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The coronavirus disease 2019 (COVID-19) pandemic has placed
epidemic modeling at the forefront of worldwide public policy
making. Nonetheless, modeling and forecasting the spread of
COVID-19 remains a challenge. Here, we detail three regional-
scale models for forecasting and assessing the course of the
pandemic. This work demonstrates the utility of parsimonious
models for early-time data and provides an accessible framework
for generating policy-relevant insights into its course. We show
how these models can be connected to each other and to time
series data for a particular region. Capable of measuring and
forecasting the impacts of social distancing, these models high-
light the dangers of relaxing nonpharmaceutical public health
interventions in the absence of a vaccine or antiviral therapies.

COVID-19 | pandemic | branching process | compartmental models

he world is in the midst of an ongoing pandemic, caused by

the emergence of a novel coronavirus. Pharmaceutical inter-
ventions such as vaccination and antiviral drugs are not currently
available. Over the next year, addressing the coronavirus dis-
ease 2019 (COVID-19) outbreak will depend critically on the
successful implementation of public health measures including
social distancing, shelter in place orders, disease surveillance,
contact tracing, isolation, and quarantine (1, 2). On 16 March,
Imperial College London released a report (3) predicting dire
consequences if the United States and the United Kingdom did
not swiftly take action against the pandemic. In both nations,
governments responded by implementing more stringent social
distancing regulations (4). We now have substantially more case
data from the United States, as well as the benefit of analyses
performed by scientists and researchers across the world (5-12).
Nonetheless, modeling and forecasting the spread of COVID-19
remain a challenge.

Here, we present three basic models of disease transmis-
sion that can be fit to data emerging from local and national
governments. While the Imperial College study employed an
agent-based method (one that simulates individuals getting sick
and recovering through contacts with other individuals in the
population), we present three macroscopic models: 1) expo-
nential growth, 2) self-exciting branching process, and 3) the
susceptible—infected-resistant (SIR) compartment model. These
models have been chosen for their simplicity, minimal number
of parameters, and for their ability to describe regional-scale
aspects of the pandemic. In presenting these models, we demon-
strate how they are connected and note that in different cases
one model may fit better than another. Because these models
are parsimonious, they are particularly well suited to isolating
key features of the pandemic and to developing policy-relevant
insights. We order them according to their usefulness at different
stages of the pandemic—exponential growth for the initial stage,
a self-exciting branching process when one is still analyzing indi-
vidual count data going into the development of the pandemic,
and a macroscopic mean-field model going into the peak of the
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disease. The branching process can also track changes over time
in the dynamic reproductive number.

These models highlight the significance of fully implemented
and sustained social distancing measures. Put in place at an early
stage, distancing measures that reduce the virus’s reproduction
number—the expected number of individuals who an infected
person will spread the disease to—may allow much-needed time
for the development of pharmaceutical interventions. By slow-
ing the speed of transmission, such measures may also reduce
the strain on health care systems and allow for higher-quality
treatment for those who become infected. Importantly, the eco-
nomic consequences of such measures may lead political leaders
to consider relaxing them. The models presented here, however,
demonstrate that relaxing these measures in the absence of phar-
maceutical interventions may allow the pandemic to reemerge.
Where this takes place, social distancing efforts that appear
to have succeeded in the short term will have little impact on
the total number of infections expected over the course of the
pandemic.

The epidemiological perspective on modeling infectious
disease spread involves consideration of a larger number of
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modeling parameters detailing the spread of and recovery from
the disease, additional compartments corresponding to age cat-
egories, and other related choices (e.g., refs. 3 and 13). A
data-driven approach to modeling COVID-19 has also emerged,
in which statistical and machine learning models are used for
forecasting cases, hospitalizations, deaths, and impacts of social
distancing (14, 15). Our work demonstrates the utility of parsi-
monious epidemic models for understanding the pandemic and
provides an accessible framework for a larger group of quantita-
tive scientists to follow and forecast the COVID-19 pandemic. It
includes explanations that will help allow scientific researchers
to develop insights that may contribute to public health pol-
icy making, including contributing to public health forecasting
teams. Importantly, the branching process model that we detail
is relatively new and underutilized in epidemiology. It provides a
method for quantitatively estimating dynamic reproduction num-
bers, which can be critical in assessing the impact of distancing
measures over time. The results from the parsimonious models
presented here are consistent with recent analyses from public
health officials in California (16) and with the original Imperial
College model (3).

