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Abstract—Mobile applications (apps) have exploded in popu-
larity, with billions of smartphone users using millions of apps
available through markets such as the Google Play Store or the
Apple App Store. While these apps have rich and useful function-
ality that is publicly exposed to end users, they also contain hidden
behaviors that are not disclosed, such as backdoors and blacklists
designed to block unwanted content. In this paper, we show that
the input validation behavior—the way the mobile apps process
and respond to data entered by users—can serve as a powerful
tool for uncovering such hidden functionality. We therefore have
developed a tool, INPUTSCOPE, that automatically detects both the
execution context of user input validation and also the content
involved in the validation, to automatically expose the secrets of
interest. We have tested INPUTSCOPE with over 150,000 mobile
apps, including popular apps from major app stores and pre-
installed apps shipped with the phone, and found 12,706 mobile
apps with backdoor secrets and 4,028 mobile apps containing
blacklist secrets.

I. INTRODUCTION

Mobile applications (apps) now number in the millions
and provide useful functionality to billions of users. However,
alongside this useful functionality, many apps also include
hidden behaviors that are not publicly disclosed to users. These
behaviors may range from innocuous Easter eggs, such as
custom animations used in Google Hangouts when certain
keywords are mentioned, to more pernicious behaviors like
backdoors and censorship blacklists.

The harm caused by such behaviors affects both users
and developers. Users’ security may be compromised if an
ostensibly secure app, such as a lock screen app, contains a
backdoor that allows anyone who knows the master password
to bypass the lock screen. Backdoors may also harm devel-
opers when backdoor secrets are exposed, since the hidden
functionality can allow users to bypass restrictions built into
the app (e.g., a hidden menu protected by a password may
enable paid features for free). Finally, censorship blacklists
may prevent users from exercising their freedom of expression
by banning the discussion of sensitive political topics (although
such blacklists may also have benign uses, such as preventing
users from choosing offensive usernames).

Nor are such cases hypothetical: by manually examining
several mobile apps, we found that a popular remote control
app1 (10 million installs) contains a master password that can
unlock access even when locked remotely by the phone owner
when device is lost. Meanwhile, we also discovered a popular

1Note that we do not reveal the concrete names of apps whose vulnerabilities
remain unpatched at the time of publication.

screen locker app (5 million installs) uses an access key to
reset arbitrary users’ passwords to unlock the screen and enter
the system. In addition, we also found that a live streaming
app (5 million installs) contains an access key to enter its
administrator interface, through which an attacker can recon-
figure the app and unlock additional functionality. Finally, we
found a popular translation app (1 million installs) contains a
secret key to bypass the payment for advanced services such
as removing the advertisements displayed in the app.

Motivated by the above examples, in this paper we tackle
the problem of uncovering hidden behaviors in mobile apps.
The key insight of our work is the observation that hidden
functionality can be uncovered by examining ways user inputs
are validated. Over the past decades, we have seen several
program analysis techniques that can analyze user input val-
idation (e.g., [4], [9], [10], [28], [29], [35], [37]). However,
existing approaches are too often specific to the class of input
validation vulnerabilities, such as SQL injection (e.g., [17],
[25]). Also, these approaches can only determine when a
program fails to neutralize dangerous characters and fall short
at determining when input validation results in the execution
of hidden functions.

In this paper, therefore, we present a new static analysis
technique, INPUTSCOPE, to automatically uncover hidden
functionality in mobile apps. INPUTSCOPE takes as input an
Android mobile app, and then combines static taint analysis
with backward slicing to determine when the input app
compares data entered by the user against some value stored
in the app or retrieved over the network. Then, INPUTSCOPE

exposes input-triggered secrets by introducing the novel
concept of the execution context of user input validation,
which combines two orthogonal aspects of the input validation
procedure: (i) the types of the data being validated, and (ii) the
code dispatch behavior associated with the result of the com-
parison, such as the number of times the validation is iterated
and the number of potential branches following a successful
validation. Finally, INPUTSCOPE inspects both the content and
execution context with the aid of a set of security policies to
expose the hidden secrets, e.g., backdoors or blacklist secrets.

We have implemented a prototype of INPUTSCOPE and
studied the incidence of user input-triggered hidden secrets in
top-installed mobile apps. To that end, we created a dataset
of 150,000 apps, including the top 100,000 apps from the
Google Play by the number of installations, the top 20,000

apps from an alternative store by the number of installations,
and 30,000 pre-installed apps extracted from Samsung smart-
phones’ firmware.



Our evaluation uncovered a concerning situation. We iden-
tified 12,706 apps containing a variety of backdoors such as
secret access keys, master passwords, and secret commands
that can allow users to access admin-only functions or attackers
to gain unauthorized access to users’ accounts. Also, our
analysis discovered 4,028 apps validating user input against
blacklisted words of different categories such as insults, racial
discrimination, political leader names, and mass incidents.

Contribution. In short, we make the following contributions:

• Novel Discovery. We find that input validation in mobile
apps can be used to expose input triggered secrets such as
backdoors and blacklist secrets, and that input-dependent
hidden functionality is widespread in Android apps.

• Systematic Tool. We develop a systematic, open source
tool2, INPUTSCOPE, to automatically identify both execu-
tion context and validated target content from input val-
idation, which we use to uncover input-triggered secrets
in mobile apps.

• Comprehensive Evaluation. We have tested our tool
with more than 150,000 popular mobile apps and dis-
covered that 8.47% of them contain backdoor secrets
such as secret access keys, master passwords, and secret
commands, and 2.69% of them contain blacklist secrets
such as offensive forbidden words.

II. BACKGROUND AND MOTIVATION

In this section, we present the necessary background to
better understand INPUTSCOPE. We begin by describing the
types of input received by mobile apps in §II-A. Then, we
briefly present how user input is typically validated in a mobile
app in §II-B. Finally, we examine three real world apps to
motivate the problem we aim to solve in §II-C.

A. Types of Input to Mobile Apps

Similar to the software in non-mobile platforms, the input
to a mobile app can be generated from a variety of sources,
which can be classified into the following two categories:

Internal Input. An app can directly read the inputs from
itself (e.g., for configuration), and we call these inputs internal
inputs. There are two types of internal inputs, based on where
the input comes from: input coming from the program code
(e.g., a hardcoded string) of the app, or input coming from the
resource files (e.g., a database) carried within the app.

External Input. In addition to internal input, apps consume
input from the external world. Based on where an external
input comes from, we can also classify them into two sub-
categories:

• External Local Input. Typically, an app will consume
local input such as keystrokes typed by a user, input
that originates from system libraries (e.g., a GPS library),
or input that is generated by other apps locally and
transmitted via an intent.

• External Remote Input. In addition to local input, an app
can also consume input from remote servers or external
peripherals (e.g., a bluetooth device). We call these inputs

2The source code is available at github.com/OSUSecLab/InputScope.

external remote inputs because they are generated by
remote parties.

B. How to Validate an Input

Input must be validated prior to being acted upon. Depend-
ing on whether the allowed inputs are known by the user, input
validation can be performed via either a blacklist or a whitelist:

• Blacklist. If an input is compared with a list that contains
the blocked content, this list is called a blacklist. In this
case, the user typically is not aware of the complete
list and the list is often not bounded (it can increase
over time); such lists are often kept secret. Anti-virus
signatures are an example of a blacklist and viruses should
not be aware of the signatures to prevent evasion.

