Low Cost Gunshot Detection using Deep Learning
on the Raspberry Pi

1% Alex Morehead
Computer Science, Mathematics, & Physics Department
Missouri Western State University
Saint Joseph, Missouri, USA
amorehead] @missouriwestern.edu

4™ Ryan Hosler

Computer Science Department

5% Bruce White

2" Lauren Ogden 3" Gabe Magee
Computer Science Department

Columbia University Pomona College

New York City, New York, USA Claremont, California, USA

lao2125 @columbia.edu glma2016 @pomona.edu

6" George Mohler

Computer & Info. Science Department AstroSensor.com Computer & Info. Science Department
IUPUI Santa Clara, CA, USA IUPUI
Indianapolis, Indiana, USA b@astrosensor.com Indianapolis, Indiana, USA

rjhosler@iu.edu

Abstract—Many cities using gunshot detection technology
depend on expensive systems that ultimately rely on humans
differentiating between gunshots and non-gunshots, such as
ShotSpotter. Thus, a scalable gunshot detection system that is low
in cost and high in accuracy would be advantageous for a variety
of cities across the globe, in that it would favorably promote the
delegation of tasks typically worked by humans to machines. A
repository of audio data was created from sound clips collected
from online audio databases as well as from clips recorded using
a USB microphone in residential areas and at a gun range.
One-dimensional as well as two-dimensional convolutional neural
networks were then trained on this sound data, and spectrograms
created from this sound data, to recognize gunshots. These models
were deployed to a Raspberry Pi 3 Model B+ with a short
message service modem and a USB microphone attached, using
a software pipeline to continuously analyze discrete two-second
chunks of audio and alert a set of phone numbers if a gunshot
is detected in that chunk. Testing found that a majority-rules
ensemble of our one-dimensional and two-dimensional models
fared best, with an accuracy above 99% on validation data as
well as when distinguishing gunshots from fireworks. Besides
increasing the safety standards for a city’s residents, the findings
generated by this research project expand the current state of
knowledge regarding sound-based applications of convolutional
neural networks.

Index Terms—Machine learning, neural nets, microprocessors
and microcomputers, sound and music computing, signal pro-
cessing

I. INTRODUCTION

Public safety is undoubtedly a growing concern for a num-
ber of cities worldwide. According to [1], as it stands, emer-
gency authorities are not made aware of up to 80% of gunshot
incidents that occur. As such, gunshot detection technology is
an increasingly essential field of research. Many cities utilize
companies such as ShotSpotter to identify gunshots on a large
scale by combining automated analysis of audio data in a city

We gratefully acknowledge the support of NSF grants REU-1659488, SCC-
1737585, and ATD-1737996 for funding this summer research project.

gmohler @iupui.edu

with human analysis and differentiation of gunshots and other
noises.

While this and other technologies have successfully in-
creased the percentage of reported gunshots in a city, these
systems are extremely expensive to run and maintain, and
they are not fully exempt from human biases. Thus, with
elevated local crime rates and an increased workload on law
enforcement officers, new, innovative technologies promoting
task automation and delegation have the potential to reshape
the landscape of smart city ecosystems.

One such technology that we have developed is an open-
source pipeline utilizing artificial intelligence to detect gun-
shots across a city, with an array of microcomputers. The
proper implementation of gunshot detection models to be used
on a city-wide cluster of microcomputers enables complete
automation of what previously required dedicated teams of
human operators to achieve, since these types of classification
tasks have previously been too difficult for machine learning
models to carry out independently with high levels of pre-
cision and accuracy. Furthermore, this study demonstrates the
capabilities of deployable deep learning architectures in sound
classification when providing them with substantial amounts
of diverse sound data for training.

A large amount of research [2]-[7] on the uses of con-
volutional neural networks (CNNs) in sound classification
has been conducted before, where some works [8], [9] have
compared alternative means of categorizing sounds. However,
studies in CNNs have not yet fully explored the particular
application of CNNs to gunshot detection in a city, leading
to the following questions that we hope to answer through
this study: How might machine learning models be used
to autonomously identify and alert local authorities of the
occurrence of gunfire in a city? What are the advantages
and disadvantages of designing this kind of sound detection
pipeline for microcomputers? And does training models on
professionally recorded sounds translate to their being able to

precisely classify real-world data?

