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Detecting anomalous activity in human mobility data has a number of applications including road hazard sensing, telematics based
insurance, and fraud detection in taxi services and ride sharing. In this paper we address two challenges that arise in the study of
anomalous human trajectories: 1) a lack of ground truth data on what defines an anomaly and 2) the dependence of existing methods
on significant pre-processing and feature engineering. While generative adversarial networks seem like a natural fit for addressing
these challenges, we find that existing GAN based anomaly detection algorithms perform poorly due to their inability to handle
multimodal patterns. For this purpose we introduce an infinite Gaussian mixture model coupled with (bi-directional) generative
adversarial networks, IGMM-GAN, that is able to generate synthetic, yet realistic, human mobility data and simultaneously facilitates
multimodal anomaly detection. Through the estimation of a generative probability density on the space of human trajectories, we
are able to generate realistic synthetic datasets that can be used to benchmark existing anomaly detection methods. The estimated
multimodal density also allows for a natural definition of outlier that we use for detecting anomalous trajectories. We illustrate our

methodology and its improvement over existing GAN anomaly detection on several human mobility datasets, along with MNIST.
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1 INTRODUCTION

Human mobility data has become widely available through the proliferation of sensing devices and motivates a variety
of machine learning tasks. One area of research focuses on activity detection and classification [Shoaib et al. 2015],
where GPS or other sensor time series are used to classify trajectories (e.g. walking vs. biking). While in activity

detection an exhaustive set of classes is known, the related task of anomaly detection in mobility data [Zhang et al.
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2011] involves discovering samples that may belong to a new class or are outliers in the dataset. Finding anomalies in
GPS trajectory data has a wide range of applications including determining anomalous traffic patterns [Pan et al. 2013],
finding taxi drivers who commit fraud [Chen et al. 2013a], and driver finger printing and hidden driver detection in
usage based insurance [Enev et al. 2016; Ramaiah et al. 2016].

In the majority of activity and anomaly detection studies, significant pre-processing and feature engineering are
used prior to classification or trajectory similarity comparisons. While end-to-end deep learning has been recently
applied to activity recognition [Ramaiah et al. 2016], to our knowledge no work to date has applied deep learning
to anomaly detection in human mobility data. Furthermore, unlike activity recognition where ground-truth data is
available, anomaly definition is often vague and subjective. With no ground truth datasets available, it is difficult to
compare benchmark models available for detecting anomalies in trajectory and other sensor data.

To overcome these challenges, we propose using Generative Adversarial Networks (GAN) [Goodfellow et al. 2014]
that can simultaneously generate realistic trajectory data as well as detect anomalies. In Figure 1, we provide an
overview of our coupled IGMM-GAN model. We use a Bidirectional GAN (BiGAN) that learns an encoder in addition to
a generator neural network for transforming trajectory data into a latent space where outliers may be detected. While
BiGAN is the basis of our model, it only provides an embedding (but no anomaly score). Furthermore, previous BiGAN
based anomaly detection methods [Schlegl et al. 2017; Zenati et al. 2018] have trouble detecting unseen classes when
data is multi-modal, as we will show in our experiments section. For example, a unimodal model will have trouble
detecting a hand written three digit when trained on sevens and eights, because the anomalous three is closer to
an eight than an eight is to a seven [Gray et al. 2018]. While in our past work [Gray et al. 2018] we developed the
IGMM-GAN framework for detecting anomalous images, here we show how this methodology can be adapted for
generative modeling and anomaly detection in time-series data, with the specific application of mobility modeling in
mind. For this purpose we propose a novel BiIGAN model that can generate and encode both GPS routes and speed
profiles simultaneously.

Unlike these previous methods, we use an Infinite Gaussian Mixture Model IGMM) to detect anomalies in the latent
space through a Mahalanobis distance based scoring. We will show in the following sections that coupling BiIGAN with
IGMM achieves much improved anomaly scores. Our contribution in this paper is two-fold: 1) we show how GANs can
be applied to mobility data to generate realistic vehicle trajectories and velocity profiles and 2) we show how GAN
based anomaly detection can be improved using IGMM. The IGMM component is important because it can handle
multiple modes and covariance structures in the latent space, while simultaneously estimating the number of clusters.