• Whitelist. If an input is compared with a list that contains
the allowed content, this list is called whitelist. Unlike
blacklists, in which the item in the list is a secret, users
must know the items in the whitelist (and this list is often
bounded with a fixed size), otherwise they will not be able
to use the system.

Input validation can be performed at either syntactic level
or semantic level (or both), and consequently we can have
syntactic validation and semantic validation:

• Syntactic validation. Syntactic validation operates on
structural properties of data, such as the format or size of
the input, with the goal to accept well-formed inputs and
disregard malformed ones (e.g., an invalid email address,
phone number, or zip code) [1].

• Semantic validation. Semantic validation focuses on the
meaning of the user input, e.g., a social app could check
whether an entered date is illegal, such as February
31st [1], and a shopping app could check whether the
number of the items in the shopping cart is greater than
0 when checking out.

C. Motivating Examples

Next, we present three real world examples to illustrate
how input validation can be used to reveal backdoors and
blacklist secrets.

Backdoor Secrets. If an input is used to bypass the access
control (e.g., authentication) in an app, this input is a backdoor
secret. We have witnessed numerous such backdoor secrets.
In the following, we use a popular file encryption app with
500,000+ installs, which is used to hide or lock private files
from being accessed by others, to illustrate how its validation
process exposes its master password (Figure 1).

In particular, we notice this app assigns a string converted
from a user input to variable v2 (at line 8 in Figure 1), where
the user input is identified by searching for its resource ID from
line 5 to 7. Then, variable v2 is used in a validation check at
line 11. In this validation, it has two conditions concatenated
with logic relation OR. In one of the conditions, the app checks
whether variable v2 is equal to a string value, b***1,3 which
is hardcoded in plaintext in the app. Because of the OR logic, if

3We redact the exact content of secret values for apps that have not fixed at
the time of this writing and for which disclosure could cause negative impacts
for app developers.
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whitelist/blacklist, syntatics/semantics checks), an app
can contain many comparison instructions and these
comparisons can be implemented in completely different
ways across different apps (or even within the same
app). Moreover, some checks are not related to hidden
functionality (e.g., format checks). Therefore, it is a chal-
lenge to pinpoint secret-exposing validations from a large
number of comparison instructions, especially without
having false positives and compromising scalability.

• C2: How to resolve the compared content in val-
idations. After detecting the user input validations of
interest, the next step is to resolve the content (e.g.,
censorship keywords) used in the validation. In some
cases, it may be trivial to resolve the content by directly
inspecting an instruction that compares with a literal
value. However, the content used in the validation could
come from a variety of sources, such as hardcoded values,
file inputs, or server responses, some of which cannot be
resolved via static analysis (e.g., server responses cannot
be retrieved without actually connecting to the server).
On the other hand, even when compared content can be
resolved from the code alone (e.g., hardcoded values), it
may be the result of a series of computations, e.g., string
concatenations, that cannot be resolved directly.

• C3: How to identify input-triggered secrets. Having
detected the user input validation and resolved the con-
tent used in the corresponding validations, we still need
to identify whether a validation exposes input-triggered
secrets. However, this is by no means trivial because
a validation between the same pair of user input and
content could lead to completely different conclusions.
For instance, an app may check whether the user provided
password is “123456”. If this occurs in user registration,
it could be just checking whether a user-provided pass-
word is a blacklisted weak password. However, if this
occurs at login, then it could be a backdoor. Therefore,
identifying these different cases is another challenge.

After analyzing mobile app code manually, we have ob-
tained the following insights to solve the above challenges.

• S1: Using taint analysis to pinpoint the input vali-
dation of interest. While an app can contain numerous
and different types of comparison, we notice user input
validation often starts from input, followed by string
conversions if necessary,5 and then performs the com-
parison with another object using standard APIs (e.g.,
equals as shown in the two motivating examples in
§II-C). Therefore, we can use static taint analysis to taint
the user input and monitor whether it propagates to system
APIs (i.e., the taint sinks) to detect user input validations
in mobile apps at scale.

• S2: Using backward slicing and string value analysis
to resolve the compared content in validation. With
taint analysis, we are able to identify the taint sinks, from
which we can identify the compared content. Note that
the secrets in this study are often in the form of strings. If
the compared string content is directly visible at the type
sink, we directly extract its value. Otherwise, we perform

5Note that we have not observed other types of data such as integer or
floating point. This is likely because backdoors or censorship blacklist secrets
are often stored as strings.

backward slicing to identify how the compared string is
generated. If it is from external remote input, our analysis
will produce no concrete value since we do not perform
real execution of the app (but we can output that the
type of the content is from remote input). Otherwise, if it
originates from internal input, e.g., a file, we then open the
file and follow the execution path identified by the back-
ward slicing to retrieve the string. If there are any string
operations (e.g., concatenation or substrings), we simulate
these operations to obtain the final computed values.

• S3: Using the comparison contexts of validation
to identify input-triggered secrets. After resolving
the compared content used in the validation, we have
to identify whether this validation exposes a secret
of interest. Our key insight is to use the comparison
contexts of the validation extracted from the app code to
solve this problem. More specifically, we can construct
a comparison context of input validation using two
orthogonal pieces of information: (i) the type of either
the user input (e.g., a password) or the compared content
(e.g., a hardcoded string) used in the validation, and (ii)
the code dispatch behavior associated with the result
of the validation. For example, as shown in Figure 1,
the type of content for validation is a hardcoded value
compared with a user input type password,6 and the
code dispatch has two actions: the true branch, which
overlaps with the comparison to this.b, and the false
branch, which rejects invalid passwords. Based on this
code execution context, we can conclude it is a master
password secret, since a hardcoded secret can cause the
same action as a legitimate password. We derive a number
of such execution context-based policies to identify other
type of input-triggered secrets, detailed in §IV-C.

B. INPUTSCOPE Overview

An overview of INPUTSCOPE is presented in Figure 4.
There are four key components: (i) Input Validation Detection

detects the existence of validation behavior with static taint
analysis; using the taint sinks, our (ii) Compared Content

Resolution performs backward slicing to identify the sources of
compared content and then uses the slice to compute the final
String type value. Next, (iii) Comparison Context Recovery

takes the types of user input and compared content, and
recovers its code dispatch behavior such as one-to-two, many-
to-two, or many-to-many. Finally, using both the comparison
context and compared content, (iv) the Secret Uncovering

component uses each specific policy to find secrets of interest
such as backdoors or censorship keywords.

C. Scope and Assumptions

In this paper we focus on input validation that can lead to
the identification of backdoors or blacklist secrets; other types
of input validation, such as those that may lead to XSS or SQL
injection, have been covered extensively in prior work and are
out of scope of this paper. INPUTSCOPE analyzes mobile apps
for the Android platform and, in our prototype, we only focus
on input validation at the Java bytecode level, and exclude
input validation in native libraries.

