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Abstract. Vector-valued discrete Fourier transforms (DFTs) and ambiguity functions are
defined. The motivation for the definitions is to provide realistic modeling of multi-sensor
environments in which a useful time-frequency analysis is essential. The definition of the
DFT requires associated uncertainty principle inequalities. The definition of the ambiguity
function requires a component that leads to formulating a mathematical theory in which
two essential algebraic operations can be made compatible in a natural way. The theory
is referred to as frame multiplication theory. These definitions, inequalities, and theory are
interdependent, and they are the content of the paper with the centerpiece being frame
multiplication theory.

The technology underlying frame multiplication theory is the theory of frames, short
time Fourier transforms (STFTs), and the representation theory of finite groups. The main
results have the following form: frame multiplication exists if and only if the finite frames
that arise in the theory are of a certain type, e.g., harmonic frames, or, more generally,
group frames.

In light of the complexities and the importance of the modeling of time-varying and
dynamical systems in the context of effectively analyzing vector-valued multi-sensor envi-
ronments, the theory of vector-valued DFTs and ambiguity functions must not only be
mathematically meaningful, but it must have constructive implementable algorithms, and be
computationally viable. This paper presents our vision for resolving these issues, in terms
of a significant mathematical theory, and based on the goal of formulating and developing
a useful vector-valued theory.

1. Introduction

This is a research survey in the mold of this journal’s intent from the very beginning to
publish some papers of this type, see [110]. As such, it provides research results embedded
in a broad program of future work with tentacles reaching into diverse topics.

1.1. Background. Our background for this work was based in the following program.
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• Originally, our problem was to construct libraries of phase-coded waveforms v : R −→
C, parameterized by design variables, for use in communications and radar. A goal
was to achieve diverse narrow-band ambiguity function behavior of v by defining
new classes of discrete quadratic phase and number theoretic perfect autocorrelation
sequences u : Z/NZ −→ C with which to define v and having optimal autocorrelation
behavior in a way to be defined.
• Then, a realistic more general problem was to construct vector-valued waveforms v

in terms of vector-valued sequences u : Z/NZ −→ Cd having this optimal autocorre-
lation behavior. Such sequences are relevant in light of vector sensor capabilities and
modeling, e.g., see [88,111].

In fact, we shall define periodic vector-valued discrete Fourier transforms (DFTs) and
narrow-band ambiguity functions. Early-on we understood that the accompanying theory
could not just be a matter of using bold-faced letters to recount existing theory, an image
used by Joel Tropp for another multi-dimensional situation. Two of us recorded our initial
results on the subject at an invited talk at Asilomar (2008), [16], but we did not pursue it
then, because there was the fundamental one-dimensional problem, mentioned above in the
first bullet, that had to be resolved. Since then, we have made appropriate progress on this
one-dimensional problem, see [10–13,15,23].

1.2. Goals and short time Fourier transform (STFT) theme. In 1953, P. M. Wood-
ward [129,130] defined the narrow-band radar ambiguity function. The narrow-band ambigu-
ity function is a two-dimensional function of delay t and Doppler frequency γ that measures
the correlation between a waveform w and its Doppler distorted version. The information
given by the narrow-band ambiguity function is important for practical purposes in radar.
In fact, the waveform design problem is to construct waveforms having “good” ambiguity
function behavior in the sense of being designed to solve real problems.

Since we are only dealing with narrow-band ambiguity functions, we shall suppress the
words “narrow-band” for the remainder.

Definition 1.1 (Ambiguity function). a. The ambiguity function A(v) of v ∈ L2(R) is

A(v)(t, γ) =

∫
R
v(s+ t)v(s)e−2πisγ ds(1)

= eπitγ
∫

R
v

(
s+

t

2

)
v

(
s− t

2

)
e−2πisγds,

for (t, γ) ∈ R2.
b. We shall only be interested in the discrete version of (1). For an N -periodic function

u : Z/NZ→ C the discrete periodic ambiguity function is

(2) Ap(u)(m,n) =
1

N

N−1∑
k=0

u(m+ k)u(k)e−2πikn/N ,

for (m,n) ∈ Z/NZ× Z/NZ.
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c. If v, w ∈ L2(R), the cross-ambiguity function A(v, w) of v and w is

A(v, w)(t, γ) =

∫
R
v(s+ t)w(s)e−2πisγ ds

= e2πitγ
∫

R
v(s)w(s− t)e−2πisγ ds.(3)

Evidently, A(v) = A(v, v), so that the ambiguity function is a special case of the cross-
ambiguity function.

d. The short-time Fourier transform (STFT) of v with respect to a window function
w ∈ L2(R) \ {0} is

(4) Vw(v)(t, γ) =

∫
R
v(s)w(s− t)e−2πisγ ds

for (t, γ) ∈ R2, see [63] for a definitive mathematical treatment. Thus, we think of the
window w as centered at t, and we have

(5) A(v, w)(t, γ) = e2πitγ Vw(v)(t, γ).

e. A(v, w) and Vw(v) can clearly be defined for functions v, w on Rd and for other function
spaces besides L2(Rd). The quantity |Vw(v)| is the spectrogram of v, that is so important in
power spectrum analysis. For this and related applicbility, see, e.g., [26, 30, 34, 50, 81, 92, 96,
99,119,128].

Our goals are the following.

• Ultimately, we shall establish the theory of vector-valued ambiguity functions of
vector-valued functions v on Rd in terms of their discrete periodic counterparts on
Z/NZ, see Example 3.12 for generalization beyond Rd.
• To this end, in this paper, we define the vector-valued DFT and the discrete periodic

vector-valued ambiguity functions on Z/NZ in a natural way.

The STFT is the guide and the theory of frames, especially the theory of DFT, harmonic,
and group frames, is the framework (sic) to formulate these goals. The underlying technology
that allows us to obtain these goals is frame multiplication theory. Implications of the role
of group frames are found in Example 6.11

1.3. Outline. We begin with an exposition on the theory of frames (Section 2). Frames are
essential for our results, and in applications the material related to our results is often not
conceived or formulated in terms of frames.

The vector-valued discrete Fourier transform (DFT) is developed in Subsection 3.1. The
remaining two subsections of Section 3 conclude with a comparison of relations between
Subsection 3.1 and apparently different implications from the Gelfand theory. Subsection
3.1 is required in our vector-valued ambiguity function theory.

Section 4 establishes the basic role of the STFT in achieving the goals listed in Subsection
1.2. In the process, we formulate our idea leading to the notion of frame multiplication, that
is used to define the vector-valued ambiguity function. In Section 4 we also give two diverse
examples. The first is for DFT frames (Subsection 4.2), that we present in an Abelian setting.
The second is for cross-product frames (Subsection 4.4), that is fundamentally non-Abelian
and non-group with regard to structure, and that is motivated by the recent applicability of
quaternions, e.g., [85]. Subsection 4.3 relates the examples of Subsections 4.2 and 4.4, and
formally motivates the theory of frame multiplication presented in Section 5.
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In Section 6 we define the harmonic and group frames that are the basis for our Abelian
group frame multiplication results of Section 7. Although we present the results in the
setting of finite Abelian groups and frames for the Hilbert space Cd, many of them can be
generalized; and, in fact, some are more easily formulated and proved in the general setting.
As such, some of the theory in these sections is given in infinite and/or non-Abelian terms.
The major results are stated and proved in Subsection 7.2. They characterize the existence
of frame multiplication in term of harmonic and group frames.

Section 8.2 is devoted to the uncertainty principle in the context of our vector-valued
DFT theory.

We close with Appendix 9. Some of this material is used explicitly in Sections 6 and 7,
and some provides a theoretical umbrella to cover the theory herein and the transition to
the non-Abelian case beginning with [3].

Remark 1.2. The forthcoming non-Abelian theory is due to Travis Andrews [3]. In fact, if
(G, •) is a finite group with representation ρ : G→ GL(Cd), then we can show that there is
a frame {xn}n∈G and bilinear multiplication, ∗ : Cd × Cd → Cd, such that xm ∗ xn = xm•n.

Further, we are extending the theory to tight frames for Cd and finite rings G, so that
there are meaningful generalizations of the vector-valued Adp(u) theory in the formal but
motivated settings of Equations (20) and (21).