We present examples of forecasts for viral transmission in the
United States. Where other studies have typically developed and
presented one model (choosing to fit parameters within the cho-
sen model), our analysis compares three different forecasting
models using a fitting criterion. The results of these models dif-
fer depending on whether the data employed cover confirmed
cases or mortality. In addition, many aspects of disease spread,
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such as incubation periods, fraction of asymptomatic but conta-
gious individuals, seasonal effects, and the time between severe
illness and death, are not considered here. In some cases (e.g.,
seasonal), relevant data do not exist, and in other cases (e.g., age
of patients), we choose not to include additional parameters in
favor of parsimony.

Results

A. Exponential Growth. Epidemics naturally exhibit exponential
behavior in the early stages of an outbreak, when the number
of infections is already substantial but recoveries and deaths are
still negligible. If at a given time ¢ there are (¢) infected individ-
uals and « is the rate constant at which they infect others, then
at early times (neglecting recovered individuals), I(t) = Ipe®".
The time it takes to double the number of cumulative infections
(doubling time) is a common measure of how fast the contagion
spreads: if we start with I infections, then at time Ty =In2/«a
we achieve 27 infections. For the COVID-19 outbreak, exponen-
tial growth is seen in data from multiple countries (Fig. 1), with
remarkably similar doubling times in the early stages of the epi-
demic. For COVID-19, we expect an exponential growth phase
during the first 15 to 20 d of the outbreak in the absence of
public health interventions such as social distancing, isolation,
or quarantine. This estimate is based on patient data from the
Wuhan outbreak, which indicate that the average time from ill-
ness onset to death or discharge is between 17 and 21 d for
hospitalized patients (20, 21). Because deaths are a fraction of
infections, they initially increase at a similar exponential pace,

Reported cumulative deaths/million

600
& 500 c
= k=]
£ =
% 400 E
S 2
S 300 g
S hi
200 ¢ ©

100

0 == ——=
5 10 15 20 2 4 6 8 10 12 14
First 20 days since reported i >2 First 15 days since reported d >0.2
S.Korea —e— ltaly —— Germany —e— France Spain —— UK us
—e—Japan e Tq,i=3.6 oo Tq,i=3.4 e Tq,i=3.9 Tq,i=3.3 - Tq,i=3.2 Ta,=3.8
Ta,e=2.5 Ta,a=3.2 Ta,a=2.7 Ta,a=2.5 Ta,a=3 Ta,a=3

Feb 15 Mar 01

W

/_/
\\/\\ *CA

Mar 15 Apr 01

Fig. 1. (Upper) Exponential model applied to new infection and death data for Italy, Germany, France, Spain, the United Kingdom, and the United States,
normalized by the total country population (54). Insets show the same data on a logarithmic scale. Both the normalized infection i and death d data were
thresholded to comparable initial conditions for each country; fits are to the first 15 to 20 d of the epidemic after exceeding the threshold. The fitted
doubling time is shown for both infections (T,;) and death (T, 4) data. Data from Japan and South Korea are shown for comparison. (Lower) Dynamic
reproduction number (mean and 95% Cl) of COVID-19 for China, Italy, and the United States estimated from reported deaths (17) using a nonparametric
branching process (18). Current estimates are as of 1 April 2020 of the reproduction number in New York (NY), California (CA), and Indiana (IN; confirmed
cases used instead of mortality for Indiana). Reproduction numbers of COVID-19 vary in different studies and regions of the world (in addition to over time)
but have generally been found to be between 1.5 and 6 (19) prior to social distancing.
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with some delay relative to the beginning of the outbreak. These
observed doubling time estimates (2 to 4 d) are significantly
smaller than early estimates (~7 d) obtained using data collected
in Wuhan (22).