6The UI widget of the user input for this particular case is password type.
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However, these values are not always directly visible at taint
sinks. Therefore, we first perform a backward slicing on the
bytecode to identify how a the string is generated, and then
use string value analysis to obtain the final computed values.

Static Backward Slicing. We use static backward slicing to
identify how a compared string is generated. Similar to static
taint analysis, static backward slicing is performed on the inter-
procedural data-flow graph (IDFG), which is derived from the
inter-procedural control-flow graph (ICFG), where the nodes
are instructions and the edges are control-flow transfers, but in
the opposite direction (since it is backward). At a high level, it
starts from where a targeted variable is used and ends at where
it is generated. Since a compared string could come from a
variety of sources and its value can be generated in different
ways (e.g., from a local file, or a remote server response), we
have to resolve them accordingly.

In particular, if it comes from external input (either external
local input or external remote input), our backward slicing will
produce no concrete string value because the value of these
external inputs can only be obtained with real executions (e.g.,
by connecting to remote servers to fetch them). However, if it is
from internal input, which is statically carried within a mobile
app, either in its program code (i.e., hardcoded values) or its
resource files, we use the following policies to identify them.

• String values from program code. Since the values
from program code are typically hardcoded strings in our
focused problem, our backward slicing will stop at APIs
such as getString. Then we will perform string value
analysis (described below) along the data path from where
the compared string is generated to where it is used in our
taint sinks, to finally resolve the string values.

• String values from resource file. There are three types
of resource files that contain string values: files (e.g.,
text files, JSON files), databases (e.g., SQLite databases),
and key-value stores (e.g., sharedPereferences).
Because different types of file store data in different
formats, we have to resolve their values accordingly. At
a high level, we first resolve its name and file-specific
semantics, and then resolve the values of interest. For
example, in order to resolve a value from a key-value
data SharedPereference object, we need to resolve
the name of this file and the corresponding “key” to
eventually reach the generation of the string.

Meanwhile, to ease the effort for string value analysis in
the next step, during the backward slicing, we also maintain an
inter-procedural data-dependency graph (IDDG). This IDDG
is used to record the computation sequences of relevant string
values along the data-flow paths. These sequences are impor-
tant to reproduce the final string value of the compared content.

String Value Analysis. During the backward slicing, we have
obtained a set of targeted string values to resolve. Next, we use
a static string value analysis technique we developed earlier in
LeakScope [46] (which has been open sourced) to reproduce
these string values without actually running the program but
simulating the string related computations. In particular, with
the IDDG that is maintained during the backward slicing, we
forwardly calculate the string value of the target variable by
following its original execution order captured in IDDG. Dur-
ing this calculation, we simulate the same operation defined
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File
getName()
getAbsolutePath()

SQLiteDatabase
rawQuery(String, String[])
openDatabase(String, CursorFactory, int)

SharedPreferences
getSharedPreferences(String, int)
getString(String, String)

E
x
te
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al
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u
es

Bundle
getString(String)
getCharSequence(String)

Intent
getStringExtra(String)
getCharSequenceExtra(String)

EditText getText()
Editable toString()

Socket getInputStream()
SSLSocket getInputStream()

TABLE II: The list of the system APIs used for uncovering
the types of the compared content.

by the system APIs. For example, if the string operation is
substring, we follow the standard procedure to obtain this
substring value. In doing so, we can eventually resolve the
string values of the compared content accordingly.

Pruning Compared Content That is Known by Users.
Recall that the primary objective of this study is to uncover
hidden behaviors, such as backdoors and blacklist secrets,
and these secrets should be unknown to the majority of
normal users. However, some of the compared content
we resolved could come from visible user interfaces (e.g.,
EditText.setHint). Therefore, we have to prune the
resolved compared strings of which normal users are already
aware.

To this end, we need to understand the specific text of
which users are aware, before typing them into the input
field. According to our observation, mobile apps often provide
sufficient information in their interface where they ask users
to type text and mobile users rarely consult other materials
than descriptions displayed in the interface. In other words, the
majority of users are only aware of the descriptions from the
interface before typing text into input fields. In addition, these
descriptions could be either static strings existing in related
resource files associated with resource IDs or strings hardcoded
in the code that are dynamically loaded by invoking system
APIs (e.g., EditText.setHint) that can be obtained auto-
matically in the same way as described above. In either case,
if we identify the strings that come from these sources, we
exclude this comparison in our result.

C. Comparison Context Recovery

We have to use the comparison context, i.e., how a user
input is compared and its code dispatch behavior, to determine
the hidden behaviors (e.g., backdoors) and their types (e.g.,
censorship keywords). In general, the code dispatch of a user
input could have two attributes: (i) how many times a user
input is validated within a judgement block of a method,
and (ii) how many potential branches could be taken if the
validation is satisfied. These two attributes together can reveal
how a user input is validated in terms of deciding the code
execution flow.
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To simplify the description of the code dispatch context, we
present it in the form of a pair of these two attributes. Since we
are interested in understanding the overall quantity property of
an attribute (one, two, or more than two) rather than its exact
number, we mark each attribute as “one”, “two”, or “many”.
Meanwhile, since each satisfied condition can only produce
two branches (true or false), we consider it two actions. By
counting how many times an input is compared, and also how
many actions the comparison can generate, we can have (i)
one comparison and two actions, (ii) multiple comparisons
and two actions, and (iii) multiple comparisons and multiple
actions. More specifically, we classify dispatch behaviors as:

• One-to-Two Dispatch. This code dispatch indicates that
a user input is validated only once in a judgement block
within a method. Accordingly, there is only one desired
branch to be taken if the condition of user input validation
is satisfied. An example of such dispatch is the single if
block between line 6 and 9 shown in Figure 2.

• Many-to-Two Dispatch. This code patch means that a
user input is validated multiple times in a judgement
block. But there would be only one desired branch that
will be taken if any of these validations is satisfied. An
example of such a dispatch is presented in Figure 3, where
the user input is validated with every element in an array.
In this case, each comparison between the user input and
an element in the array is one condition. Consequently,
it has “many” conditions. However, regardless of which
condition is satisfied, there would be one desired dispatch
to be taken.

• Many-to-Many Dispatch. If there are multiple compar-
isons and multiple actions, then it means that a user input
is validated multiple times with different compared tar-
gets, and multiple outcomes can be generated depending
on the comparison. A representative example for such
dispatch is the switch-case block, where each action
is assigned to a unique case.

D. Secrets Uncovering

Having recovered code dispatches and the resolved com-
pared content for user input validation of interest, next our
Secret Uncovering component will use a set of specific policies
to uncover the hidden behaviors and secrets. In total, we have
defined four policies to uncover four types of hidden behaviors:
secret access keys, master passwords, secret commands, and
blacklist secrets, based on the three types of different code
dispatch behaviors we have recovered.

(I). Uncovering hidden behaviors from one-to-two code
dispatch. With this type of code dispatch, since the user
input will only be validated once in a method of the app
and the compared content is also not known to the user, and
meanwhile there are only two outcome actions resulting from
the comparison, we can conclude it is likely that the user input
serves as a key to unlock a behavior and such a user input can
be considered a secret access key.

