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Abstract—Many cities using gunshot detection technology
depend on expensive systems that ultimately rely on humans
differentiating between gunshots and non-gunshots, such as
ShotSpotter. Thus, a scalable gunshot detection system that is low
in cost and high in accuracy would be advantageous for a variety
of cities across the globe, in that it would favorably promote the
delegation of tasks typically worked by humans to machines. A
repository of audio data was created from sound clips collected
from online audio databases as well as from clips recorded using
a USB microphone in residential areas and at a gun range.
One-dimensional as well as two-dimensional convolutional neural
networks were then trained on this sound data, and spectrograms
created from this sound data, to recognize gunshots. These models
were deployed to a Raspberry Pi 3 Model B+ with a short
message service modem and a USB microphone attached, using
a software pipeline to continuously analyze discrete two-second
chunks of audio and alert a set of phone numbers if a gunshot
is detected in that chunk. Testing found that a majority-rules
ensemble of our one-dimensional and two-dimensional models
fared best, with an accuracy above 99% on validation data as
well as when distinguishing gunshots from fireworks. Besides
increasing the safety standards for a city’s residents, the findings
generated by this research project expand the current state of
knowledge regarding sound-based applications of convolutional
neural networks.

Index Terms—Machine learning, neural nets, microprocessors
and microcomputers, sound and music computing, signal pro-
cessing

I. INTRODUCTION

Public safety is undoubtedly a growing concern for a num-

ber of cities worldwide. According to [1], as it stands, emer-

gency authorities are not made aware of up to 80% of gunshot

incidents that occur. As such, gunshot detection technology is

an increasingly essential field of research. Many cities utilize

companies such as ShotSpotter to identify gunshots on a large

scale by combining automated analysis of audio data in a city
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with human analysis and differentiation of gunshots and other

noises.

While this and other technologies have successfully in-

creased the percentage of reported gunshots in a city, these

systems are extremely expensive to run and maintain, and

they are not fully exempt from human biases. Thus, with

elevated local crime rates and an increased workload on law

enforcement officers, new, innovative technologies promoting

task automation and delegation have the potential to reshape

the landscape of smart city ecosystems.

One such technology that we have developed is an open-

source pipeline utilizing artificial intelligence to detect gun-

shots across a city, with an array of microcomputers. The

proper implementation of gunshot detection models to be used

on a city-wide cluster of microcomputers enables complete

automation of what previously required dedicated teams of

human operators to achieve, since these types of classification

tasks have previously been too difficult for machine learning

models to carry out independently with high levels of pre-

cision and accuracy. Furthermore, this study demonstrates the

capabilities of deployable deep learning architectures in sound

classification when providing them with substantial amounts

of diverse sound data for training.

A large amount of research [2]–[7] on the uses of con-

volutional neural networks (CNNs) in sound classification

has been conducted before, where some works [8], [9] have

compared alternative means of categorizing sounds. However,

studies in CNNs have not yet fully explored the particular

application of CNNs to gunshot detection in a city, leading

to the following questions that we hope to answer through

this study: How might machine learning models be used

to autonomously identify and alert local authorities of the

occurrence of gunfire in a city? What are the advantages

and disadvantages of designing this kind of sound detection

pipeline for microcomputers? And does training models on

professionally recorded sounds translate to their being able to



precisely classify real-world data?

II. THE DATA

A. Sources and Derivatives

We sought to answer these questions by first obtaining audio

data from multiple sources, utilizing free internet databases

such as Freesound and SoundBible. We also created our own

audio clips using a microphone connected to a Raspberry

Pi microcomputer, recording audio inside a lab, outside in

suburban areas, and at a shooting range. We additionally con-

structed a generative adversarial network (GAN) to produce

supplementary samples of gunfire and to prevent our model

from overfitting to our compiled data set.

Besides clips containing audio of actual gunshots, our data

set also consisted of a range of clips with audio of poten-

tial false positive sounds including fireworks, glass breaking,

tapping on the microphone, clapping, and doors slamming.

Lastly, we also have clips comprised solely of background

noise such as white noise, static, and general urban sounds

like dogs barking or people talking.

After acquiring a sizable amount of Waveform Audio

(WAV) files, about 14,000 in total, each file was split into

one or more two-second segments of audio. For audio clips

less than two seconds long (such as the last slice from an

audio file with a duration not evenly divisible into two-second

partitions), we chose to pad those samples with an appropriate

number of integer zeros until the sample’s duration reached

two seconds. Splitting all audio clips in such a fashion resulted

in us having more than 15,000 uniformly-sized samples with

which to train our models. The following table, Table I,

displays a categorical analysis of our data once split into two-

second clips. As seen in Table I, approximately 12% of all

audio clips we compiled contain gunshots from an assortment

of different firearms.

