++)

for (i=0; i<N; i++)

A[i] = A[i] * C[t];

(a)

Parameters: N, M;

Input: A[N], C[M]; Output: SM−1[N];

for (0 ≤ t <M and 0 ≤ i <N )

if (t==0): S0,i = A[i] * C[0];

else: St,i = St−1,i * C[t];

(b)

t

i

(c)

Figure 1. Example 1. (a) C-like code. (b) Corresponding single assignment form. (c) Corresponding CDAG. Input nodes A[N]
(resp. C[N]) are in grey (resp. white), compute nodes are in black.

S-Partitioning approach, to intuitively familiarize the reader

with the reasoning and terminology used.

Consider the program in Fig. 1a. For given values of the

parameters M and N (e.g., M=6, N=7), the program can be

abstracted as a graph called a computational directed acyclic

graph (CDAG, cf. Definition 3.1), as shown in Fig. 1c. Vertices

in the CDAG represent input values for the computation as

well as values computed by all statement instances (the latter

are colored black and the former have lighter shades, grey

or white). The set of vertices is also called the iteration space
of the program. Edges in the CDAG capture data flow depen-

dences, that is, relations between producers of data values to

consumers. We note that in this abstracted representation of

the computation, there is no association of any memory loca-

tions with values. Fig. 1b shows a single-assignment form of

the same computation as that in Fig. 1a, and both programs

have the same CDAG shown on Fig. 1c. The CDAG abstracts

all possible valid schedules of execution of the statement in-

stances: the only requirement is that all predecessor vertices

in the CDAG must be executed before a given vertex can be

executed. Data movement is modeled in a simplified two-

level memory hierarchy, with an explicitly controlled fast

memory of limited size S (e.g., a set of registers or a scratch-

pad), and a slow memory of unlimited capacity. At any point

in the execution at most S values corresponding to CDAG

vertices may be in fast memory. A computational CDAG

vertex can be executed only if the values corresponding to

all predecessor vertices are present in fast memory.

The main idea of the S-partitioning approach for proving

lower bounds can be understood as follows. Consider any

valid schedule for the execution of the vertices of a CDAG,

expressed as a sequence of instructions: load, store, or op-

eration execution (Op). A valid schedule must ensure that

values corresponding to predecessor vertices are available

in fast memory when the operation corresponding to each

CDAG vertex is executed. The sequence of instructions of

the schedule is partitioned into contiguous maximal sub-

sequences such that the total number of load instructions

in any sub-sequence (except the last one) is exactly equal

to a specified limit T (whose value will be chosen later in

the reasoning). Let us suppose (as explained shortly) that

no more than U Ops can be provably present within any

of the partitioned sub-sequences. Let V denote all computa-

tional vertices in the CDAG. There must be at least ⌊|V |/U ⌋

sub-sequences withT loads, leading to a lower bound on the

number of loads of Qlow=T · ⌊|V |/U ⌋.

We next use the simple example of Fig. 1c to explain how

an upper bound forU can be computed. The automated anal-

ysis based on partitioning in IOLB is centered around the use

of geometric inequalities that relate the cardinality of a set of

points in a multi-dimensional space to cardinalities of lower-

dimensional projections of those points. The set of points

here (P ) are the computational vertices (Ops) in one of the

partitioned sub-sequences (SS) withT load instructions. The

In-set In(P) of P is the set of all predecessors of the vertices

in P that do not belong to P . Clearly, In(P) represents values
that were not computed in the current sub-sequence SS con-

taining P . Since all values in In(P) must be in fast memory

in order to execute the Ops corresponding to P , they must

either have already been in fast memory at the beginning

of the sub-sequence SS or must have been explicitly loaded

within SS . No more than S values from In(P) could have been
present at the beginning of SS , and T values were loaded in

SS . Thus the size of In(P) must be less than (S+T ).

P

In(P)

(a)

|P | ≤ A ·B

|p
ro
j i
(P

)|
=

A

|projt (P )| = B

(b)

Figure 2. In-set, projections and geometric inequality
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In our simple example, vertices corresponding to the loop

statement are naturally represented as points in a two-dimen-

sional lattice. With that representation, it may be observed

that the size of the In-set of a vertex set of this particular

graph must be greater than or equal to the cardinality of the

orthogonal projections of P onto the vertical and horizontal

axes (i.e. the height and width of P ). As illustrated on Fig. 2b,

the size of the vertex set in the two-dimensional space is

bounded by the product of the sizes of its two 1D projections.

This result can be generalized to arbitrary dimensions and

any set of (not necessarily orthogonal) projections, and is

called the Brascamp-Lieb inequality. Setting T =S , a vertex
set with an In-set of size at most 2S cannot have projec-

tions of size more than 2S , and therefore cannot itself be

greater than U = 4S2. This implies that any valid ordering

of the operations for this computation will result in at least

S · ⌊MN /4S2⌋ ≈MN /4S load operations
1
.

Lowerbounds:algorithmsvs.problems. The readermay

be familiar with the external memory model [2], or cache-

oblivious algorithms [17]. The memory model is very similar

to the one we use in this paper, except that the granularity

of memory transfers to and from fast memory is that of a

block of several words (typically hundreds), instead of indi-

vidual words. In these models, researchers are interested in

designing algorithms that minimize memory transfers, either

for a fixed fast memory size (external memory algorithms,

or cache-aware algorithms) or for any size (cache-oblivious

algorithms), as well as proving theoretical lower bounds on

the number of such memory transfers.

The fundamental difference with the work presented here

is that lower bounds in these models [2, 17] are over all pos-
sible algorithms solving a certain problem, while the lower

bounds provided by IOLB are over all possible valid schedules
for a specific algorithm (i.e. a fixed set of partially ordered

operations). As an example there exists many algorithms for

performing matrix-matrix multiplication. The lower bound

provided by IOLB gives information on what could possi-

bly be achieved by rescheduling the operations of the usual

O(N 3) algorithm, but gives no information on other algo-

rithms such as Strassen’s [31].

The goal of IOLB is to provide information on whether a
given implementation of an algorithmmight be improved with

respect to data movement or if it is fundamentally I/O-bound.

Overview of our contributions. To automate and gener-

alize this geometric reasoning on arbitrary affine programs,

we need to: (1) Generalize the geometric upper-bounding

for any number of projections with arbitrary dimensionality

(Sec. 3.3); (2) Build (derive from array accesses) a compact

representation (DFG) of the data-flow dependencies of the

program that is suitable for reasoning about reuse directions

1
It is actually possible to improve this bound by a factor of 4 with more

advanced techniques, as shown in Sec. 5

(Sec. 3.4); (3) Analyze this representation to extract reuse

directions (represented as DFG-paths – Sec. 3.4); (4) General-

ize the geometric reasoning for a perfectly nested loop with

one statement to any combination of loops with arbitrary

number of statements (embedding – Sec. 5).

The goal of IOLB is to go even further and automatically

derive parametric bounds that are as tight as possible (includ-

ing maximization of the scaling constants). For this purpose,

the developed algorithm: (5) Enables the combination (and

tightening) of constraints associated with different projec-

tions, even with an arbitrary number of them with lower

dimensionality; (6) Handles non-orthogonal projections even

if they are not linearly independent; (7) Develops a new rea-

soning strategy inspired from the wavefront reasoning of

Elango et al. [12] (Sec. 6); (8) Allows the combination of

individual complexities (obtained through potentially dif-

ferent methods) of overlapping program regions (Def. 4.1,

Lemma 4.2) even for an unbounded number of regions (pa-

rameterized regions inside loops – Sec. 4.3);

3 Foundations
In this section, we present some background and discuss

prior results needed for the developments in this paper.