II. THE DATA

A. Sources and Derivatives

We sought to answer these questions by first obtaining audio
data from multiple sources, utilizing free internet databases
such as Freesound and SoundBible. We also created our own
audio clips using a microphone connected to a Raspberry
Pi microcomputer, recording audio inside a lab, outside in
suburban areas, and at a shooting range. We additionally con-
structed a generative adversarial network (GAN) to produce
supplementary samples of gunfire and to prevent our model
from overfitting to our compiled data set.

Besides clips containing audio of actual gunshots, our data
set also consisted of a range of clips with audio of poten-
tial false positive sounds including fireworks, glass breaking,
tapping on the microphone, clapping, and doors slamming.
Lastly, we also have clips comprised solely of background
noise such as white noise, static, and general urban sounds
like dogs barking or people talking.

After acquiring a sizable amount of Waveform Audio
(WAV) files, about 14,000 in total, each file was split into
one or more two-second segments of audio. For audio clips
less than two seconds long (such as the last slice from an
audio file with a duration not evenly divisible into two-second
partitions), we chose to pad those samples with an appropriate
number of integer zeros until the sample’s duration reached
two seconds. Splitting all audio clips in such a fashion resulted
in us having more than 15,000 uniformly-sized samples with
which to train our models. The following table, Table I,
displays a categorical analysis of our data once split into two-
second clips. As seen in Table I, approximately 12% of all
audio clips we compiled contain gunshots from an assortment
of different firearms.

We then used multiple data augmentation methods in order
to increase the size of our data set as well as to mitigate
any chances our models might have to overfit to our data
set. Detailed on the right in Table II is a list of the data
augmentations we applied to each of our sound samples before
training our models. For every two-second sample, five altered
versions of said sample were created by applying each data
augmentation function once to the original audio. The sample
and its five derivatives were then added to a new cumulative
list of sound samples. This culminated in us having six times
our previous number of samples, more than 90,000 total audio
segments.

Lastly, we then divided our data into three categories -
training data, testing data, and validation data - in order to
effectively train and evaluate our Keras models while also
reducing our models’ propensities to overfit. The ratios of
data allocation we used for training data, testing data, and
validation data were 64%, 20%, and 16%, respectively. While
we experimented with weighting the samples recorded on
the device’s microphone higher than all other samples, we
ultimately chose to weight all samples evenly.

TABLE 1

AUDIO SAMPLES CATEGORICAL LISTING

Class Percentage of Samples
Gun Shot 12.36
Jackhammer 4.47
Idle Engine 4.18
Siren 4.06
Fireworks 4.33
Drilling 4.02
Street Music 4.02
Dog Barking 4.02
Children Playing 4.02
Air Conditioner 4.02
Glass Breaking 2.33
Household 2.12
Car Horn 2.05
Foot Steps 0.78
Clapping 0.67
Applause 0.62
Microphone Tap 0.53
Static 0.13
Snapping 0.13
Door Slamming 0.12
Other 41.02

Fig. 1.

used to train our models.

TABLE 11
DATA AUGMENTATIONS

A categorical breakdown of the types of audio data collected and

Time Shift

Pitch

Change

Speed Change

Shifts a sound sam-
ple to the left or right
by a randomly cho-
sen amount less than
50% of the length and
then fills in silence as
needed.

Changes the pitch of a
sample by a randomly
chosen factor between
70% and 130%.

Alters the playback
speed of a sample
by a randomly chosen
amount between 70%
and 130%.

Volume Change

Background Noise Addition

Decreases the amplitude of a sam-
ple according to a uniformly ran-

dom variable.

Introduces
noise into a sample while making

random background

sure that no gunshots are added

into a

sample

that does not

originally contain gunshots.

Fig. 2. The data augmentations used on all aggregated sound samples.

III. METHODOLOGY
A. CNNs

Convolutional Neural Networks, or CNNs, are a neural
network architecture designed to locate, model, and accurately
predict patterns present in input data such as colored images or
video. They are able to do so by iteratively sliding over small
regions of input data and mapping any inherent properties in
a region over to a proceeding layer in the network through the
use of filters. Filters, also sometimes referred to as kernels, are
matrices typically square in dimensionality that are multiplied
by square patches of input data in order to reduce any latent
features present in a patch over into a new representation.
This process of mapping the features of incoming data into a
different feature space is repeated up until the output layer of
the network, that produces probability values corresponding to
the possible output classes that the input data may belong.