B. Self-Exciting Branching Process. A branching point process (23—
25) can also model the rate of infections over time. Point process
models are data driven and allow for parametric or nonpara-
metric estimation of the reproduction number and transmission
timescale. They also facilitate estimation of the probability of
extinction at early stages of an epidemic. These models have
been used for various social interactions including spread of
Ebola (26), retaliatory gang crimes (27), and email traffic (28,
29). The intensity (rate) of infections can be modeled as

At =p+ > Rt)w(t—t), [1]

i<t

where ¢ is the current time and ¢; are the times of previous infec-
tion incidents. Here, the dimensionless reproduction number,
R(t), evolves in time (18, 30-33) to reflect changes in disease
reproduction in response to public health interventions (e.g.,
school closings, social distancing, closures of nonessential busi-
nesses, isolation, and quarantine). The distribution of interevent
times w(t; —¢;) is a gamma or Weibull distribution (11, 33,
34) with shape parameter & and scale parameter b. Finally, the
parameter p allows for exogenous infection cases. The point pro-
cess in Eq. 1 is an approximation to the common SIR model of
infectious diseases (described later) during the initial phase of an
epidemic when the total number of infections is small compared
with the overall population size (35).
Given Eq. 1, the quantity

pij = R(G)w(t; — )/ A(t) [2]

gives the probability of secondary infection 7 having been caused
by primary infection j. The dynamic reproduction number R(t)
can then be estimated via expectation—-maximization (18) using a
histogram estimator:

R(t)=>_ rl{te L}. [3]

k=1

Here, I;; are intervals discretizing time, and B is the number of
such intervals. The reproduction number, 73, in each interval & is
determined by

me= Y pil{t € I}/ N, [4]

ti >t

where Ny, is the total number of events in interval k.

Fig. 1, Lower shows the estimated dynamic reproduction num-
ber (36, 37) of COVID-19 in China, Italy, and the United States
during the early stage of the pandemic, from late January 2020
to early April 2020. The branching point process is fit to mortal-
ity data (17) using an expectation—-maximization algorithm (18).
Public health measures undertaken in China appear to have
reduced R(t) to below the self-sustaining level of R =1 by the
middle of February. In Italy, public health measures brought the
local value of R(¢) down; as of early April, however, it remained
above R = 1. The estimated reproduction number in the United
States as a whole stood at around 2.5. The reproduction number,
however, varies notably by location.

This model can be adapted to capture the long-term evo-
lution of the pandemic by incorporating a prefactor that
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accounts for the dynamic decrease in the number of susceptible
individuals (35):

N0 = (1 L(O)/N) (u+ S R(Lw(t — 1)) 5]

<t

Here, I.(t) is the cumulative number of infections that have
occurred up to time ¢, and N is the total population size. This
version of the branching process model, referred to as HawkesN,
represents a stochastic version of the SIR model; with large R,
the results of HawkesN are essentially deterministic. When pro-
jecting, we use our estimated R (¢;) at the last known point for all
times going forward. Since the N, term is the number of infec-
tions, if our estimates for R(¢;) are based on mortality numbers,
we must also choose a mortality rate to interpolate between the
two counts; although existing estimated rates vary significantly,
we choose 1% as a plausible baseline (38) (discussion in Materi-
als and Methods). Alternatively, we also create forecasts for three
US states based on fits to reported case data (Table 1).

C. Compartmental Models. The SIR model (40-42) describes a
classic “compartmental” model with SIR population groups. A
related model, susceptible-exposed—infected-resistant (SEIR),
includes an “exposed” compartment that models a delay between
exposure and infectiousness. The SEIR model was shown to fit
historical death record data from the 1918 influenza epidemic
(43), during which governments implemented extensive social
distancing measures, including bans on public events, school clo-
sures, and quarantine and isolation measures. The SIR model
can be fit to the predictions made in ref. 3 for agent-based simula-
tions of the United States. The SIR model assumes a population
of size N where S is the total number of susceptible individuals,
I is the number of infected individuals, and R is the number of
resistant individuals. For simplicity of modeling, we view deaths
as a subset of resistant individuals, and deaths can be estimated
from the dynamics of R; this is reasonable for a disease with
a relatively small death rate. We also assume a timescale short
enough such that humans’ natural resistance to the disease does
not introduce new susceptible people after recovery.
The SIR model equations are

as 1S 1
el _Bﬁ’ el

dt dt

IS

=2 NI, Si=~I. 6
By 7 T [6]
Here, § is the transmission rate constant, +y is the recovery rate
constant, and Ro = 3/~ is the reproduction number. One inte-
grates Eq. 6 forward in time from initial values of S, I, and R at