We then used multiple data augmentation methods in order

to increase the size of our data set as well as to mitigate

any chances our models might have to overfit to our data

set. Detailed on the right in Table II is a list of the data

augmentations we applied to each of our sound samples before

training our models. For every two-second sample, five altered

versions of said sample were created by applying each data

augmentation function once to the original audio. The sample

and its five derivatives were then added to a new cumulative

list of sound samples. This culminated in us having six times

our previous number of samples, more than 90,000 total audio

segments.

Lastly, we then divided our data into three categories -

training data, testing data, and validation data - in order to

effectively train and evaluate our Keras models while also

reducing our models’ propensities to overfit. The ratios of

data allocation we used for training data, testing data, and

validation data were 64%, 20%, and 16%, respectively. While

we experimented with weighting the samples recorded on

the device’s microphone higher than all other samples, we

ultimately chose to weight all samples evenly.

TABLE I
AUDIO SAMPLES CATEGORICAL LISTING

Class Percentage of Samples

Gun Shot 12.36

Jackhammer 4.47

Idle Engine 4.18

Siren 4.06

Fireworks 4.33

Drilling 4.02

Street Music 4.02

Dog Barking 4.02

Children Playing 4.02

Air Conditioner 4.02

Glass Breaking 2.33

Household 2.12

Car Horn 2.05

Foot Steps 0.78

Clapping 0.67

Applause 0.62

Microphone Tap 0.53

Static 0.13

Snapping 0.13

Door Slamming 0.12

Other 41.02

Fig. 1. A categorical breakdown of the types of audio data collected and
used to train our models.

TABLE II
DATA AUGMENTATIONS

Time Shift Pitch Change Speed Change

Shifts a sound sam-
ple to the left or right
by a randomly cho-
sen amount less than
50% of the length and
then fills in silence as
needed.

Changes the pitch of a
sample by a randomly
chosen factor between
70% and 130%.

Alters the playback
speed of a sample
by a randomly chosen
amount between 70%
and 130%.

Volume Change Background Noise Addition

Decreases the amplitude of a sam-
ple according to a uniformly ran-
dom variable.

Introduces random background
noise into a sample while making
sure that no gunshots are added
into a sample that does not
originally contain gunshots.

Fig. 2. The data augmentations used on all aggregated sound samples.









degree of accuracy and precision, our 1D model is able to

correctly classify a plethora of gunshot noises in the midst

of background noise and other auditory disturbances. Thus,

we decided to continue incorporating the 1D model in our

ensemble.

We also experimented with Tensorflow Lite (TFLite) con-

versions by converting each Keras model to its TFLite coun-

terpart. Converting a model to TFLite takes advantage of

quantization techniques to decrease the size of the model while

it is stored in a persistent format (.tflite) and likewise while

it is loaded into system random access memory (RAM). For

a period of testing on one of our Raspberry Pi units, each

model was loaded into system RAM from both its original

hierarchical data format (H5) file as well as its converted

TFLite counterpart file in order to compare the performances

and behaviors of the two formats.

By running our Keras models and TFLite models through

a suite of inference tests with our standardized validation set,

we found marked differences in inference time measurements.

While it takes significantly longer to load H5 models into

system RAM as opposed to models in a TFLite format,

employing the original Keras models in our pipeline did allow

us to perform predictions with the Raspberry Pi more quickly.

Nonetheless, the predictions from the Keras models and their

TFLite counterparts rarely differed, leading to extremely sim-

ilar, if not identical, metrics for the two models, as seen in the

statistics listed in Table III and Table IV. Additionally, due to

our project’s adoption of the Raspberry Pi, a microcomputer

with modest processing speeds and a relatively small amount

of accessible RAM, compressing our models into the minimal

amount of memory space, as TensorFlow Lite aims to do,

was beneficial for our purposes. Thus, we chose to utilize the

converted TFLite models in our final pipeline.

TABLE IV
TFLITE MODEL RESULTS

1D CNN 2D CNN (64) 2D CNN (128) CNN Ensemble

Accuracy 99.4% 99.4% 99.4% 99.5%
Precision 98.0% 97.1% 97.4% 97.9%
Recall 96.6% 97.6% 97.6% 98.0%
F1 Score 97.3% 97.4% 97.5% 97.9%
AUC 98.2% 98.6% 98.6% 98.9%
IoU 94.7% 94.9% 95.1% 96.0%

Fig. 11. The outcomes of a cross-evaluation technique applied to our
converted TFLite models.

In our first round of testing at a live outdoor gun range in

Indianapolis, we found that a modified version of our pipeline,

one in which an alert was triggered if either of our two 2D

models recognized a gunshot, functioned fairly competently.