It remains to establish the theory in infinite dimensional Hilbert spaces and associated
infinite locally compact groups and rings as well as tantalizing non-group cases, see, e.g., our
cross product example in Subsection 4.4 and its relationship to quaternion groups.

2. Frames

2.1. Definitions and properties. Frames are a generalization of orthonormal bases where
we relax Parseval’s identity to allow for overcompleteness. Frames were first introduced in
1952 by Duffin and Schaeffer [44] and the theory has developed extensively since the 1980s.
e.g., see [8, 25, 33, 35, 39, 125]. (In fact, Paley and Wiener gave the technical definition of a
frame in [95], but they only developed the completeness properties.)

Definition 2.1 (Frame). a. Let H be a separable Hilbert space over the field F, where
F = R or F = C. A finite or countably infinite sequence, X = {xj}j∈J , of elements of H is a
frame for H if

(6) ∃A,B > 0 such that ∀x ∈ H, A ‖x‖2 ≤
∑
j∈J

|〈x, xj〉|2 ≤ B ‖x‖2 .

The optimal constants, viz., the supremum over all such A and infimum over all such B, are
called the lower and upper frame bounds respectively. When we refer to frame bounds A and
B, we shall mean these optimal constants.

b. A frame X for H is a tight frame if A = B. If a tight frame has the further property
that A = B = 1, then the frame is a Parseval frame for H.

c. A frame X for H is equal-norm if each of the elements of X has the same norm.
Further, a frame X for H = Cd is a unit norm tight frame (UNTF) if each of the elements
of X has norm 1. If H = Cd and X is an UNTF for H, then X is a finite unit norm tight
frame (FUNTF).

d. A sequence of elements of H satisfying an upper frame bound, such as B ‖x‖2 in (6),
is a Bessel sequence.
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Remark 2.2. The series in (6) is an absolutely convergent series of positive numbers; and
so, any reordering of the sequence of frame elements or reindexing by another set of the
same cardinality will remain a frame. We allow for repetitions of vectors in a frame so that,
strictly speaking, the set of vectors, that we also call X, is a multi-set. We shall index frames
by an arbitrary sequence such as J in the definition, or by specific sequences such as the set
N of positive integers or the set Zd, d ≥ 2, of multi-integers when it is natural to do so.

Let X = {xj}j∈J be a frame for H. We define the following operators associated with
every frame. The analysis operator L : H → `2(J) is defined by

∀x ∈ H, Lx = {〈x, xj〉}j∈J .

Inequality (6) ensures that the operator norm of L is bounded, i.e., ‖L‖op ≤
√
B. The

adjoint of the analysis operator is the synthesis operator L∗ : `2(J)→ H, defined by

∀a ∈ `2(J), L∗a =
∑
j∈J

ajxj.

From Hilbert space theory, we know that any bounded linear operator T : H → H satisfies
‖T‖op = ‖T ∗‖op . Therefore, ‖L∗‖op ≤

√
B. The frame operator is the mapping S : H → H

defined as S = L∗L, i.e.,

∀x ∈ H, Sx =
∑
j∈J

〈x, xj〉xj.

Theorem 2.3 (Frame reconstruction formula). Let H be a separable Hilbert space, and let
X = {xj}j∈J ⊆ H.

a. X is a frame for H with frame bounds A and B if and only if S : H → H is a
topological isomorphism with norm bounds ‖S‖op ≤ B and ‖S‖−1op ≤ A−1, see [25], pages
100–104, for a proof.

b. In the case of either condition of part a, we have the following: {S−1xj} is a frame
for H with frame bounds B−1 and A−1, and

(7) ∀x ∈ H, x =
∑
j∈J

〈x, xj〉S−1xj =
∑
j∈J

〈x, S−1xj〉xj =
∑
j∈J

〈x, S−1/2xj〉S−1/2xj,

see [39], [18] Chapters 3 and 7, and [35].

Let X = {xj}j∈J be a frame for H. Then, the frame operator S is a multiple of the
identity precisely when X is a tight frame. Further, S−1 is a positive self-adjoint operator
and has a square root S−1/2 (Theorem 12.33 in [106]). This square root can be written as
a power series in S−1; consequently, it commutes with every operator that commutes with
S−1, and, in particular, with S. These properties allow us to assert that {S−1/2 xj} is a
Parseval frame for H, and give the third equality of (7). see [35], page 155.

Definition 2.4 (Canonical dual). Let X = {xj}j∈J be a frame for a separable Hilbert space
H with frame operator S. The frame S−1X = {S−1xj}j∈J is the canonical dual frame of X.
The frame S−1/2X = {S−1/2xj}j∈J is the canonical tight frame of X.

The Gramian operator is the mapping G : `2(J)→ `2(J) defined as G = LL∗. If {xj}j∈J
is the standard orthonormal basis for `2(J), then

(8) ∀a = {aj}j∈J ∈ `2(J), 〈Ga, xk〉 =
∑
j∈J

aj〈xj, xk〉.
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2.2. FUNTFs. We shall often deal with FUNTFs X = {xj}Nj=1 for Cd.
The most interesting setting is for the case when N > d. In fact, frames can provide

redundant signal representation to compensate for hardware errors, can ensure numerical
stability, and are a natural model for minimizing the effects of noise. Particular areas of a
recent applicability of FUNTFs include the following topics:

• Robust transmission of data over erasure channels such as the internet, e.g., see
[32,61,62];
• Multiple antenna code design for wireless communications, e.g., see [78];
• Multiple description coding, e.g., see [62,112];
• Quantum detection, e.g., see [21,28,56];
• Grassmannian “min-max” waveforms, e.g., see [22,31,112].

The following is a consequence of (6).

Theorem 2.5 (FUNTF expansion). If X = {xj}N−1j=0 is a FUNTF for Fd, then

∀x ∈ Fd, x =
d

N

N−1∑
j=0

〈x, xj〉xj.

Remark 2.6. FUNTFs can be characterized as the minima of a potential energy function,
see [17] for the details of this result.

Orthonormal bases for H = Fd are both Parseval frames and FUNTFs. If X = {xj}N−1j=0

is Parseval for H and each ‖xj‖ = 1, then N = d and X is an ONB for H. If X is a FUNTF
with frame constant A, then A 6= 1 if X is not an ONB. Further, a FUNTF X is not a
Parseval frame unless N = d and X is an ONB; and, similarly, a Parseval frame is not a
FUNTF unless N = d and X is an ONB.

Let X = {xj}N−1j=0 be a Parseval frame. Then, each ‖xj‖ ≤ 1. If X is also equiangular,
that is, |〈xj, xk〉| is a constant as all j 6= k vary, then each ‖xj‖ < 1, whereas we can not
conclude that any ‖xj‖ ever equals an ‖xk‖ unless j = k.

2.3. Naimark’s theorem. The following theorem, a weak variant of Naimark’s dilation
theorem, tells us every Parseval frame is the projection of an orthonormal basis in a larger
space. The general form of Naimark’s dilation theorem is a result for an uncountable family
of increasing operators on a Hilbert space satisfying some additional conditions. It states
that it is possible to construct an embedding into a larger space such that the dilations of the
operators to this larger space commute and are a resolution of the identity. For an excellent
description of this dilation problem and an independent geometric proof of a finite version
of Naimark’s dilation theorem see [40] by C. H. Davis. To see the connection of this general
theorem with the one below, consider the finite sums of the rank one projections onto the
subspaces spanned by elements of a Parseval frame.

Theorem 2.7 (Naimark’s theorem, e.g., [1, 69]). A set X = {xj}j∈J in a Hilbert space H
is a Parseval frame for H if and only if there is a Hilbert space K containing H and an
orthonormal basis {ej}j∈J for K such that the orthogonal projection P of K onto H satisfies

∀j ∈ J, Pej = xj.

Remark 2.8. If X is a Parseval frame for H, then L∗L = S = I, and so G2 = LL∗LL∗ =
LL∗ = G. Hence, G is a projection, and since it is self-adjoint it is an orthogonal projection.
Furthermore, Gxj = LL∗xj = Lxj. Thus, the orthogonal projection P onto L(H) from
Naimark’s theorem is precisely G.
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2.4. DFT frames. The characters of the Abelian group Z/NZ are the functions {γn}, n =

0, . . . , N − 1, defined by m 7→ e2πimn/N , so that the dual (Z/N Ẑ) is isomorphic to Z/NZ
under the identification γn 7→ n. Hence, the Fourier transform on `2(Z/NZ) ' CN is a linear
map that can be expressed as

(9) ∀n ∈ Z/NZ, x̂(n) =
N−1∑
m=0

x(m)e−2πimn/N .