3.1 CDAG and I/O Complexity
The formalism and methodology we use to derive schedule-

independent data movement lower bounds for execution of

an algorithm on a processor with a two-level memory hier-

archy is strongly inspired by the foundational work of Hong

& Kung [18]. In this formalism, an algorithm is abstracted

by a graph — called a CDAG —, where vertices model execu-

tion instances of arithmetic operations and edges model data

dependencies among the operations. We formalize the data

movement (or I/O) complexity of a CDAG via the red-white

pebble game (a variation we designed of Hong & Kung’s

red-blue pebble game). In this game, a vertex of a CDAG can

hold red and white pebbles. Red pebbles represent values in

the fast memory (typically a cache or scratchpad), and their

total number is limited. White pebbles represent computed

values, that can be loaded into the fast memory. A value can

be computed only when all its operands reside in the fast

memory: a red pebble can be placed on a vertex in the CDAG

if all its predecessors hold a red pebble, a white pebble is

placed alongside the red. Values that have been computed

can be loaded in and discarded from the fast memory at any

time: a red pebble can be placed or removed from a vertex

holding a white pebble. However a value can only be com-

puted once: once a vertex holds a white pebble, it cannot

be removed. The I/O cost of an execution of the game is the

number of loads into the fast memory: the number of times

a red pebble is placed alongside a white one.

Contrary to Hong & Kung’s original model, our formal-

ism does not allow recomputation of the value at a vertex.
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This follows many previous efforts [4, 5, 8, 9, 11–13, 19, 28].

This assumption is necessary to be able to derive bounds

for complex CDAGs by decomposing them into subregions.

Another slight difference of IOLB with prior work is that

it only models loads and not stores — this means the gener-

ated bounds are clearly also valid lower bounds for a model

that counts both loads and stores. Since the number of loads

dominates stores for most computations, the tightness of the

lower bounds is not significantly affected. We provide formal

definitions below.

Definition 3.1 (Computational Directed Acyclic Graph). A

Computational Directed Acyclic Graph (CDAG) is a tuple G=
(V ,E, I ) of finite sets such that (V ,E) is a directed acyclic

graph, I ⊆ V is called the input set and every v ∈ I has no
incoming edges.

Definition 3.2 (Red-White Pebble Game). Given a CDAG

G= (V ,E,I ), we define a complete S-red-white pebble game

(S-RW game for short) as follows: In the initial state, there

is a white pebble on every input vertex v ∈ I , S red pebbles

and an unlimited number of white pebbles. Starting from

this state, a complete game is a sequence of steps using the

following rules, resulting in a final state with white pebbles

on every vertex.

(R1) A red pebble may be placed on any vertex that has a

white pebble.

(R2) If a vertexv does not have a white pebble and all its im-

mediate predecessors have red pebbles on them, a red

pebble may be placed on v . A white pebble is placed

alongside the red pebble.

(R3) A red pebble may be removed from any vertex.

The cost of a S-RW game is the number of applications

of rule (R1), corresponding to the number of transfers from

slow to fast memory.

Here, red pebbles mark operations whose results are cur-

rently stored in fast memory, and white pebbles mark oper-

ations whose results have been computed. A result resides

in fast memory immediately after it has been computed, and

we consider that it is always present in slow memory as

well (since stores are not taken into account). Computation

can happen at most once due to rule (R2), and this is the

fundamental difference with Hung & Kung’s model.

Definition3.3 (I/O complexity). The I/O (or datamovement)
complexity of a CDAG G for a fast memory capacity S , de-
noted Q(G), is the minimum cost of a complete S-RW game

on G.

This quantity is the fundamental measure for which this

work tries to establish lower bounds.

3.2 Partitioning
One key idea fromHong&Kungwas the design of amapping

between any valid sequence of moves in the red-blue pebble

game and a partition of the vertices of a CDAG and thereby

the assertion of an I/O lower bound for any valid schedule in

terms of the minimum possible count of the disjoint vertex-

sets in any valid 2S-partition (see below) of the CDAG.

The argument is the following: any execution can be de-

composed into consecutive segments doing exactly (but for

the last one) S loads. There are at most S vertices in fast

memory before the start of each segment. Considering the

set of computed vertices in one of these segments, we can

bound the size of its “frontier” (or In-set) by 2S : there can
be at most S vertices in fast memory before the execution of

the segment, and by construction there are exactly S loads.

Smith et al. [30] introduced a generalization of this ar-

gument, leading to tighter bounds in many cases. The idea

is to decompose the execution into segments with T (not

necessarily tied to be equal to S) loads . This leads to a (S+T )-
partitioning lemma instead of the original 2S .

Definition 3.4 (In-set, K-bounded set, K-partition). LetG=
(V ,E) be a CDAG, P ⊆V be a vertex set in G.
The In-set of P is the set of vertices outside P with a suc-

cessor inside P .
A vertex set P ⊆V is called K-bounded if In(P)≤K .
A K-partition of G is a partition of V into subsets with no

cyclic dependencies, such that every subset has an In-set of

size ≤K .

Lemma 3.5 ((S+T )-Partitioning I/O lower bound, no in-

put case [12]). Let S be the capacity of the fast memory, let
G= (V ,E,∅) be a CDAG, and let h be the minimum number of
subsets in a (S+T )-partition ofGI = (V ,E,I = Sources(V )) for
someT >0. Then, the minimum I/O forG satisfies:

Q(G)≥T ·(h−1)−|Sources(V )|.

where Sources(V ) is the set of verticeswith no predecessors inG .

3.3 Using Projection
to Bound the Cardinality ofK-bounded Sets

The key idea behind the automation of I/O lower bound

computation is the use of geometric inequalities through an

appropriate program representation. Vertices of a CDAG are

mapped to points in a multidimensional geometric space E≃

Zd through some mapping ρ (where dimensions are typically

loop indices), and regular data dependencies in the CDAG

are represented as projections on a lower-dimensional space.

The condition “set of vertices P ⊂V is K-bounded” in the

CDAG corresponds to a condition of the form “the size of

the projections of ρ(P) in E is bounded by K”. Finding a

bound on the size of a K-bounded set in a CDAG can thus

be reduced to: finding a bound on the size of a set E in a

geometric space, given cardinality bounds on some of its

projections. This correspondence is developed in Sec. 5.

The mathematical result we use is a discrete version of the

Brascamp-Lieb inequality, introduced by Christ et al. [10].
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Intuitively, this inequality is a generalization of the fol-

lowing, 3-dimensional continuous one:

If the surfaces of all three projections of a 3-dimensional

volume V on planes x =0, y=0, z=0 are bounded by some

constant C , then |V | ≤C3/2
.

This result can be generalized to arbitrary dimensions

(giving |V | ≤Cd/(d−1)
), and further to any set of projections,

even on lower-dimensional subspaces.

More details are provided in the full technical report [22].

