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Abstract

We propose multi-type probabilistic serial (MPS) and multi-
type random priority (MRP) as extensions of the well-known
PS and RP mechanisms to the multi-type resource allocation
problems (MTRAs) with partial preferences. In our setting,
there are multiple types of divisible items, and a group of
agents who have partial order preferences over bundles con-
sisting of one item of each type. We show that for the unre-
stricted domain of partial order preferences, no mechanism
satisfies both sd-efficiency and sd-envy-freeness. Notwith-
standing this impossibility result, our main message is posi-
tive: When agents’ preferences are represented by acyclic CP-
nets, MPS satisfies sd-efficiency, sd-envy-freeness, ordinal
fairness, and upper invariance, while MRP satisfies ex-post-
efficiency, sd-strategyproofness, and upper invariance, recov-
ering the properties of PS and RP. Besides, we propose a
hybrid mechanism, multi-type general dictatorship (MGD),
combining the ideas of MPS and MRP, which satisfies
sd-efficiency, equal treatment of equals and decomposability
under the unrestricted domain of partial order preferences.

Introduction

Consider the example of rationing (Elster 1992) two types
of divisible resources: food (F) and beverage (B) among two
families who have heterogeneous preferences over combi-
nations of food and beverage they wish to consume. For ex-
ample, a family may prefer water with rice, and milk with
wheat. How should we distribute available resources to the
families fairly and efficiently?

In this paper, we consider the problems of divisible multi-
type resource allocation problems (MTRAs) (Mackin and
Xia 2016) with partial preferences. Here, there are p > 1
types of n divisible items per type, with one unit of supply of
each item, and a group of n agents with partial preferences
over receiving bundles consisting of one unit of each type.
Our goal is to design mechanisms to fairly and efficiently
allocate one unit of items of each type to every agent given
their partial preferences over bundles. Such mechanisms are
called fractional mechanisms, because an agent may receive
fractions of items.

When there is one type (p = 1), fractional mechanisms
broadly fall in two classes. The random priority (RP) mech-
anism (Abdulkadiroglu and S6nmez 1998) exemplifies the
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first class: agents consume their favorite remaining item one-
by-one according to an ordering drawn from the uniform
distribution. Each agent is allocated a fraction of each item
equal to the probability that they consume the item. It is easy
to see that RP satisfies ex-post-efficiency and equal treat-
ment of equals. Additionally, RP satisfies notions of envy-
freeness and strategyproofness through the idea of stochas-
tic dominance (sd). Given strict preferences, a fractional al-
location p dominates another g, if at every item o, the total
share of o and items preferred to o under p is at least the
total share under g. RP satisfies weak-sd-envy-freeness and
sd-strategyproofness (Bogomolnaia and Moulin 2001).

The probabilistic serial (PS) mechanism belongs to the
class of “simultaneous eating” mechanisms (Bogomolnaia
and Moulin 2001). PS proceeds in multiple rounds. In each
round, all agents simultaneously “eat” their favorite re-
maining item at a constant, uniform rate, until one of the
items being consumed is exhausted. This terminates when
all items are fully consumed, and the output allocates each
agent with a fraction of each item that they would con-
sume by this procedure. PS satisfies sd-efficiency, sd-envy-
freeness, and weak-sd-strategyproofness (Bogomolnaia and
Moulin 2001). Besides, PS is the only mechanism that si-
multaneously satisfies sd-efficiency, sd-envy-freeness, and
bounded invariance (Bogomolnaia and Heo 2012; Bogomol-
naia 2015).

Our work is the first to consider the design of fair and effi-
cient mechanisms for MTRAs with partial preferences, and
the first to extend fractional mechanisms to MTRAs with
partial preferences, to the best of our knowledge. Katta and
Sethuraman (2006) mention that PS can be extended to par-
tial orders but we are not aware of a (formal or informal)
work that explicitly defines such an extension and studies
its properties. Monte and Tumennasan (2015) and Mackin
and Xia (2016) consider the problem of MTRAs under lin-
ear preferences, but do not fully address the issue of fair-
ness. Ghodsi et al. (2011) consider the problem of allocating
multiple types of resources, when the resources of each type
are indistinguishable, and agents have different demands for
each type of resources. However, the problem of finding fair
and efficient assignments for MTRAs with partial prefer-
ences remains open.

Our mechanisms output fractional assignments, where
each agent receives a fractional share of bundles consisting



Table 1: Properties of MRP, MPS and MGD under different domain restrictions on partial preferences. A “Y” indicates that the
row mechanism satisfies the column property, and an “N” indicates that it does not. Results annotated with { are from (Bogo-
molnaia and Moulin 2001), I are from (Hashimoto et al. 2014). Other results are proved in this paper.

Mechanism and Preference Domain SE | EPE | OF | SEF | WSEF | ETE | UI | SS | WSS | DC
General partial preferences N[ Y [ NF| Nf Y Y [N|[ N[ Y Y

MRP | CP-nets NT Y N* [ NT Y Y Y | Y Y Y
CP-nets with shared dependency graph | NT | Y | N¥ [ NT Y Y Y| Y Y Y

General partial preferences Y N N N Y Y N | NT N N

MPS | CP-nets Y N Y Y Y Y Y | NT N N
CP-nets with shared dependency graph | Y N Y Y Y Y Y | NT Y N

General partial preferences Y Y N¥ N N Y N | N N Y

MGD | CP-nets Y Y N¥ N N Y N | N N Y
CP-nets with shared dependency graph | Y Y N? N N Y N | N N Y

of an item of each type, which together amount to one unit
per type. The fractional assignments output by our mecha-
nisms also specify for each agent how to form bundles for
consumption from the assigned fractional shares of items.
Our setting may be interpreted as a special case of cake
cutting (Brams and Taylor 1996; Brams, Jones, and Klam-
ler 2006; Procaccia 2013), where the cake is divided into
parts of unit size of p types, and n parts per type, and
agents have complex combinatorial preferences over being
assigned combinations of parts of the cake which amount to
one unit of each type.

