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Abstract—Social harm involves incidents resulting in phys-
ical, financial, and emotional hardships such as crime, drug
overdoses and abuses, traffic accidents, and suicides. These
incidents require various law-enforcement and emergency-
responding agencies to coordinate together for mitigating their
impact on society. In this paper, we discuss the enhancements
made to Community Data Analytic for Social Harm Prevention
(CDASH) - a system that we have created for analyzing
historical social harm events. CDASH predicts ‘hot-spots’ and
displays them graphically to law-enforcement officials. The
enhanced system, called Trusted-CDASH (T-CDASH), super-
imposes a trust estimation framework on top of CDASH. We
discuss the importance and necessity of associating a degree of
trust with each social harm incident reported to T-CDASH. We
also describe different trust models that can be incorporated
for assigning trust while examining their impact on prediction
accuracy of future social harm events. To validate the trust
models, we run simulations on historical social harm data of
Indianapolis metro area, illustrating the behavior of each trust
model and exploring their significance.

Keywords-Social harm; Trust management; Hot-spots; Data
cross validation.

I. INTRODUCTION

Human interactions lead to diverse social formations es-
tablishing lawful processes within the society [1]. Pemberton
[2] describes situations in which such social formations can
become harmful: non-fulfillment of needs paves the way
towards social harm in society. Social harm is a concept
that enables criminology to move beyond legal definitions
of crime to include immoral, wrongful and injurious acts that
are not necessarily illegal [3]. Along with criminal activities,
social harm encompasses any harm caused to the society
irrespective of it being intentional or not. Thus, Hillyard
and Tombs [3], consider social harm more responsive to the
causes of human suffering than legally defined crimes.

There is a need to prevent and mitigate such social
harm disruptions occurring in the society. Researchers have
proposed various ways of alerting societies about social
harm incidents. One way of dealing with social harm is
through geographic profiling [4] by analyzing regions with
connected crimes to identify likely areas of offenders resi-
dence. Another way is by creating machine learning modules
and software tools for social harm prediction. This paper
focuses on Trusted Community Data Analytic for Social
Harm Prevention (T-CDASH), a web based system for cap-
turing, analyzing, predicting and thereby mitigating social

harm. It is an enhancement of our past work; Community
Data Analytic for Social Harm Prevention (CDASH) [5].
T-CDASH assists in bringing together various stakeholders
including law-enforcement agencies, health-care organiza-
tions, community organizations, and citizens for efficiently
mitigating social harm. Such a system not only acts as
an information source to these stakeholders but also can
help in reducing the impact of social harm events in the
society. Thereby, leading a way towards “Frugal Social
Smart Cities”. T-CDASH utilizes a Hawkes Point Process
Service as suggested by Mohler et al. in [6] for generating
social harm predictions and communicating risks to various
stakeholders in the community.

Trust is an important component in any system, especially
in distributed systems; where multiple, possibly unknown,
entities interact together to achieve a common goal. In T-
CDASH, multiple stakeholders interact with the system pro-
viding live social harm inputs. Although incidents reported
by the Indianapolis Metropolitan Police Department (IMPD)
and Emergency Medical Services (EMS) can be considered
highly trustworthy, inputs from others, such as community
organizations and citizens, may not be always trusted. Also,
inaccuracies may occur while recording data reported to 911
either due to misinterpretation of reported incidents or due
to selection of the incorrect incident category. Since these
reported incidents are used while predicting future social
harm hot-spots, entities with malicious intentions and possi-
ble inaccuracies while recording incidents by 911 operators
may mislead T-CDASH. To ensure high accuracy of hot-spot
predictions and thereby, efficient resource allocations, it is
essential to incorporate a trust framework that will associate
a degree of trust with every input reported to T-CDASH.

This paper discusses the design of the trust framework
and experiments performed with it to evaluate its impact on
social harm predictions. The paper also describes historical
social harm data that was made available by the IMPD and
EMS and the associated pre-processing and correlation of
this data. Cross-validation of data using two techniques;
Rolling Origin (RO) and Rolling Windows (RW) [7] [8] is
performed to examine their impact on the trust framework
and predictions generated for the social harm incidents.