Nevertheless, of the approximately 280 two-second segments

of audio that contained gunshots fired at this gun range, this

particular version of our ensemble only positively identified 35

instances of gunfire, resulting in a very high precision metric,

but a low recall score. After retraining all models on this data,

upon a second trip to the same gun range, 158 out of 342

two-second audio clips containing gunshots were positively

identified by our revised ensemble. All three models were

again retrained on this new audio data, and we were once

again successfully able to improve the recall rate of our models

when predicting on our validation data set.

Experimenting at a live gun range also gave us the oppor-

tunity to test for edge cases and the effect of distance on our

models’ predictions. During our second round of testing at

the gun range, we found that performance began to suffer

at a distance of 225 meters away from the site of gunfire,

and when stationed more than 300 meters away, our pipeline

utilizing the ensemble method with all three models was no

longer able to distinguish any true positive samples. This was

most likely due to the ensemble being subjected to both an

increased distance from the gunshots as well as a heightened

level of background noise being intercepted by the Sizheng

microphone as we moved farther away from the gun range.

Gunshot detection often suffers from a high false positive

rate, particularly with mistaking the sound of a firework as

the sound of a gun being fired. To test our TFLite models’

certainties in the particular case of distinguishing between

gunshots and fireworks, we ran inference on a collection of

data containing only clips of audio from fireworks or gunshots,

with the results of this measure displayed in Table V. As

seen in the high precision metrics for all models including

our ensemble method, our TFLite models had a very low

false positive rate and thus are effective at distinguishing

between gunshots and fireworks. Running inference on the

same data set using our Keras models resulted in nearly

identical performance metrics. We also were able to test the

performance of our pipeline and models with actual fireworks;

of 44 clips containing firework audio, our ensemble method

produced only three false positives, confirming our ensemble’s

general ability to distinguish between the two.

TABLE V
TFLITE MODEL RESULTS FOR GUNSHOTS & FIREWORKS

1D CNN 2D CNN (64) 2D CNN (128) CNN Ensemble

Accuracy 98.4% 98.8% 98.8% 99.1%
Precision 99.8% 99.6% 99.7% 99.8%
Recall 96.6% 97.6% 97.6% 98.0%
F1 Score 98.2% 98.6% 98.6% 98.9%
AUC 98.2% 98.7% 98.7% 99.0%
IoU 96.4% 97.3% 97.3% 97.9%

Fig. 12. A survey of our TFLite models’ effectiveness in distinguishing
gunshots from fireworks.

V. SIGNIFICANCE & FUTURE WORK

The findings generated by this research project add to the

current base of knowledge regarding sound-based applications

of CNNs, and also provide insight into a compelling, new

avenue of public safety measures. As stated before, while the

use of these devices may reduce the amount of jobs that require



human input, we hope that they can make gunshot detection

technology more affordable and accurate for a number of

cities, thus increasing safety standards.

Most of our research was centered on creating models that

can accurately identify gunshots, and deploying said models to

a single Raspberry Pi microcomputer. In the future, in order

to apply this new technology in a city, additional research

must be done on the integration and interaction of multiple

devices in a microcomputer array. Ideally, a feature we would

next like to implement in our pipeline would allow for a

robust localization of gunshots using a group of Raspberry Pi

units. By having three or more devices positioned in relatively

close proximity to each other, a server, by use of triangulation

or a similar method, could utilize differences in the time of

occurrence of the devices’ alerts to determine where a gunshot

might have occurred; previous research on localization of

gunshots includes [12], [13]. Furthermore, a novel approach

to localization using deep learning could be taken, in which

an artificial intelligence model uses the time and volume

differences from multiple units as input in order to predict the

location of the gunfire. As the Raspberry Pi has no internal

clock, in order to achieve the precise time measurements

needed for localization, an internal time-tracking peripheral

like the Adafruit DS3231 Precision RTC Breakout would need

to be installed for each device.

Undoubtedly, more real-world evaluation of these models

is required before officially deploying our pipeline into pro-

duction in a city. While we had the opportunity to test the

performance of our pipeline at a live gun range using different

models at varying distances away from gunfire, further testing

is needed in outdoor areas more similar to where such a unit

would realistically be deployed, such as a high-crime urban

neighborhood; gunshots in such an area will have different

distributions, as opposed the highly-concentrated bursts found

at a gun range, and will also have different echo patterns due

to the new environment. What is more, the use case outlined

for our pipeline necessitates the deployment of sensors that

are self-contained and powered by a self-sustainable energy

source, very likely solar energy. This question of how to best

architect a functional microcomputer array will need to be

explored in depth in a subsequent study.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NSF grant REU-

1659488 which provided research stipends, travel funds, and

supply money for this summer research project. Thank you

also to all faculty, staff, and personnel at Indiana University-

Purdue University Indianapolis (IUPUI) who helped coordi-

nate the 2019 Data Science Research Experience for Under-

graduates (REU). We thank Tammy Kaser and the Indianapolis

Metropolitan Police Department for hosting us at the IMPD

firearms training range. This research was also supported by

NSF grants SCC-1737585 and ATD-1737996.