The outline of the rest of the paper is as follows. In Section 2, we review related work on anomaly detection in
trajectory data and generative adversarial networks. In Section 3, we provide details on the IGMM-GAN model. In
Section 4, we present experimental results applying our model to MNIST and several human trajectory datasets. We
compare Area Under the Curve (AUC) scores of the IGMM-GAN against several recently proposed GAN based anomaly
detection algorithms and also provide a qualitative analysis of the generated synthetic trajectories and anomalies of the

IGMM-GAN.

2 RELATED WORK

In this section we review previous literature on methods of detecting anomalies in GPS data and the use of GANs for

synthetic data generation, embedding, and anomaly detection.
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Fig. 1. The IGMM-GAN architecture. The generator network learns to transform Gaussian samples into synthetic trips, while the

Lg = ||lx — GEEW))Il>

discriminator network learns to distinguish real from fake trips. Simultaneously, the encoder network learns the inverse mapping of
the generator for trip embedding in the latent space. Finally, a multimodal Mahalanobis distance metric from the IGMM is used to
detect outliers in unseen test data.

discriminator, classifies samples as real or fake
generator, maps Gaussian vector z to fake sample x
encodeer, maps real sample x to latex space variable z
(z) mahalanobis distance of a new sample to IGMM clusters
Ui mean of IGMM cluster i
i covariance matrix of cluster i

ogoHOJY

Table 1. Variable definitions and descriptions for IGMM-GAN.

2.1 GPS Anomalies

Previous studies on anomaly detection in GPS trajectory data have focused both on the detection of city-wide traffic
events and determining abnormal driving patterns on the level of an individual driver. On the more global level,
[Donovan and Work 2015] used GPS data from New York City cab drivers to determine what effect natural disasters
and other large scale disruptions had on the driving times in the city. In their work, traffic levels between regions are
determined through the analysis of origin/destination pairs for taxi trips, allowing extrapolations to be made as to the
traffic levels of the city as a whole. Combining GPS data and Twitter data, [Pan et al. 2013] were able to identify both
the presence of increased traffic and its possible causes, such as accidents or weather. To find traffic anomalies, they
analyzed road networks and driver trajectories as part of a graph, looking for time periods and routes where activity
deviated from historical patterns. [Pang et al. 2013] also check for deviations in historical patterns, but instead use
statistical spatio-temporal models of the number of taxis in a given region. Anomalies are found simply by looking for
data points that are considered outliers within the statistical model of each region.

At the individual level, [Zhang et al. 2011] developed the Isolation Based Anomalous Trajectory (iBAT) detection
method, which compares a driver’s single trajectory to other trajectories with the same origin and destination. Dividing
the space into a grid, iBAT calculates an anomaly score based on the similarity of the new route, in terms of the number
of matching grid spaces. The related Isolation Based Anomalous Online Trajectory (iBOAT) detection method [Chen
et al. 2013b], that consists of examining sub-trajectories through the lens of an adaptive working window, is able to
complete similar calculations in real time and with more specificity, identifying precisely which part of a trajectory
is anomalous. These two methods are able to detect not only increases in traffic, but also instances of fraud, where
taxi drivers would deliberately take their passengers on longer routes in order to increase their earnings. [Bu et al.
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2009] monitor for anomalies over continuous data streams as well, but instead use Euclidean distance to compare the
trajectory under analysis to past and future trajectories. Much of their work focuses on using local clustering and other
methods of optimization to complete these comparisons efficiently. Our goal in this paper is to develop an alternative,
end-to-end learning framework, that does not require pre-processing trips on to grids or costly trip similarity scores.

Instead, trips will be embedded in a Euclidiean space where a multimodal Mahalanobis distance is used to flag outliers.

2.2 GANs for synthetic data generation, embedding and anomaly detection

There have been several recent applications of GANSs to synthetic data generation. [Molano-Mazon et al. 2018] applied
GAN:S to generate and analyze data on the activity patterns of neurons, with the goal of creating data exhibiting the
same statistics as the real data. To mitigate imbalanced data, [Salehinejad et al. 2017] used GANs to generate synthetic
chest x-ray images. The synthetic data augmented samples of rare conditions and training with the generated data was
shown to improve classifiers designed to identify these rare conditions.

[Gupta et al. 2018] generated movement trajectories based on socially acceptable behavior. These behaviors included
passing and meeting people while walking and included elements such as speed and direction. GANs were then used
to predict possible trajectories given a past trajectory. Latent representations of the trajectories were also used to
determine direction and speed.