The rest of the paper is organized as follows: Section II
describes the architecture of the T-CDASH system. Section
IIT discusses the social harm data used in the analysis along
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Figure 1: T-CDASH System Architecture.

with pre-processing and correlation operations performed on
them. Section IV details the trust management framework of
T-CDASH. Section V presents results from several experi-
ments indicating the performance of different trust models
developed as part of the framework. The paper concludes
by providing insights gathered and possible directions for
further research.

II. T-CDASH SYSTEM ARCHITECTURE

Figure 1 depicts the system architecture of T-CDASH. It
is based on the principle of Service Oriented Architecture
(SOA). Four layers of T-CDASH include:

Presentation Layer: The Presentation Layer helps in
enhancing the User Experience by presenting social harm
information in a user friendly manner.

Middleware Layer: The Middleware Layer, consisting of
a Kafka Queuing System (KQS) [9], acts a communication
link between the Presentation and Application layers. It
helps in enhancing the fault tolerance capability of T-
CDASH.

Application Layer: The Application Layer helps in pro-
cessing social harm information. A key service that helps
in generating social harm predictions is the Hawkes Point
Process Service (HPPS). The HPPS is a self-exciting point
process that allows modeling of risks and forecasting trends
in social harm [6].

Database Layer: The Database Layer helps in storing and
retrieving social harm information. It also stores feedbacks
obtained from the police officers.

Most of the services and components in each layer are
borrowed from CDASH and described in our earlier work
[5]. Following are the additional services, highlighted in
Figure 1, in the Application Layer of T-CDASH.

Trust Service (TS). This service implements the trust
framework and helps in estimating the trust of social harm
events reported to T-CDASH. Various trust models are cre-
ated and experimented with as explained in Sections IV and
V. The TS protects T-CDASH from misleading inputs and
data recording inaccuracies during the prediction process.

Recommendation and Feedback Service (RFS). The
RFS helps in achieving two key functionalities associated
with T-CDASH. Firstly, it provides useful recommendations
of possible actions to police officers while patrolling in hot-
spot locations. Secondly, it also helps in capturing feedback
from police officers regarding the actions taken by them
while patrolling the hot-spots.

Beats Service (BS). The patrolling area under the juris-
diction of the IMPD is divided into several geographical
sections called beats. Currently, the IMPD has divided the
area of the Marion County into 78 beats. The geographic
information relating to the boundary of each beat is provided
by the IMPD. Each police officer is assigned to a beat and
BS helps in fetching boundary information of the beat.

Map-Data Service (MDS). All the social harm hot-spots,
along with beats and recommendations, are displayed on an
interactive Google map. Hot-spots are updated periodically,
currently every 8 hours to match police shifts, and these
changes must be reflected on the map. Such updates are
communicated to the users through the MDS.

III. SociAL HARM DATA AND PROCESSING

Social Harm Data. T-CDASH uses social harm data ob-
tained from two sources: Computer Aided Dispatch (CAD)
and Uniform Crime Reporting (UCR). The data is for the
year 2012-2013 and was provided by the IMPD for the
Indianapolis metropolitan area.

e« CAD: The CAD data includes social harm events re-

ported to the IMPD through 911 calls for service [10].
The incidents reported in CAD are initial assumptions
about a social harm situation. However, the actual
incident and its authenticity may not be known until
investigated by the police. Also, it is assumed that the
description provided for the incident correctly resem-
bles the actual incident but that may not be the case.
Thus, the CAD records may not be entirely trustworthy.
o UCR: Each State in the United States can have its own
schema for maintaining social harm records. For analy-
sis and maintenance, it is necessary to maintain records
with a common schema. For this, the Federal Bureau
of Investigation (FBI) collects, publishes, and archives



social harm records in a UCR repository [11]. Since
these entries are recorded post police investigations,
they can be considered highly trustworthy.

Data Pre-processing. The records from each of the above
data sources have their own schema and thus, it is necessary
to transform them in a schema that can be used with the
HPPS. Currently, T-CDASH supports hot-spot predictions
for 18 different incident types [6]. It is thus necessary to
map the CAD and UCR records to these 18 categories.