It is elementary to see that the Fourier transform is defined by a linear transformation
whose matrix representation is

(10) DN = (e−2πimn/N )N−1m,n=0.

The Fourier transform on CN is called the discrete Fourier transform (DFT), and DN is
the DFT matrix. The DFT has applications in digital signal processing and a plethora of
numerical algorithms. Part of the reason why its use is so ubiquitous is that fast algorithms
exist for its computation. The Fast Fourier Transform (FFT) allows the computation of
the DFT to take place in O(N logN) operations. This is a significant improvement over
the O(N2) operations it would take to compute the DFT directly by means of (9). The
fundamental paper on the FFT is due to Cooley and Tukey [37], in which they describe
what is now referred to as the Cooley-Tukey FFT algorithm. The algorithm employs a
divide and conquer method going back to Gauss to break the N dimensional DFT into
smaller DFTs that may then be further broken down, computed, and reassembled. For a
more extensive description of the DFT, FFT, and their relationship to sampling, sparsity,
and the Fourier transform on `1(Z), see, e.g., [9, 60,117].

Definition 2.9 (DFT frame). Let N ≥ d, and let s : Z/dZ→ Z/NZ be injective. For each
m = 0, . . . , N − 1, set

xm =
(
e2πims(1)/N , . . . , e2πims(d)/N

)
∈ Cd,

and define the N × d matrix, (
e2πims(n)/N

)
m,n

.

Then X = {xm}N−1m=0 denotes its N rows, and it is an equal-norm tight frame for Cd called a
DFT frame.

The name comes from the fact that the elements of X are projections of the rows of the
conjugate of the ordinary DFT matrix (10). That X is an equal-norm tight frame follows
from Naimark’s theorem (Theorem 2.7) and the fact that the DFT matrix has orthogonal

columns. In fact, (1/
√
N)DN is a unitary matrix. The rows of the N×d matrix in Definition

2.9, up to multiplication by 1/
√
d, form a FUNTF for Cd.

Example 2.10 (DFT frame). If d = 5 and N = 8, then the function s of Definition 2.9
determines 5 columns of the 8× 8 DFT matrix, that, in turn, determine C5. Suppose these
are columns 0, 2, 5, 6, 7, where the 8 columns of the 8× 8 DFT matrix are listed as 0, . . . , 7.
Then, the resulting FUNTF for C5 consists of the vectors,

xm =
1√
5

(
1, e2πim/2, e2πim/5, e2πim/6, e2πim/7

)
∈ C5, m = 1, . . . , 8.

For a given N, we shall use the notation, ω = e−1 = e−2πi/N , and so em = e2πim/N . Note
that {em}N−1m=0 is a tight frame for C.
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3. The vector-valued discrete Fourier transform (DFT)

3.1. Definition and inversion theorem. In order to achieve the goals listed in Subsection
1.2, we shall also have to develop a vector-valued DFT theory to verify, not just motivate,
that Adp(u) is an STFT in the case {xk}N−1k=0 is a DFT frame for Cd.

We shall use the convention that the juxtaposition of vectors of equal dimension is the
pointwise product of those vectors. Thus, for two functions, u, v : Z/NZ→ Cd, we let uv be
the coordinate-wise product of u and v. This means that

∀m ∈ Z/NZ, (uv)(m) = u(m)v(m) ∈ Cd,

where the product on the right is pointwise multiplication of vectors in `2(Z/dZ), and so
u(m)(p), v(m)(p), (uv)(m)(p) ∈ C for each p ∈ Z/dZ, i.e., u(m)(p) designates the pth coor-
dinate in Cd of the vector u(m) ∈ Cd.

Definition 3.1 (Vector-valued discrete Fourier transform). Let {xk}N−1k=0 be a DFT frame
for Cd with injective mapping s. Given u : Z/NZ → Cd, the vector-valued discrete Fourier
transform (vector-valued DFT) û of u is defined by the formula,

(11) ∀n ∈ Z/NZ, F (u)(n) = û(n) =
N−1∑
m=0

u(m)x−mn ∈ Cd,

where the product u(m)x−mn is pointwise (coordinate-wise) multiplication. Further, the
mapping

(12) F : `2(Z/NZ× Z/dZ) −→ `2(Z/NZ× Z/dZ)

is a linear operator.

We clarify (11) and (12) in the following remark.

Remark 3.2. Given u : Z/NZ→ Cd. We write u ∈ `2(Z/NZ× Z/dZ) as a function of the
two arguments m, p so that u(m)(p) ∈ C. With this notation we can think of u and û as
N × d matrices with entries u(m)(p) and û(n)(q), respectively.

In (11), the multiplication −mn is modN . Further, x−mn ∈ Cd and x−mn (q) ∈ C for
each 0 ≤ q ≤ d − 1. Hence, given u : Z/NZ → Cd, we define w ∈ `2(Z/NZ × Z/dZ) by
w(m, p) = u(m)(p) ∈ C. Consequently, F (u)(n) on the left side of (11) is really defined on
Z/NZ× Z/dZ as

F (u)(n, q) =
N−1∑
m=0

u(m)(q)x−mn(q)

for 0 ≤ q ≤ d− 1; and so we have

∀q ∈ Z/dZ, û(n)(q) =

(
N−1∑
m=0

u(m)x−mn

)
(q)

=

(
N−1∑
m=0

u(m)(q)x−mn(q)

)
.

From this we see that û(n)(q) depends only on {u(m)(q)}N−1m=0, i.e., when thought of as
matrices the q-th column of û depends only on the q-th column of u.
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Theorem 3.3 (Inversion theorem). The vector-valued DFT is invertible if and only if s, the
injective function defining the DFT frame, has the property that

∀n ∈ Z/dZ, (s(n), N) = 1.

In this case, the inverse is given by

∀ m ∈ Z/NZ, u(m) = (F−1û)(m) =
1

N

N−1∑
p=0

û(p)xmp;

and we also have that F ∗F = FF ∗ = NI, where I is the identity operator.

Proof. We first show the forward direction. Suppose there is n0 ∈ Z/dZ such that (s(n0), N) 6=
1. Then there exists j, l,M ∈ N such that j > 1, s(n0) = jl, and N = jM . Define a matrix
A as

A = (e2πimks(n0)/N)N−1m,k=0 = (e2πimkl/M )N−1m,k=0.

A has rank strictly less than N since the 0-th and M -th rows are all 1s. Therefore we can
choose a vector v ∈ CN orthogonal to the rows of A. Define u : Z/NZ→ Cd by

u(m)(n) =

{
v(m) if n = n0

0 otherwise.

Then,

∀n 6= n0, û(m)(n) =
N−1∑
k=0

u(k)(n)x−mk(n) =
N−1∑
k=0

0 · x−mk(n) = 0,

while, for n = n0, we have

û(m)(n0) =
N−1∑
k=0

u(k)(n0)x−mk(n0) =
N−1∑
k=0

u(k)(n0)e
−2πimks(n0)/N

=
N−1∑
k=0

u(k)(n0)e
−2πimkl/M = 〈u(·)(n0), e

2πim(·)l/M〉 = 〈v, e2πim(·)l/M〉 = 0.

The final equality follows from the fact that v is orthogonal to the rows of A. Hence, the
vector-valued DFT defined by s has non-trivial kernel and is not invertible.

We prove the converse and the formula for the inverse with a direct calculation. We
compute

N−1∑
n=0

û(n)xmn =
N−1∑
n=0

(
N−1∑
k=0

u(k)x−kn

)
xmn

=
N−1∑
k=0

(
u(k)

(
N−1∑
n=0

xn(m−k)

))
.
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The r-th component of the last summation is

N−1∑
n=0

xn(m−k)(r) =
N−1∑
n=0

e2πin(m−k)s(r)/N

=

{
N if (m− k)s(r) ≡ 0 mod N

0 if (m− k)s(r) 6≡ 0 mod N.