The closest past work on human mobility and deep data generation to ours is [Alzantot et al. 2017], in which a
GAN-like architecture was used to generate synthetic acceleration data. Long-Short-Term-Memory networks coupled
with mixture density networks were used to generate the acceleration time-series. However, the authors did not use a
complete GAN architecture, in particular they did not use a discriminator to help train the generator and did not use an
encoder for latent representations. The paper also focused solely on acceleration data, not GPS trajectories. In [Ouyang
et al. 2018], the authors use GAN to generate synthetic mobility data on grids that preserve aggregate and individual
statistics, but the goal is not anomaly detection and velocity profiles were not used. In [Gao et al. 2019], the authors use
recurrent neural networks to embed trip data for the purpose of modeling the transitional distribution of points of
interest and in [Zhou et al. 2019], a trajectory linking GAN is introduced to link trips together from the same user.

Several recent studies [Schlegl et al. 2017; Zenati et al. 2018] have successfully applied GANSs for the purpose of
anomaly detection making use of Bidirectional GAN (BiGAN) [Donahue et al. 2016]. These methods have fared favorably
in anomaly detection compared to other deep embedding methods such as variational auto-encoders. However, we
have found the existing GAN based anomaly detection methods (GANomaly and Efficient GAN Anomaly Detection) to
have difficulties when the data is multimodal.

Several other recent studies have also made efforts at addressing this difficulty. [Ben-Yosef and Weinshall 2018] took
the approach of modelling GANs from a Gaussian Mixture distribution as opposed to as single Gaussian, in order to
better reflect the multiple classes of data that were being learned. This allowed them to generate a higher quality and
more diverse set of synthetic images, and to specify the trade-off between quality and diversity. [Mukherjee et al. 2018]
also improved on Vanilla GAN’s representation of multimodal data by sampling from a more representative distribution
for their synthetic data generation. By "sampling from a prior that consists of normal random variables cascaded with
one-hot encoded vectors," they were able to better recover a smaller dimensional representation of various image data,
and found that unsupervised clustering could be more effectively deployed here. While these papers both take a similar
approach to our paper of being more cognizant of the multimodal nature of the data and taking advantage of the latent
distribution, neither paper specifically applies their findings to anomalies or to human mobility data, as we will do in

the following sections.
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3 METHODOLOGY

In this section we provide background on generative adversarial networks and infinite Gaussian mixture models and

then provide an overview of our proposed methodology.

3.1 GANs

GAN:S, first proposed in [Goodfellow et al. 2014], consist of a generator (G) network and a discriminator (D) network:
the two follow the below minimax game, where the generator tries to minimize the log(1 — D(G(z))) term and the

discriminator tries to maximize the log(D(x)) term.

log D(x)]

mgx mci;n V(D,G) = EX"‘Pdata(x)[

+Ezp,(2)llog(1 = D(G(2)))]

The discriminator network improves the loss when it classifies a sample x correctly and D(x) is the probability that
x is real rather than generated data. Meanwhile, the generator network maps Gaussian noise z into synthetic data
samples G(z) (e.g. image or GPS trajectory). The generator attempts to minimize the discriminator loss by generating a

fake sample G(z) such that the discriminator labels the sample as real (hence the 1 — D(G(z)) term).

3.2 BiGANs

Bidirectional GAN:S, first proposed by [Donahue et al. 2016], include an encoder (E) that learns the inverse of the
generator. While the generator will learn a mapping from the latent dimension to data, the encoder will learn a mapping
from data to the latent dimension. The discriminator then must classify pairs of the form (G(z), z) or (x, E(x)) as real or

synthetic, where z is noise from a standard distribution and x is real data.

max minV(D,G,E) =
D G,E

EXNPdata(X) [EZNPE(' |X) [log D(x’ Z)]]
+B,p,(2) [ Ex~po (-2 [l0g(1 = D(x, 2))]]

3.3 Anomaly Detection with BiGANs

As first proposed in the work by [Schlegl et al. 2017], and further developed by [Zenati et al. 2018], variants of GANs
that also learn an inverse of the generator can be used to detect anomalous data. Specifically, after training a generator,
discriminator, and encoder, an anomaly score can be calculated for each data sample, where a higher score indicates
greater likelihood of belonging to the anomalous class. In the current state-of-the-art GAN based anomaly detection
[Zenati et al. 2018], a combination of a reconstruction loss Lg and discriminator-based loss Lp is used to determine the
anomaly score,