With CAD, the description field in the schema represents
the type of social harm. Therefore, the description field is
used to map the CAD records into corresponding T-CDASH
records. The mapping is achieved through pattern matching;
matching a description pattern with a particular T-CDASH
incident code. Similarly, the UCR data is transformed.
The UCR data is streamlined and hence, a direct mapping
between UCR and T-CDASH incident codes without using
any pattern matching technique is possible.

Data Correlation. In T-CDASH, a level of trust is
associated with social harm incidents while maintaining the
anonymity of the reporter. The trust is computed through
an opinion model as suggested by Jgsang in [12]. With
opinion model, the trust is based on three components: belief
(b), disbelief (d), and uncertainty (u). These components, in
turn, depend on the positive and negative evidences available
for an incident [13]. To gather these evidences, T-CDASH
considers three aspects associated with social harm.

e Location: Geo-coordinates (latitude and longitude) of
the location where the reported incident occurred.

e Day: Date (day and month) on which the reported
incident occurred.

e Incident Type: The category of the reported incident.

Based on these aspects, the live social harm incidents
are correlated with historical social harm incidents. The
historical incidents that got correlated, act as evidences for
the live incident. The idea behind correlating social harm
events is the assumption that if a large number of incidents,
similar to the reported incident (with respect to the above
aspects of the event), occurred historically, it is likely that
the reported incident can be considered trustworthy.

For computing total evidences, two aspects, location
and/or day, are considered. With location, a circular range
of 110m (or three decimal places accuracy with respect to
latitude and longitude [14]) around the reported incident is
taken into consideration. This range is chosen to allow a
small neighborhood area to be considered while gathering
evidences. All the historical social harm incidents within this
range are assumed to be contributing to the total evidences.
Similarly, historical social harm incidents that occurred
within a range of days (4 to 7 days) before or after the day
of the reported incident, in the same month from previous
years, also contributed towards the total evidences. It is

important to note that these range values are parameters to
T-CDASH and can be tuned for different situations.

For positive evidences, the type of incidents is considered.
All the incidents present as total evidences, and having the
same incident type as that of the live incident, are considered
as positive evidences for the live incident. This correlation of
live social harm incident with historical social harm records
helps in associating trust with the live incident.

IV. TRUST MANAGEMENT FRAMEWORK IN T-CDASH

Different stakeholders including IMPD, community orga-
nizations and citizens, interact with T-CDASH. As stated
earlier, to ensure that the predictions generated by T-CDASH
are trustworthy, there needs to be a trust framework in
place. The trust framework establishes trust on social harm
incidents and permits only trustworthy incidents to be
considered while generating predictions. Within the trust
framework of T-CDASH, five different trust models are
created, compared and experimented with.

Ground-truth Model. This model considers all the inputs
to be completely trustworthy and passes them to the HPPS
for generating predictions. No processing or filtering is
performed on any input. However, since everything is trusted
by the model, it does not filter out any misleading inputs.
Thus, the hot-spots generated by using this trust model may
not be acceptable or correct.

Optimistic Model. In this model, a high percentage (80%
to 95%) of user inputs are considered to be trustworthy.
The inputs that are to be trusted are chosen randomly and
passed to the HPPS for generating predictions. Remaining
inputs (5% to 20%) are ignored. Since most of the inputs
are accepted, this model too may allow many misleading
inputs to contribute towards hot-spots generation. Hence,
hot-spots generated by this model too may not be acceptable
or correct.

Pessimistic Model. This model is the opposite of the
Optimistic model. In this model, a high percentage (80%
to 95%) of user inputs are ignored. Only a small percentage
(5% to 20%) of inputs (chosen randomly) are considered
trustworthy and passed on to the HPPS for generating
predictions. Since, this model ignores most of the inputs, it
is safe to assume that it filters out all the misleading inputs
to T-CDASH. However, it may also ignore many genuine
inputs thereby negatively impacting the prediction accuracy.

Average Model. In this model, half of the inputs are
considered trustworthy while the remaining half are simply
ignored. The choice of selecting or ignoring the input for
generating predictions is random. Since, 50% of the inputs
are considered, it may perform better by considering genuine
inputs while ignoring misleading inputs. However, since
inputs are randomly chosen, the accuracy of predictions
would still be questionable.