Our Contributions. Our work is the first to provide fair and
efficient mechanisms for MTRAs, and the first to extend PS
and RP both to MTRAs and to partial preferences, to the
best of our knowledge. We propose multi-type probabilis-
tic serial (MPS) and multi-type random priority (MRP) as
the extensions of PS and RP to MTRAs, respectively. Our
main message is positive: Under the well-known and natu-
ral domain restriction of CP-net preferences (Boutilier et al.
2004a), MRP and MPS satisfy all of the fairness and effi-
ciency properties of their counterparts for single types and
complete preferences.

Unlike single-type resources allocations, in MTRAs, not
all fractional assignments are decomposable, where assign-
ments can be represented as a probability distribution over
assignments where each agent receives a bundle consist-
ing of whole items. Unfortunately, the output of MPS may
be indecomposable. In response to this, we propose a new
mechanism, multi-type general dictatorship (MGD), which
is decomposable and matches the efficiency of MPS, and
satisfies equal treatment of equals.

Our technical results are summarized in Table 1. We ex-
tend stochastic dominance to compare two fractional alloca-
tions under partial preferences. Here, a fractional allocation
p is said to stochastically dominate another allocation q w.r.t.
an agent’s partial preference, if at any bundle, the fractional
share of weakly dominating bundles in p is larger than or
equal to the fractional shares of the bundles in g according to
her preference. Formal definitions of stochastic dominance
and properties in Table 1 can be found in Preliminaries.

For the unrestricted domain of general partial preferences,
unfortunately, no mechanism satisfies both sd-efficiency

(SE) and sd-envy-freeness (SEF) as we prove in Proposi-
tion 3. Despite this impossibility result, MRP, MPS and
MGD satisfy several desirable properties: We show in

- Theorem 1 that MRP satisfies ex-post-efficiency (EPE),
weak-sd-envy-freeness (WSEF), equal treatment of equals
(ETE), weak-sd-strategyproofness (WSS), and decomposi-
bility (DC);

- Theorem 2 that MPS satisfies sd-efficiency (SE), equal
treatment of equals (ETE), weak-sd-envy-freeness (WSEF);
- Theorem 3 that MGD satisfies sd-efficiency (SE), ex-post-
efficiency (EPE), equal treatment of equals (ETE), and de-
composibility (DC).

Remarkably, we recover the fairness properties of MPS,
and the truthfulness and invariance properties for MRP and
MPS under the well-known and natural domain restriction
of acyclic CP-net preferences (Boutilier et al. 2004a). We
show in:

- Theorem 4, that MRP is sd-strategyproof (SS);

- Theorem 5, that MPS is sd-envy-free (SEF) and ordinally
fair (OF);

- Proposition 5 that MPS is upper invariant (UI); and

- Proposition 6 that MPS is weak-sd-strategyproof (WSS)
under the special case where agents’ CP-nets share a com-
mon dependency structure.

Discussions. MGD may be viewed as a hybrid between
MRP and MPS: on the one hand as a modification of MRP
where the priorities depend on the preference profile, in-
stead of being drawn from the uniform distribution; and
on the other hand, as a modification of MPS where only a
subset of the agents are allowed to eat simultaneously in
each round. The design of MGD is motivated by the natu-
ral desire for decomposability (not satisfied by MPS), while
maintaining the stronger efficiency notion of sd-efficiency
(not satisfied by MRP), and the basic fairness property of
equal treatment of equals. Decomposable assignments are
desired when sharing of items imposes overhead costs, as
noted by (Sandomirskiy and Segal-Halevi 2019). However,
(i) for MTRAs, fractional assignments are not guaranteed to
be decomposable as we show in assignment (3) of Exam-
ple 2, and indeed, MPS does not guarantee decomposable
assignments; (ii) fractional mechanisms are inevitable when
certain fairness guarantees are desired. Even when there is



one type (p = 1), no mechanism which assigns each item
fully to a single agent, can satisfy the basic fairness property
of equal treatment of equals, whereby, everything else being
equal, agents with the same preferences should receive the
same share of the resources (e.g. two agents having identical
strict preferences). On the flip side, MGD does not satisfy
weak-sd-envy-freeness, while MRP and MPS both do.

Related Work

MTRAS belong to a long line of research on mechanism de-
sign for multi-agent resource allocation (see (Chevaleyre
et al. 2006) for a survey), where the literature focuses on
the settings with a single type of items. Mackin and Xia
(2016) characterize serial dictatorships for MTRAs by strat-
egyproofness, neutrality, and non-bossiness. The exchange
economy of multi-type housing markets (Moulin 1995) is
considered in (Sikdar, Adali, and Xia 2017; 2018) under lex-
icographic preferences, while Fujita et al. (2015) consider
the exchange economy where agents may consume multiple
units of a single type of items under lexicographic prefer-
ences.