A(x) = aLg(x) + (1 - a)Lp(x), (1)
where the reconstruction loss is given by Lg(x) = ||x — G(E(x))|| and the discriminator loss is given by the cross-entropy,
Lp(x) = o(D(x, E(x)), 1). We refer to this algorithm as EGBAD (Efficient GAN based anomaly detection) and in [Zenati
et al. 2018] the method is shown to outperform a variety of deep unsupervised models including anogan, variational
auto-encoders, and deep auto-encoder GMM.
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One main drawback of GAN based anomaly detection such as EGBAD and GANomaly is that their anomaly detection
metric disregards the multimodal nature of the datasets (as we will show experimentally in the next section). Since real-
world human mobility data contains many classes, drivers or pedestrians, with different characteristics and (assumption
of) encoder from BIGAN preserves the clustering information in latent space, a single Gaussian model would be a very
restrictive assumption for the data in latent space. Thus we relaxed this single Gaussian assumption by allowing the
samples (z’ = E(x)) in latent space to be sampled from a mixture of Gaussians, in particular IGMM. This in turn led
the model capturing multiple modes with different Gaussian components and narrowing down the open space risk
by dividing the entire space by these clusters (components). Thus the gap between normal and anomalous samples is
further enlarged resulting remarkable detection performance boost. Outliers can then be detected using a Mahalanobis
distance for the anomaly score. In particular, for a new data point x, z’ = E(x) in latent space, the Mahalanobis distance

to cluster i (with mean y; and covariance X;)) is given by,

Diy(e) =\ — p) 57 (2"~ i) @)
The anomaly score of sample x is then given by the minimum distance, D(x) = min; Djw(z' ). As we will show

in the next section, this Mahalanobis based anomaly score produces improved anomaly detection results over the

cross-entropy loss in Equation 1.

3.4 Extending BiGAN for mobility data

Our model architecture is based on that of the BIGAN in [Donahue et al. 2016] and [Zenati et al. 2018] used for anomaly
detection in image datasets. However, the architecture for the model needs to be customized for mobility time-series
datasets and we detail our novel approach below.

The architecture for the model is given in Table 2. The encoder consists of an input layer taking in a 4 X N time series
of latitude, longitude, latitude velocity and longitude velocity (or an N X N image in the case of MNIST). For the mobility
data we used time series of trip segments of length N = 32. Whereas the encoder consists of several convolution and
dense layers, the generator makes use of convolution transpose layers to facilitate learning of the inverse of the encoder.
The 2D convolution layers in the model are each followed by batch normalization and "Leaky ReLu" activation. The
discriminator is slightly more complex, beginning as two separate models, one composed similarly to the encoder which
takes the real and generated data as input, and one containing dense layers which takes the latent representation as

input. These two networks are then concatenated, ending in two final dense layers and a sigmoid activation.

Furthermore, combining the ideas from [Akcay et al. 2018] and [Donahue et al. 2016], we add onto the existing
architecture a reconstruction loss term, taking into account the ability of the encoder and generator to reproduce a real
image. This loss term helps ensure that not only can the generator’s images fool the discriminator, but also that the

encoder and generator function as closely as possible to inverses of one another. This loss is defined as:
Lg = [lx = G(E(x))]l2
We use an Adam optimizer [Kingma and Ba 2014] with a learning rate of Ir = 1¢™> and f§ = 0.5. These parameters are

sufficient for the generator and discriminator loss for our model to converge, similarly to the other models.
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Layer Units BN Activation Kernel
E(x)

Dense 768 ReLU

Convolution 32 V' RelU 3x2
Convolution 64 V' RelLU 3%x2
Convolution 128 V' RelLU 3x2
Dense 100

G(z2)

Conv. Transpose 128 V' ReLU 3Xx2
Conv. Transpose 64 V' RelU 3x2
Conv. Transpose 32 3x2
Dense 1 Linear

D(x)

Convolution 64 Leaky ReLU 3 x 2
Convolution 64 v LeakyReLU 3x1
D(z)

Dense 512 Leaky ReLU
Concatenate

D(x, z)

Dense 1 Leaky ReLU

Table 2. The architecture for our model, layer by layer. Units refer to number of filters in the case of convolution layers, and BN is
Batch Normalization abbreviated.

3.5 Infinite Gaussian Mixture Model

Because our goal is end-to-end learning for anomaly detection, we use an infinite Gaussian mixture model (IGMM)
[Rasmussen 1999] to automatically learn the number of clusters as well as the cluster means and covariances (y;, ;) in
the latent space for the anomaly score defined by Equation 2.