Since (s(r), N) = 1, the first cases occurs if and only if k = m. Continuing with the previous
calculation, we have

N−1∑
k=0

(
u(k)

(
N−1∑
n=0

xn(m−k)

))
= Nu(m).

Finally, we compute the adjoint of F .

〈Fu, v〉 =
N−1∑
m=0

d−1∑
n=0

û(m)(n)v(m)(n) =
N−1∑
m=0

d−1∑
n=0

(
N−1∑
k=0

u(k)(n)x−mk(n)

)
v(m)(n)

=
N−1∑
m=0

d−1∑
n=0

(
N−1∑
k=0

u(k)(n)e−2πimks(n)/N

)
v(m)(n) =

N−1∑
k=0

d−1∑
n=0

(
N−1∑
m=0

v(m)(n)e2πimks(n)/N

)
u(k)(n)

=
N−1∑
k=0

d−1∑
n=0

u(k)(n)

(
N−1∑
m=0

v(m)(n)xmk(n)

)
= 〈u, F ∗v〉.

Therefore, F ∗ is defined by

(F ∗v)(k) =
N−1∑
m=0

v(m)xmk,

and F ∗ = NF−1. �

By Theorem 3.3, we can define the unitary vector-valued discrete Fourier transform F
by the formula

F =
1√
N
F.

With this definition, we have

FF∗ = F∗F = I,

and F is unitary .

Definition 3.4 (Translation and modulation). Let u : Z/NZ → Cd, and let {xk}N−1k=0 be a
DFT frame for Cd. For each j ∈ Z/NZ, define the translation operators,

τj : `2(Z/NZ× Z/dZ)→ `2(Z/NZ× Z/dZ), τju(m) = u(m− j),

and the modulation operators,

ej : Z/NZ→ Cd, ej(k) = xjk.

The usual translation and modulation properties of the Fourier transform hold for the
vector-valued transform.
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Theorem 3.5 (The DFT of translation and modulation). Let u : Z/NZ → Cd, and let
{xk}N−1k=0 be a DFT frame for Cd with associated vector-valued discrete Fourier transform F.
Then,

F (τju) = e−jû

and
F (eju) = τjû.

Proof. i. We compute

τ̂ju(n) =
N−1∑
m=0

τju(m)x−mn =
N−1∑
m=0

u(m− j)x−mn =

N−1−j∑
k=−j

u(k)x−(k+j)n

=
N−1∑
k=0

u(k)x−kn−jn = x−jn

(
N−1∑
k=0

u(k)x−kn

)
= x−jnû(n).

The third equality follows by setting k = m−j, the fourth by reordering the sum and noting
that the index of summation is modulo N , and the fifth follows since xj+k = xjxk and by
the bilinearity of pointwise products.

ii. We compute

êju(n) =
N−1∑
m=0

(eju)(m)x−mn =
N−1∑
m=0

xjmu(m)x−mn

=
N−1∑
m=0

u(m)x−m(n−j) = û(n− j).

The third equality follows from commutativity and since xj+k = xjxk. �

3.2. A matrix formulation of the vector-valued DFT. We now describe a different
way of viewing the vector-valued DFT that makes some properties more apparent. Given
N ∈ N, define the matrices D`,

∀` ∈ Z/NZ, D` = (e−2πimn`/N )N−1m,n=0.

By definition of the vector-valued DFT, we have

û(n)(q) =

(
N−1∑
m=0

u(m)(q)x−mn(q)

)

=

(
N−1∑
m=0

u(m)(q)e−2πimns(q)/N

)
=
(
Ds(q)u(·)(q)

)
(n),

i.e., the vector û(·)(q) is equal to the vector Ds(q)u(·)(q). In other words, we obtain û by
applying the matrix Ds(q) to the q–th column of u for each 0 ≤ q ≤ d − 1. Therefore, F is
invertible if and only if each matrix Ds(q) is invertible.

The rows of D` are a subset of the rows of the DFT matrix, and each row of the DFT
matrix is a character of Z/NZ. Taken as a collection, the characters form the dual group

(Z/N Ẑ) ' Z/NZ under pointwise multiplication. With this group operation and the fact
that

∀m,n ∈ Z/NZ, e−2πimn`/N = (e−2πin`/N )m,



12 TRAVIS D. ANDREWS, JOHN J. BENEDETTO, AND JEFFREY J. DONATELLI

we see the rows of D` are the orbit of some element γ ∈ (Z/N Ẑ) repeated |γ|/N times.
Hence, D` is invertible if and only if γ generates the entire dual group. From the theory

of cyclic groups, γ is a generator of (Z/N Ẑ) if and only if γ = (e−2πin`/N )N−1n=0 for some `
relatively prime to N . Therefore, F is invertible if and only if s(q) is relatively prime to N
for each q.

Example 3.6 (Invertibility of Fourier matrices). Let N = 4 and recall that ω = e−2πi/4. We
compute the matrices D1, D2, and D3.

D1 =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 D2 =


1 1 1 1
1 ω2 1 ω2

1 1 1 1
1 ω2 1 ω2

 D3 =


1 1 1 1
1 ω3 ω2 ω
1 ω2 1 ω2

1 ω1 ω2 ω3


It is easy to see that D1 and D3 are invertible while D2 is not invertible. In each case the
matrix Di is generated by pointwise powers of its second row, which have orders 4, 2, and 4
respectively. In fact, the full vector-valued DFT can be viewed as a block matrix, where the
qth block is Ds(q).

Remark 3.7. Using our definition of the vector-valued DFT, that we first published in [16]
(2008), Soto-Quiros [108] has proven the inversion formula in term of block matrices. We
should point out that our proof of the inversion formula was not included in [16] because of
space limitations of Asilomar conference publications. The proof is included above and it is
substantially different than that of Soto-Quiros.

3.3. The Banach algebra of the vector-valued DFT. We now study the vector-valued
DFT in terms of Banach algebras. In fact, we shall define a Banach algebra structure on
A = L1(Z/NZ×Z/dZ), describe the spectrum σ(A) of A, and then prove that the Gelfand
transform of A is the vector-valued DFT.

To this end, first recall that if G is a locally compact Abelian group (LCAG), then L1(G)
is a commutative Banach algebra under convolution.

Next, let B be a commutative Banach ∗-algebra over C, where ∗ indicates the involution
satisfying the properties, (x + y)∗ = x∗ + y∗, (cx)∗ = cx∗, (xy)∗ = y∗x∗, and x∗∗ = x for all

x, y ∈ B and c ∈ C. For example, let B = L1(G) and define f ∗(t) = f(−t) for f ∈ L1(G).
The spectrum σ(B) of B is the set of non-zero homomorphisms, h : B → C. σ(B) is subset of
the weak ∗-compact unit ball of the dual space B′ of the Banach space B, and each x ∈ B
defines a function x̂ : σ(B)→ C given by

∀h ∈ σ(B), x̂(h) = h(x).

x̂ is the Gelfand transform of x. We shall use well-known properties of the Gelfand transform,
e.g., see [54,59,75,76,98,101,105].

Using the group structure on Z/NZ × Z/dZ, we define the convolution of u, v ∈ A =
L1(Z/NZ× Z/dZ) by the formula,

(13) (u ∗ v)(m)(n) =
N−1∑
k=0

d−1∑
l=0

u(k)(l)v(m− k)(n− l).

This definition is not ideal for our purposes because it treats u and v as functions that take
Nd values. Our desire is to view u and v as functions that take N values, that are each d
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dimensional vectors. The convolution (13) can be rewritten as

(u ∗ v)(m)(n) =
N−1∑
k=0

(u(k) ∗ v(m− k))(n),

where the ∗ on the right hand side is d-dimensional convolution. Replacing this d-dimensional
convolution with pointwise multiplication, we arrive at the following new definition of con-
volution on A.

Definition 3.8 (Vector-valued convolution). Let u, v ∈ A. Define the vector-valued convo-
lution of u and v by the formula

(u ∗v v)(m) =
N−1∑
k=0

u(k)v(m− k).

Theorem 3.9 (Properties of A). A equipped with the vector-valued convolution ∗v is a
commutative Banach ∗-algebra with unit e defined as

e(m) =

{
~1 m = 0
~0 m 6= 0,

where ~1 and ~0 are the vectors of 1s and 0s, respectively, and with involution defined as
u∗(m) = u(−m).