Our work is the first to extend RP and PS under partial
preferences, to the best of our knowledge despite the vast
literature on fractional assignments. Hosseini and Larson
(2019) consider RP under lexicographic preferences. The
remarkable properties of PS has encouraged extensions to
several settings. Hashimoto et al. (2014) provide two char-
acterizations of PS: (1) by sd-efficiency, sd-envy-freeness,
and upper invariance, and (2) by ordinal fairness and non-
wastefulness. In (Heo 2014; Hatfield 2009), there is a single
type of items, and agents have multi-unit demands. In (Sa-
ban and Sethuraman 2014), the supply of items may be dif-
ferent, while agents have unit demand and are assumed to
have lexicographic preferences. Other works extend PS to
settings where indifference relationships are allowed (Katta
and Sethuraman 2006; Heo and Yilmaz 2015). Aziz et al.
(2015) consider fair assignments when indifference allowed
in preferences (but not incomparabilities). Yilmaz (2009),
Athanassoglou and Sethuraman (2011) extend PS to the
housing markets problem (Shapley and Scarf 1974). Bou-
veret, Endriss, and Lang (2010) study the complexity of
computing fair and efficient allocations under partial prefer-
ences represented by SCI-nets for allocation problems with
a single type of indivisible items.

CP-net Preferences

Compact preference representations are a common approach
to deal with the preference formation and elicitation bottle-
neck faced in MTRAs, where the number of bundles grows
exponentially with the number of types. CP-nets (Boutilier
et al. 2004b) are perhaps the most well-studied and natural
compact preference representation language allowing agents
to express conditional (in)dependence of their preferences
over combinations of different types (see Example 1). CP-
nets are an important restriction on the domain of partial
preferences, and induce a partial ordering on the set of all
bundles. Sikdar, Adali, and Xia (2017) design mechanisms
for multi-type housing markets under lexicographic exten-
sions of CP-nets. Several works in the combinatorial voting

literature assume CP-net preferences (Rossi, Venable, and
Walsh 2004; Lang 2007), and that agents’ CP-nets have a
common dependence structure (see (Lang and Xia 2016) for
arecent survey).

Preliminaries

A multi-type resource allocation problem (MTRA) (Mackin
and Xia 2016), is given by a tuple (N,M,R). Here,
(DN ={1,...,n}isasetof agents. (2) M = D U---UD,
is a set of items of p types, where for each ¢ < p, D, is a set
of n items of type ¢, and there is one unit of supply of each
item in M. Weuse D = D; x --- x D, to denote the set
of bundles. (3) R = () j<n 18 a preference profile, where
for each j < n, ~; represents the preference of agent j, and
R_; represents the preferences of agents in NV \ {j}. We use
‘R to denote the set of all possible preference profiles.

Bundles. For any type ¢ < p, we use k; or k; to refer to the k-
th item of type ¢ where ¢ represents the name of type ¢. Each
bundle x € D is a p-tuple, and we use o € x to indicate that
bundle x contains item o. We define T = {D;,...,D,},
and for any S C T, we define g = Xpes D, and -5 =

T\S.Forany S C T, S cC T'\S,andany x € Ilg,y € Ilg,
(x,y) denotes the bundles consisting of all items in x and
y.Forany SCT,D €T\ S,andany x € S,0 € D, (0,x)
denotes the bundles consisting of o and the items in x.
Partial Preferences and Profiles. A partial preference >
is a partial order over D, which is an irreflexive, anti-
symmetric, and transitive binary relation. Given a partial
preference > over D, we define the corresponding prefer-
ence graph, denoted by G, to be the directed graph whose
nodes are the bundles in D, and for every x,y € D, there is
an directed edge (x,y) if and only if x > y and there exists
no z € D such that x > z and z > y. Given a partial order
> over D, we define the upper contour set of > at a bundle
x€DasU(-,x) = {x:%>xo0rx =x}.

Acyclic CP-nets. A CP-net (Boutilier et al. 2004a) > over
the set of variables D has two parts: (i) a directed graph
G = (T, E) called the dependency graph, and (ii) for each
1 < p, there is a conditional preference table C PT(D;) that
contains a linear order >* over D; for each x € Ilpy(p,),
where Pa(D;) is the set of types corresponding to the par-
ents of D; in G. When G is (a)cyclic we say that > is a
(a)cyclic CP-net. The partial order induced by an acyclic
CP-net > over D is the transitive closure of {(0,x,2z) >
(0,%,2) 1 i < p;jo,0 € Dizo =* 6;x € llpyp,);2 €
H_(pa(p,)uiD,}) - A CP-profile is a profile of agents’ pref-
erences, each of which is represented by an acyclic CP-net.

Example 1. Consider MTRA (N, M, R) with p = 2 types,
food (F) and beverage (B), where N = {1,2}, M =
{1p,2p, 15,25}, where 1 is item 1 of type B and so on.
Let agent 1’s preference -1 be represented by the acyclic
CP-net in Figure 1, where the dependency graph (Figure 1
(a)) shows that her preference on type B depends on her as-
signment in type F. The corresponding conditional prefer-
ence tables (Figure 1 (b)) show that agent 1 prefers 1 with
1p, and 2 with 2p. This induces the preference graph in
Figure 1 (c) which happens to be a linear order. Let agent
2’s preference > be represented by the preference graph in
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Figure 1: Agent 1’s preferences are represented by an acyclic
CP-net with dependence graph (a), and CP-tables (b), whose
preference graph is in (c). Agent 2’s preferences are repre-
sented by the preference graph in (d).