REFERENCES

[1] Irvin-Erickson, Yasemin, Bing Bai, Annie Gurvis, and Edward Mohr.
”The effect of gun violence on local economies.” Washington, DC:

Urban Institute (2016).
[2] K. J. Piczak, ”Environmental sound classification with convolutional

neural networks,” 2015 IEEE 25th International Workshop on Machine

Learning for Signal Processing (MLSP), Boston, MA, 2015, pp. 1-6.
doi: 10.1109/MLSP.2015.7324337

[3] J. Salamon and J. P. Bello, ”Deep Convolutional Neural Networks and
Data Augmentation for Environmental Sound Classification,” in IEEE

Signal Processing Letters, vol. 24, no. 3, pp. 279-283, March 2017. doi:
10.1109/LSP.2017.2657381

[4] Takahashi, Naoya, Michael Gygli, Beat Pfister, and Luc Van Gool. ”Deep
convolutional neural networks and data augmentation for acoustic event
detection.” arXiv preprint arXiv:1604.07160 (2016).

[5] Lim, Hyungui, Jeongsoo Park, and Y. Han. ”Rare sound event detection
using 1D convolutional recurrent neural networks.” In Proceedings of

the Detection and Classification of Acoustic Scenes and Events 2017

Workshop (DCASE2017), pp. 80-84. 2017.
[6] K. Jaiswal and D. Kalpeshbhai Patel, ”Sound Classification Using

Convolutional Neural Networks,” 2018 IEEE International Conference

on Cloud Computing in Emerging Markets (CCEM), Bangalore, India,
2018, pp. 81-84. doi: 10.1109/CCEM.2018.00021

[7] DAmiriparian, Shahin, N. Cummins, S. Julka, and B. W. Schuller. ”Deep
convolutional recurrent neural network for rare acoustic event detection.”
In Proc. DAGA, pp. 1522-1525. 2018.

[8] Prince, Peter, Andrew Hill, Evelyn Pia Covarrubias, Patrick Doncaster,
Jake L. Snaddon, and Alex Rogers. ”Deploying acoustic detection
algorithms on low-cost, open-source acoustic sensors for environmental
monitoring.” Sensors 19, no. 3 (2019): 553.

[9] Shi, Bowen, Ming Sun, Chieh-Chi Kao, Viktor Rozgic, Spyros Mat-
soukas, and Chao Wang. ”Compression of acoustic event detection
models with low-rank matrix factorization and quantization training.”
arXiv preprint arXiv:1905.00855 (2019).

[10] Brian McFee, Vincent Lostanlen, Matt McVicar, Alexandros Metsai,
Stefan Balke, Carl Thom, Colin Raffel, Dana Lee, Kyungyun Lee, Oriol
Nieto, Jack Mason, Frank Zalkow, Dan Ellis, Eric Battenberg, , Ryuichi
Yamamoto, Rachel Bittner, Keunwoo Choi, Josh Moore, Ziyao Wei,
nullmightybofo, Pius Friesch, Fabian-Robert Stter, Daro Here, Thassilo,
Taewoon Kim, Matt Vollrath, Adam Weiss, CJ Carr, and ajweiss-dd,
librosa/librosa: 0.7.0. Zenodo, 08-Jul-2019. doi: 10.5281/zenodo.591533

[11] People.csail.mit.edu. PyAudio documentation PyAudio 0.2.9
documentation. (2016). Retrieved August 2, 2019 from
https://people.csail.mit.edu/hubert/pyaudio/docs/

[12] M. A. Khalid, M. I. K. Babar, M. H. Zafar and M. F. Zuhairi,
”Gunshot detection and localization using sensor networks,” 2013 IEEE

International Conference on Smart Instrumentation, Measurement and

Applications (ICSIMA), Kuala Lumpur, 2013, pp. 1-6. doi: 10.1109/IC-
SIMA.2013.6717917

[13] A. K. Bandi, M. Rizkalla and P. Salama, ”A novel approach for the
detection of gunshot events using sound source localization techniques,”
2012 IEEE 55th International Midwest Symposium on Circuits and

Systems (MWSCAS), Boise, ID, 2012, pp. 494-497. doi: 10.1109/MWS-
CAS.2012.6292065