3.4 A Compact Representation
of the CDAG: the Data-flow graph

for (0 ≤ t <M and 0 ≤ i <N )

if (t==0): S[0,i]=A[i]*C[0];

else: S[t,i]=S[t-1,i]*C[t];

(a) Single assignment form

A

C

S

e1

e2

e3

(b)DFG
DA= [N ]→ {A[i] : 0 ≤ i <N }

DC = [N ]→ {C[t ] : 0 ≤ t <M }

DS = [M,N ]→ {S [t,i] : 0 ≤ t <M ∧ 0 ≤ i <N }

|DS |=MN

(c)Node domains

Re1 = [N ]→ {A[i]→S [0,i] : 1 ≤ i <N }

Re2 = [M,N ]→ {C[t ]→S [t,i] : 0 ≤ t <M ∧ 0 ≤ i <N }

Re3 = [M,N ]→ {S [t,i]→S [t+1,i] : 0 ≤ t <M−1 ∧ 0 ≤ i <N }

(d) Edge relations

Figure 3.DFG for Example 1

A CDAG (see Fig. 1c) represents a single dynamic execu-

tion of a program, and can be very large. To be able to analyze

programs of realistic size with reasonable resources, we use

a compressed representation called a Data-flow graph (DFG).

Another advantage of such a representation is that it is para-
metric, i.e. a single DFG can represent CDAGs of different

sizes, depending on program parameters. A DFG represents

an affine computation, which is the class of programs that

can be handled by the polyhedral model [14–16]. We use the

terminology and syntax from the ISL library [32], and illus-

trate them with the example of Fig. 1. Formal definitions can

be found in the manual [33].

Vertex domains. As one can see on Fig. 1c, to each loop

is associated a “geometric” space dimension (t and i here) so
that each vertex of the CDAG lives in a multidimensional iter-

ation space, its domain, that can be algebraically represented

as a union of parametric Z-polyhedra (sets of integer points
in a multidimensional space bounded by affine inequalities).

A domain is an set (in ISL terms) for which standard oper-

ations (union, intersection, difference,. . . ) are available, as

well as a cardinality operation (denoted |D |). As an example

(see Fig. 3c), the domain DS of statement S is a Z-polyhedron
with parametersM and N made up of all integer points (t ,i)
such that 0≤ t <M and 0≤ i <N . The number of points in

this set (cardinality) is |DS |=MN . Note that the space within

which all the points of a statement (S here) live is identified

with the name of the statement, using the notation S[t ,i].

Edge relations. A set of edges of the CDAG is represented

using a relation (map in ISL), which is a set of pairs be-

tween two spaces, from the domain space to the image space.
As an example (see Fig. 3d), the data flow from statement

S[t , i] (definition of A[i] in S) to statement S[t + 1, i] (use
of A[i] in S) is represented using the relation Re3 . In addi-

tion to standard set operations, ISL can compute the tran-

sitive closure of a relation, denoted R∗
(this will be needed

is Sec. 6). Binary relations are also supported: image of a

domain D through a relation R (denoted R(D)), and compo-

sition of two relations R1 and R2, denoted R1 ◦ R2 (this is

left composition, going the opposite way from usual func-

tional notation). Composition restricts the image domain

of the resulting relation to points where the composition

relation makes sense: Dom(R1◦R2)=R
−1
1
(Im(R1)∩Dom(R2)),

Im (R1◦R2) = R2 (Im(R1)∩Dom(R2)). As with domains, we

will sometimes manipulate unions of such relations.

Data-flow graph (DFG). A DFG is a graph G = (S,D).

Each vertex S ∈S of the graph represents a (static) statement

or an input array of the program. Each vertex S is associated

with a parametric iteration domain DS and a list of enclosing

loops (empty for input arrays). Each edge d = (Sa ,Sb ) ∈ D

represents a flow dependency between statements or input

arrays. Each edge is associated with an affine relation Rd
between the coordinates of the source and sink vertices.

The DFG is a compact (exact) representation of the dynamic

CDAG where a single vertex/edge of the DFG represents

several vertices/edges of the dynamic CDAG. While all the

reasoning and proofs can be done by visualizing a CDAG,

the actual heuristic described in this paper manipulates its

compact representation, allowing to translate graph meth-

ods [13] into geometric reasoning. Fig. 3b shows the DFG

for our simple stencil code.

DFG-paths. A fundamental object in our lower bound

analysis is a DFG-path, which is simply a directed path in

a DFG. The relation Rp of a DFG-path p = (e1,...,ek ) is the
composition of the relations of its edges: Rp =Re1 ◦···◦Rek .
We are only interested in two specific types of DFG-paths,

depending on their relation:

• chain circuits, which are cycles from one DFG-vertex S
to itself, such that the path relation Rp is a translation

S[®x]→S[®x+®b].
• broadcast Sa , Sb -paths, which are elementary paths

(from a Sa to Sb – Sb possibly equal to Sa ) in which all

DFG-edges but the first one are injective edges, such

that the inverse of the corresponding relation Rp is an
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affine function Sb [®x] → Sa[A · ®x + ®b], where A is not

full-rank.

Intuitively, a chain circuit corresponds in the CDAG to

“iterative” dependencies, for instance every statement Si, j
in a 2-dimensional loop depending on the result of state-

ment Si−1, j . Broadcast paths correspond to a same data being

reused multiple times, for instance a variable x being used by

every statement Si in a one-dimensional loop. The dimension

of the kernel of A in the definition above corresponds to the

dimension of the set of statements that use a single piece of

data: it is of dimension d if it is used in every iteration of a d-
dimensional loop. In both cases, these are regular data reuse

patterns that can be exploited by our geometric approach.

In Fig. 3, path p = (e3) is a chain circuit, going from S to

itself with translation vector
®b = (1,0). Path p ′ = (e2) is a

broadcast path, with relation Rp′ =Re2 = {C[t]→S[t ,i] : 0≤

t < M ∧ 0 ≤ i < N }. The inverse relation is the linear

function ®I 7→A · ®I + ®b, with A= (1 0),®b = (0). The kernel of A
is {(0,i),i ∈R}.

4 CDAGDecomposition
To derive data movement lower bounds for a complex pro-

gram, it is essential to be able to decompose it into subregions

for which we can compute lower bounds, and then sum the

complexity for each subregion. The no recomputation condi-

tion (see Sec. 3.1) is necessary for such a decomposition. Un-

der this hypothesis, it is quite straightforward to see that a de-

composition into disjoint subregions is sufficient. In this sec-

tion, we provide a more general decomposition lemma, using

the fact that vertices of a subregion that will not be counted as

loads can also be part of another subregion. We then explain

how it is applied on the DFG representation, distinguishing

two cases: combining a fixed number of program regions (see

example in Fig. 5); and summing over all iterations of a loop

(see example in Fig. 4), which amounts to combining an un-

bounded (parametric) number of program regions. We stress

that the CDAG partitioningmethod (Sections 3.2 and 3.3) and

the CDAG decomposition method (this section) are two dis-

tinct things, used at different stages in the global algorithm.

4.1 Non-disjoint Decomposition Lemma
Definition 4.1 (sub-CDAG, no-spill set). Let G= (V ,E,I ) be
a CDAG, and Vi ⊂V . The sub-CDAG G |Vi of G is the CDAG

with vertices Vi , edges Ei = E∩(Vi ×Vi ) and input vertices

Ii = I∩Vi .
The no-spill set of G |Vi is the subset of vertices of Vi \ Ii

with either:

1. no outgoing edges in Ei , or
2. no incoming edges in Ei and at most one outgoing

edge in Ei

The may-spill set of G |Vi is the complement of its no-spill

set in Vi .

Lemma 4.2 (CDAG decomposition). Let G = (V ,E, I ) be a
CDAG. LetV1,V2,...,Vk be subsets ofV such that for any i , j,
the may-spill sets ofG |Vi andG |Vj are disjoint.