Figure 1 (d) which represents a partial order, where 1p2p
is the least preferred bundle, and providing no information
on the relative ordering of other bundles. 0

Assignments. A discrete assignment A : N — D is a one
to one mapping from agents to bundles such that no item
is assigned to more than one agent. A fractional allocation
shows the fractional shares an agent acquires over D, repre-
sented by a vector p = [px]xep, p € [0,1]**P! such that
> xepPx = 1. We use II to denote the set of all possible
fractional allocations on an agent. A fractional assignment
P is a combination of all agents’ fractional allocations, and
can be represented by a matrix P = [pj; x|j<nxep, P €
[0, 1]|N|X|D‘, such that (i) forevery j <n, Y crpjx =1,
(ii) for every o € M, S, = {x : x € Dando € x},
Zjﬁn,xESO pjx = 1. The j-th row of P represents agent
j’s fractional allocation under P, denoted P(j). We use P
to denote the set of all possible fractional assignments.
Mechanisms. A mechanism f : R — P is a mapping from
profiles to fractional assignments. For any profile R € R,
we use f(R) to refer to the fractional assignment output by
f, and for any agent j < n and any bundle x € D, we use
f(R)jx to refer to the value of the element of the matrix
f(R) indexed by j and x.

Stochastic Dominance. In this paper we will use the nat-
ural extension of stochastic dominance (Bogomolnaia and
Moulin 2001) to compare fractional allocations.

Definition 1. (stochastic dominance for fractional alloca-
tions) Given a partial preference >~ over D, the stochastic
dominance relation associated with >, denoted =% s
a weak ordering over 11 such that for any pair of fractional
allocations p, q € 11, p stochastically dominates g, denoted
p =% q, if and only if for every x € D, Zf&GU(>,x) pg >
chGU(>,x) x-

Weuse P -5 Q todenote P(j) »5* Q(j). We write
P =% Qif for every j < n, we have P >—j-d Q.

Example 2. Consider the situation in Example 1
with the three fractional assignments (1), (2), and (3)
shown below. The four upper contour sets for agent 1
are {lFlB}’ {1F1B» 1F2B}r {1F1B; 1F237 2F2B}r and
{1plp,1r2p,2r1p,2r25}. The allocations of the four

upper contour sets for agent 1 in assignment (2) are 0.5,
0.5, 1, 1, respectively and in assignment (3) are 0, 0.5,
0.5, 1. The former is greater than or equal to the latter
respectively, and the same can be concluded for agent 2
by considering the upper contour sets {1plp}, {2r25},
{2FlB}; and {1F13, ]-F2Ba 2F13, QFQB}. Hence assign-
ment (2) stochastically dominates (3). We can check that (2)
does not dominate (1), and that the reverse is true by con-
sidering the sets of {1p1p} and {2r1p} for agent 2.

lplp 1p2p 2plp 2p2p
Agent 1 0.5 0.5 0 0 (1)
Agent 2 0 0 0.5 0.5

lplp 1p2p 2plp 2p2p
Agent 1 0.5 0 0 0.5 2)
Agent 2 0.5 0 0 0.5

1plp 1p2p 2plp 2p2p
Agent 1 0 0.5 0.5 0 3)
Agent 2 0.5 0 0 0.5

O

Desirable Properties. A fractional assignment P satis-
fies: (i) sd-efficiency, if there is no fractional assignment
Q # P such that Q@ >=°? P, (ii) ex-post-efficiency,
if P can be represented as a probability distribution over
sd-efficient discrete assignments, (iii) sd-envy-freeness, if
for every pair of agents j,j < n, P(j) =3 P(j),
(iv) weak-sd-envy-freeness, if for every pair of agents
53 < m P(g) =30 P(G) = P(j) = P()
(v) equal treatment of equals, if for every pair of agents
4,7 < n such that agents j and 7 have the same pref-
erence, P(j) = P(j), (vi) ordinal fairness, if for ev-
ery bundle x € D and every pair of agents j,j’ <n
with Pj x > 0, Z:‘ceU(>j,x) Pjx < ZﬁeU(>5,x) Pj’,fc’ and
(vii) decomposability, if P can be represented as a proba-
bility distribution over discrete assignments.

A mechanism [ satisfies X € {sd-efficiency, ex-post-
efficiency, sd-envy-freeness, weak-sd-envy-freeness, equal
treatment of equals, ordinal fairness, decomposability}, if
for every R € R, f(R) satisfies X. A mechanism f sat-
isfies: (i) sd-strategyproofness if for every profile R € R,
every agent j < n, every R’ € Rsuchthat R' = (-, =),
it holds that f(R) >5* f(R’), and (ii) weak-sd-strate-
gyproofness if for every profile R € R, every agent j < n,
every R’ € R such that " = (~',=_;), it holds that
J(R) =3 [(R) = [(R)() = F(R)())-

Given any partial preferences -, we denote |z by the
restriction of >~ to B C D, i.e., | is a preference relation
over B such that for all x,y € B,x >~|g y < x > y. Then
forany j < n, »; is an upper invariant transformation of
>=; at x € D under a fractional assignment P if for some
Z/Q {y e D| Pjy =0}, U(%;,X? = U(>-J.-,x) \ Z and
>j|U(>},x):>j|U(>37x). A mechanism f satisfies upper



invariance if it holds that f(R); . = f(R');, for ev-
ery j < n,j <n Re R R € R,and x € D,
such that ' = (=},>_;) and =/ is an upper invariant

transformation of >; at x under f(R).

Mechanisms for MTRASs with Partial
Preferences

In this section, we propose MRP (Algorithm 1 as extension
of RP), MPS (Algorithm 2, as extension of PS), and MGD
(Algorithm 3), which can be seen as not only an eating algo-
rithm but a special random priority algorithm.