Proof. It is essentially only necessary to verify that ‖u ∗v v‖1 ≤ ‖u‖1 ‖v‖1 is valid. We
compute

‖u ∗v v‖1 =
N−1∑
m=0

‖u ∗ v(m)‖L1(Z/dZ) =
N−1∑
m=0

∥∥∥∥∥
N−1∑
k=0

u(k)v(m− k)

∥∥∥∥∥
L1(Z/dZ)

≤
N−1∑
m=0

N−1∑
k=0

‖u(k)v(m− k)‖L1(Z/dZ) ≤
N−1∑
m=0

N−1∑
k=0

‖u(k)‖L1(Z/dZ) ‖v(m− k)‖L1(Z/dZ)

=
N−1∑
k=0

‖u(k)‖L1(Z/dZ)

N−1∑
m=0

‖v(m− k)‖L1(Z/dZ) =
N−1∑
k=0

‖u(k)‖L1(Z/dZ) ‖v‖1 = ‖u‖1 ‖v‖1 .

�

Tying this together with our DFT theory, we have the following desired theorem relating
A to the vector-valued DFT.

Theorem 3.10 (Convolution theorem). Let u, v ∈ A. The vector-valued Fourier transform
of the convolution of u and v is the vector product of their Fourier transforms, i.e.,

F (u ∗v v) = F (u)F (v).

Proof.

F (u ∗v v)(n) =
N−1∑
m=0

(u ∗ v)(m)x−mn =
N−1∑
m=0

(
N−1∑
k=0

u(k)v(m− k)

)
x−mn

=
N−1∑
k=0

u(k)

(
N−1∑
m=0

v(m− k)x−mn

)
=

N−1∑
k=0

u(k)

(
N−1∑
l=0

v(l)x−(k+l)n

)
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=

(
N−1∑
k=0

u(k)x−kn

)(
N−1∑
l=0

v(l)x−ln

)
= F (u)(n)F (v)(n).

�

We shall now describe the spectrum of A and the Gelfand transform of A, see Theorem
3.11.

Define functions δ(i,j) in A by

δ(i,j)(m)(n) =

{
1 (m,n) = (i, j)

0 otherwise.

It is easy to see that δk(1,j) = δ(1,j) ∗ . . . ∗ δ(1,j) (k factors) = δ(k,j) so that {δ(1,j)}d−1j=0 generate

A. We shall find the spectrum of the individual elements of our generating set {δ(1,j)}d−1j=0 ,
and with this information describe the spectrum of A.

To find the spectrum of δ(1,j) we first find necessary conditions on λ for (λe − δ(1,j))−1
to exist, and when these conditions are met we compute (λe − δ(1,j))

−1 and thereby show
the conditions are sufficient as well. To that end, suppose u = (λe − δ(1,j))

−1 exists, i.e.,
(λe− δ(1,j)) ∗ u = e. Expanding the definitions on the left hand side

(λe− δ(1,j)) ∗ u(m) =
N−1∑
k=0

(λe− δ(1,j))(k)u(m− k)

= λu(m)− δ(1,j)(1)u(m− 1).

Setting the result equal to e(m) and dividing into the cases m = 0 and m 6= 0 yields two
equations

(14) ∀n ∈ Z/dZ, λu(0)(n)− δ(1,j)(1)(n)u(N − 1)(n) = 1

and

(15) ∀n ∈ Z/dZ and ∀m ∈ Z/NZ \ {0}, λu(m)(n)− δ(1,j)(1)(n)u(m− 1)(n) = 0.

Substituting n = j into (14) yields

(16) λu(0)(j)− u(N − 1)(j) = 1,

while for n 6= j we have

u(0)(n) =
1

λ
.

Therefore, we must have λ 6= 0. Similarly, substituting n = j in (15) gives

(17) ∀m 6= 0, λu(m)(j)− u(m− 1)(j) = 0,

while
∀n 6= j, ∀m 6= 0, u(m)(n) = 0.

At this point and for our fixed j we have specified all the values of u except for u(m)(j).
Now, iterate (17) N − 1 times to find

(18) λN−1u(N − 1)(j)− u(0)(j) = 0.

Finally, multiplying (18) by λ and adding it to equation (16) we obtain

(λN − 1)u(N − 1)(j) = 1,
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and hence λN 6= 1. Using (17) we can find the remaining values of u(m)(j):

u(m)(j) =
λN−m−1

λN − 1
.

This completes the computation of u. We have shown that, for λe− δ(1,j) to be invertible, λ
must satisfy λ 6= 0 and λN 6= 1. Given that λ meets these requirements we found an explicit
inverse; therefore σ(δ(1,j)) = {0, λ : λN = 1}.

By the Riesz representation theorem, a linear functional on A is given by integration
against a function γ ∈ L∞(Z/NZ × Z/dZ), which we can also view simply as an N × d
matrix. Further, a basic result in the Gelfand theory is that, for a commutative Banach
algebra with unit, we have x̂(σ(A)) = σ(x) (Theorem 1.13 of [54]). Combining this with our
previous calculations, it follows that for a multiplicative linear functional γ,

γ(1)(n) =

∫
δ(1,n)γ = γ(δ(1,n)) ∈ σ(δ(1,n)).

Since γ is multiplicative,

γ(m)(n) =

∫
δ(m,n)γ =

∫
δm(1,n)γ = γ(δm(1,n)) = γ(δ(1,n))

m,

taking the values 0 or λm where λN = 1. Therefore γ(0)(n) is 0 or 1, and since

1 = γ(e) =
d−1∑
k=0

γ(0)(k),

we have γ(0)(n) 6= 0 (and thus γ(1)(n) 6= 0) for only one n. It follows that for this n,
γ(1)(n) = λ where λN = 1.

We have everything we need to describe σ(A). The multiplicative linear functionals on
A are N × d matrices of the form

γλ,k(m)(n) =

{
λ−m for n = k,

0 otherwise,
where λN = 1, 0 ≤ k ≤ d− 1.

Set ω = e−2πi/N . If λN = 1, then λ = ωj for some 0 ≤ j ≤ N − 1, and we can write γλ,k as
γj,k. Thus, we can list all the elements of σ(A) as {γj,k}, 0 ≤ j ≤ N − 1, 0 ≤ k ≤ d− 1, and
there are Nd of them.

Let s : Z/dZ → Z/NZ be injective and have the property that for every n ∈ Z/dZ,
(s(n), N) = 1, i.e., the vector-valued DFT defined by s is invertible. Using s, we can reorder
σ(A) as follows. For 0 ≤ p ≤ N − 1 and 0 ≤ q ≤ d− 1, define γ′p,q by

γ′p,q(m)(n) =

{
ω−pms(q) for n = q,

0 otherwise.

We claim {γ′p,q}p,q is a reordering of {γj,k}j,k. To show this, first note that {γ′p,q}p,q ⊆ {γj,k}j,k.
To demonstrate the reverse inclusion, for each q ∈ Z/dZ find a multiplicative inverse to s(q)
in Z/NZ. This may be done because (s(q), N) = 1 for every q. Writing this inverse as
s(q)−1, it follows that

γ′js(k)−1,k = γj,k,

and therefore {γj,k}j,k ⊆ {γ′p,q}p,q.
We summarize all of these calculations as the following theorem.
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Theorem 3.11 (Spectrum and Gelfand transform of A). The spectrum, σ(A), of A is
identified with Z/NZ×Z/dZ by means of the mapping γ′p,q ↔ (p, q). Under this identification,
the Gelfand transform, x̂ ∈ C(σ(A)), of x ∈ A, is the N × d matrix,

x̂(p)(q) = x̂(γ′p,q) = γ′p,q(x) =
N−1∑
m=0

x(m)(q)ωpms(q)

=
N−1∑
m=0

x(m)(q)e−2πipms(q)/N .

In particular, under the identification, γ′p,q ↔ (p, q), the Gelfand transform of A is the
vector-valued DFT.

While this shows that the transform we have defined is itself not new, it also shows that
a classical transform can be redefined in the context of frame theory.