Then, the I/O complexity ofG is bounded by the I/O complex-
ities of the sub-CDAGsG |Vi :

Q(G)≥
k∑
i=1

Q(G |Vi ).

To prove this lemma, it suffices to show that it is possible to

build a RW-game for G from RW-games for subgraphs G |Vi ,

and that this game is valid and has a cost greater than the

sum of the individual games. This poses no great difficulty,

and the full proof can be found in the technical report [22].

for(t=0; t<M; t++) {

s = 0;

for(i=0; i<N; i++)

S1: s += A[j];

for(i=0; i<N; i++)

S2: A[j] += s;

}

(a) Code

(b) CDAG
for M=4, N=4. White

vertices correspond to

S1, gray vertices to S2.

may-spill set

(c)Decomposition of the CDAG

Figure 4. Example 2

IOLB implements two different mechanisms that make

use of the non-disjoint decomposition lemma. The basic one

(bounded combination – Sec. 4.2) simply decomposes the

CDAG into a bounded number of sub-CDAGs (e.g. corre-

sponding to different sub-regions of the code), computes the

corresponding I/O complexities, and combines them. The

more complex one (loop parametrization – Sec. 4.3), decom-

poses the CDAG into an unbounded number of sub-CDAGs

by “slicing” the iteration space of a loop nest. IOLB combines

the two mechanisms. The following example illustrates the

decomposition lemma for loop parametrization.

Illustrating example. Consider Example 2 in Fig. 4. The

CDAG can be decomposed into M−1 identical subgraphs,

as shown on Fig. 4c (each subgraph G |Vt ,t = 1,...,M−1 cor-

responds to iteration t of the loop around S1, and iterations

t−1 and t of the loop around S2). On each of these subgraphs,

the may-spill set contains the two “bottom” rows (because
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vertices in the “top” row have no successor in the sub-CDAG).

Thus the may-spill sets of these subgraphs are pairwise dis-

joint and the I/O for the whole CDAG is greater than the

sum of the individual I/O for each subgraph by Lemma 4.2.

On each subgraphG |Vt , the wavefront method (Sec. 6) can

be applied, giving a lower bound on I/O of Q(G |Vt ) ≥N −S .
As the may-spill set of the different subgraphs do not in-

tersect, the individual complexities can be summed over

t =1,...,M−1, providing a lower bound for the whole CDAG:

Q(G)≥ (M−1)(N −S).

4.2 Bounded Combination
The main procedure of IOLB (Sec. 7.3) selects a bounded set

of (possibly overlapping) sub-CDAGs and computes their

individual complexities. The objective of this procedure is

to combine (sum) as many non-interfering (disjoint may-

spill sets) complexities as possible. It does so using a greedy

approach: Assume there are two sub-CDAGs both with a

“high” complexity but with non-disjoint may-spill sets. The

procedure will select the one with the highest complexity,

recompute the complexity of the second after removing the

intersecting part, and then sum them up. The overall set of

sub-CDAGs is iteratively processed this way (and the com-

plexities summed-up) until empty or negligible complexities

remain. The comparison (what is “higher”) is done using in-
stances of parameter values, simply evaluating the correspond-

ing symbolic expressions. It should be emphasized that the

final bound is a valid lower bound for any parameter values,

the instances of parameter values are only used for heuristics.

Let us have a look at the example on Fig. 5. In the origi-

nal code (5a), notice that k is the outer loop index, meaning

that A[k] will have been modified either in the current loop

iteration or the previous one depending on the order be-

tween i and k (Floyd-Warshall exhibits the same pattern,

with three loops instead of two). This is made clear in the

single-assignment form (5b), and can be visualized in the

CDAG representation (5d). The dependences on input values

are grayed out in (5b) and omitted in (5d), and we will ignore

them in the discussion to keep the explanations simple.

Considering only the statement vertex S in the DFG, the

dependency analysis gives the following relations:

R1= {S[k−1,i]→S[k,i] : 1≤k <N ∧ 0≤ i <N }

R2= {S[k−1,k]→S[k,i] : 1≤k <N ∧ 0≤ i <k}

R3= {S[k,k] → S[k,i] : 0≤k <N ∧ k < i <N }

The image domains of R2 and R3 provide a natural decom-

position of the CDAG into two non-interfering sub-CDAGs,

as shown in (5e). On each part, the pattern is similar to

that of Example 1 on page 3 the geometric approach gives a

lower bound (omitting lower order terms) Q(Gi )≥
N 2

2S . Since

they do not interfere, the procedure will return their sum

Q(G)≥ N 2

S , independently of the parameter instance.

4.3 Loop Parametrization
As done on the example above, IOLB can compute the I/O
complexity of some inner loop nests of a bigger enclosing

loop nest and sum them. To this end, our scheme performs

what we call loop parameterization. Loop parameterization

considers each individual sub-CDAGs where the outermost

indices are fixed (our algebraic formulation obviously allows

to consider such indices as parameters without the need to

explicitly enumerate them) enriched by their input vertices.

This is formalized in the full technical report [22].

5 K-partition Bound Derivation
In this section, we explain how to apply the geometric rea-

soning of Sec. 3.3 on a CDAG G = (V ,E), using its compact

representation as a DFG. To apply Lemma 3.5 onG , we need
to find a lower bound on the minimum number of subsets

h in any K-partition of G. The general reasoning is as fol-

lows: First, we embedV in a geometric space through a map

ρ :V →Zd , such that two disjoint subsets of V are mapped

to disjoint subsets of Zd , and |ρ(P)| ≤ |P |.
Second, we use the DFG representation to find a subset

V ′ ⊆ V and a set of projections (group homomorphisms)

ϕ1,...,ϕm with the property that:

Any K-bounded set P ⊆V ′\Sources(V ′) satisfies��ϕ j (ρ(P))��≤K . (1)

To do so, we primarily use broadcast and chain circuit

structures (cf. Sec. 3.4). These are two special cases that

are easy to detect from the DFG, common in applications,

and convenient from the stand point of (1). Third, using the

Brascamp-Lieb inequality [10], we derive an upper boundU
on |ρ(P)| for any (S+T )-bounded P . This provides a lower

bound

⌈
|V ′\Sources(V ) |

U

⌉
on the number h of disjoint (S+T )-

bounded sets in V ′\Sources(V ′).

DFG-paths and projections. Let Sk be some fixed DFG-

vertex (corresponding to one program statement).

Let Q1,...,Qm be DFG-paths all ending in Sk .

Definition 5.1 (embedded projections). For a given path Q ,

the associated projection ϕQ is defined as:

• ϕQ (i1, ... ,id ) = (j1, ... , jd ′), for a broadcast path with

relation RQ = {S j [j1,...,jd ′]→Sk [i1,...,id ] : ...},

• the orthogonal projection on the hyperplane in Zd de-

fined by vector δ = (δ1,...,δd ), for a chain circuit with

RQ = {Sk [i1,...,id ]→Sk [i1+δ1,...,id+δd ] : ...}.

It is straightforward to check that ϕQ satisfies (1) in both

cases.