IGMM [Rasmussen 1999] is a Dirichlet Process Mixture Model in which the number of components can grow
arbitrarily as data allows, hence the name Infinite Gaussian Mixture Model. IGMM assumes each cluster is modeled by a
single Gaussian component and the base Dirichlet distribution serves as a prior for the parameters of these components
(cluster mean p and cluster covariance X). As the name Gaussian mixture suggests, the bi-variate prior, H, involves a
Gaussian prior over mean vectors and Inverse-Wishart over covariance matrices. More precisely H can be written as

follows,
H = N(ulpo, Zoxg YW (2|0, m) €)

where 19 is the mean of Gaussian prior, kg is scaling constant that adjusts the dispersion of cluster center and parameter
m dictates the expected shapes of clusters. Note that Normal and Inverse-Wishart distributions are conjugate, thus the
posterior predictive distribution can be analytically derived, in the form of a multivariate Student-t distribution, by
integrating out the component parameters {y;, 2;}. For inference we utilize Collapsed Gibbs Sampling [Rasmussen

1999] due to the conjugacy between the model (Gaussian) and the prior (NIW). The generative model is illustrated in (4)
zi ~ NQilpi, Zi)
{pi,ziy ~ G
G ~ DP(aH) 4)
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where H is defined by Equation (3), z; is the data point from cluster i and « is the concentration parameter of the
Dirichlet process.

We provide an overview of our entire modeling process in Algorithm 1.

Algorithm 1: Coupled IGMM-GAN anomaly detection

Input: Training data Dy,

Output: Anomaly score of each test sample

# Transforming raw trips into structured data points in latent space

1. Train Bidirectional GAN from Figure 1 on Dy, to learn encoder E

2. Calculate z = E(x) for each sample x € Dy, to represent training trips in the latent space

# Deriving class sufficient statistics of the training data from IGMM clusters

3. Run IGMM on these points in the latent space, z’s, to cluster the training data: assume IGMM finds K clusters
4. Calculate sample mean y; and and covariance X; for each i € {1,2,...,K}

# Anomaly score calculation

5. For a test sample x” € Dy calculate z = E(x”) to get the latent dimension representation

6. Calculate Mahalanobis distance between z’ and clusters from IGMM, Dk(z’ ), forallie1,2,..,K (Eq. 2)

7. Finally anomaly score of test sample x” is the min of these distances: Dps(x”) = min; Dalf(z' )

4 EXPERIMENTAL RESULTS

In this section we describe our datasets in sub-section 4.1, the architecture of our model in sub-section 4.2, the

hyper-parameters of our model in sub-section 4.3, and then the results of our experiments in subsections 4.4 to 4.7.

4.1 Datasets

In this section we run several experiments in order to compare our IGMM-GAN to several benchmark GAN based
anomaly detection algorithms, as well as to evaluate the ability of GANSs to generate realistic GPS trajectory data. Our

experiments are run on the following datasets.

4.1.1 Geolife GPS Trajectories. The Geolife GPS trajectory dataset [Zheng et al. 2008, 2010, 2009], consists of data
collected from 180 users going about their daily routine movements. The data consisted of time-series in the form
of latitude, longitude, and velocity sampled every few seconds from each user. A subset of the trajectory data had
information on the mode of transportation, and for our experiments we used only those trajectories that could be
confirmed as “car”. To create each data point, or "route", we took a sliding window of the data, with no overlap, so each
route had the measured location of 24 consecutive measurements. This method of data segmentation is used in other
similar studies of sequential data, such as [Ramaiah et al. 2016]. As in other GAN based anomaly detection studies, we
use a held-out class (specific human subject) during training to define an anomalous class in testing (and then evaluate

over different choices of the subject held out).

4.1.2  San Francisco Cabspotting. Similar to Geolife, the SF Cabspotting data set consists of GPS trajectories from
different cab drivers in San Francisco [Piorkowski et al. 2009]. This data consisted of latitudes, longitudes, and times,
which were then expanded to include latitude, longitude, latitudinal velocity, and longitudinal velocity. Each route was
constructed with a sliding window, same as the Geolife data. Additionally, since the cab data had many trips that were
not possible (speeds too fast for a normal vehicle, or locations that were not possible, such as the middle of the ocean),
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these points were removed before training the model. Anomalous routes were found by training on a subset and finding

the top anomaly scores.