Random Model. In this model, a set of randomly chosen
inputs are considered trustworthy and used while generating



predictions. This model may perform best in a scenario
when historical social harm data is not available to train the
HPPS. Similar to the Average model, inputs are randomly
chosen, based on a randomly generated number, and hence
the accuracy of predictions would be questionable.

Opinion-based Model. This model is based on the opin-
ion model of trust as suggested by Jgsang in [12]. As stated
earlier, Jgsang’s opinion model is based on b, d, and u which
in turn depend on the positive and negative evidences as
shown below.

positive_evidence

= 1
total_evidence + n M
d negative._evidence @)
total_evidence + n
n
3)

u =
total_evidence + n

Here, n is the number of possible outcomes. In our work,
n=2, as the incident is either trusted or it is ignored.

Any reported incident is viewed as not being either
true or false but rather on the basis of subjective belief
(b), disbelief (d) and uncertainty (u). Positive evidences
support the incident and contribute towards higher belief
while negative evidences oppose the incident and contribute
towards higher disbelief. The b, d, and u values are generated
using two methods. One method (named Random) randomly
assigns values to b, d, and u. Thus, similar to the Random
model, the accuracy of predictions generated using this
random method would be indeterminate. The other method
(named Heuristic) utilizes the correlation between live and
historical incidents as detailed in the Data Correlation sub-
section of this paper for computing b, d, and u values. Since
this Heuristic method is based on actual event attributes and
their correlations with the historical incidents, it is expected
to result in the generation of most accurate predictions.

V. EXPERIMENTS AND ANALYSES

Various trust models described in Section IV are imple-
mented and experimented with, to evaluate their accuracy. In
these experiments, real-time CAD and UCR data are used.

Before comparing the trust models, it is important to train
the HPPS. Since the UCR data is highly trustworthy, the
HPPS is trained on the 2012 UCR data. Also, real-time data
is required to test the trust models. Since the CAD data is
a real-time reporting of social harm incidents, CAD records
of 2013 are considered for evaluating the trust models.

A baseline model having accurate predictions is required
to compare the performance of trust models. Accurate pre-
dictions are generated using completely trustworthy data.
This paper considers the UCR data to be completely trust-
worthy. It is necessary to consider all the UCR records for
generating accurate hot-spots. Thus, the Ground-truth model
is chosen to be the baseline model with the UCR data. As
stated earlier, the CAD records are reported in real-time and

Table I: Performance of Optimistic,
Pessimistic, Random and Average Models

Model System  Inputs Hot-spots
Allowed (%)  Matched (%)
Optimistic RW 80 37.46
Optimistic RW 90 36.98
Optimistic RW 95 36.33
Optimistic RO 80 35.60
Optimistic RO 90 34.93
Optimistic RO 95 34.54
Pessimistic =~ RW 5 49.66
Pessimistic =~ RW 10 47.94
Pessimistic =~ RW 20 46.46
Pessimistic RO 5 49.02
Pessimistic RO 10 48.53
Pessimistic RO 20 45.14
Average RW 50 42.93
Average RO 50 39.28
Random RW Random 42.85
Random RO Random 41.62

prone to errors. Thus, they mimic the live incidents that
will be fed to T-CDASH. With this in consideration, CAD
records are fed to other models and hot-spots generated
by them are compared with the hot-spots generated by
the Ground-truth model. Multiple iterations are performed
while comparing the models. Each iteration consists of data
belonging to a particular month of 2013.

Since social harm data is a time series data, two tech-
niques, Rolling Origin (RO) and Rolling Windows (RW) [7]
[8], of time series data cross-validation are applied on the
social harm records to analyze their impact on the prediction
accuracy of trust models.

A. Experiments with Trust Framework

In our experiments, the Ground-truth model acts as a
baseline model and the accuracy of all the other models
is defined in terms of hot-spots matching percentage. The
hot-spots matching percentage is the percentage of hot-
spots, generated by a model, that match (have the same
location and incident type) with the hot-spots generated by
the Ground-truth model.

Optimistic Model. With Optimistic model, three different
percentages, 80, 90 and 95, of inputs were considered
trustworthy. On average, the matching percentage was 35.97.