44100 E

dense+softmax

flatten+dense dense

64 64

~

Conv3(16)

el
32 32
Conv2(16)

~

16

Conv1(16)

Fig. 3. An illustration of the architecture used by our 1D CNN.

Our one-dimensional (ID) CNN (architecture displayed in
Fig. 3) was constructed with an input layer, four hidden layers,
two fully-connected layers, and finally an output layer with
softmax activation. The shape of the input tensor for the 1D
CNN, (1 x 44100 x 1), corresponds to the dimensionality of a
two-second audio clip. To follow are some of the parameters
we used to train our 1D model. We used a hidden layer dropout
rate of 25%, a 50% dropout rate for two fully-connected layers
and a flattened layer, an initial learning rate of 0.1%, and a
convolution window size of 16 units. We also used a batch
size of 32 units and chose Adam as our optimizer function for
its alacrity and efficiency during training. Moreover, as with
all our models, we set the learning rate to reduce by a factor
of 0.6 during plateaus in the learning phase.

Much like our 1D CNN, our two-dimensional (2D) CNNs
(Fig. 4 and Fig. 5) were constructed with an input layer,
four hidden layers, two fully-connected layers, and finally a
softmax activation output layer. Our two 2D CNNs each took
in different sized spectrograms of the data; thus the shape of
the input tensor for our first 2D CNN was (1 x 128 x 64 x 1),
while the input shape for our second 2D CNN was (1 x 128 x
128 x 1). For our two-dimensional models, we used many of

& v
<

2
&

1
’ E dense+softmax
1

flattentdense dense

2 a2
Conv2(4x4)

16
Convi(1x1)

Fig. 4. A visualization of the architecture used by our 128 x 64 2D CNN.

the same parameters as used for the 1D model; we again used
a hidden layer dropout rate of 25%, a fully-connected layer
drop rate of 50%, an initial learning rate of 0.1%, but we now
chose to use a 2D convolution window size of (4 x 4) units.
Once again, we used a batch size of 32 units and chose Adam
as our optimizer function.

flatten+dense dense

6 64

Conv3(4x1)

@ B

Conv2(4x4)

T
Convi (4x1)

Fig. 5. A representation of the architecture used by our 128 x 128 2D CNN.

B. Spectrograms

While audio data can be represented as a time series of
frequency values, it can also be represented visually as a
spectrogram. Spectrograms are visual representations of the
frequency and amplitude of sound over a specified span of
time, and are constructed from an array of frequencies. In a
spectrogram, the entry for each specific frequency-time Carte-
sian coordinate is an amplitude value. As there are numerous
ways to interpret audio data, all with their own benefits and
drawbacks, we created our three models as discussed above,
each uniquely interpreting sound data in one of three formats:
a 1D architecture that convolves on sound represented as a
time series of frequency values; a 2D architecture that analyzes
sound depicted as spectrograms with a length of 64 units; and a

2D architecture that takes input as spectrograms with a length
of 128 units.

To acquire these spectrogram representations of our sound
samples, we opted to use Librosa [10], an open-source Python
library known for its convenience and versatility in audio
analysis and manipulation. Librosa allowed us to pass our
samples to a function that would then compute the appropriate
Fourier transforms needed to compose a valid spectrogram.
The following figures are graphical plots of the kinds of
spectrograms we created using Librosa and then input into
our models, with the first plot (Fig. 6) exhibiting the kind of
wavelength patterns indicative of gunfire, and the second plot
(Fig. 7) demonstrating the frequency and amplitude distribu-
tions of audio from a firework, a sound commonly mistaken
for that of a gunshot.

Fig. 6. An image of a spectrogram derived from a gunshot sound sample.

Fig. 7. An example of a spectrogram derived from a fireworks sound sample.