4.1.3 MNIST. Previous GAN based anomaly detection studies have used MNIST (a dataset of handwritten numbers)
[LeCun et al. 2010] for bench-marking competing methods. Anomalies are defined by leaving out a digit from training
and assessing the AUC (or other classification metric) of the anomaly score on a test data set which includes the held-out
digit.

& Generator ®  Generator
. . ® Generator 1 © Diermingter » Discriminator
@ Discriminator

0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
Epochs Epochs Epochs

Fig. 2. Generator and discriminator loss by epoch for MNIST, digit 9 (Order: Ganomaly, EGBAD, Our Method)

4.2 Hyper-parameter tuning for IGMM

The hyper-parameters of IGMM are coarsely tuned to maximize the clustering macro-f1 score. As the data is not well
balanced, macro-f1 was chosen to suppress the dominance of large classes. IGMM has 4 hyper-parameters, {xo, m, 1o, 2o }
to be tuned. To simplify the tuning process, the prior mean, i, is set to the mean of data and we set £ to an identity
matrix scaled by a parameter s. This left us with 3 parameters, {k¢, m, s} to tune. Parameter ranges and best triples are
illustrated in Table 3. The number of sweeps in the inference is fixed at 500, with 300 used for the burn-in period. Label

samples are collected in every 50 iteration after burn-in and aligned by the Hungarian method to render final cluster
labels.

[HP [ Range | [HP | MNIST | Geolife |
Ko 0.01;0.1;1;10; 100 Ko 0.1 0.1
m d + 10;d + 15;d + 20; 5d; 10d; 100d m d+20 d+15
s 1;3;5;7;9 s 7 5
(a) Parameter ranges used in tuning (b) Best triples from tuning

Table 3. Ranges for tuning and best triples used in experiments. HP stands for hyper-parameters

We restricted created clusters to ones with more than 50 points as IGMM may generate artificial small clusters to fit

in distribution.

4.3 Determining Anomaly Scores

Anomaly scores were determined by using IGMM on the encoded training data to determine the cluster means and
covariance matrices. From there, an anomaly score was determined by the Mahalanobis distance to the nearest cluster.
Figure 3 shows an example TSNE visualization [Maaten and Hinton 2008] of the GeoLife data in latent space colored by
the anomaly scores. In this case, the driver that was not included in the training data is a clear outlying cluster reflected
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Fig. 3. TSNE visualization of the latent dimension with anomaly scores from Geolife data

by the anomaly scores. In the Geolife experimental section below we provide a detailed analysis of the performance of

IGMM-GAN for detecting hidden drivers against several benchmark models.

L 1 L 1 L L L L é Removed Number

—— GANomaly
Efficient GAN Anomaly Detection —— Our Method

Fig. 4. ROC AUC scores with MNIST data

4.4 Improving MNIST Benchmarks with IGMM

Following the approach of [Zenati et al. 2018], we start by designating one digit as an anomalous class and remove
it from the training dataset. For the remaining data we perform an 80/20 split into training and test sets and train
the models for 40,000 epochs (where each epoch involves training on a random batch of 128 images). We repeat this
process for each digit and for each anomaly detection method, scoring each method on its ROC AUC score. In Figure
4 we display the AUC scores of IGMM-GAN against GANomaly and EGBAD for each digit held out of testing. The
IGMM-GAN significantly improves the AUC scores for the majority of digits held out, especially for digits 1 and 7. We
note that for the uni-modal methods the AUC score is below 0.5 when the hand-written digit “1” class is held-out as the
outlier. The overall variation in the latent space (as measured by the spectral radius of the covariance matrix) of the
combined 1 & 7 class is actually smaller than the variation of several of the other single classes (for example 3, 6 and 8).
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(a) Real and generated cab spotting routes. (b) Real and generated cab spotting speed profiles.

Fig. 5. In both figures, column 1 represents real values and columns 2-11 display 10 closest generated values (by Euclidean distance in
the latent dimension).

So in this case it is possible for the AUC to go below .5. This is an example where a multi-modal outlier score is much

preferred to a uni-modal score.

4.5 San Francisco Cabspotting Experiment

4.5.1 Generating Routes. We first examine the IGMM-GAN’s ability to generate realistic synthetic trajectories. Note that
the routes were created using a generator trained on both latitude and longitude as well as latitudinal and longitudinal
velocity. Including the velocities gave slightly better results, as the sampling interval in the data was not uniform, hence
with the added velocities, the generator could infer the time step.