Summing projections. In some cases, the parts of the

In-set of a vertex set associated with two given path rela-

tions are actually disjoint. Let Q1 and Q2 be two such paths,

such that R−1
Q1

(P)∩R−1
Q2

(P)= ∅ for any P ⊆V \Sources(V ). If
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Parameters: N;

Input: A[N]; Output: A[N];

for(k=0;k<N;k++)

for (i=0; i<N; i++)

A[i] = f(A[i],A[k]);

(a) C-like code

Parameters: N;

Input: A[N]; Output: SN−1[N];

for (0 ≤k <N and 0 ≤ i <N )

if (k==i==0): S0,i = f(A[0],A[0]);

else if (k==0): S0,i = f(A[i],S0,0);
else if (i<=k): Sk,i = f(Sk−1,i , Sk−1,k );
else if (i>k): Sk,i = f(Sk−1,i , Sk,k );

(b) Corresponding single assignment form

S

e1

e2

e3

(c)DFG

k

i

(d) CDAG for N=5. Dotted, plain

and dashed edges respectively cor-

respond to DFG-edges e1,e2 and e3.

(e)Decomposition into two non-interfering

sub-CDAGs. Sources are in gray. May-spill sets are encircled.

Figure 5. Example 3

these are two broadcast paths, then since R−1
Qi
(P)⊂ In(P), any

K-bounded set P satisfies the stronger inequality:��ϕQ1
(ρ(P))

��+��ϕQ2
(ρ(P))

��≤K

The same holds ifQ1 is a chain circuit andR
−1
Q1

(P)∩R−1
Q2

(P)=∅,

by a similar argument. When this is the case, we say the two

paths are independent.

Example. Consider paths p1= (e2) and p2= (e3) in Fig. 3.

p1 is a broadcast path with relation {C[t]→S[t ,i]}, so the cor-
responding projection is ϕ1(t ,i)= (t). p2 is a chain path with

relation {S[t ,i]→S[t+1,i]}, so the corresponding projection

is ϕ2(t ,i) = proj(1,0) (t ,i) = (0,i) (see Fig. 2). It is straightfor-
ward to check that paths p1 and p2 are independent, so a

K-bounded set P actually satisfies |ϕ1(P)|+ |ϕ2(P)| ≤K .
Here the geometric inequality gives:

|P | ≤ |ϕ1(P)| |ϕ2(P)|.

Setting a= |ϕ1(P)|,b= |ϕ2(P)|, the following optimization

problem gives a bound on |P |:

Minimize ab

such that a+b ≤(S+T )

This is minimal for a=b= (S+T )/2, giving

|P | ≤ ((S+T )/2)2.

We can then setT =S (this is optimal for this case), getting:

|P | ≤S2.

The iteration domain is of cardinalityMN and the frontier

is of size N +M , so in the end Lemma 3.5 gives:

Q ≥

⌊
MN

S2

⌋
×S−N −M .

This summing argument can be generalized to an arbitrary

set of projections (see the full technical report [22]).

The whole procedure can be automated and applied to any

parametrized DFG, with an arbitrary number of projection

constraints of any dimensionality, that do not need to be

orthogonal or even linearly independent. The full algorithm

is provided in the full technical report [22].

6 Wavefront Bound Derivation

V1

V2

Figure 6.Application of the wavefront method.

An alternative way to derive data movement lower bounds

in the no-recomputation model is the wavefront abstraction
introduced by Elango et al. in [12]. At any point in an execu-

tion of a RW-game, the wavefront is the set of vertices that

have been computed but whose result is still needed by some

successor (sometimes called the set of live vertices). If the size
of the wavefront at some point in the execution is greater
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than the size of the fast memory, then vertices have to be

spilled to the slow memory and thus loaded (using rule (R1)).
There are many possible ways of finding a bound on the

size of the minimum wavefront in a CDAG. In this work we

use the following simple characterization, which is sufficient

to obtain very strong bounds in cases like Example 2 (Fig. 5).

Let us start with an example: Fig 6 shows one of the sub-

graphs of Fig. 5e. In this CDAG, every vertex in the top row

V2 (indirectly) depends on every vertex in the bottom rowV1.
Furthermore there is a one-to-one correspondence between

V1 and V2 through bold edges. So all vertices in V1 have to
be computed before any vertex in V2 can be computed, and

every single vertex inV1 is a direct dependency of a vertex in
V2. Thus, right before the computation of the first vertex in

V2, all vertices inV1 belong to the wavefront, making the I/O:

Q ≥ |V1 |−S =N −S .

This argument can be generalized to any CDAG exhibit-

ing a similar structure, and this structure can be discovered

in a parametric DFG using operations on polyhedral rela-

tions, in particular by computing the transitive closure of

the dependence relation between two “layers” of the graph.

A complete algorithm as well as proper formalizations are

provided in the full technical report [22].

As in our example, the common case to use this technique

to get a strong data movement lower bound is to combine

it with the parametric CDAG decomposition (Sec. 4.3).

7 Complete Framework
7.1 DFGConstruction
Our front end (PET [34]) takes as input a program in C where

the to-be analyzed regions (SCoPs – Static Control Parts) are

delimited by #pragma scop and #pragma endscop annota-
tions. For PET, all array accesses are supposed not to alias

with one another. Any scalar data is assumed to be atomic

and all of the same size: our CDAG is not weighted (which

is a limitation of our implementation and not a conceptual

limitation of the approach). As illustrated by the example

of Fig. 1 and 3 (multidimensional-)array accesses are affine

expressions of static parameters and loop indices. A static

parameter can be the result of any complex calculation but

has to be a fixed value for the entire execution of the re-

gion. Loop bounds and more generally control tests follow

the same rules (affine expressions). As a consequence, the

iteration space is a union of (parametric) polyhedra, and

memory accesses (read and writes) are piecewise affine func-

tions. This representation of the region execution that fits

into the polyhedral framework [16] allows to compute data

dependencies using standard data-flow analyses.

PET outputs a polyhedral representation of the input C

program, from which we extract a Data-flow graph (DFG)
G= (S,D) (see Sec. 3.4).

7.2 Instances of Parameter Values
As briefly explained in Sec. 4, to generate bounds that are as

tight as possible, our heuristic needs to make decisions. Such

decisions are based on our ability to compare the size of two

different domains sizes or even the complexity of two differ-

ent sub-CDAGs. The overall framework being parametric (it

provides complexities that are functions of parameter values

and cache size), a total order is obtained by considering a

specific instance of parameter values, taken as an additional

input alongside the C program. One needs to outline that a

specific instance of parameter values is not considered by the
algorithm as a precondition: for a given instance, the com-

puted lower bound expression is universal i.e. is correct for

any parameter values. For completeness, several instances

are considered, and to each instance I is associated a com-

plexity Q I
. As we have Q ≥Q I

for any instance, denoting I

the set of all considered instances, they are simply combined

as: Q =maxI∈I
(
Q I) .