The three mechanisms operate on a modified preference
profile of strict preferences, where for every agent with par-
tial preference >, an arbitrary deterministic topological sort-
ing is applied to obtain a strict ordering ' over D, such that
for any pair of bundles x,y € D,x >y = x >'y.
Given a strict order >’ obtained in this way, and remaining
M’, we use Ext(>', M') to denote the first available bun-
dle in =’, which we refer to as the agents’ favorite bundle.
It is easy to see that no available bundle is preferred over
Ezt(>~', M) according to .

Our results apply to arbitrary deterministic topological
sortings (induced by a fixed ordering over items), even
though different topological sortings may lead to different
outputs.

Algorithm 1 MRP

Input: An MTRA (N, M, R)

Output: Assignment P

1: For each 7 < n, compute a linear ordering >’ corre-
sponding to a deterministic topological sort of d -
2: P« OIWIXIPland M’ + M.

Pick a random priority order [> over agents.

4: Successively pick a highest priority agent j* according
to >. x* « Ext(~., M') and set Pj« x- < 1. Re-
move j*, and remove all items contained by x* in M’.

5: return P

w

Given an instance of MTRA with agents’ partial prefer-
ences, MRP fixes an arbitrary deterministic topological sort-
ing >’ of agents’ preferences, and sorts agents uniformly at
random. Then agents get one unit of their favorite available
bundle from the remaining M’ in turns as in RP.

Given an instance of MTRA with agents’ partial prefer-
ences, MPS involves applying the PS mechanism to a modi-
fied profile >’ over D using an arbitrary deterministic topo-
logical sorting in multiple rounds as follows. In each round,
each agent consumes their favorite available bundle by con-
suming each item in the bundle at an uniform rate of one
unit of an item per type per unit of time, until one of the
bundles being consumed becomes unavailable because the
supply for one of the items in it is exhausted.

Given an instance of MTRA with agents’ partial prefer-
ences, MGD proceeds by operating on an arbitrary deter-
ministic topological sorting =’. Let Group(j, =) denote the
set of all agents who have the same order with agent j in
>'. MGD proceeds in n rounds as follows. In each round

Algorithm 2 MPS
Input: An MTRA (N, M, R)
Output: Assignment P
1: For each j < n, compute a linear ordering >'; corre-
sponding to a deterministic topological sort of é’
2: P« OWIXIPl and M’ < M. For every o G M,
supply(o) < 1, B < (), progress < 0.
3: while M’ # () do
top(j) < Eaxt(~';, M') for every agent j < n.
Consume.
5.1: For each o € M’, consumers(o) < |[{j € N :
oisintop(j)}|.
supply(o)

5.2: progress “— mlnoej\,[ m

AN

5.3: Foreach j < n, Pjop(j) < Pjtop(j) + progress

5.4: For each o € M’, supply(o) «+ supply(o) —
progress X consumers (0).

6: B <« argmin,epy _swply(0) _“p s, M'\ B

consumers (o)’

7: return P

Algorithm 3 MGD
Input: An MTRA (N, M, R)
Output' Assignment P

: For each j < n, compute a linear ordering >'; corre-
sponding to a deterministic topological sort of é’

P« 0INIXIPl and M’ « M.
for j =1tondo

top(j) — Ewt(>;,M/).

For each j' € Group(j, ='), let

1

|Group(j, =')|
M' «+ M'\{o€ M :oisintop(j)}.
7: return P

Pjs top(j) <

a

J < n, agent j comes and invites other agents with the same
topological sort >—;- to consume her favorite available bundle
E(Lt(>/7, M/) with m
eating rate. We present MGD as its eating algorithm ver-
sion here and show that MGD(R) is the expected result
of a special random priority algorithm when we prove its
decomposability.

unit of time and one unit of

Example 3. Consider the situation in Example 1, the topo-
logical sort of agent 1’s preference is 1plpg =’ 1p2p =’
2r2p >~/ 2plp but both 2plp -/ 1rlp >~/ 2r2p >~/
1p2p and 1plp =/ 2r2p =/ 2rlp =~ 1r2p can be
the topological sort of agent 2’s preference. If the topologi-
cal sort of agent 2 is the former, in MPS, agent 1 consumes
1rp1p and agent 2 consumes 2p1p at the beginning. When
they both consume 0.5 fraction, 1p is exhausted. 1p1p and
2rlp become unavailable. They turn to identify the next
bundles in line 4. For example, the first two bundles 2r1p
and 1plp are unavailable for agent 2, so she turns to the



third bundle 2r2p. Agent 1 turns to 1p2p. Then MPS goes
to next round of consumption until all left items are ex-
hausted at the same time. The result is shown in assignment
(1) in Example 2. However, if the topological sort of agent
2 is the latter, agent 1 and agent 2 both get 0.5 of 1plp
and 0.5 of 2r2p as assignment (2) shows. It is easy to check
that MRP has the same conclusion. Suppose agent 1 has the
same partial preference with agent 2 in Example 1 in MGD.
If their topological sorts are both the former, agent 1 invites
agent 2 to consume 2plp in round 1 and agent 2 invites
agent 1 to consume 12 p in round 2. But if their topological
sorts are both the latter, agent 1 invites agent 2 to consume
1plp in round 1 and agent 2 invites agent 1 to consume
2r2p in round 2. ]

There is an unique best available bundle w.r.t. any acyclic

CP-net preference and remaining supply of items, which
can be computed in polynomial time by induction on the
types according to the dependency graph as we show in
Proposition 1. This is an extension of the well-known result
of Boutilier et al. (2004a) that there is a unique best bundle
w.r.t. any acyclic CP-net.
Proposition 1. Let T = {D} C Dy,...,D, C D,}, D' =
II7/, and let >~ be any acyclic CP-net over D. Then, there
exists unique x € D’ such that for everyy # x € D,
X >y.