Example 3.12 (Vector-valued functions and commutative Banach algebras). a. In the spirit
of our analysis of A, but not the same mathematically, a generalization for the harmonic
analysis of vector valued functions, u : Z/NZ → Cd, is to consider the space L1(G, V ).
Here, G is a locally compact Abelian group and V is a commutative Banach algebra, so that
L1(G, V ) is defined as the space of V -valued Bochner integrable functions on G with respect
to Haar Measure on G, cf. another direction of generalization with regard to POVMs, see
Example 6.11 As such, L1(G, V ) is a commutative Banach algebra, where G has replaced
Z/NZ and V has replaced Cd.

To have developed our theory in the generality of L1(G, V ) would have obviated the
applicable roots and future of our approach, and, more fundamentally, would have severely
restricted finding and proving properties of the theory, e.g., the number theoretic role in this
section necessary for defining the vector-valued DFT.

On the other hand, the study of objects such as L1(G, V ) allows us to formulate structural
quests. For example, A. Hausner [71] and G. P. Johnson [82], both in 1956, proved that the
maximal ideal space of L1(G, V ) is homeomorphic to the cartesian product of the dual group
of G with the maximal ideal space of V , taken with the appropriate topologies. Knowledge
of the ideal structure of Banach algebras is equivalent to the understanding of spectral
synthesis reconstruction in these algebras, and parallels the knowledge of ideal structure
in algebraic geometry associated with results such as the Nullstellensatz, see [6], page 42.
The study of spectral synthesis for L1(G) goes back to Wiener’s Tauberian theorem and
the classical formulation of Beurling, e.g., [6]. Because of the Grothendieck theory [64],
L1(G, V ) is a projective tensor product, and such products have had significant implications
in abstract harmonic analysis associated with spectral synthesis, see [6], Section 3.1 and
the references there. The projective tensor product technology also leads to generalization
beyond L1(G, V ), see [90].

b. The maximal ideal space of L1(G, V ) and spectral synthesis were introduced in part a.
Another fundamental object of study in harmonic analysis is that of a multiplier. A classic
treatise on the subject is due to R. Larsen [87]. A multiplier L : L1(G, V ) −→ L1(G, V )
is a continuous linear mapping with the properties that L τg = τg L for all g ∈ G and
L(vf) = vL(f) for all v ∈ V, f ∈ L1(G, V ). The first condition should be compared with
the two conclusions of Theorem 3.5. Let M(L1(G, V )) be the space of multipliers taken
with the natural topology on spaces of continuous linear mappings, and let M(G, V ) be the
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space of bounded V -valued measures taken with its natural dual space topology from the
Riesz representation theorem. Tewari, Dutta, and Vaidya [118] proved that M(L1(G, V ))
andM(G, V ) are isometrically isomorphic in the case tht V has an identity: and there have
been generaliztions, e.g., see [100].

4. Formulation of generalized scalar- and vector-valued ambiguity
functions

4.1. Formulation. Given u : Z/NZ → Cd. A periodic vector-valued ambiguity function
Adp(u) : Z/NZ× Z/NZ→ Cd was defined in [16] by observing the following. If d = 1, then
Ap(u) in Equation (2) can be written as

Ap(u)(m,n) =
1

N

N−1∑
k=0

〈u(m+ k), u(k)ekn〉

=
1

N

N−1∑
k=0

〈τ−mu(k), F−1(τnû)(k)〉,(19)

where τ−m is the translation operator of Definition 3.4 and where F−1 is the inverse DFT
on Z/NZ. In particular, we see that Ap(u) has the form of a STFT, see Example 4.3. This
is central to our approach.

If d > 1, then, motivated by the calculation (19), it turns out that we can define both a
C-valued ambiguity function A1

p(u) and a Cd-valued function Adp(u).
First, we consider the case of a C-valued ambiguity function. Inspired by (19), and

for u : Z/NZ → Cd, we wish to construct a sequence {xn}N−1n=0 ⊆ Cd and define a vector
multiplication ∗ in Cd so that the mapping, A1

p(u) : Z/NZ× Z/NZ→ C, given by

(20) A1
p(u)(m,n) =

1

N

N−1∑
k=0

〈u(m+ k), u(k) ∗ xkn〉

is a meaningful ambiguity function. The product, kn, is modular multiplication in Z/NZ.
In Subsections 4.2 and 4.4, we shall see that in quite general circumstances, for the proper
{xn}N−1n=0 and ∗, Equation (20) can be made compatible with that of Ap(u) in (19).

Second, we consider the case of a Cd-valued ambiguity function. In the context of our
definition of A1

p(u), we formulate the vector-valued version, Adp(u), of the periodic ambiguity

function as follows. Let u : Z/NZ→ Cd, and define the mapping, Adp(u) : Z/NZ×Z/NZ→
Cd, by

(21) Adp(u)(m,n) =
1

N

N−1∑
k=0

u(m+ k) ∗ u(k) ∗ xkn,

where {xn}N−1n=0 and ∗ must also be constructed and defined, respectively. In Example 4.3,
we shall see that this definition is compatible with that of Ap(u) in (19).

To this end of defining Adp(u), and motivated by the facts that {en}N−1n=0 is a tight frame
for C (as noted in Subsection 2.4) and emen = em+n, the following frame multiplication
assumptions were made in [16].
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• There is a sequence X = {xn}N−1n=0 ⊆ Cd and a multiplication ∗ : Cd × Cd → Cd such
that

(22) ∀m,n ∈ Z/NZ, xm ∗ xn = xm+n;

• X = {xn}N−1n=0 is a tight frame for Cd;
• The multiplication ∗ is bilinear, in particular,(

N−1∑
j=0

cjxj

)
∗

(
N−1∑
k=0

dkxk

)
=

N−1∑
j=0

N−1∑
k=0

cjdkxj ∗ xk.

There exist tight frames satisfying these assumptions, e.g., DFT frames. We shall charac-
terize such tight frames and multiplications in Sections 5, 6, and 7.

A reason we developed our vector-valued DFT theory of Section 3 was to verify, not
just motivate, that Adp(u) is a STFT in the case {xk}N−1k=0 is a DFT frame for Cd. Let

X = {xn}N−1n=0 be a DFT frame for Cd. We can leverage the relationship between the bilinear
product pointwise multiplication and the operation of addition on the indices of X, i.e.,
xmxn = xm+n, to define the periodic vector-valued ambiguity function Adp(u) as in Equation
(21). In this case, the DFT frame is acting as a high dimensional analog to the roots of unity
{ωn = e2πin/N}N−1n=0 , that appear in the definition of the usual periodic ambiguity function.

Example 4.1 (Multiplication problem). Given u : ZN −→ Cd. If d = 1 and xn = e2πin/N ,
then Equations (2) and (19) can be written as

Ap(u)(m,n) =
1

N

N−1∑
k=0

〈u(m+ k), u(k)xnk〉.

The multiplication problem for A1
p(u) is to characterize sequences {xk} ⊆ Cd and multiplica-

tions ∗ so that

A1
p(u)(m,n) =

1

N

N−1∑
k=0

〈u(m+ k), u(k) ∗ xnk〉 ∈ C

is a meaningful and well-defined ambiguity function. This formula is clearly motivated by
the STFT. It is for this reason that we made the frame multiplication assumptions.

In fact, suppose {xj}N−1j=0 ⊆ Cd satisfies the three frame multiplication assumptions. If

we are given u, v : Z/NZ −→ Cd and m,n ∈ Z/NZ, then we can make the calculation,

u(m) ∗ v(n) =
d

N

N−1∑
j=0

〈u(m), xj〉xj ∗
d

N

N−1∑
s=0

〈v(n), xs〉xs(23)

=
d2

N2

N−1∑
j=0

N−1∑
s=0

〈u(m), xj〉〈v(n), xs〉xj ∗ xs

=
d2

N2

N−1∑
j=0

N−1∑
s=0

〈u(m), xj〉〈v(n), xs〉xj+s.

This allows us to formulate A1
p(u), as written in Equation (20), see Subsection 4.2.
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4.2. Ad1(u) and Adp(u) for DFT frames.

Example 4.2 (STFT formulation of A1
p(u)). Given u, v : Z/NZ → Cd, and let X =

{xk}N−1k=0 ⊆ Cd be a DFT frame for Cd. Suppose ∗ denotes pointwise (coordinatewise) multi-

plication times a factor of
√
d. Then, the frame multiplication assumptions are satisfied. To

see this, and without loss of generality, choose the first d columns of the N×N DFT matrix,
and let r designate a fixed column. Then, we can verify the first of the frame multiplication
assumptions by the following calculation, where the first step is a consequence of Equation
(23):

xm ∗ xn(r) =
d2

N2

N−1∑
j=0

N−1∑
s=0

〈xm, xj〉〈xn, xs〉xj+s(r).