However, there are still caveats because in some apps,
there could be a normal service instead of a hidden service
that requires users to type text not shown in the UI for
further functionality. For example, in some puzzle game apps,
users could be asked to provide correct answers to go to the

next round. In such cases, users are also unaware of what
to enter. Fortunately, we can use another dimension of the
compared content, namely whether the compared content
is from an internal hardcoded string inside the app or not.
This is because for these interactive types of apps, especially
games, they would have made their compared target more
flexible (e.g., coming from network servers) instead of directly
hardcoding them in the app (otherwise, it can easily lead to
game cheating). Therefore, we use the following policy to
decide whether there is a secret access key:

Identifying a Secret Access Key.

A secret access key is identified if (i) the code dispatch of a user input

validation is one-to-two and (ii) the compared content is a hardcoded

string inside the app.

(II). Uncovering secrets from many-to-two dispatch. In this
code dispatch, the user input is validated more than once in
a method and the satisfaction for different validations all lead
to the same program behavior. Meanwhile, for all of the val-
idations with the same user input, its compared content could
be from one source or multiple sources. Therefore, we further
break down this code dispatch context into two categories:

• Compared Content from Multiple Sources. If the
compared content comes from multiple sources, then this
type of comparison illustrates a scenario where, within a
method, if a user input is equal to any value among mul-
tiple sources, the program will perform the same action.
In other words, each compared value can override others.
Therefore, if one of these values is a secret hardcoded
string, then such a string can be used to override other
sources of values to drive the app into the same state. Note
that the compared content from different sources indicates
that they are generated in different ways and their values
are supposed to be different. An example of such behavior
is shown in Figure 1, where a hardcoded string in the
comparison and also another source of input together
decide the branch outcome. Therefore, this behavior is
a hidden feature because normal users are unaware the
existence of such a string. Inspired by the actions from
Figure 1, we call this type of string a master password.
However, we do not have to explicitly use the password
type of EditText to decide this master password type of
backdoor, because the code pattern of (i) multiple sources
of compared content and (ii) a hardcoded string that
can override other input sources has already sufficiently
allowed us to decide it is a master password.

Identifying a Master Password.

A master password is uncovered if (i) the comparison context of user

input validation has the many-to-two code dispatch, (ii) the compared

content comes from multiple different sources, and (iii) one of the

compared content is a secret hardcoded string.

• Compared Content from the Same Source. If the
compared content is all from the same source, then this
type of comparison context presents a scenario where,
within a method, if a user input is equal to any value
of the compared content, the app will always move to
the same state. In other words, these compared content
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items together form a list, and the user input is compared
with every item in the list to check equivalence. Each
equivalence results in the same program behavior. An
example of such comparison is shown in Figure 3, where
the app validates the user input with a blacklist to identify
the forbidden keywords. Therefore, the compared content
actually forms a blacklist, and we can use the following
policy to detect it.

Identifying a Blacklist Secret.

A blacklist secret is identified if (i) the comparison context of user

input validation has many-to-two code dispatch and (ii) the compared

content all come from the same source.

(III). Uncovering secrets from many-to-many dispatch. In
a many-to-many dispatch, the same user input is validated
with different compared values, either from the same source or
different sources. Meanwhile, if some of the compared content
is resolved as secret strings, then such a context indicates
that, within a method, a user input could take a value from
a set of secret strings and each string can trigger a different
program action. In other words, the value space of a user input
contains a subset of concrete strings whose values are unknown
to normal users, and each of them can drive the app into a
different state. Such behavior is very similar to a terminal that
accepts different commands. Therefore, we call these secret
strings secret commands and we use the following policy to
identify them.

Identifying a Secret Command.

A secret command is identified if (i) the comparison context of user input

validation has many-to-many code dispatch and (ii) the compared content

includes more than one hardcoded secret string.

V. EVALUATION

We have implemented a prototype of INPUTSCOPE atop
Soot [2] and LeakScope [46], with borrowed code from
FlowDroid [7] to statically detect the user-input validation,
reveal its contexts, and extract its compared content. In total,
INPUTSCOPE consists of around 5,500 lines of our own code.
In this section, we present the evaluation results. We first
describe how the evaluation is set up in §V-A, and then present
our detailed evaluation results in §V-B.

A. Evaluation Setup

Dataset Collection. We collected the Android apps from three
different sources to evaluate INPUTSCOPE. The first source
is Google Play, which is the largest world-wide Android app
market. To ensure a reasonable distribution of the apps, we
successfully crawled the top 100,000 free apps across all
categories based on number of installations at the end of April,
2019. The second source is from an alternative app store, Baidu
Market, from which we have crawled the top 20,000 free apps
during the same time period as our crawl of Google Play apps.
The third source is pre-installed apps, and we obtain 30,000

of them directly from over 1,000 Samsung firmware images,
which were downloaded from SamMobile7. Altogether, our
dataset consists of 150,000 mobile apps.

7https://www.sammobile.com/

Item Value

# Apps tested 150, 000

# Apps containing equivalence checking 114, 797

# Apps check empty input only 34, 958

# Apps check non-empty input 79, 839

# Apps contain backdoor secrets 12, 706

% Apps in Google Play 6.86%

% Apps in alternative Market 5.32%

% Apps in pre-installed apps 15.96%

# Apps - secret access keys 7, 584

# Apps - master passwords 501

# Apps - secret privileged commands 6, 013

# Apps contain blacklist secrets 4, 028

% Apps in Google Play 1.98%

% Apps in alternative Market 4.46%

% Apps in pre-installed apps 3.87%

TABLE III: Overall statistics of the evaluation results.

Testing Environment. We use two servers to run our exper-
iments. One server runs Ubuntu 16.04 with 256 GB memory
and an Intel Xeon E5-2695 v4 CPU that crawls apps from
the Google Play and analyzes them with INPUTSCOPE, and
the other one runs Ubuntu 16.04 with an AMD EPYC 7251
CPU and 256G memory that is in charge of extracting the pre-
installed apps from Samsung firmware images, downloading
apps from the alternative market, and executing INPUTSCOPE

to analyze these apps.

B. Evaluation Results

In total, INPUTSCOPE took around 24 days to discover mo-
bile apps containing backdoors or blacklist secrets from these
150,000 mobile apps. Specifically, as presented in Table III, we
first identified 114,797 mobile apps that contain equivalence
checking. Note that an app can detect whether a user input is
empty by simply checking whether the input is equivalent to an
empty string. There are 34,958 mobile apps that perform these
empty-only checks, and we thus exclude them from further
analysis. In the remaining 79,839 mobile apps, INPUTSCOPE

identified 4,028 apps containing blacklist secrets and 12,706

apps containing backdoor secrets. There are 7,584 apps with
secret access keys, 501 apps that embed master passwords, and
6,013 apps with secret commands. Moreover, these security
risks hold generally across all of our data sources. Specifically,
the prevalence of backdoor secrets in apps is 6.86%, 5.32%,
and 15.96% on the Google Play store, the alternative market,
and pre-installed apps, respectively, and the percentage of apps
containing blacklist secrets in these three data sources are
1.98%, 4.46%, and 3.87%.