All missing proofs can be found in a full version on arXiv.

We use T'op(~, M) to denote the best available bundle in
remaining M’ given an acyclic CP-net . Under the domain
restriction of acyclic CP-net preferences, for any topologi-
cal sorting algorithms, Ext(~}, M) is exact Top(>~;, M")
for any M’ and j < n by Proposition 1. Therefore, we can
remove line 1 and instead Ext(-;, M") with Top(~;, M")
in the three mechanisms to save the time and space.

Proposition 2. MRP, MPS and MGD run in O(nP*1) time.

We note that the size of the preference representation is
O(nP*1), and forms a part of the input.

Properties under General Partial Preferences

Theorem 1. Under general partial preferences, M RP
satisfies ex-post-efficiency, weak-sd-envy-freeness, equal
treatment of equals, weak-sd-strategyproofness, and decom-
posability.

The proof of weak-sd-envy-freeness involves showing
that for any two agents j and j, agents j and J receive equal
shares of every bundle in expectation, due to a bijective map-
ping from the set of orders where j picks before ; and vice-
versa.

Remark 1. Under general partial preferences, MRP is not
upper invariant and sd-strategyproof.

Given an assignment P and a partial preference profile
R, for any x,x € D, (x,X) is an improvable tuple, de-
noted by I'mp(P, R), if there exists an agent j < n such
that x >, % and p;x > 0. We use Imp(P) for short
when the preferences are clear from the context. Bogo-
molnaia and Moulin (2001) show that an assignment P
is sd-efficient if and only if the binary relation I'mp(P)

has no cycle in single-type resources allocations, but the
sufficient condition fails to hold for MTRAs. As Exam-
ple 2 shows, assignment (3) is sd-inefficient, but the set
of the improvable tuples, {(1rlp,1r25),(1rlp, 2rlp),
(1r2pB,2rlp), (2r2p5,2r1p)}, has no cycle.

Theorem 2. Under general partial preferences, M PS
satisfies sd-efficiency, weak-sd-envy-freeness, and equal
treatment of equals.

To prove the sd-efficiency of MPS, we relax the cycle
from bundles to items and find a sufficient condition for
sd-efficiency in MTRAs under general partial preferences.
For example in assignment (3), agent 1 can extract 15 from
2r1p to match 15 and extract 2p from 172p to match 25
to improve her result. We show MPS satisfies sd-efficiency
by proving MPS satisfies the sufficient condition. We find
that one agent does not envy others at the first bundle of her
topological sort since she consumes the bundle from the be-
ginning to the end when the bundle is exhausted. Based on
that, We can prove she does not envy others at any upper
contour set under MPS by induction on bundles under the
topological sorting.

Remark 2. MPS is not ex-post-efficient since its output may
not be decomposable when coming to multi-type resources.
MPS is not ordinally fair, sd-envy-free and upper invariant
under general partial preferences.

PS is both sd-efficient and decomposable in single-type
resources allocations (Bogomolnaia and Moulin 2001), but
not decomposable in MTRAs. Serial dictatorship (Mackin
and Xia 2016; Hosseini and Larson 2019) maintains both sd-
efficiency and decomposability even in MTRAs but perform
badly in fairness. Thankfully, MGD not only satisfies sd-
efficiency and decomposability but the common requirement
for fairness, equal treatment of equals.

Theorem 3. Under general partial preferences, MGD
satisfies sd-efficiency, ex-post-efficiency, equal treatment of
equals, and decomposability.

When agents have different topological sorts with each
other, MGD comes to serial dictatorship. Since the dictator
only invite agents who have the same topological sort with
her to share her bundle, the sd-efficiency of serial dictator-
ship maintains in MGD. Since agents with the same prefer-
ence have the same topological sorts, MGD satisfies equal
treatment of equals. MGD is decomposable since its output
can be seen as an expected result of a special random prior-
ity algorithm. Decomposability and sd-efficiency induce ex-
post-efficiency (Bogomolnaia and Moulin 2001).

Remark 3. MGD is not ordinally fair, weak-sd-envy-free,
upper invariant and weak-sd-strategyproof even in single-
type resources allocations under linear preferences.

PS is both sd-efficient and sd-envy-free under linear pref-
erences (Bogomolnaia and Moulin 2001) but this is no
longer true under general partial preferences, as the impos-
sibility result in Proposition 3 shows.

Proposition 3. No mechanism can satisfy both sd-efficiency
and sd-envy-freeness under general partial preferences.



Properties under Acyclic CP-net Preferences

Theorem 4. Given any CP-profile R, MRP(R) is sd-
strategyproof.

Proof. Let P and P’ be the expected assignments of MRP
given the CP-profile R and R’ € R such that R’ = (-
, =_;) for some j < n. For an arbitrary fixed priority order,
in any agent j’s turn, the set of available bundles is the same
under R and R'. By Proposition 1, the best available bundle
is also the same and unique. If j lies, she may get a smaller
share of her best available bundle. Therefore, the result of
a lie is stochastic dominated by the result of truthfulness.
Since this is true for any fixed priority order, P’ is stochastic
dominated by P. O

Proposition 4. Given any CP-profile R, M RP(R) is upper
invariant for any other CP-profile R'.