time 0. The SEIR model includes an exposed category E:

ds IS dFE IS
T A L
dl dR
E—aEfWI, %—7

Here, a is the inverse of the average incubation time. Both
models are fit, using maximum likelihood estimation with a Pois-
son likelihood, to data for three US states (California, New
York, and Indiana) (17). Table 1 compares the results with
the branching process. We use the relative likelihood based
upon the Akaike Information Criterion (AIC) (39) to mea-
sure model performance for each dataset; AIC is biased against
models with more parameters. The SEIR model performs bet-
ter on the confirmed data for California and Indiana, possibly
due to the larger amount of data, compared with mortality
for which SIR is the best for all three states. The branching
process performs best for confirmed cases in New York. Our
choice of fitting follows the method in ref. 43 for the 1918 pan-
demic death data. Our focus is on model comparison rather
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Table 1.

Model Fits to Early Time Data

Data  Model Ro v Io a Peak logL Rel. L
CA  conf. SIR 2.4 0.14 0.025 - 5/16/20 43230 0.14 %
CA conf.  SEIR 49 0.10 0.05 0.28 5/16/20 43233 1.00 W&—r—r"
CA conf. Branching 1.6 (b, k,pu) = (2.73,4.0,1.60) 5/21/20 42722  0.00 el
CA  mort. SIR 2.7 0.12 0.10 - 5/5/20 252 1.00
CA mort. SEIR 3.1 0.20 0.10 0.38 5/3/20 252 0.37
CA mort. Branching 15 (b, k,pu) = (1.73,3.31,.04)  5/8/20 242 0.00 ]
IN conf.  SIR 44 006 0005 - 5/13/20 9098 0.00 §
IN conf.  SEIR 47 0.16 0.005 0.20 5/9/20 9116 1.00 2
IN conf. Branching 2.4  (b,k,p) = (3.18,4.0,0.17)  5/1/20 8947 0.00 =
IN mort.  SIR 37 009 0005 - 4/26/20  19.95 1.00
IN mort. SEIR 4.6 0.14 0.005 0.36 4/25/20 19.96 0.37
IN mort.  Branching 2.1 (b,k, ) = (3.26,2.45,.02)  5/1/20 10.68 0.00
NY conf.  SIR 2.1 0.19 0.10 - 4/27/20 569616  0.00
NY  conf. SEIR 3.4 0.19 0.10 0.36 4/25/20 569452  0.00
NY conf. Branching 15  (b,k,u) = (1.90,4.0,3.69) 4/28/20 571203  1.00 Mar21 Mar23 Mar25 Mar27 Mar29
NY mort. SIR 41 0.10 0.005 - 4/12/20 6313 1.00 — hawkes == seir == sir
NY  mort. SEIR 5.0 0.20 0.005 0.32 4/12/20 6313 0.37 confCA - confNY - mort IN
NY  mort. Branching 25 (b k,pu) = (3.25,3.97,.04) 4/18/20 6272 0.00

mort NY

confIN - mort CA

(Left) Fit of confirmed case (conf.) or mortality (mort.) data from California (CA), Indiana (IN), and New York (NY) states to three different
models (SIR, SEIR, and branching process) using Poisson regression. The table shows the log likelihood and the relative likelihood exp((AICp,in —
AIC) = 2) based on the Akaike information criteria (AIC) (39). The blue lettering corresponds to the lowest AIC value. The branching process
parameters include a Weibull shape k and scale b for w(t), along with the exogenous rate u. The table also shows parameters from the fit and
the projected date for the peak in new cases for each of these datasets; the projected peak date for the branching process is made using the
HawkesN model. For each state, we run the fit on both confirmed case data and mortality data, taken from ref. 17. (Right) Shown are the actual

data points compared with the fitted curves.

than measuring uncertainty of parameters in a specific model,
as is currently being done for hospital demand forecasts in Los
Angeles (16). For interval forecasts with uncertainty quantifica-
tion, one may consider a negative binomial alternative to Pois-
son regression that captures overdispersion in case and death
counts (44, 45).