C. Training

As already alluded to, multiple CNNs were trained on
our compiled data set, attained as described in the preceding

section. While more descriptive labels for sounds other than
gunshots could have been made available to our models for
training (see Fig. 1 for an itemization of all available labels
and their frequency in our data set), we chose to organize
all non-gunshot audio clips into a single category, “other”, in
order to accommodate binary classification with our models.
This resulted in a breakdown of 12.36% gunshot samples and
87.64% “other” samples.

While no intensive sound preprocessing was requisite to
train our 1D model, for our 2D models, each input sample was
preprocessed to form a spectrogram before training. All three
models were trained for 100 epochs or until the target metric
for a training session did not improve for fifteen consecutive
epochs. For our model architectures, the target metric being
optimized for during training was validation accuracy. Other
metrics like area under curve (AUC) and intersection over
union (IoU) were also recorded and monitored during training
and validation sessions, however they were not the primary
objective statistics concerning the optimizer.

D. Hardware

Our short message service (SMS) pipeline for detecting gun-
shots was deployed on a Raspberry Pi 3 Model B+ connected
to an AT&T USBConnect Lightning Quickstart SMS modem
as well as a Sizheng omnidirectional USB microphone. In
the interest of stability and software support for the advanced
RISC machine (ARM) processor used by the Raspberry Pi, the
operating system we set up for the device is Raspbian Stretch.
While we originally hoped to deploy to an Arduino Uno or
a comparable microcontroller, we chose to use a Raspberry
Pi instead due to easier integration of Tensorflow and Keras
on the Raspberry Pi as compared to the Arduino ecosystem,
as well as the Raspberry Pi’s increased computing power and
memory storage.

Fig. 8. A picture of our proposed Raspberry Pi hardware configuration.

We also experimented with a variety of USB microphones,
including a Tanbin Super Mini USB Microphone and a Cyber

Acoustics CVL-1084 USB Desktop Microphone. We ulti-
mately chose to employ the Sizheng USB microphone because
of its improved audio quality and range, and still low cost rel-
ative to both the Tanbin microphone and the Cyber Acoustics
microphone. The combined cost of purchasing all hardware
necessary to run our software is approximately $150 USD,
making it a cost-friendly unit and a much more affordable
alternative to contemporary gunshot detection systems like
ShotSpotter, which can annually run up to $90,000 USD per
square mile of coverage.

E. Deployment

Each model was then deployed to the hardware described
above. Our pipeline, orchestrated with Python, operates with
three concurrent threads: one to continuously capture audio
received from an attached microphone and put two seconds
worth of said audio onto an audio analysis queue; one to
analyze sound samples retrieved from the audio analysis queue
and verify whether or not a gunshot occurred in a given
sample; and finally one to dispatch an SMS alert message
to a predetermined list of phone numbers if a gunshot was
detected in the segment of audio most recently analyzed. Fig.
8 depicts the interaction and the flow of information between
these threads in our pipeline.

Raspbian Stretch, a Linux distribution designed specifically
for the Raspberry Pi, was chosen as the base operating system
for our pipeline. However, as a result of diminished support
for later versions of Python 3 in Raspbian Stretch, we chose
to use Python 3.5 for the entirety of our project, including all
project dependencies, as opposed to using what is currently
the latest Python version, Python 3.7. This decision was made
because the only official software repositories available in
Raspbian Stretch do not at present house the updated packages
necessary to run a newer version of Python 3 on the Raspberry
Pi 3 Model B+. Similarly, because of the ARM architecture
with which the Raspberry Pi 3 is equipped, update releases
for Python libraries in Raspbian are quite behind their x86
architecture counterparts.

Besides having to use an older version of Python for
development of the pipeline, we also needed to find and
implement a reputable Python library for interfacing with
the USB microphone connected to the Raspberry Pi. By
virtue of its stability, wealth of features, and total possible
configurations, the library we chose to use for this task was
PyAudio [11]. Using this library, the data received from
attached microphones is a stream of 32-bit float values. This
data type works well with our models since the samples they
were trained on are of the same type and format.