Next, we examine these results in greater detail to under-
stand two key questions. First, what kind of advantage could
be taken by using the uncovered hidden behaviors such as
backdoors? Second, what are the detailed items in a blacklist,
and why they are blocked? To this end, we have manually
inspected the top apps in each category, and we present here a
detailed security analysis. Note that the top apps from Google
Play and Baidu Market can be easily identified based on
the download numbers from their app stores, but we cannot
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Usage Package Access

Description # Installs Category Name Keys

5,000,000 - 10,000,000 Sports air.**.l**** U***S
Hidden 5,000,000 - 10,000,000 Dating e**.o**** i***g
Admin Interface 1,000,000 - 5,000,000 Social co.**.g**** $***n
Login 1,000,000 - 5,000,000 Travel com.**.j**** J***!#

1,000,000 - 5,000,000 News com.**.a**** w***#

10,000,000 - 50,000,000 Health org.**.p**** 8***8
Arbitrary 5,000,000 - 10,000,000 Personal. com.l*.k**** 0**9*
User Password 1,000,000 - 5,000,000 Games com.**.c**** q***3
Recovery 1,000,000 - 5,000,000 Product. com.**.cu*** h****

1,000,000 - 5,000,000 Lifestyle com.**.p**** *6**0

1,000,000 - 5,000,000 Product. com.**.n**** #***+
Advanced 1,000,000 - 5,000,000 Books com.g*.d**** q***d
Service Payment 1,000,000 - 5,000,000 Books com.g*.d**** q***d
Bypassing 1,000,000 - 5,000,000 Books com.g*.t**** q***d

1,000,000 - 5,000,000 Product. vo*.**.tr*** q***d

TABLE IV: Detailed results of top inspected mobile apps
containing secret access keys.

identify the top apps from the pre-installed dataset since all of
them are installed when users purchased the phone and likely
have the same distribution. We therefore only focus on the
apps from the app stores in our case studies below, though we
have also observed similar patterns in pre-installed apps.

1) Hidden Backdoor Behaviors: Since INPUTSCOPE has
discovered three types of input-triggered hidden behaviors
using (i) secret access keys, (ii) master passwords, and (iii)
secret commands, we present detailed analysis for each of
these categories in the following.

(I). Hidden Behaviors Triggered by Secret Access Keys.
To better understand why such hidden behaviors exist, we
have manually inspected a set of 30 apps that are randomly
selected from the apps with more than one million installs and
summarized the three most common types of usage that we can
recognize. In addition, we present the detailed results of the top
five apps for each usage, 15 apps in total, in Table IV, where
the first column describes the type of usage, the next three
columns provide the number of downloads, its category, and
its package name, respectively, and the last column shows the
identified secret access key for each app. We have summarized
the following three types of usages with our best effort as also
listed in Table IV:

• Logging into administrator interfaces. We have iden-
tified access keys that can be used to log into an app’s
administrator interface, which is invisible to normal users
and allows users to change the configuration of the app.
An example in this case is a very popular sports live
streaming app with more than 5 million installs. In partic-
ular, it allows anyone to login as an administrator with the
access key “U***S” from the hidden administrator inter-
face in its “Setting” menu. After the successful login,
the administrator interface allows an attacker to perform
privileged actions such as changing configuration URLs,
changing network IDs, or resetting a “temporary pass”.

• Resetting arbitrary user passwords. We have also dis-
covered access keys to trigger the hidden behaviors of re-
covering or resetting normal users’ passwords. We take a
popular app providing screen-locking services with more
than 5 million installs as an example. To launch this at-
tack, first, attackers can simply trigger a hidden button af-

# Installs Category Package Name Master Pwd

10,000,000 - 50,000,000 Tools com.a**** 9***8
5,000,000 - 10,000,000 Tools s**.c*.g**** 1*6**
5,000,000 - 10,000,000 Health in.p*.l**** *9**2

1,000,000 - 5,000,000 Tools com.m*.p**** 4***2
1,000,000 - 5,000,000 Entert. com.kiddoware.kidsplace 5493
1,000,000 - 5,000,000 Finance com.v*.p**** o*f*s
1,000,000 - 5,000,000 Tools it.v*.d**** 1v**3

500,000 - 1,000,000 Parenting com.*s.m**** ****1
500,000 - 1,000,000 Product. com.movinapp.quicknote 1349100416
500,000 - 1,000,000 Tools com.s*.h***s b*r*1

TABLE V: Detailed results of top inspected mobile apps
containing master passwords.

ter multiple trials with a wrong password. Then, attackers
can click the hidden button to get a new interface where a
special code is requested. After providing the code 0**9*,
attackers can reset the password to unlock the screen.

• Bypassing advanced service payment. We also
have verified there are access keys that can purchase
in-app advanced services for free. For instance, we
have extracted an access key, q***d, from a popular
translation app with more than one million installs.
Similar to the motivating example, by simply typing
this code in the EditText which accepts text for
translation and clicking the translate button, one can
remove the advertisement displayed in the app for free.
However, removing advertisements is a service available
for purchase with a fee of $12.99.

From these detailed case studies, we can notice that the
user input validations in apps can expose their secret access
keys and can be used to launch various attacks against both
the users of the mobile app (e.g., resetting their passwords)
and also the service providers of the app (e.g., bypassing their
service payment). Also, surprisingly, these types of mistakes
can even occur in popular apps with millions of installs. In
addition, we observed that the same group of developers could
make the same mistake across all of their apps.

(II). Hidden Behaviors Triggered by Master Passwords.
INPUTSCOPE has identified 501 master passwords among the
tested apps. We also randomly selected 10 popular apps to
understand the hidden behaviors triggered by these master
passwords, and the result for these apps is presented in Ta-
ble V. Since a master password can be used to hijack/override
another compared target, it is extremely dangerous. During
our manual investigation with these apps, we found a security
related app with more than 10 million installs, which is
designed to help a user lock their smartphone when it is lost
by allowing legitimate users to control the phone remotely.
While this app provides many different security mechanisms
to protect its users, e.g., remotely wiping the phone via SMS,
it contains a master password 9***8 to bypass its protection
on the privacy apps that are set to be locked when the phone
is lost. Another interesting case is a diary app where users can
lock the diary with their passwords. However, an attacker can
use the password lv**3 to unlock the secret diary, although
the app will display a text at the bottom of the screen saying
“wrong password”.

(III). Hidden Behaviors Triggered by Secret Commands.
INPUTSCOPE identified 6, 013 mobile apps containing secret

9



# Installs Category Package Name Commands

10,000,000 - 50,000,000 Tools com.*.whe*d w***l, d***n, B***u, w***k ...
10,000,000 - 50,000,000 Music&Audio com.th.ringtone.maker enableartistalbum, disableartistalbum ...
10,000,000 - 50,000,000 Games ru.c*.s**** 8***4, 82***, 6***9 ...
5,000,000 - 10,000,000 Education w*.*n.****g t***e on, b***l, f***e, b****1, d***g ...
1,000,000 - 5,000,000 Shopping com.b*.a***y p***f, d***p, c***f, p***n, d***s ...
1,000,000 - 5,000,000 Education com.*a.b**n* S***D#, M****, G***S, G***I, D***P, C***R ...
1,000,000 - 5,000,000 Games com.c*.f***s c***h, e***t ...
1,000,000 - 5,000,000 Social com.c*.s**** *#0*#, *#*1#, *#*3#, *#*5#, *#*2# ...
1,000,000 - 5,000,000 Games com.h*.e**** un**s, lo**l, lo**s, un*** ...
1,000,000 - 5,000,000 Productivity com.lfantasia.android.outworld (maroonAuth), (amberAuth), (darkCyanAuth) ...