We can further understand the role of parameters in our
models via a dimensionless formulation of Eq. 6. There are two
timescales dictated by 8 and . Therefore, if time is rescaled by
ytor=~tand s=S/N,i=1/N,and r= R/N represent frac-
tions of the population in each compartment, then in the case of
a novel outbreak with no initially resistant individuals, we obtain

% = *Rois,

ar_
dr "
(87 7;77~)‘T:0:(17€7670)7 [7]

di o
— =TRois — 1,
T

d

where 0 < e << 11is the initial fraction of the infected population
at the start time, and the system retains only one dimensionless
parameter Ro that, in conjunction with the initial conditions,
completely determines the resulting behavior. For Eq. 7, the
shapes of the solution curves s(7),:(7), r(r) do not depend
on e, other than exhibiting a time shift that depends logarith-
mically on e (Fig. 2). This is a universal solution for the SIR
model in the limit of small ¢ (Fig. 3), depending only on Ro.
Critically, the height of the peak in i(¢) and the total number
of resistant/susceptible people by the end of the epidemic are
determined by Ro alone. However, the sensitivity of the time
translation to the parameter € and the dependence of true time
values of the peak on parameter v make SIR challenging to fit to
data at the early stages of an epidemic when Poisson statistics and
missing information are prevalent. When using early-time death
data to fit SIR, the estimate of the percentage of deaths per total
number of infections (chosen as 1% here) has a sensitivity that
can be understood directly in terms of this shift in the time to
peak. This is important information for public health officials,

40f7 | www.pnas.org/cgi/doi/10.1073/pnas.2006520117

policy makers, and for political leaders interested in decreasing
Ro for substantial periods of time. This sensitivity to parame-
ters helps explain why projections of the outbreak can display
such large variability and highlights the need for extensive dis-
ease testing within the population to more accurately track the
epidemic curve. After the surge in infections, the model asymp-
totes to an end state in which r approaches the end value r, and
s approaches 1 — 7o, and the infected population approaches
0. The value r satisfies a well-known transcendental equation
(46-48). A phase diagram of the universal solutions for several
Ro values is shown in Fig. 2, Upper Right. The dynamics start
in the bottom right corner where s is almost 1 and follow the
colored line to terminate on the ¢ = 0 axis at the value s.. A rig-
orous derivation of the limiting state under the assumptions here
can be found in refs. 46-48.

Under the SIR (and similar) model(s), if Ro is decreased dur-
ing the middle of an outbreak, through social distancing and
other public health measures, the rate of new infections will
decrease. However, unless the number of infected individuals is
brought down to zero, the outbreak will likely reemerge, and the
total number of infections may still be a large fraction of the pop-
ulation. This is illustrated in Fig. 3, where we present scenarios of
no social distancing vs. short-term social distancing with parame-
ters from Table 1 for death data up through the end of March, fit
to the SIR model. We caution that the goal of these scenarios is
not to produce highly accurate percentages but rather, to present
scenarios under different basic assumptions that illustrate the
usefulness of social distancing measures and the potential danger
in easing them too soon.

For the New York state scenario, with Ro presumed to
decrease by a factor of two with distancing measures, the out-
break is not completely controlled by distancing, and the num-
ber of infections continues to rise to approximately 10% by
mid-April. In contrast, without distancing measures the scenario
shows four times that number of infected individuals by mid-
April, alevel that would have represented a potentially disastrous

Bertozzi et al.
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Fig. 2. Solution of the dimensionless SIR model (5) with R = 2. Upper Left shows the graphs of s (blue), i (orange), and r (gray) on the vertical axis vs. 7 on
the horizontal axis, for different c. The corresponding values of ¢ from left to right are 1074, 1075, 1078, 1077, respectively. Upper Center shows the time
until peak infections vs. log(e) for the values shown in Upper Left. This asymptotic tail to the left makes it challenging to fit data to SIR in the early stages.
Upper Right is a phase diagram for fraction of infected vs. fraction of susceptible with the direction of increasing 7 indicated by arrows, for three different

values of Rg. Lower displays a typical set of SIR solution curves over the course of an epidemic, with important quantities labeled.

strain on the hospital system. In the California scenario, distanc-
ing measures bring the effective R closer to one, thus keeping
infections at a much smaller portion of the population than the
scenario with no social distancing, at least during the period
when the distancing is still in effect. We take these scenarios
one step further by suddenly stopping distancing on 5 May (this
is both extreme and hypothetical, but it serves to illustrate the
model). Because of the low initial infected count in California,
bringing Ro back to the original predistancing level produces a
curve that follows the original peak scenario, just shifted later
in time. For New York state, because a nontrivial fraction of
the population is initially infected, there are fewer to infect,
and the new peak is less steep than the scenario without any
distancing.