=
1

N2
√
d

N−1∑
j=0

N−1∑
s=0

d−1∑
t=0

d−1∑
k=0

x(m−j)tx(n−s)kx(j+s)r

=
1

N2
√
d

d−1∑
t=0

d−1∑
k=0

xmt+nk

N−1∑
j=0

x(r−t)j

N−1∑
s=0

x(r−k)s

=
1

N2
√
d

d−1∑
t=0

d−1∑
k=0

xmt+nkNδ(r − t)Nδ(r − k)

=
x(m+n)r√

d
= xm+n(r).

The second and third frame multiplication assumptions follow since X is a DFT frame and
by a straightforward calculation (already used in Equation (23)), respectively.

Thus, in this case, A1
p(u) is well-defined for u : Z/NZ → Cd by Equation (24) since its

right side exists:

(24) A1
p(u)(m,n) =

1

N

N−1∑
k=0

〈u(m+ k), u(k) ∗ xnk〉

=
1

N

N−1∑
k=0

〈
u(m+ k),

d

N

N−1∑
j=0

〈u(k), xj〉xj ∗ xnk

〉

=
d

N2

N−1∑
k=0

N−1∑
j=0

〈xj, u(k)〉〈u(m+ k), xj+nk〉.

Example 4.3 (STFT formulation of Adp(u)). Given u, v : Z/NZ → Cd, and let X =

{xk}N−1k=0 ⊆ Cd be a DFT frame for Cd. Suppose ∗ denotes pointwise (coordinatewise) mul-

tiplication with a factor of
√
d. Then, the frame multiplication assumptions are satisfied.

Utilizing the modulation functions, ej, defined in Definition 3.4, we compute the right side
of Equation (21) to obtain

(25) Adp(u)(m,n) =
1

N

N−1∑
k=0

τ−mu(k)u(k)en(k).
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Furthermore, the modulation and translation properties of the vector-valued DFT allow us
to write Equation (25) as

Adp(u)(m,n) =
1

N

N−1∑
k=0

(τmu(k)) ∗ F−1(τnû)(k);

and, notationally, we write the right side as the generalized inner product,

1

N

N−1∑
k=0

{τmu(k), F−1(τnû)(k)},

where {u, v} = uv is coordinatewise multiplication for u, v ∈ Cd. Because of the form of
Equation (21), we reiterate that Adp(u) is compatible with the point of view of defining a
vector-valued ambiguity function in the context of the STFT.

4.3. A generalization of the frame multiplication assumptions. In the previous DFT
examples, ∗ is intrinsically related to modular addition defined on the indices of the frame
elements, viz., xm ∗ xn = xm+n. Suppose we are given X and ∗, that satisfy the frame
multiplication assumptions. It is not pre-ordained that the operation on the indices of the
frame X, induced by the bilinear vector multiplication, be addition mod N , as is the case for
DFT frames. We are interested in finding tight frames whose behavior is similar to that of
DFT frames and whose index sets are Abelian groups, non-Abelian groups, or more general
non-group sets and operations.

Hence, and being formulaic, we could have xm ∗xn = xm•n for some function • : Z/NZ×
Z/NZ → Z/NZ, and, thereby, we could use non-DFT frames or even non-FUNTFs for
Cd. Further, • could be defined on index sets, that are more general than Z/NZ. Thus, a
particular case could have the setting of bilinear mappings of frames for Hilbert spaces that
are indexed by groups.

For the purpose of Subsection 4.4, we continue to consider the setting of Z/NZ and Cd,
but replace the first frame multiplication assumption, Equation (22), by the formula,

(26) ∀m,n ∈ Z/NZ, xm ∗ xn = xm•n,

where X = {xk}N−1k=0 is still a tight frame for Cd and where ∗ continues to be bilinear.
The formula, Equation (26), not only hints at generalization by the cross-product example

of Subsection 4.4, but is the formal basis of the theory of frame multiplication in Sections 5,
6, and 7.

4.4. Frame multiplication assumptions for cross product frames. Let ∗ : C3×C3 →
C3 be the cross product on C3 and let {i, j, k} be the standard basis, e.g., i = (1, 0, 0) ∈ C3.
Therefore, we have

(27) i ∗ j = k, j ∗ i = −k, k ∗ i = j, i ∗ k = −j, j ∗ k = i, k ∗ j = −i,

i ∗ i = j ∗ j = k ∗ k = 0.

The union of two tight frames and the zero vector is a tight frame, so if we let X = {xn}6n=0,
where x0 = 0, x1 = i, x2 = j, x3 = k, x4 = −i, x5 = −j, x6 = −k, then it is straightforward to
check that X is a tight frame for C3 with frame bound 2.

The index operation corresponding to the frame multiplication is

(28) • : Z/7Z× Z/7Z −→ Z/7Z,
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where • is the non-Abelian, non-group operation defined by the following table:

1 • 2 = 3, 1 • 3 = 5 1 • 4 = 0, 1 • 5 = 6, 1 • 6 = 2,
2 • 1 = 6, 2 • 3 = 1, 2 • 4 = 3, 2 • 5 = 0, 2 • 6 = 4,
3 • 1 = 2, 3 • 2 = 4, 3 • 4 = 5, 3 • 5 = 1, 3 • 6 = 0,

n • n = 0, n • 0 = 0 • n = 0.

We have chosen this definition of • for the following reasons. As we saw in Example 4.1,
the three frame multiplication assumptions are essential for defining a meaningful ambiguity
function. In Subsection 4.1, these assumptions were based on the formula, xm ∗ xn = xm+n,
used in Equation (22). However, in order to generalize this point of view, we shall consider
the formula, xm∗xn = xm•n, as indicated in Subsection 4.3. provided the corresponding three
frame multiplication assumptions can be verified. In fact, for this cross product example, it
is easily checked that the frame multiplication assumptions of Equation (22) are valid when
+ is replaced by the • operation defined above in (28) and the corresponding table.

Consequently,we can write the cross product as

(29) ∀u, v ∈ C3, u× v = u ∗ v =
1

22

6∑
s=1

6∑
t=1

〈u, xs〉〈v, xt〉xs•t.

=
1

4

6∑
n=1

(∑
j•k=n

〈u, xj〉〈v, xk〉

)
xn.

One possible application of the above is that, given frame representations for u, v ∈ C3,
Equation (29) allows us to compute the frame representation of u × v without the process
of going back and forth between the frame representations and their standard orthogonal
representations.

There are five non-isomorphic groups of order 8: the Abelians (Z/8Z,Z/4Z×Z/2Z,Z/2Z×
Z/2Z×Z/2Z), the dihedral, cf. Example 6.10, and the quaternion group Q = {±1,±i,±j,±k}.
The unit of Q is 1, the products ij, etc. are the cross product as in Equation (27), and
ii = jj = kk = 1. Clearly, Q is closely related to X = {xn}6n=0,

5. Frame multiplication

We now define the notion of a frame multiplication, that is connected with a bilinear
product on the frame elements, and we analyze its properties.

Definition 5.1 (Frame multiplication). Let X = {xj}j∈J be a frame for a separable Hilbert
space H over F, and let • : J × J → J be a binary operation. The mapping • is a frame
multiplication for X or, by abuse of language, a frame multiplication for H, if it extends to
a bilinear product ∗ on all of H, i.e., if there exists a bilinear product ∗ : H ×H → H such
that

∀j, k ∈ J, xj ∗ xk = xj•k.

If (G, •) is a group, where G = J and • is a frame multiplication for X, then we shall also
say that G defines a frame multiplication for X.

To fix ideas, we shall generally but not always deal with frame multiplication for H = Cd.
Our theory clearly extends, and many of the results are valid for infinite dimensional Hilbert
spaces. Further, in light of the importance of finite dimensional spaces, that are not Hilbert
spaces, e.g., in compressed sensing, we intend extend our theory to such spaces.
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Let X = {xj}j∈J be a frame for H = Cd By definition, a binary operation • : J × J → J
is a frame multiplication for X when it extends to a bilinear product by bilinearity to the
entire space H. Conversely, if there is a bilinear product ∗ : H × H → H which agrees
with • on X, i.e., xj ∗ xk = xj•k, then it must be the unique extension given by bilinearity
since X spans H. Therefore, • defines a frame multiplication for X if and only if for every
x =

∑
i aixi ∈ H and y =

∑
i bixi ∈ H,

(30) x ∗ y =
∑
i∈J

∑
j∈J

aibjxi•j

is defined and independent of the frame representations used for x and y.