Pessimistic Model. With Pessimistic model, three differ-
ent percentages, 5, 10 and 20, of inputs were considered
trustworthy. On average, the matching percentage was found
to be 48.29.

Average Model. With Average model, it is expected that
the hot-spots matching percentage will be approximately the
average of the matching percentages of the Optimistic and
Pessimistic models. On average, the matching percentage
was found to be 41.10, which is as expected.



Random Model. The Random model is non-deterministic
as it randomly considers a set of inputs to be trustworthy.
On average, the matching percentage was found to be 42.23.

These experimental results for the above models are
summarized in Table I.

Opinion-based Model. In Opinion-based model, two
methods (Random and Heuristic) are used to assign values
to b, d and u. In Random method, if the randomly generated
belief value for an incident is above a chosen threshold belief
value, the incident is considered for generating hot-spots.
Similarly, if the randomly generated disbelief value is above
a chosen threshold disbelief value, the incident is ignored.
In all other scenarios, the trust on the incident is uncertain
and it is either considered or ignored randomly. In Heuristic
method, data correlation, as described in Data Correlation
subsection of section III, is considered for assigning values
to b, d and u. Table II depicts the percentage of hot-spots
matched between the hot-spots computed by the two meth-
ods of Opinion-based model and the Ground-truth model
while considering different threshold percentages of belief
and disbelief. On an average, the matching percentage of
Random method was 40.63 and Heuristic method was 47.59.

B. Observations

Best Model. From Tables I and II, it can be seen that
the Pessimistic model (allowing 5% inputs for processing)
performs best when compared to all the other models. The
Pessimistic model is followed by the Opinion-based model
with the Heuristic method, the Average model, and lastly
the Optimistic model in that order of matching percentages.
Since the performance of the Random model and the Ran-
dom method of Opinion-based model are indeterminate, it is
not appropriate to compare them directly with other models.

One reason for such hot-spot matching behavior is due to
the fact that many incidents reported to CAD are not reported

Table II: Opinion-based Model

Method Sys-  Loc- Day? b Thres- d Thres-  Hot-spots
tem ation? hold (%) hold (%) Matched (%)
Random RwW No No 50 50 42.03
Random RO No No 50 50 39.24
Heuristic RW Yes Yes 50 50 49.47
Heuristic RW Yes No 50 50 49.59
Heuristic RW  No Yes 50 50 48.18
Heuristic RW Yes Yes 70 50 47.90
Heuristic RW Yes Yes 50 70 46.53
Heuristic  RW  Yes Yes 80 80 46.06
Heuristic RW Yes Yes 10 10 46.73
Heuristic RW Yes Yes 30 30 49.82
Heuristic RO Yes Yes 50 50 48.33
Heuristic RO Yes No 50 50 48.81
Heuristic RO No Yes 50 50 47.42
Heuristic RO Yes Yes 70 50 46.98
Heuristic RO Yes Yes 50 70 45.64
Heuristic RO Yes Yes 80 80 45.17
Heuristic RO Yes Yes 10 10 45.87
Heuristic RO Yes Yes 30 30 49.03

in the UCR in the same way. This is because the incident
may have never occurred or after investigation, it was found
that some incident other than the actual one was reported.
For example, an incident of Simple Assault is reported in
CAD. However, during the investigation, it was found that
it was a case of Homicide. Another reason is that many
incidents are investigated directly by the IMPD without ever
being reported in CAD. Thus, CAD and UCR records differ
considerably. This justifies the fact that models considering
smaller percentages of CAD data for generating hot-spots
present higher hot-spot matching accuracy.

These experiments highlight that more the number of
inputs ignored, higher is the hot-spot match percentage.
Accordingly, both the Pessimistic model and the Opinion-
based model with the Heuristic method have the highest
match percentages. However, it may not be always advisable
to ignore a large percentage of inputs. Consider a scenario
where a critical live incident is reported. Since both models
ignore most of the inputs, even multiple reports by different
users reporting a critical incident may get ignored. This may
negatively impact the predictions generated by the system.