Thanks to Proposition 1, given any upper invariant trans-
formation at some y € D, if y is available in the misreport
agent’s turn, she gets the same bundle despite her lie. Oth-
erwise if y is unavailable, the lie does not affect the assign-
ment of y.

Theorem 5. Given any CP-profile R, M PS(R) is sd-envy-
free and ordinally fair.

Proof. W.l.o.g we only prove the case between agent 1 and
agent2.Let P = MPS(R).LetD; = {x€D: P x >0}
and n; = |D1|. By Proposition 1, we have an order over D;
suchthatx; >1 X2 >1 -+ >1 Xp,,X; € Dy forany 7 < n;.
For agent 2, we can define D, and ny and have an order over
Dy, X1 =9 Xg 9 -+ >3 Xy,, similarly.

(1) sd-envy-freeness. We need to prove P(1) =3¢ P(2).
For any y € D, let x; be the least favorable bundle of
agint 1inU(>1,y) NDy. If i = nq, ZXEU(>1,y) Py =

k1:1 Pl,xk =1> ZXGU(>—1,y) Pgﬁx. Ifi < Ny, Xi+1 ¢
U(>1,y). When agent 1 starts to consume X;;1, ¥ is un-
available for any y € U(>1,y). Otherwise by Proposi-
tion 1, we have x;41 >1 y or X;41 = ¥ both indicating
Xi+1 € U(>1,y), a contradiction. Suppose t(x;) be the
time when x; is exhausted and agent 1 starts to consume
Xi41- Then ZxEU(>1,y) Pl,x = ZZ:l Plvxk = t(XZ‘) Z
2 oxeU(=1,y) F2x forany y € D. Hence P(1) =1 P(2).

(2) ordinal fairness. For any y € D;, we need to prove
YoxcU(m1,y) Plx S Xoxet(ma,y) P2x- Forany x; € Dy,
suppose that when x; is exhausted, agent 2 is consum-
ing X; € Dy or X; is exhausted at the same time. If
X; = X, wWe have erU(>-1,xqz) Pl,x = ZxEU(>—2,x1) P2*x'
If %, # x;, since x; is available when agent 2 starts to
consume X;, we have X o x; for any k < i. Hence,
Yoxet(mi) Plx = 2o Pixe < 2o Pk, <

x€U(»2,x;) L 2,x- Therefore, forany y € D with Py y > 0,
we haVe ZxEU(>-1,y) P],X S ZXGU(>‘2,y) P2,X' D

Hashimoto et al. (2014) shows that ordinal fairness char-

acterizes PS when we come to single-type resources. How-
ever, this is not the case in MTRAs: for example, if two

agents’ preferences are both as (c) in Figure 1 shows, the
result that two agents both get 0.5 125 and 0.5 2p1p is
ordinally fair but not the output of MPS.

Proposition 5. Given any CP-profile R, M PS(R) is upper
invariant for any other CP-profile R’.

Given any upper invariant transformation at some y € D,
we show the consumption processes are identical until y is
exhausted whether the misreport agent is truthful or lies, by
induction on the bundles consumed by the misreport agent
under R. Details are in the Appendix.

Remark 4. MPS is not weak-sd-strategyproof under CP-net
preferences.

Proposition 6. Given any CP-profile R with an shared de-
pendency graph, M PS(R) is weak-sd-strategyproof for any
other CP-profile R’ with the shared dependency graph.

Proof sketch. Let agent 1 be the manipulator w.l.o.g. The
proof involves showing that for any R’ obtained from R by
changing 1’s preference, without modifying the dependency
graph, such that P' = MPS(R') =3* MPS(R) = P, it
holds that P; = P, in two steps: (Step 1) We show that
agent 1 has no incentive to lie about preferences involving
any type, D;, for which preferences are conditionally in-
dependent of other types, i.e. with no incoming edges in
the dependency graph. This involves showing that the as-
signment computed by MPS restricted to any such type D;
is the same as the output of PS applied to the preference
profile restricted to preferences over such a type D;. The
claim follows from the weak-sd-strategyproofness property
of PS (Bogomolnaia and Moulin 2001). (Step 2) We show
by induction over the dependency graph, that agent 1 has no
incentive to lie, due to two important facts: (1) agent 1 does
not misreport the dependency graph, and (2) due to CP-net
preferences, for any type D;, and given an assignment for
types Pa(D;), preferences over D; are conditionally prefer-
entially independent of all types. The formal proof and de-
tails are in the Appendix. |

Conclusion and Future Work

We proposed and studied MRP and MPS as extensions of RP
and PS to MTRAs. We also proposed MGD that is both sd-
efficient and decomposable. For future work, we are inter-
ested in axiomatic characterization of MRP, MPS and MGD.
More generally, designing desirable mechanism for MTRAs
is still an interesting and challenging open question.

Acknowledgments

We are grateful to the anonymous reviewers for their
helpful comments. LX acknowledges NSF #1453542 and
#1716333 for support. YC acknowledges NSFC under
Grants 61772035, 61751210, and 61932001, and the Na-
tional Science and Technology Major Project for IND (in-
vestigational new drug) under Grant 2018Z2X09201-014 for
support. HW acknowledges NSFC under Grants 61572003
and 61972005, and the National Key R&D Program under
Grants 2018YFB1003904 and 2018YFC1314200 for sup-
port.



References

Abdulkadiroglu, A., and Sonmez, T. 1998. Random serial
dictatorship and the core from random endowments in house
allocation problems. Econometrica 66(3):689-702.