7.3 Main Algorithm
Alg. 1 contains the skeleton of the main part of IOLB, with

links to corresponding subsections.

for(k = 0; k < n; k++)

A[k][k] = sqrt(A[k][k]); //S1

for(i = k+1; i < n; i++)

A[i][k] /= A[k][k]; //S2

for(i = k+1; i < n; i++)

for(j = k+1; j <= i; j++)

A[i][j] -= A[i][k] * A[j][k]; //S3

(a) Source code

S1 S2 S3 e1

e2

e3

e4

e5

e6

(b)DFG (input nodes are omitted)

Re1 = {S3[k−1,i, j]→S3[k,i, j] : 1 ≤k <N ∧ k+1 ≤ i <N ∧ k+1 ≤ j ≤ i }

Re2 = {S2[k, j]→S3[k,i, j] : 0 ≤k <N ∧ k+1 ≤ i <N ∧ k+1 ≤ j ≤ i }

Re3 = {S2[k,i]→S3[k,i, j] : 0 ≤k <N ∧ k+1 ≤ i <N ∧ k+1 ≤ j ≤ i }

Re4 = {S3[k−1,i,k ]→S2[k,i] : 1 ≤k <N ∧ k+1 ≤ i <N }

Re5 = {S1[k ]→S2[k,i] : 0 ≤k <N ∧ k+1 ≤ i <N }

Re6 = {S1[k−1,k,k ]→S1[k ] : 1 ≤k <N ∧ k+1 ≤ i <N }

(c) Edge relations

Figure 7. Cholesky decomposition

Tomake it concrete, we first show a step-by-step execution

of the algorithm on the cholesky kernel. The pseudo-code
and associated DFG for cholesky are reported in Fig. 7.
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1 function program_Q
input :Data-flow graphG= (S,D), an instance I
output :lower boundQ

low

2 Q=∅;

3 LetD be the max loop depth;

4 foreach loop level 0≤d <D do
5 foreach S ∈S surrounded by at least d+1 loops do
6 Ωd := [I1,...,Id ]→{S[i1,...,iD ] : i1= I1∧...id = Id };

7 LetG ′
be a copy ofG;

8 while elapsedTime < timeout do
9 LetDS be the parametrized domain of S inG ′

;

10 P :=∅,L :=∅;

11 foreach Pi ∈genpaths(G ′,S,Ωd ) do
12 if |DS ∩Dom(Pi )| ≥γ · |DS | then
13 Ki :=Ker(Pi );
14 if L :=subspace_closure(B,Ki )

changed then
15 DS :=DS ∩Dom(Pi );

16 P :=P∪Pi ;

17 if P=∅ then exitwhile loop;
18 (Q,G ′)=combine_paramQ(Q,G ′,

sub_paramQ_bypartition(P,DS ,L,Ωd ));

19 (Q,G ′)=combine_paramQ(Q,G ′,

sub_paramQ_bywavefront(S,Ωd ));

20 Q
low
= input_size(G)+max(0,combine_subQ(Q));

21 function combine_paramQ
input :set of global

bounds Q, DFGG ′
, parametrized boundQ(Ω)

output :updated Q,G ′

22 if [Ω,Ω′⇒Q .interf(Ω)∩Q .interf(Ω′)=∅] then
23 Q :=

∑
ΩQ(Ω);

24 Q .may-spill :=
⋃

ΩQ .may-spill(Ω);
25 Q=Q∪{Q};

26 G ′
:=G ′\Q .may-spill;

27

Sec. 4.3

Sec. 5

Sec. 6

Sec. 4.2

Algorithm 1: Main procedure that computes Qlow for

the program by combining lower bound of sub-CDAGs

obtained through K-partition or wavefront reasoning

In this example, theK-partition method is the method that

yields the strongest bound. To keep things tractable, we will

detail only the parts of the algorithm that contribute to this

bound: the iteration of the outer loops (lines 4 and 5) for

which d =0 and S =S3, and only the K-partition part (lines

8 to 18, corresponding to Sec. 5). High-level insights of the

rest of the algorithm are provided at the end of this section,

and more complete explanations are available in [22].

The DFG contains three statement vertices {S1,S2,S3} (the
vertex corresponding to input array A and the correspond-

ing dependences are omitted as they do not play a role in

the lower bound derivation). The main loop of Alg. 1 iter-

ates on those statements and computes some lower bound

complexities for each of them.

Procedure genpaths (called at line 11 in Alg. 1) traverses

the DFG, searching for chain or broadcast paths ending in S

(cf. Sec. 3.4). Here, it finds three “interesting paths” for state-

ment S3. These are the three paths pointing to S3, namely:

P1= (e1) (chain path), P2= (e2) and P3= (e3) (broadcast paths).
Their relations are: RP1 =Re1 , RP2 =Re2 , RP3 =Re3 (cf. Fig. 7c).

The corresponding projections and kernels are:

ϕ1(k,i,j)=proj(1,0,0)(k,i,j)= (0,i,j) K1=Ker(ϕ1)= ⟨(1,0,0)⟩

ϕ2(k,i,j)= (k,j) K2=Ker(ϕ2)= ⟨(0,1,0)⟩

ϕ3(k,i,j)= (k,i) K3=Ker(ϕ3)= ⟨(0,0,1)⟩

The domain DS is initialized at line 9 to

DS :=DS3 = {S3[k,i,j] : 0≤k <N ∧ k+1≤ i <N ∧ k+1≤ j ≤ i}.

The foreach loop then iterates over {P1,P2,P3}. Here the
three paths have domains that almost span the entire domain

of S3, so the condition at line 12 is always true (γ is a constant

between 0 and 1). They also have pairwise orthogonal ker-

nels, so the condition at line 14 is also true at each iteration,

and at the end of the foreach loop:

DS = ((DS3∩Dom(P1))∩Dom(P2))∩Dom(P3)

= {S3[k,i,j] : 1≤k <N ∧ k+1≤ i <N ∧ k+1≤ j ≤ i}

P= {P1,P2,P3}

At line 18, function sub_paramQ_bypartition derives a

lower bound from the set of paths P, which is then added

to the set of lower bounds Q by function combine_paramQ.
Without delving into details, sub_paramQ_bypartition

derives an upper bound on the size of a K-bounded set in

the CDAG, using paths in P as geometric constraints. A

high-level description is given in Sec. 5, and a thorough ex-

planation (detailing in particular the use of the lattice of

subgroups L) is available in the full technical report [22].

We can check that P1 is independent from P2 and P3, but P2
and P3 are not (that is R

−1
P1
(D)∩R−1

P2
(D)=∅, R−1

P1
(D)∩R−1

P3
(D)=

∅ and R−1
P2
(D)∩R−1

P3
(D),∅).

Thus the following inequality holds for any K-bounded
set E in the CDAG:

|ϕ1(E)|+
1

2

|ϕ2(E)|+
1

2

|ϕ3(E)| ≤K . (2)

Let s1,s2,s3 be the solutions to the following optimization

problem:

Minimize σ :=
∑
j

sj s.t.

0≤s1,s2,s3 ≤ 1

1≤s2+s3
1≤s1+s3
1≤s1+s2

(3)

The discrete Brascamp-Lieb theorem [10], combined with

Lemma 5.2 from [22], applied on projections ϕi , guarantee
that, for any K-bounded set E:

|E | ≤Kσ
(
2s1
σ

)s1 (
2s2
σ

)s2 (s3
σ

)s3
. (4)

The solution to (3) is s1=s2=s3=
1

2
, so

|E | ≤ 2·(K/3)3/2.
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Lemma 3.5 tells us that, ifU is an upper bound on the size

of a (S+T )-bounded-set in G, then:

Q(G)≥T ·

⌊
|V \Sources(V )|

U

⌋
−|Sources(V )|.

Here V =D∪R−1
P1
(D)∪R−1

P2
(D)∪R−1

P3
(D), giving:

V \Sources(V )= {S3[k,i,j] : 1≤k <N

∧ k+1≤ i <N ∧ k+1≤ j ≤ i}

Sources(V )= {S3[0,i,j] : 1≤ i <N ∧ 1≤ j ≤ i;

S2[k,i] : 1≤k <N ∧ k+1≤ i <N }

So |V \Sources(V )| = N 3

6
and |Sources(V )| =N 2

.
2
Taking

for U our upper bound on |E | provides the following in-

equality for which the objective is to set a value for T that

maximizes its right hand side:

Q ≥T ×

⌊
N 3/6

2·(K/3)3/2

⌋
−N 2≈

T

(S+T )3/2
×

N 3/6

2·(1/3)3/2
.