IV. RESULTS

We found that all three of our Keras models performed well
when forming predictions on our validation data set. This data
set was intentionally separated from the rest of the training
and testing data sets before training began. The best model
configuration for achieving high validation metrics, as shown
in Table III, was found to be an ensemble of all three models

Callback
Thread
Audio Analysis - Audio Analysis
Queue Thread
"Gunshot Detected" "Other”
SMS Alert o SMS Alert
Queue Thread
GUNSHOT
GUNSHOT DETECTED
DETECTED
GUNSHOT
/ / DETECTED
-

Fig. 9. A high-level overview of our gunshot detection pipeline.

using a majority-rules algorithm, in which an SMS alert is
sent out if at least two of the three models positively identify
the sound of a gunshot.

TABLE 11
KERAS MODEL RESULTS

1D CNN 2D CNN (64) 2D CNN (128) CNN Ensemble
Accuracy 99.4% 99.4% 99.4% 99.5%
Precision 98.0% 97.1% 97.4% 97.9%
Recall 96.6% 97.6% 97.6% 98.0%
F1 Score 97.3% 97.4% 97.5% 97.9%
AUC 98.2% 98.6% 98.6% 98.9%
IoU 94.7% 94.9% 95.1% 96.0%

Fig. 10. The findings of a cross-evaluation technique applied to our original
Keras models.

As presented in Table III, the 2D spectrogram models
generally fared better than the 1D time series model in terms
of recall, F1 score, AUC, and IoU. However, with a high

degree of accuracy and precision, our 1D model is able to
correctly classify a plethora of gunshot noises in the midst
of background noise and other auditory disturbances. Thus,
we decided to continue incorporating the 1D model in our
ensemble.

We also experimented with Tensorflow Lite (TFLite) con-
versions by converting each Keras model to its TFLite coun-
terpart. Converting a model to TFLite takes advantage of
quantization techniques to decrease the size of the model while
it is stored in a persistent format (.tflite) and likewise while
it is loaded into system random access memory (RAM). For
a period of testing on one of our Raspberry Pi units, each
model was loaded into system RAM from both its original
hierarchical data format (HS5) file as well as its converted
TFLite counterpart file in order to compare the performances
and behaviors of the two formats.

By running our Keras models and TFLite models through
a suite of inference tests with our standardized validation set,
we found marked differences in inference time measurements.
While it takes significantly longer to load HS5 models into
system RAM as opposed to models in a TFLite format,
employing the original Keras models in our pipeline did allow
us to perform predictions with the Raspberry Pi more quickly.
Nonetheless, the predictions from the Keras models and their
TFLite counterparts rarely differed, leading to extremely sim-
ilar, if not identical, metrics for the two models, as seen in the
statistics listed in Table III and Table IV. Additionally, due to
our project’s adoption of the Raspberry Pi, a microcomputer
with modest processing speeds and a relatively small amount
of accessible RAM, compressing our models into the minimal
amount of memory space, as TensorFlow Lite aims to do,
was beneficial for our purposes. Thus, we chose to utilize the
converted TFLite models in our final pipeline.

TABLE IV
TFLITE MODEL RESULTS

1D CNN 2D CNN (64) 2D CNN (128) CNN Ensemble
Accuracy 99.4% 99.4% 99.4% 99.5%
Precision 98.0% 97.1% 97.4% 97.9%
Recall 96.6% 97.6% 97.6% 98.0%
F1 Score 97.3% 97.4% 97.5% 97.9%
AUC 98.2% 98.6% 98.6% 98.9%
IoU 94.7% 94.9% 95.1% 96.0%
Fig. 11. The outcomes of a cross-evaluation technique applied to our

converted TFLite models.

In our first round of testing at a live outdoor gun range in
Indianapolis, we found that a modified version of our pipeline,
one in which an alert was triggered if either of our two 2D
models recognized a gunshot, functioned fairly competently.
Nevertheless, of the approximately 280 two-second segments
of audio that contained gunshots fired at this gun range, this
particular version of our ensemble only positively identified 35
instances of gunfire, resulting in a very high precision metric,
but a low recall score. After retraining all models on this data,

upon a second trip to the same gun range, 158 out of 342
two-second audio clips containing gunshots were positively
identified by our revised ensemble. All three models were
again retrained on this new audio data, and we were once
again successfully able to improve the recall rate of our models
when predicting on our validation data set.