Discussion

Our analysis, employing parsimonious models, illustrates several
key points. 1) The reproduction number R is highly variable
both over time and by location, and this variability is com-
pounded by distancing measures. These variations can be cal-
culated using a stochastic model, and lower R is critical to
decreasing strains on health care systems and to creating time
to develop effective vaccines and antiviral therapies. 2) Mor-
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tality data and confirmed case data have statistics that vary
by location and by time depending on testing and on accurate
accounting of deaths due to the disease. Differences in collec-
tion methods and in the accuracy of morbidity and mortality data
can lead to different projected outcomes. 3) Nonpharmaceuti-
cal public health interventions (NPIs) such as social distancing
and shelter in place orders offer an important means of reduc-
ing the virus’s reproduction number. Nonetheless, NPIs may
not have a substantial impact on the total number of infec-
tions unless sustained over time. Policy makers should be cau-
tious about scaling back distancing measures after early signs of
effectiveness.

During the 1918 influenza pandemic, the early relaxation of
social distancing measures led to a swift uptick in deaths in some
US cities (43). The models presented here help to explain why
this effect might occur, as illustrated in Fig. 3. Already, pol-
icy makers in many jurisdictions have started to implement new
social protocols that allow for increased economic activity. In
the United States, where public health authority is vested largely
in states and localities, key decisions about such measures will
be in the hands of local officials, with national agencies such
as the Centers for Disease Control and Prevention playing a
coordinating role and offering guidance (49). Nationally, policy
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Fig. 3. Scenarios for the impact of short-term social distancing: fraction of population vs. date. (Left) California SIR model based on mortality data with

parameters from Table 1 (Ro = 2.7, v = .12, [y = .1) under two scenarios: Ro constant in time (light blue) and R, cut in half from 27 March (1 wk from the
start of the California shutdown) to 5 May but then returned to its original value, to represent a short-term distancing strategy (dark blue). (Right) New
York SIR model with parameters from Table 1 (Rq =4.1, v = .1, lp = 05) under the same two scenarios but with short-term distancing occurring over the
dates of 30 March (1 wk from the start of the New York shutdown) to 5 May. In both states, the distancing measures suppress the curve and push the peak
infected date into the future, but the total number of cases is only slightly reduced.
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makers may also consider funding mechanisms and regulatory
measures that might facilitate a more unified approach to the
pandemic (50), as well as fiscal measures aimed at ameliorat-
ing the economic effects of social distancing and shelter in place
orders.

Of the models presented here, only the point process model
tracks the reproductive number changing over time (although
compartmental models can be modified to do the same).
Dynamic change in the reproductive number is the major chal-
lenge in forecasting such a pandemic. Some new approaches
to forecasting long-term trends in the COVID-19 pandemic
attempt to address this concern by fitting curves in countries
in the later stages of spread (after social distancing) and then
applying those fitted models to regions in earlier stages (15). The
long-term SIR curves in Fig. 3 are idealized counterfactuals in
the event of no social distancing, rather than forecasts of the
actual peak date and total infected. Moreover, in the absence
of distancing policies, people may still choose to distance out of
fear driven by an upswing in recent deaths, as was modeled in ref.
43 in the 1918 pandemic.

The models presented here are parsimonious, making a vari-
ety of assumptions in order to increase understanding and to
avoid overfitting the limited and incomplete data available;
more complex models have been introduced and are currently
in use (3, 13). Even with these simple models, however, the
parameters obtained from our fits (Table 1) can vary signif-
icantly for a given location. Although we have in each case
determined which of these fits appears to have most validity,
in many cases these are not strong indicators. These models
have several sources of uncertainty, including parameter uncer-
tainty, variation based on data or model type used, and most
importantly, uncertainty in the severity and length of social dis-
tancing measures, which can change the peak date by months
or even create multiple peaks. This variability in outcomes high-
lights the challenges of modeling and forecasting the course of
a pandemic during its early stages and with only limited data.
This uncertainty is a major challenge for policy makers, who
must consider the social and economic consequences of disrup-
tive public health interventions while recognizing that relaxing
them may swiftly lead to the reemergence of a devastating
disease.