Setting T = 2S (so K = S +T = 3S) leads to the following

lower bound on Q :

Q∞
low
= (2S)×

N 3/6

2S3/2
=

N 3

6

√
S
.

Concerning the parts of the algorithm that were not de-

tailed here: the outermost loop (Line 4) corresponds to the

loop parametrization detailed in Sec. 4.3: for each loop depth

d , outermost indices are fixed (as parameter Ωd – Line 6),

and parametrically computed lower bounds are summed

(when not interfering – Line 22) over all iterations (Line 23

in combine_paramQ). The loop on statements S (Line 5) al-

lows to decompose the full CDAG into as many “S-centric”
sub-CDAGs. The so-obtained bounded set of lower bounds

Q are combined using procedure combine_subQ (Line 20)

as described in Sec. 4.2. To take compulsory misses into ac-

count, the size of the input data of the program is added to

the expression.

For each statement S , both techniques (K-partition and

wavefront resp. Line 18 and Line 19) generate lower bounds.

As opposed to the implicitly considered “S-centric” sub-

CDAGs for the wavefront reasoning, an “S-centric” sub-

CDAG for the K-partition reasoning (which is built by find-

ing a set P of DFG-paths that terminate at S – Lines 10-17

through function genpaths) does not necessarily span all the

S-vertices (DS ) of the CDAG. So several (non-intersecting)

sub-CDAGs can be built until no more interesting lower

bound can be derived (Line 17).

8 Experimental Evaluation
IOLB was implemented in C, using ISL-0.13 [33], barvinok-

0.37 [6] and PET-0.05 [34]. We also used GiNaC-1.7.4 [7] for

the manipulation of symbolic expressions, and PIP-1.4.0 [14]

2
From here on, we omit lower-order additive terms to keep things readable.

The full formula output by IOLB is available in App. C of the full report [22].

for linear programs. IOLB takes as input an affine C program

and outputs a symbolic expression for a lower bound on I/O
complexity as a function of the problem size parameters of

the program and capacity of fast memory.

IOLB was applied to all programs in the PolyBench/C-

4.2.1 benchmark suite [23]. For each kernel, our tool outputs

an I/O lower bound expression Qlow, from which we derive

an upper bound on operational intensity OIup by forming the

ratio of the number of operations and Qlow. To evaluate the

quality of the results produced by IOLB, we manually gen-

erate tiled versions of each kernel, then manually compute

parametric data-movement costs as a function of tile sizes

and cache size, then manually find the optimal tile sizes and

thereby, finally, derive a manually optimized data-movement

cost for this kernel. By forming the ratio of the total number

of operations and the data-movement cost, we then generate

OImanual. In this derivation, we assume that we have explicit

control of the cache. Then OImanual is compared with an oper-

ational intensity upper-bound obtained by forming the ratio

of the number of operations and the data movement lower

bound generated by IOLB: OIup.
IOLB runs in less than one second on each of these kernels

on a standard computer.

Let us use jacobi-1d as an example to illustrate this. IOLB

computes a lower bound expression Qlow on the number of

loads needed for any schedule of the jacobi-1d kernel:

Qlow=2+N +max

(
0,
TN

4S
−N −T −

1

4

N

S
−
3

4

T

S
−S+5

)
.

The first term is the input data size, and the second term is

obtained by the partitioning technique. Since the expression

ofQlow can be quite large, we automatically simplify toQ∞
low

by only retaining the asymptotically dominant terms, assum-

ing all parameters N ,M ... and cache size S tend to infinity,

and S =o(N ,M,...). Finally, from Q∞
low

and the fact that the

jacobi-1d kernel performs 6TN operations, we compute an

upper bound for the OI of any schedule of the jacobi-1d
kernel:

Q∞
low
=
TN

4S
OIup=

6TN

Q∞
low

=24S

8.1 Parametric Bounds forOI
Table 1 reports, for each kernel in PolyBench:

• the size of the input data and the number of operations;

• the simplified I/O lower bound Q∞
low

from IOLB;

• the parametric lower and upper bounds on operational

intensity OImanual and OIup=
# ops

Q∞
low

, and their ratio;

• the best known published OIup, when it exists.

The 30 reported benchmarks can be divided into four cat-

egories, corresponding to table divisions:

1. (19 kernels) The ratio
# ops

# input data
is high, and we man-

ually find that high OI is achievable through tiling.
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Table 1. Results on PolyBench benchmarks

kernel # input data # ops Q∞
low OImanual≤OI ≤OIup ratio PublishedOIup

2mm NiNk +NkNj 2(NiNjNk 2(NiNjNk
√
S ≤OI ≤

√
S 1 –

+NjNl +NiNl +NiNjNl ) +NiNjNl )/
√
S

3mm NiNk +NkNj 2(NiNjNk +NjNlNm 2(NiNjNk +NiNjNl
√
S ≤OI ≤

√
S 1 –

+NjNm+NmNl +NiNjNl ) +NjNlNm )/
√
S

cholesky 1

2
N 2 1

3
N 3 1

6
N 3/

√
S

√
S ≤OI ≤2

√
S 2 8

√
S [3]

correlation MN M2N 1

2
M2N /

√
S

√
S ≤OI ≤2

√
S 2 –

covariance MN M2N 1

2
M2N /

√
S

√
S ≤OI ≤2

√
S 2 –

doitgen NpNqNr +N 2

p 2N 2

pNqNr 2N 2

pNqNr /
√
S

√
S ≤OI ≤

√
S 1 –

fdtd-2d 3NxNy+T 11NxNyT 2

3

√
3

NxNyT /
√
S 11

24

√
3

√
S ≤OI ≤ 33

2

√
3

√
S 36 –

floyd-warshall N 2
2N 3

2N 3/
√
S

√
S ≤OI ≤

√
S 1 8

√
S [3]

gemm NiNj +NjNk +NiNk 2NiNjNk 2NiNjNk /
√
S

√
S ≤OI ≤

√
S 1

√
S [30]

heat-3d N 3
30N 3T 3

8

3
√
2N 3T / 3

√
S 5

2

3
√
S ≤OI ≤40 ·22/3 3

√
S 16 ·22/3 –

jacobi-1d N 6NT 1

4
NT /S 3

2
S ≤OI ≤24S 16 48S [12]

jacobi-2d N 2
10N 2T 2

3

√
3

N 2T /
√
S 5

4

√
S ≤OI ≤15

√
3

√
S 12

√
3 40

√
2

√
S [12]

lu N 2 2

3
N 3 2

3
N 3/

√
S

√
S ≤OI ≤

√
S 1 8

√
S [3]

ludcmp N 2 2

3
N 3 2

3
N 3/

√
S

√
S ≤OI ≤

√
S 1 8

√
S [3]

seidel-2d N 2
9N 2T 2

3

√
3

N 2T /
√
S 9

4

√
S ≤OI ≤ 27

√
3

2

√
S 6

√
3 –

symm 1

2
M2+2MN 2M2N 2M2N /

√
S

√
S ≤OI ≤

√
S 1 8

√
S [3]

syr2k 1

2
N 2+2MN 2MN 2 MN 2/

√
S

√
S ≤OI ≤2

√
S 2 8

√
S [3]

syrk 1

2
N 2+MN MN 2 1

2
MN 2/

√
S

√
S ≤OI ≤2

√
S 2 8

√
S [3]

trmm 1

2
M2+MN M2N M2N /

√
S

√
S ≤OI ≤

√
S 1 8

√
S [3]