It is also important to note that both the Pessimistic model
and the Opinion-based model with the Heuristic method
have approximately equal hot-spot matching percentages.
Since, the Opinion-based model with the Heuristic method
takes a more informed decision while considering or ignor-
ing inputs for generating predictions rather than deciding
randomly (e.g., the Pessimistic model), it is considered better
when compared to the Pessimistic model.

Seasonal Performance of Models. All the experiments
are performed on the monthly data from 2013 and then
averaged out over the entire year. The hot-spots generated
for each month are analyzed and compared. A critical
observation is that the percentage match remained close to
the average value and did not display any drastic deviations
in any month of the year. Thus, a key insight with these
experiments is that the performances of various models are
agnostic from seasonal changes that may occur in social
harms occurring in the society.

Effect of Data Cross Validation. Two cross validation
techniques for the time series data: RO and RW are used
in our experiments. The difference between the techniques
is that the RO method considers all the records while
generating predictions while the RW method eliminates the
oldest records. The result of the experiments performed with
both techniques are depicted in Tables I and II. Tashman in
[7] indicated that pruning of old records may be unnecessary
if the prediction service considers data in a weighted manner,
mitigating the influence of any data from distant past. The
HPPS service generating hot-spots in T-CDASH considers
data in a weighted manner. The experiments indicate that
the matching percentages remain almost the same no matter
which cross validation technique is used. This confirms to
the observations presented by Tashman in [7].



VI. RELATED WORK

A lot of research has been carried outexperimental in ana-
lyzing and predicting social harm. Bogomolov et al. [15] pre-
dicted crimes using mobile and demographics data. Crime
hot-spots were predicted using the Random Forest algorithm
with 70% accuracy in the metropolitan city of London.
Yu et al. [16] created a Cluster-Confidence-Rate-Boosting
(CCRBoost) algorithm for generating spatio-temporal crime
patterns by analyzing historical crime records. CCRBoost
predicted residential burglary with 80% accuracy in a north-
eastern US city. T-CDASH, however, utilizes an approach
proposed by Mohler et al. [6] that focuses on using modu-
lated Hawkes Process Model for predicting social harm.

This paper focuses on the trust aspect of social harm
events. Significant literature is available on establishing
trust in distributed systems. Furtado et al. [17] describe the
reputation-based trust management methodology in Wiki-
Crimes system. WikiCrimes, an application for reporting
live crimes, uses a reputation model [18] for generating
reputation scores for the registered users. The reputation
score increases with each genuine crime reported and it is
used by the application for associating trust with the live
reported events. However, in WikiCrimes, users are required
to register with their name and email address. Jgsang [12]
introduced an opinion model for estimating the trust of
events based on b, d, and u. Ceolin et al. [13] created a trust
algorithm for computing b, d, and u as introduced by Jgsang
in [12]. The algorithm was applied in the maritime domain
for estimating trust of messages to track ships. To maintain
user anonymity, T-CDASH utilized Jgsang’s opinion model
for estimating trust of social harm events.

VII. CONCLUSION AND FUTURE WORK

This paper presents T-CDAH along with a trust framework
and associated data mappings. The experiments indicate that
live incidents reported to T-CDASH cannot be blindly trusted
as they can mislead the system. The experimental results
also highlight that considering or ignoring incidents based
on certain heuristics can help in making better predictions.
Another key outcome is that the accuracy of various models
does not depend on the seasonal changes. CDASH system
is currently being used by the IMPD for field trials to
analyze its impact on reducing social harm. With T-CDASH,
we aim at establishing trust between various stakeholders
while achieving optimal resource allocation. This will help
in reducing social harm costs in society. Thus, it will lead
towards “Frugal and Smarter Cities”.

Future efforts will incorporate additional trust models that
consider other aspects associated with social harm such as
the number of times an incident is reported and the incident
severity while estimating an incident’s trustworthiness. Other
model comparison metrics such as Earth Movers Distance
[19] will also be incorporated for measuring the hot-spot
matching accuracy of the models. Training the HPPS with

recent UCR records and testing the trust models with inci-
dents reported in real-time while analyzing them is another
future direction. Additionally, the trust framework can be
applied in other domains such as telecommunications and
social media, to assess its usability.
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