TABLE VI: Detailed results of top identified mobile apps containing secret commands.

commands. As before, we manually inspected the commands
in the top 10 mobile apps according to their number of in-
stallations and summarized their common usages; this detailed
result is presented in Table VI. The first column shows the
number of installs, followed by its category, its package name,
and the uncovered secret commands. We found that these
commands can be classified into two categories: debugging
and non-debugging, based on whether the commands are for
developer use or not.

• Commands for Debugging. The most common use of
these commands is to drive the app into debug mode
and test the app’s low level functionality. Many of the
identified secret commands belong to this category. For
example, as presented in Table VI, the shopping app can
debug HTTP connections and proxy via the d***p and
p***f commands, respectively. An education app can
activate test mode using the command t***e on.

• Commands for Other Functionality. Other than debug-
ging, which can be easily identified, the remaining com-
mands fall into other categories, such as triggering hidden
functions that are unknown to normal users. For instance,
a social app contains various commands such as *#0*3#
and *#*2# to trigger various hidden functions such as
clearing all cached data and account settings. Similarly,
an education app can use C***R to clear users’ settings.

2) Hidden Blacklists Secrets: Given the diverse content
a blacklist may contain, to understand why there exists such
blacklist, we manually investigated the top 20 popular apps
that expose their blacklist secrets based on the size of their
blacklists. In the following, we provide our analysis of the
blacklists with these apps at both the aggregated (macro) level
and fine-grained (micro) level.

Aggregated Macro Results. We show the aggregated macro-
level results of these apps in Table VII, where the first column
shows the market to which the app belongs, the second column
shows where its blacklist is stored, followed by its number of
installs, its blacklist’s content languages, and its blacklist size
in terms of number of items.

• Languages. We found that the content comes from three
different languages: Chinese, English, and Korean. This
indicates that the usage of blacklists is not restricted to
a specific country or language. Interestingly, we found
that even when the primary language is not English, the
blacklist usually involves several English words; however,
if the primary language is English, then we did not see any
case where a blacklist contained words in other languages.

M S # Installs Package Name Lang. Size

G
o

o
g

le
P

la
y

L
o

ca
l

S
to

ra
g

e 10,000,000 - 50,000,000 com.*.p**r* 1 E 324

10,000,000 - 50,000,000 c**.f**** 1 E 1,000
5,000,000 - 10,000,000 com.w*.s**** C E 10,439

500,000 - 1,000,000 com.k*.j**** 1 E 1,594

100,000 - 500,000 com.p*.p**** 1 E 78

H
ar

d
co

d
e

S
tr 5,000,000 - 10,000,000 com.s*.c***t 1 E K 27

1,000,000 - 5,000,000 com.q***k 1 E 13

100,000 - 500,000 com.b*.l***y 1 E 7

100,000 - 500,000 in.*.l*.v***t 1 E 16

50,000 - 100,000 kr.**.z*.d**** 1 E K 562

A
lt

er
n

at
iv

e

L
o

ca
l

S
to

ra
g

e 50,000,000 - 100,000,000 com.*.t**** C 1,958
50,000,000 - 100,000,000 com.y*.t**** C 3,366

10,000,000 - 50,000,000 com.i**i** C 1,960
1,000,000 - 5,000,000 com.y*.w**** C E 3,966
1,000,000 - 5,000,000 com.m*.i**** C E 4,154

H
ar

d
co

d
e

S
tr 10,000,000 - 50,000,000 com.z*.h**** C E 145

10,000,000 - 50,000,000 com.**.q**** C 372
5,000,000 - 10,000,000 com.a*.***** C 87

1,000,000 - 5,000,000 com.j*.s**** C 93
1,000,000 - 5,000,000 y**.E**n** C E 451

TABLE VII: Aggregated results of top tested apps containing
black-lists: M for Market, S for Source of a blacklist, E for
English, C for Chinese, K for Korean.

• Sizes. We observed that the size of the blacklist varies
across apps regardless of their popularity, from more
than 10,000 items to only 7 items in the list. In general,
blacklists read from local storage contain more items
than those hardcoded in the code, and Chinese blacklists
contain many more items than Korean or English
blacklists, where the size of English blacklist is relatively
smaller than the other two languages. That might be
result of the fact that Chinese blacklists cover more

Category Detailed Blacklist Type

Drug 01-Addictive Drug, 02-Aphrodisiac, 03-Hallucinogen
Cult 04-Cults Name, 05-Malignant Event
Fraud 06-Fake Certificates, 07-MLM
Gamble 08-Chess & Card, 09-Lottery, 10-Jockey
Insult 11-Bullying, 12-Racial Discrimination, 13-Obscenity
Password 14-Weak Password
Politics 15-Leaders Name, 16-Mass Incident, 17-Rebel

18-Parade, 19-Separatist
Pornography 20-Adult Video, 21-Escort Service
Website 22-Anti-government, 23-Fake News, 24-Pornography

25-Criminal

TABLE VIII: Blacklist types
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Drug Cult Fraud Gamble Insult PWD Politics Porn Website

Market Category Package Name 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

G
o
o
g
le

P
la

y
Games com.*.p**r* # # # # # # # # # #    # # # # # # # # # # # #

Social c**.f**** # # # # # # # # # #     # # # # # # # # # # #

Games com.w*.s****              #            

Entertainment com.k*.j**** # # # # # # # # # #    # # # # # # #  # # # #

Social com.p*.p**** # # # # # # # # # #  #  # # # # # # # # # # # #

Games com.s*.c***t # # # # # # # # # #  #  # # # # # # # # # # # #

Lifestyle com.q***k # # # # # # # # # #  #  # # # # # # # # # # # #

Lifestyle com.b*.l***y # # # # # # # # # #  #  # # # # # # # # # # # #

Social in.*.l*.v***t # # # # # # # # # #  #  # # # # # # #  # # # #

Communication kr.**.z*.d**** # # # # # # # # # #  #  # # # # # # #  # # # #

A
lt

er
n
at

iv
e

Education com.*.t****              #            

Education com.y*.t****       #       #         #  #

Social com.i**i**     #         #         #   

Shopping com.y*.w****              #            

Entertainment com.m*.i****       #       #         #   

Productivity com.z*.h**** # # #     # # # # #  #   #   #  #  # #

Entertainment com.**.q**** # # #    # #  #  #  #    #     #  #

Social com.a*.***** #  #  #  # # # #  #  #    #   # # # #  

Entertainment com.j*.s**** # #   #   # # #  #  #   #     # # # #

Education y**.E**n**  #     #   #  #  #   # #        

Statistics 7 7 8 11 8 11 6 7 8 6 19 9 20 1 11 11 8 8 11 10 13 8 5 8 7

TABLE IX: Fine-grained results of blacklist for top tested apps:  for presence, and # for absence.

categories than Korean and English blacklists. More
details will be presented in the following analysis.