Experimenting at a live gun range also gave us the oppor-
tunity to test for edge cases and the effect of distance on our
models’ predictions. During our second round of testing at
the gun range, we found that performance began to suffer
at a distance of 225 meters away from the site of gunfire,
and when stationed more than 300 meters away, our pipeline
utilizing the ensemble method with all three models was no
longer able to distinguish any true positive samples. This was
most likely due to the ensemble being subjected to both an
increased distance from the gunshots as well as a heightened
level of background noise being intercepted by the Sizheng
microphone as we moved farther away from the gun range.

Gunshot detection often suffers from a high false positive
rate, particularly with mistaking the sound of a firework as
the sound of a gun being fired. To test our TFLite models’
certainties in the particular case of distinguishing between
gunshots and fireworks, we ran inference on a collection of
data containing only clips of audio from fireworks or gunshots,
with the results of this measure displayed in Table V. As
seen in the high precision metrics for all models including
our ensemble method, our TFLite models had a very low
false positive rate and thus are effective at distinguishing
between gunshots and fireworks. Running inference on the
same data set using our Keras models resulted in nearly
identical performance metrics. We also were able to test the
performance of our pipeline and models with actual fireworks;
of 44 clips containing firework audio, our ensemble method
produced only three false positives, confirming our ensemble’s
general ability to distinguish between the two.

TABLE V
TFLITE MODEL RESULTS FOR GUNSHOTS & FIREWORKS

1D CNN 2D CNN (64) 2D CNN (128) CNN Ensemble
Accuracy 98.4% 98.8% 98.8% 99.1%
Precision 99.8% 99.6% 99.7% 99.8%
Recall 96.6% 97.6% 97.6% 98.0%
F1 Score 98.2% 98.6% 98.6% 98.9%
AUC 98.2% 98.7% 98.7% 99.0%
IoU 96.4% 97.3% 97.3% 97.9%

Fig. 12. A survey of our TFLite models’ effectiveness in distinguishing
gunshots from fireworks.

V. SIGNIFICANCE & FUTURE WORK

The findings generated by this research project add to the
current base of knowledge regarding sound-based applications
of CNNs, and also provide insight into a compelling, new
avenue of public safety measures. As stated before, while the
use of these devices may reduce the amount of jobs that require

human input, we hope that they can make gunshot detection
technology more affordable and accurate for a number of
cities, thus increasing safety standards.

Most of our research was centered on creating models that
can accurately identify gunshots, and deploying said models to
a single Raspberry Pi microcomputer. In the future, in order
to apply this new technology in a city, additional research
must be done on the integration and interaction of multiple
devices in a microcomputer array. Ideally, a feature we would
next like to implement in our pipeline would allow for a
robust localization of gunshots using a group of Raspberry Pi
units. By having three or more devices positioned in relatively
close proximity to each other, a server, by use of triangulation
or a similar method, could utilize differences in the time of
occurrence of the devices’ alerts to determine where a gunshot
might have occurred; previous research on localization of
gunshots includes [12], [13]. Furthermore, a novel approach
to localization using deep learning could be taken, in which
an artificial intelligence model uses the time and volume
differences from multiple units as input in order to predict the
location of the gunfire. As the Raspberry Pi has no internal
clock, in order to achieve the precise time measurements
needed for localization, an internal time-tracking peripheral
like the Adafruit DS3231 Precision RTC Breakout would need
to be installed for each device.

Undoubtedly, more real-world evaluation of these models
is required before officially deploying our pipeline into pro-
duction in a city. While we had the opportunity to test the
performance of our pipeline at a live gun range using different
models at varying distances away from gunfire, further testing
is needed in outdoor areas more similar to where such a unit
would realistically be deployed, such as a high-crime urban
neighborhood; gunshots in such an area will have different
distributions, as opposed the highly-concentrated bursts found
at a gun range, and will also have different echo patterns due
to the new environment. What is more, the use case outlined
for our pipeline necessitates the deployment of sensors that
are self-contained and powered by a self-sustainable energy
source, very likely solar energy. This question of how to best
architect a functional microcomputer array will need to be
explored in depth in a subsequent study.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NSF grant REU-
1659488 which provided research stipends, travel funds, and
supply money for this summer research project. Thank you
also to all faculty, staff, and personnel at Indiana University-
Purdue University Indianapolis (IUPUI) who helped coordi-
nate the 2019 Data Science Research Experience for Under-
graduates (REU). We thank Tammy Kaser and the Indianapolis
Metropolitan Police Department for hosting us at the IMPD
firearms training range. This research was also supported by
NSF grants SCC-1737585 and ATD-1737996.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

REFERENCES

Irvin-Erickson, Yasemin, Bing Bai, Annie Gurvis, and Edward Mohr.
"The effect of gun violence on local economies.” Washington, DC:
Urban Institute (2016).