Athanassoglou, S., and Sethuraman, J. 2011. House allo-
cation with fractional endowments. International Journal of
Game Theory 40(3):481-513.

Aziz, H.; Gaspers, S.; Mackenzie, S.; and Walsh, T. 2015.
Fair assignment of indivisible objects under ordinal prefer-
ences. Artificial Intelligence 227:71-92.

Bogomolnaia, A., and Heo, E. J. 2012. Probabilistic assign-
ment of objects: Characterizing the serial rule. Journal of
Economic Theory 147(5):2072-2082.

Bogomolnaia, A., and Moulin, H. 2001. A new solution
to the random assignment problem. Journal of Economic
Theory 100(2):295-328.

Bogomolnaia, A. 2015. Random assignment: Redefining
the serial rule. Journal of Economic Theory 158:308-318.

Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004a. CP-nets: A tool for representing and rea-
soning with conditional ceteris paribus statements. Journal
of Artificial Intelligence Research 21:135-191.

Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004b. Preference-based constrained optimization
with CP-nets. Computational Intelligence 20(2):137-157.

Bouveret, S.; Endriss, U.; and Lang, J. 2010. Fair division
under ordinal preferences: Computing envy-free allocations
of indivisible goods. In Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI-2010).

Brams, S. J., and Taylor, A. D. 1996. Fair Division: From
Cake-Cutting to Dispute Resolution. Cambridge University
Press.

Brams, S. J.; Jones, M. A.; and Klamler, C. 2006. Better
ways to cut a cake. Notices of the AMS 53(11):1314-1321.

Chevaleyre, Y.; Dunne, P. E.; Endriss, U.; Lang, J.; Lemaitre,
M.; Maudet, N.; Padget, J.; Phelps, S.; Rodriguez-Aguilar,
J. A.; and Sousa, P. 2006. Issues in multiagent resource
allocation. Informatica 30:3-31.

Elster, J. 1992. Local justice: How institutions allocate
scarce goods and necessary burdens. Russell Sage Foun-
dation.

Fujita, E.; Lesca, J.; Sonoda, A.; Todo, T.; and Yokoo, M.
2015. A complexity approach for core-selecting exchange
with multiple indivisible goods under lexicographic prefer-
ences. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, 907-913.

Ghodsi, A.; Zaharia, M.; Hindman, B.; Konwinski, A.;
Shenker, S.; and Stoica, I. 2011. Dominant resource fair-
ness: Fair allocation of multiple resource types. In Proceed-
ings of the 8th USENIX Conference on Networked Systems
Design and Implementation, 323-336.

Hashimoto, T.; Hirata, D.; Kesten, O.; Kurino, M.; and
Unver, M. U. 2014. Two axiomatic approaches to the proba-
bilistic serial mechanism. Theoretical Economics 9(1):253—
277.

Hatfield, J. W. 2009. Strategy-proof, efficient, and nonbossy
quota allocations. Social Choice and Welfare 33(3):505—
515.

Heo, E. J., and Yilmaz, 0. 2015. A characterization of the
extended serial correspondence. Journal of Mathematical
Economics 59:102-110.

Heo, E. J. 2014. Probabilistic assignment problem with
multi-unit demands: A generalization of the serial rule and
its characterization. Journal of Mathematical Economics
54:40-47.

Hosseini, H., and Larson, K. 2019. Multiple assignment
problems under lexicographic preferences. In Proceedings
of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-19).

Katta, A.-K., and Sethuraman, J. 2006. A solution to the
random assignment problem on the full preference domain.
Journal of Economic theory 131(1):231-250.

Lang, J., and Xia, L. 2016. Voting in combinatorial do-
mains. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.;
and Procaccia, A., eds., Handbook of Computational Social
Choice. Cambridge University Press. chapter 9.

Lang, J. 2007. Vote and aggregation in combinatorial do-
mains with structured preferences. In Proceedings of the
Twentieth International Joint Conference on Artificial Intel-
ligence (IJCAI), 1366—-1371.

Mackin, E., and Xia, L. 2016. Allocating indivisible items
in categorized domains. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelli-
gence (IJCAI-16), 359-365.

Monte, D., and Tumennasan, N. 2015. Centralized allo-
cation in multiple markets. Journal of Mathematical Eco-
nomics 61:74—385.

Moulin, H. 1995. Cooperative Microeconomics: A Game-
Theoretic Introduction. Prentice Hall.

Procaccia, A. D. 2013. Cake cutting: Not just child’s play.
Communications of the ACM 56(7):78-87.

Rossi, F.; Venable, K. B.; and Walsh, T. 2004. mCP nets:
Representing and reasoning with preferences of multiple
agents. In Proceedings of AAAI-04, 729-734.

Saban, D., and Sethuraman, J. 2014. A note on object allo-
cation under lexicographic preferences. Journal of Mathe-
matical Economics 50:283-289.

Sandomirskiy, F., and Segal-Halevi, E. 2019. Fair division
with minimal sharing. arXiv preprint arXiv:1908.01669.
Shapley, L., and Scarf, H. 1974. On cores and indivisibility.
Journal of Mathematical Economics 1(1):23-37.

Sikdar, S.; Adali, S.; and Xia, L. 2017. Mechanism design
for multi-type housing markets. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence.

Sikdar, S.; Adali, S.; and Xia, L. 2018. Top-trading-cycles
mechanisms with acceptable bundles. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
AAAI, volume 18.

Yilmaz, O. 2009. Random assignment under weak prefer-
ences. Games and Economic Behavior 66(1):546-558.