atax MN 4MN MN 4≤OI ≤4 1 –

bicg MN 4MN MN 4≤OI ≤4 1 –

deriche HW 32HW HW 16

3
≤OI ≤32 6 –

gemver N 2
10N 2 N 2

5≤OI ≤10 2 –

gesummv 2N 2
4N 2

2N 2
2≤OI ≤2 1 –

mvt N 2
4N 2 N 2

4≤OI ≤4 1 –

trisolv 1

2
N 2 N 2 1

2
N 2

2≤OI ≤2 1 –

adi N 2
30N 2T N 2T 5≤OI ≤30 6 –

durbin N 2N 2 1

2
N 2 2

3
≤OI ≤4 6 –

gramschmidt MN 2MN 2 MN 2/
√
S 1≤OI ≤2

√
S 2

√
S –

nussinov 1

2
N 2 1

3
N 3 1

6
N 3/

√
S 1≤OI ≤2

√
S 2

√
S –

IOLB gives a non-trivial OI upper bound that is within
a constant of the manually obtained OI lower bound
OImanual. The bound is asymptotically tight for 9 of

them, and within a factor of 2 for an additional 5. Ex-

cept for matrix multiplication (gemm), where it matches

the best published bound, these are all improvements

over previously published results.

2. (7 kernels) The ratio
# ops

# input data
is a constant: clearly,

these cases do not provide enough operations to en-

able data reuse. The reported lower bound by IOLB

is # input data, which is asymptotically tight for 5 of

them, and within a factor of 2 for 1 more.

3. (2 kernels) The ratio
# ops

# input data
is high which does not

discard potential for tiling and high OI . Our best man-

ual schedule leads to a constant OI which is arbitrarily

far from this optimistic ratio. IOLB proves that the

code is not tileable, the best achievable OI is a con-

stant. IOLB finds this upper bound on OI thanks to
the wavefront technique. This is better by at least a

factor of

√
S than any bound that could be obtained by

geometric reasoning.

4. (2 kernels) There is an arbitrarily large discrepancy

between OIup and OImanual. Visual examination shows

that, for these cases, IOLB is too optimistic. These

codes are actually not tileable in all dimensions, and

we believe that it is possible, using more advanced

techniques that are currently out of the scope of IOLB,

to prove a matching OI upper bound.

The complete symbolic expressions output by IOLB are

available in the full technical report [22] (Appendix C).
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9 RelatedWork
The seminal work of Hong & Kung [18] was the first to

present an approach to derive lower bounds on data move-

ment for any valid execution schedule of operations in a

computational DAG. Their work modeled data movement in

a two-level memory hierarchy and presented manually de-

rived decomposability factors (asymptotic order complexity,

without scaling constants) for a few algorithms like matrix

multiplication and FFT. Several efforts have sought to build

on the fundamental lower bounding approach devised by

Hong & Kung, usually targeting one of two objectives: i) gen-

eralizing the cost model to more realistic architecture hierar-

chies [8, 9, 28], or ii) providing an I/O complexity with (tight)

constant for some specific class of algorithms (sorting/FFT [2,

26], relaxation [27], or linear algebra [4, 5, 11, 19]).

In the context of linear algebra, Irony et al. [19] were the

first to use the Loomis-Whitney inequality [21] to find a

lower bound on data movement. This was in the context

of gemm (one of the kernels of PolyBench). The asymptotic

upper bound on OI from this paper is 4

√
2

√
S . IOLB returns

√
S . This result was then extended in [3] to 7 more kernels of

PolyBench: cholesky, floyd-warshall, lu, symm, syr2k,
syrk, and trmm, where their upper bound on OI is 8

√
S for all

of them. IOLB returns

√
S for 4 of these kernels, and 2

√
S for

the other 3. The method presented in [3] is limited to a few

algorithms. Kwasniewski et al. [20] implemented an algo-

rithm for parallel matrix-matrix multiplication that matches

the communication lower bound for any combinations of

matrix dimensions, processors counts and memory sizes. See

discussion on [10] for more details on these limitations.

The studies that are the most related to this paper are

those from Christ et al. [10], and Elango et al. [12, 13].

The idea of using a variant of the Brascamp-Lieb inequal-

ity to derive bounds for arbitrary affine programs comes

from Christ et al. [10]. However, the approach they propose

suffers from several limitations: 1. The model is based on

association of operations with data elements and does not

capture data dependencies in a computational DAG. Con-

sequently, it can lead to very weak lower bounds on data

movement for computations such as Jacobi stencils. 2. There

is no way to (de-)compose the CDAG, and they view all the

statements of the loop body (that has to be perfectly nested)

as an atomic statement. As a consequence, it is incorrect to

use this approach for loop computations where loop fission

is possible. 3. The lower bounds modeling is restricted to

S-partitioning, leading to very weak lower bounds for algo-

rithms such as adi or durbin. 4. Obtaining scaling constants,
in particular with non-orthogonal reuse directions, is diffi-

cult, and only asymptotic order complexity bounds can be

derived. 5. No automation of the lower bounding process was

proposed, but manually worked out examples of asymptotic

complexity as a function of fast memory capacity (without

scaling constants) were presented.

Elango et al. [12] used a variant of the red-blue pebble

game without recomputation, enabling the composition of

several sub-CDAGs, and the use of a lower-bounding ap-

proach based on wavefronts in the DAG. Manual application

of the approach for parallel execution was done on specific

examples, but no approach to automation was proposed.

The later work of Elango et al. [13] was the first to make

the connection between paths in the data-flow graph and

regular data reuse patterns and to propose an automated com-

piler algorithm for affine programs. However, their proposed

approach suffers from several limitations: 1. Only asymp-

totic Ω(...) data movement bounds were obtainable, without

any scaling constants. In contrast, IOLB generates meaning-

ful non-asymptotic parametric I/O lower bound expressions.

From these expressions, we can derive asymptotic lower

bounds with scaling constants, critical for use in deducing

upper limits on OI for a roofline model. 2. Since they were

only trying to provide asymptotic bounds without constants,

they did not address (de-)composition (asymptotic bounds

can be safely summed up even if they interfere). Also, they

only considered enumerative decomposition, and not dimen-

sion decomposition through loop parameterization that is

necessary to obtain a tight bound for their Matmult-Seidel

illustrative example. They also only considered the simple

non-overlapping notion of interference, and did not allow

decomposition of the same statement, required in order to

obtain a tight bound for computations like floyd-warshall.
3. Finally, their approach only used the S-partitioning par-

adigm for lower bounds but not the wavefront-based par-

adigm, thus leading to very weak bounds for benchmarks

such as adi or durbin.

10 Conclusion
This paper presents the first compile-time analysis tool to

automatically compute a non-asymptotic parametric lower

bound on the data movement complexity of an affine pro-

gram. For a cache/scratchpad of limited size S , the minimum

required data movement in the two-level memory hierar-

chy is expressed as a function of S and program parameters.

As a result, the tool enables, for a representative class of

algorithms that fit in the polyhedral model, to automatically

derive a bound on the best achievable operational intensity

for all possible valid schedule of a given algorithm. Its ef-

fectiveness has been illustrated on a full benchmark suite of

dense algorithms, the PolyBench suite, with results match-

ing or improving over the current state of the art for many of

them. We believe our automated tool has strong potential to

assist algorithm developers reasoning and understanding the

fundamental memory movement limits of their algorithms,

by alleviating the need to manually reason and prove I/O

lower bounds.
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