K. J. Piczak, “Environmental sound classification with convolutional
neural networks,” 2015 IEEE 25th International Workshop on Machine
Learning for Signal Processing (MLSP), Boston, MA, 2015, pp. 1-6.
doi: 10.1109/MLSP.2015.7324337

J. Salamon and J. P. Bello, "Deep Convolutional Neural Networks and
Data Augmentation for Environmental Sound Classification,” in /EEE
Signal Processing Letters, vol. 24, no. 3, pp. 279-283, March 2017. doi:
10.1109/LSP.2017.2657381

Takahashi, Naoya, Michael Gygli, Beat Pfister, and Luc Van Gool. “Deep
convolutional neural networks and data augmentation for acoustic event
detection.” arXiv preprint arXiv:1604.07160 (2016).

Lim, Hyungui, Jeongsoo Park, and Y. Han. "Rare sound event detection
using 1D convolutional recurrent neural networks.” In Proceedings of
the Detection and Classification of Acoustic Scenes and Events 2017
Workshop (DCASE2017), pp. 80-84. 2017.

K. Jaiswal and D. Kalpeshbhai Patel, ”Sound Classification Using
Convolutional Neural Networks,” 2018 IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM), Bangalore, India,
2018, pp. 81-84. doi: 10.1109/CCEM.2018.00021

DAnmiriparian, Shahin, N. Cummins, S. Julka, and B. W. Schuller. "Deep
convolutional recurrent neural network for rare acoustic event detection.”
In Proc. DAGA, pp. 1522-1525. 2018.

Prince, Peter, Andrew Hill, Evelyn Pia Covarrubias, Patrick Doncaster,
Jake L. Snaddon, and Alex Rogers. “Deploying acoustic detection
algorithms on low-cost, open-source acoustic sensors for environmental
monitoring.” Sensors 19, no. 3 (2019): 553.

Shi, Bowen, Ming Sun, Chieh-Chi Kao, Viktor Rozgic, Spyros Mat-
soukas, and Chao Wang. “Compression of acoustic event detection
models with low-rank matrix factorization and quantization training.”
arXiv preprint arXiv:1905.00855 (2019).

Brian McFee, Vincent Lostanlen, Matt McVicar, Alexandros Metsai,
Stefan Balke, Carl Thom, Colin Raffel, Dana Lee, Kyungyun Lee, Oriol
Nieto, Jack Mason, Frank Zalkow, Dan Ellis, Eric Battenberg, , Ryuichi
Yamamoto, Rachel Bittner, Keunwoo Choi, Josh Moore, Ziyao Wei,
nullmightybofo, Pius Friesch, Fabian-Robert Stter, Daro Here, Thassilo,
Taewoon Kim, Matt Vollrath, Adam Weiss, CJ Carr, and ajweiss-dd,
librosa/librosa: 0.7.0. Zenodo, 08-Jul-2019. doi: 10.5281/zenodo.591533
People.csail.mit.edu. PyAudio documentation PyAudio 0.2.9
documentation. (2016). Retrieved August 2, 2019 from
https://people.csail.mit.edu/hubert/pyaudio/docs/

M. A. Khalid, M. 1. K. Babar, M. H. Zafar and M. F. Zubhairi,
”Gunshot detection and localization using sensor networks,” 2013 IEEE
International Conference on Smart Instrumentation, Measurement and
Applications (ICSIMA), Kuala Lumpur, 2013, pp. 1-6. doi: 10.1109/IC-
SIMA.2013.6717917

A. K. Bandi, M. Rizkalla and P. Salama, "A novel approach for the
detection of gunshot events using sound source localization techniques,”
2012 IEEE 55th International Midwest Symposium on Circuits and
Systems (MWSCAS), Boise, ID, 2012, pp. 494-497. doi: 10.1109/MWS-
CAS.2012.6292065