We display 10 example real trajectories (Figure 5a) and speed profiles (Figure 5b) in the left most column of each
grid along with the 10 closest trajectories and speed profiles (closest in latent space) to each real route. The generated
trajectory data in Figure 5a matches the real data both upon visual inspection and in terms of convergence of the
discriminator and generator loss. Qualitatively, both the synthetic and real routes, for latitude and longitude, are
characterized by long stretches of straight lines or slight curves followed by segments of turns and short paths, as
seen in Figure 5a. The velocities in the generated routes also follow a natural pattern of increase and decrease, as seen
in Figure 5b. The generated velocities also follow general traffic patterns with longer distances between points often

having higher velocity and slower velocities often being placed near the center of the city.

4.5.2 Finding Anomalous Routes. Because the cabspotting data consists of taxi drivers in San Francisco, who all drive
similar routes all over the city, driver detection is more difficult with this dataset than with the geolife data analyzed
in the next section. Therefore we used the latter for the quantitative analysis of anomalies. However, we are able to
perform a qualitative analysis of the anomalous trips in the cabspotting data.
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(a) Route with an unnecessary detour. (b) Route with an unusual high speed in an urban area.

Fig. 6. Anomalous routes from Cabspotting dataset. The red line in figure (b) represents the route with speed over 60 mph.

Using the IGMM-GAN method, we assigned an anomaly score to each route in the cabspotting dataset. The first
category of anomalous routes were those with GPS noise: in the dataset certain trips contain inaccurate points where
the coordinates may have noise on the order of miles. Using both latitude, longitude and the respective velocities, these
routes gave the highest anomaly scores. We therefore removed these trips prior to training our model. With the GPS
noise trajectories removed, different types of anomalies emerged. The anomalies found were generally in two categories,
anomalies in the route taken and anomalies in velocity.

Figure 6a is an example of the route anomaly. Note that in the bottom right corner the taxi takes a detour from the
usual route. Other anomalies in the route taken included routes that had a large number of turns or ones that were
right next to major roads, but did not use them.

In Figure 6b, the red part shows where the speed, instead of a normal speed for the area, was much higher (closer to
highway speeds). Anomalies in the velocity generally were either speeds that were too fast for the area, such as in the
image above, or speeds that were too slow for the area, such as driving below 30mph on a highway. Sometimes velocity
anomalies were those where the acceleration suddenly changed and one segment would be slow and the next much

faster. Thus the IGMM-GAN is able to detect not only uncommon routes, but also abnormal driver behaviors with the
same model (using an end-to-end learning framework).

4.6 Geolife Hidden Driver Experiment

Our next experiment, with the GeoLife data, focuses on distinguishing the emergence of a new driver not contained
in the training dataset. Here a similar method to the MNIST experiment was followed: one driver was defined as an
anomaly and left out of training data, then included in the testing data as a separate class. In Figure 7, we compare the
three methods from before on each of nine held out drivers. Here we see that GANomaly and EGBAD perform better

on some drivers and worse on others compared to each other. However, IGMM-GAN is consistently at least as accurate
as both methods and in 6 cases it shows the best AUC scores.
5 CONCLUSION

We have made three main contributions in this paper:
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e We improved GAN based anomaly detection through the introduction of the multimodal IGMM-GAN.

o We showed that GAN can be successfully applied to generating synthetic human trajectories. Synthetic data sets
of this type will be useful as ground truth to benchmark existing anomaly detection methods for human mobility
and can also aid in data augmentation.

o We showed that the IGMM-GAN can find route-based anomalies, anomalous driver behavior, and detect hidden

drivers.

We believe that the IGMM-GAN will serve as a complimentary tool to existing algorithms for anomaly detection
in human mobility data that require spatial grids and feature engineering. Our method may also find application to
anomaly detection in other domains where the data is multimodal.

In the present study there are also several limitations that may be the focus of future research. Here we focused on
anomaly detection with respect to entire and individual trips. However, there are situations where anomaly detection
may be desired on the fly within a trip. For example, to detect that a car is stolen, a sequentially updating model of how
likely a car is driven by it’s owner would be desirable. Also, anomalies may not only be specific to a particular vehicle,
but could reflect hazards or changes to the environment or road network. Adapting the IGMM-GAN framework to

detect these types of anomalies will be the focus of future research.
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