Fine-grained Micro Results. After understanding the content
of blacklist at the aggregated macro level, we then zoom into
each blacklist to understand them at fine-grained micro-level.
We created a best-effort classification of their content into 9

semantic categories including drug, cult, fraud, gambling, in-
sult, password, politics, pornography, and website. In addition,
we also list the recognized 25 micro-level types of content
for each semantic category in Table VIII. Note that we only
present the micro-level classification of the keywords of the
blacklist instead of the exact words at Table IX, given their
inappropriate content and large size.

• Commonly blocked content in three languages. We
can observe that all blacklists in three languages filter
keywords in the category of insult and pornography, ac-
cording to Table IX. In particular, in the category of insult,
there are 20 blacklists that filter keywords related to the
concept of obscenity, 19 blacklists (except one blacklist in
Chinese) that also block keywords used for bullying, and 9

blacklists that filter expressions related to racial discrimi-
nation; three contain only English keywords, three contain
only Chinese words, and three blacklists contain content
in both of these languages. Meanwhile, in the category
of pornography, there is one blacklist containing both
English and Korean content, four blacklists containing
English and Chinese words, as well as two English
exclusive blacklists and 7 Chinese exclusive blacklists
that block keywords related to escort services. Finally,
there are 7 Chinese-exclusive and 4 Chinese and English
combined blacklists that block adult video.

• Uniquely blocked content in each specific language.
Besides the commonly blocked content, we noticed one
English blacklist containing items that we classify as weak
passwords, while no blacklist in the other two languages
filters such passwords. As for blacklist content in Korean,
first, we did not witness a blacklist containing Korean

content exclusively, and second, blacklists with Korean
content in our dataset block no unique content other than
porn and insults. However, we did find blacklists con-
sisting of Chinese keywords covering 6 unique semantic
categories (i.e., drug, cult, fraud, gamble, politic, and
website) with 19 micro-level types defined in Table VIII.
Specifically, in the drug category, 8 blacklists block
keywords relating to hallucinogens, 7 blacklists filter ad-
dictive drug, and also 7 blacklists forbid content related to
aphrodisiacs. In the category of cult, we have 11 blacklists
that disallow cult name and 8 disallow mentioning malig-
nant event. As for the category of politics, keywords relat-
ing to leader names, mass incidents, and slogans for sep-
aratism are blocked by all Chinese blacklists. In addition,
there are also 8 blacklists that forbid words from the rebel
and parade categories. Interestingly, only Chinese black-
lists try to filter information about fraud and gambling.
In particular, 11 of them block content for forging fake
certificates, and 6 of them disallow advertisements about
multi-level marketing (MLM) organizations. For gam-
bling, keywords related to lottery are blocked by 8 black-
lists, names of chess & card games are disallowed by 7

blacklists, and information about Hong Kong Jockey (an
organization that allows betting on horse racing and other
sports) is also forbidden in 6 blacklists. Finally, there are
8 blacklists that disallow sharing the URL of websites
whose content includes supporting anti-government and
showing pornography, 7 also forbid criminal websites,
and 5 filter websites disseminating fake news.

From these results, we can make several interesting
observations. First, a keyword might be forbidden on one
platform but would be accepted on another platform, even if
these platforms intend to filter the same semantic category
of words. For example, there are 9 platforms that block
words related to racial discrimination, while the other 11

won’t, even though all platforms in this study try to filter
insult expressions. Second, Chinese blacklists cover many
more semantic categories than the blacklists consists of
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other two languages. Besides filtering keywords in semantic
categories such as politic, cult, and gamble that could be a
result of political or law enforcement reasons, they also try
to exclude content that might cause damage to people’s lives,
e.g., drug, fraud, and criminal website. Moreover, another
interesting observation is that mobile apps may use blacklist-
based methods to validate weak passwords, though we only
encountered one such case in our manual investigation.

From a security perspective, blacklist identification and
extraction has two benefits. First, developers may have an
interest in preventing abuse and harassment on their platforms,
and may be unaware that client-side enforcement is ineffective
at providing this capability. Second, users may be unaware that
an app is limiting their freedom of expression, and exposing
types of content being filtered can help them make more
informed choices about what platforms they participate in.

VI. DISCUSSION

A. Accuracy of Secrets Uncovering

INPUTSCOPE relies on static analysis with a set of security
policies to identify a variety of secrets that can trigger hidden
behaviors within an app. To better understand these behaviors
and evaluate the accuracy of our secret uncovering policies,
we manually analyzed the top popular apps. More specifically,
we first decompiled each app and inspected its code to identify
whether the secret values we discovered can actually trigger
actions (e.g., invoking methods). If so, then we moved on to
understand the purpose of this action by reading the code as
well as finding the correct way to navigate the app and try
to trigger the action for dynamic verification. Among the total
number of 70 apps we have manually analyzed with our best
effort and understanding, we have identified 1 misclassification
and 8 false positives, resulting an accuracy of 87.14%.

In particular, a false positive in this study refers to an
extracted value that (i) cannot trigger actions, (ii) triggers
behaviors that can be achieved by normal operations, or (iii)
where the triggered action is benign even though it cannot be
triggered normally. In our manual analysis, we have identified
8 false positive cases where 6 of them are flagged as backdoor
secrets of access keys and 2 as secret commands. Specifically,
three false positives occur because the identified values will not
trigger actions in practice because of conflicting constraints
along the execution path; the other three false positives are
caused by misclassifying benign behavior: two cases where the
values are used for benign “Easter eggs”, and one where they
are used to provide (benign) special location-based services.
The remaining two false positives were both identified as
hidden commands: the identified commands for one app are
a set of shortcuts for normal operations, and the other one
uses hidden commands to change UI rendering. In addition,
we also noticed 1 misclassification case where a set of secret
commands has been flagged as blacklist secrets.

B. Limitations and Future Work

In the following, we discuss limitations and future chal-
lenges to improve the accuracy of the analysis performed by
INPUTSCOPE:

• The first challenge for INPUTSCOPE is supporting the
WebView component. Mobile apps using the WebView

component may rely on JavaScript routines to collect and
validate user inputs. As INPUTSCOPE currently operates
at the Java bytecode level only, it may not be able to
analyze these apps and unveil potential hidden behaviors.

• The second challenge for INPUTSCOPE is handling
custom-defined string operations. INPUTSCOPE currently
relies on the system API functions for string comparison.
However, apps may use customized or third-party string
comparison operations, and INPUTSCOPE will not be able
to identify them.

• The third challenge for INPUTSCOPE is when apps val-
idate user input via database queries, e.g., SQL queries.
Extracting the execution context of data flows crossing
the boundaries of the database API requires inferring the
semantics of both queries and the database structure. Such
a challenge has been partly solved only when additional
artifacts, e.g., initialization scripts, are found in the code
[18]. However, this is not necessarily the case in the mo-
bile app setting, and it requires a more general solution.

• The fourth challenge comes from our manual
classification of the blacklists, which may result in mis-
classifications caused by our unfamiliarity with the topics
and the language gap. In future work, we hope to perform
a deeper analysis of these blacklists with a broader
diversity of researchers from different backgrounds.