Materials and Methods

Relation between the Exponential Model and Compartment Models. The expo-
nential model is appropriate during the first stages of the outbreak, when
recoveries and deaths are negligible: in this case, the SIR compartment
model can be directly reduced to an exponential model. If we assume S~ N
in Eq. 6, then dI(t)/dt = (3 — ~)I, with the exponential solution /(t) = loe®t
with a = 38 —« and [y the initial number of infections. We expect at very
early times t < 1/~ that the recovery will lag infections so one might see
a~ 3 at very early times and then reduce to a~ 3 —~ after t>1/~.
Reports and graphs disseminated by the media typically report cumulative
infections, which include recoveries and deaths. Using the SIR model, the
total cumulative infections are I.(t) = I(t) + R(t) and evolve as dl.(t)/dt = Bsl.
Integrating this, we see that /. likewise grows exponentially with the same
rate « =/ — . An important observation is that the doubling time for
cumulative infections [Ty =1In(2)/a] will change during the early times,
with a shorter doubling time when t < 1/ and a longer doubling time
whent > 1/~.
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Relation between the HawkesN and SIR Models. Following refs. 35 and 51,
first a stochastic SIR model can be defined where a counting process /.(t) =
N — 5(t) tracks the total number of infections up to time t, N is the pop-
ulation size, and 5(t) is the number of susceptible individuals. The process
satisfies

P(dC(t) = 1) = BS(BI(t)dt /N + o(dt)

P(dR(t) = 1) = ~I(t)dt + o(dt),
which then gives the rate of new infections and new recoveries as (35)

MN(6)=BSOI /N, AR (@) =~It).

It is shown in ref. 51 that the continuum limit of the counting process
approaches the solution to the SIR model in Eq. 6. Furthermore, for an
exponential kernel w(t) in the HawkesN model in Eq. 5 with parameter ~
and constant reproduction number (Ro), then E[/(t)] = A" (t) where 1 =0,
B =TRo~ (ref. 35 has further details).

Fitting the SIR, SEIR, and Branching Process Models. The parameters for SIR
and SEIR in Table 1 were found using maximum Poisson likelihood regres-
sion (as in ref. 43 for death data from the 1918 pandemic in US cities)
via grid search with ranges /o € [.005,.1], Ro € [1.5,5], v €.01,.2], and
e [.01,.4].

The branching process was fit using a nonparametric expectation max-
imization algorithm, the details of which can be found in ref. 18. Models
were fit to empirical new infections per day or new mortality counts per
day. We assumed that 1% of those labeled as resistant in the simulations
were fatal cases. For morality rates in the range of 0.3 to 3%, the peak date
changes by up to 2 wk. Data quality is an issue during the COVID-19 pan-
demic due to lack of uniform testing. Uncertainty in estimates of the total
number infected leads to uncertainty in forecasting results. The likelihood is
somewhat flat at the maximum for models in Table 1, with multiple param-
eter combinations yielding plausible fits. Fitting SIR type models is known
to be challenging due to parameter identifiability issues (52, 53). However,
the peak date only varies by 1 to 3 d for parameters within two units of the
maximum log likelihood.

Data Sources

The data used in this manuscript were downloaded on 1 April
2020 from ref. 54 for Fig. 1, Upper, 16 June 2020 from ref. 17
for Fig. 1, Lower, and on 2 April 2020 from ref. 17 for Table 1.
Data from both refs. 17 and 54 are publicly available. Case and
death counts for COVID-19, such as those reported in ref. 17
that are used in the present study, are well known to suffer from
ascertainment issues (55). The data also have other sources of
error due to the nature in which they are aggregated from pri-
mary sources, where reporting is often lagged. Policy decisions
based upon models fit to these data must take these ascertain-
ment and data quality issues into account. The code and data
used to generate Fig. 1, Upper can be downloaded from GitHub
at https://github.com/francoelisa/PNAS2020. The code to down-
load data and generate Fig. 1, Lower can be downloaded from
GitHub at https://github.com/gomohler/pnas2020/tree/master/
dynamic_R. The code to generate Table 1 is available in GitHub
at https://github.com/gomohler/pnas2020.
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