• Finally, INPUTSCOPE has false positives for various
reasons such as ignoring path constraints and failing to
distinguish “benign” cases. We plan to address these
issues by combining other techniques such as symbolic
execution to prune impossible paths and machine learning
to infer developers’ real intention.

C. Why Hidden Behaviors Exist and How to Address Them

INPUTSCOPE has uncovered a number of serious security
issues from user-input validation implementations. In the fol-
lowing, we analyze their root causes and provide practical
solutions accordingly.

Misplaced the Trust in Untrusted Client Software. IN-
PUTSCOPE has identified 7,584 apps containing secret ac-
cess keys to trigger various hidden logic, such as bypassing
payment. Our findings suggest that, to date, developers still
wrongly assume that reversing the code of their apps for
inspection is not a real threat. Accordingly, developers tend
to implement high privilege interfaces in the mobile apps,
mistakenly trusting untrusted client apps. To really secure their
apps, developers need to perform security-relevant user-input
validations on the backend servers. When enforcing server-side
checks is not feasible, then developers should consider using
trusted hardware components available on modern mobile
devices (e.g., TrustZone).

Removing Debugging Code Before Releasing the Software.
INPUTSCOPE has also discovered thousands of apps containing
debugging features. These features need to be removed before
deploying a mobile app in the store or in the device firmware.
In fact, motivated users can reverse engineer the code of
the apps to discover these hidden interfaces. One use of IN-
PUTSCOPE is to raise developer awareness and demonstrate the
reverse engineering process can be fully automated. Therefore,
our recommendation is to always remove unnecessary code,
including debugging mode code, prior to software release.
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Defending against our Secret-uncovering Analysis. We
have demonstrated that with INPUTSCOPE a variety of app
secrets can be discovered. In certain cases, there may be a
need to protect these secrets against our analysis. For instance,
an app may consider its blacklist a secret, and developers
cannot use the trusted server or TrustZone to perform the input
validations, e.g., client-side blacklist filtering is inevitable in
time-sensitive services such as live-streaming media. To defeat
our analysis, there could be a number of possible avenues.
For instance, an app can use obfuscation, or implement secret
input validation in the native code, or dynamically load the
secrets from remote servers to thwart our secret discovery.
However, we note that many of these countermeasures could
themselves be bypassed with additional implementation effort.

D. Ethics and Responsible Disclosure

We have taken ethical considerations seriously in every step
of our research. First, we only validated the vulnerabilities on
our own accounts and our own smartphones (during our deep
case studies), and we never try to compromise other users’
accounts and smartphones. Second, we did not intentionally
manipulate or send forged requests to test the security mech-
anisms on the server-side.

The hidden functionality that INPUTSCOPE has identified
can have severe consequences to either app users or devel-
opers, and these apps need to be patched by app developers.
Therefore, we have contacted developers for each manually
verified app to disclose our findings. Our disclosure process
includes two steps: first we used the contact information left
in the related market to ask for the correct contact information
to disclose vulnerabilities, and then we disclosed the details to
the correct security contact. For those vulnerable apps that
have not yet been patched at the time of this writing, we
redacted their package names as well as their secret values
with the symbol “***”, in order to avoid negative impacts (e.g.,
economic hardship from disclosure of advertisement removal
keys). We will continue to engage with the app developers to
offer help with our best efforts.

VII. RELATED WORK

Static Taint Analysis. Our approach is based on static analysis
to detect the user input validation behaviors within a given
mobile app by tracking the user input data flows and their
related operations. In the past several years, there have been
many efforts that use static analysis for vulnerability discovery
by tracking sensitive data flows in mobile apps. For instance,
Flowdroid [7] and Amandroid [38] are generic approaches
to track security-related data flows. WARDroid [27], Ex-
tractocol [16], and SmartGen [45] focus more on the data
flow related to network communications. PlayDrone [36] and
LeakScope [46] extract hard-coded secret keys that are used
by apps to retrieve cloud-based services. Inspired by this work,
INPUTSCOPE tracks only local user input through EditText
to solve our particularly targeted problem.

Input Validation. Input validation has been well studied in the
literature. However, previous studies either focus on the web
applications [4], [9], [10], [17], [25], [28], [29], [35], [37],
including XSS and SQL injection, or primarily target security
issues on the server-side (e.g., [5], [48]). For Android mobile

apps, recently WARDroid [27] analyzed issues caused by
both the client-side and the server-side. There are also efforts
focusing on input validation in Android system services [13],
[41], [42], or IoT apps for vulnerability discovery [15], [47].
Different from these works, our study intends to recognize
hidden behaviors (or secrets) unknown to normal users in
Android mobile apps.

In addition, there is also a body of research focusing on
how to generate inputs based on UI information of the apps.
For example, AppsPlayground [31], SmartDroid [44], Dyn-
odroid [26], and SMV-Hunters [34] are capable of exploring
mobile app behaviors by recognizing UI elements and gener-
ating appropriate user input accordingly. However, this work
generates input dynamically. In our work, we leverage static
analysis and only focus on string related input generation.

User-input Analysis. There are also numerous works to detect
security issues related to user input in Android apps. For
instance, AsDroid [23] detects stealthy malicious behavior
by monitoring the differences between program behaviors
and the semantics inferred from the UI text, which includes
descriptions for user input. In addition, SUPOR [22] and
UIPicker [30] both apply NLP techniques and supervised
classification to detect sensitive privacy data from user input.
Unlike leveraging UI text to detect malicious behaviors, our
work focus on user input in general to recognize its hidden
behaviors through carefully defined validation context that is
recovered from the code of mobile apps.

Malware Detection. Prior efforts also focus on finding hidden
malware behaviors. For example, TriggerScope [19], Intel-
liDroid [39], and [11] use symbolic execution to gener-
ate external input (e.g., GPS, messages) for malware de-
tection. Crowdroid [12], MAMA [32], DroidAPIMiner [3],
DREBIN [6], ICCDetector [40], DroidDetector [43], as well
as [8], [14], [20], [24], [33] use feature-based algorithms
to detect hidden malicious behaviors in Android apps that
effect the OS or servers. Unlike these works that extract their
features from system execution context (e.g., ICC, system
events, permissions), INPUTSCOPE intends to uncover hidden
behaviors are triggered by user input at the Java bytecode level
and our detection policy is built upon the execution context of
user input validation.

VIII. CONCLUSION

While input validation has been well studied in vulnerabil-
ity discovery, in this paper we have demonstrated that input
validation can also have another important application, namely
exposing input-triggered secrets such as backdoors (e.g., secret
access keys, master passwords, and secret privileged com-
mands) and blacklists of unwanted items (e.g., censorship
keywords, cyber-bulling expressions, and weak passwords). To
understand the severity of such input validations in mobile apps
at scale, we developed a tool, INPUTSCOPE, to automatically
detect both the execution context of user input validation
and the content involved in the validation to automatically
expose hidden functionality. We have tested INPUTSCOPE with
over 150,000 mobile apps and uncovered 12,706 mobile apps
containing backdoor secrets and 4,028 mobile apps containing
blacklist secrets.
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