Remark 5.2. Whether or not a particular binary operation is a frame multiplication depends
not just on the elements of the frame but on the indexing of the frame. For clarity of
definitions and later theorems, we make no attempt to define a notion of frame multiplication
for multi-sets of vectors that is independent of the index set.

A distinction that must be kept in mind is that • is a set operation on the indices of a
frame while ∗ is a bilinear vector product defined on all of Cd.

We shall investigate the interplay between bilinear vector products on Cd, frames for Cd

indexed by J , and binary operations on J . For example, if we fix a binary operation • on J ,
then for what sort of frames indexed by J do we obtain a frame multiplication? Conversely,
if we fix a frame X = {xj}j∈J for Cd, then what sort of binary operations on J are frame
multiplications for Cd?

Proposition 5.3 (Binary operations for frame multiplication). Let X = {xj}j∈J be a frame
for H = Cd, and let • : J × J → J be a binary operation. Then, • is a frame multiplication
for X if and only if

(31) ∀{ai}i∈J ⊆ F and ∀j ∈ J,
∑
i∈J

aixi = 0 implies
∑
i∈J

aixi•j = 0 and
∑
i∈J

aixj•i = 0.

Proof. Suppose ∗ is the bilinear product defined by • and {ai}i∈J is a sequence of scalars. If∑
i∈J aixi = 0, then∑

i∈J

aixi•j =
∑
i∈J

ai (xi ∗ xj) =

(∑
i∈J

aixi

)
∗ xj = 0 ∗ xj = 0.

Similarly, by multiplying on the left by xj, we see that
∑

i∈J aixj•i = 0.
For the converse, suppose that statement (31) holds and x =

∑
i aixi =

∑
i cixi, y =∑

j bjxj =
∑

j djxj ∈ H. By (31), we have

(32) ∀j ∈ J,
∑
i∈J

(ai − ci)xi•j = 0

and

(33) ∀i ∈ J,
∑
j∈J

(bj − dj)xi•j = 0.

Therefore, using (33) and (32), we obtain∑
i∈J

∑
j∈J

aibjxi•j =
∑
i∈J

ai
∑
j∈J

bjxi•j =
∑
i∈J

ai
∑
j∈J

djxi•j
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=
∑
j∈J

dj
∑
i∈J

aixi•j =
∑
j∈J

dj
∑
i∈J

cixi•j =
∑
i∈J

∑
j∈J

cidjxi•j,

and, hence, ∗ is well-defined by (30). �

Definition 5.4 (Similarity). Frames X = {xj}j∈J and Y = {yj}j∈J for H = Cd are similar
if there exists an invertible linear operator A ∈ L(H) (see Appendix 9) such that

∀j ∈ J, Axj = yj.

Proposition 5.5 (Frame multiplications for X an Y ). Suppose X = {xj}j∈J and Y =
{yj}j∈J are frames for H = Cd, and that X is similar to Y . Then, a binary operation
• : J × J → J is a frame multiplication for X if and only if it is a frame multiplication for
Y .

Proof. Because A−1yj = xj and A−1 is also an invertible operator, we need only prove one
direction of the proposition. Suppose • is a frame multiplication for X and that

∑
i aiyi = 0.

We have

0 =
∑
i∈J

aiyi =
∑
i∈J

aiAxi = A

(∑
i∈J

aixi

)
,

and since A is invertible it follows that
∑

i aixi = 0. By Proposition 5.3, and because • is a
frame multiplication for X, we can assert that

∀j ∈ J,
∑
i∈J

aixi•j = 0 and
∑
i∈J

aixj•i = 0.

Applying A to both of these equations yields:

∀j ∈ J,
∑
i∈J

aiyi•j = 0 and
∑
i∈J

aiyj•i = 0.

Therefore, by Proposition 5.3, • is a frame multiplication for Y . �

Definition 5.6 (Multiplications of a frame). Let X = {xj}j∈J be a frame for H = Cd. The
multiplications of X are defined and denoted by

mult(X) = {frame multiplications • : J × J → J forX}.
mult(X) can be all functions (for example when X is a basis), empty, or somewhere in-
between.

Example 5.7 (The possibility for no frame multiplications). Let α, β > 0, α 6= β, and
α + β < 1. Define Xα,β = {x1 = (1, 0)t, x2 = (0, 1)t, x3 = (α, β)t}. Notationally, the
superscript t denotes the transpose of a vector. Then, Xα,β is a frame for C2 and mult(Xα,β) =
∅. A straightforward way to prove that mult(Xα,β) = ∅ is to show that there are no bilinear
operations on C2 which leave Xα,β invariant. Suppose ∗ were such a bilinear operation. We
shall obtain a contradiction.

First, we have the linear relation x3 = αx1 + βx2. Hence, by the bilinearity of ∗,
(34) x1 ∗ x3 = αx1 ∗ x1 + βx1 ∗ x2.
Second, ‖x1‖2 = ‖x2‖2 = 1 and ‖x3‖2 < 1, where the inequality follows from the facts that
‖x3‖2 = (α2 + β2)1/2 and

0 < α2 + β2 = (α + β)2 − 2αβ < (α + β)2 < 1.
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By the properties of α, β, and using Equation (34), we have that

(35) ∃m, n such that ‖x1 ∗ x3‖2 = ‖αx1 ∗ x1 + βx1 ∗ x2‖2
= ‖αxm + βxn‖2 ≤ α ‖xm‖2 + β ‖xn‖2 < 1.

Thus, since ∗ leaves Xα,β invariant, we obtain that x1 ∗ x3 = x3 by (35). Furthermore,
substituting x3 for x1 ∗ x3 in Equation (34) and using the assumption that α 6= β, yield
x1 ∗ x1 = x1 and x1 ∗ x2 = x2. Performing the analogous calculation on x3 ∗ x2, in place of
x1 ∗ x3 above, shows that x2 ∗ x2 = x2 and x1 ∗ x2 = x1, the desired contradiction.

-

6

��
��

��*

x1

x2

x3

Figure 1. The frame Xα,β from Example 5.7 for α = 1/2 and β = 1/4. This
frame has no frame multiplications.

Of particular interest, Proposition 5.5 tells us that the canonical dual frame {S−1xj}j∈J
and the canonical tight frame {S−1/2xj}j∈J share the same frame multiplications as the
original frame X. Because of this, we shall focus our attention on tight frames. An invertible
element V ∈ L(H) mapping an A-tight frame X = {xj} (frame constant A) to an A′-tight
frame Y = {yj}, as in Proposition 5.5, is a positive multiple of some U ∈ U(H), the space
of unitary operators on H, see Appendix 9. Indeed, we have

A ‖V ∗x‖2 =
∑
j∈J

|〈V ∗x, xj〉|2 =
∑
j∈J

|〈x, V xj〉|2 =
∑
j∈J

|〈x, yj〉|2 = A′ ‖x‖2 .

This leads us to a notion of equivalence for tight frames that sounds stronger than similarity
but is actually just the restriction of similarity to the class of tight frames.

Definition 5.8 (Equivalence of tight frames). Tight frames X = {xj}j∈J and Y = {yj}j∈J
for a separable Hilbert space H are unitarily equivalent if there is U ∈ U(H) and a positive
constant c such that

∀j ∈ J, xj = cUyj.

Whenever we speak of equivalence classes for tight frames we shall mean under unitary
equivalence. For finite frames unitary equivalence can be stated in terms of Gramians:

Proposition 5.9 (Unitary equivalence in terms of Gramians, [120]). Let H = Cd and let
X = (x1, . . . , xN) and Y = (y1, . . . , yN) be sequences of vectors. Suppose span(X) = H, and
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so X is a frame for H. There exists U ∈ U(H) such that Uxi = yi, for every i = 1, . . . , n, if
and only if

∀i, j ∈ {1, . . . , N} 〈xi, xj〉 = 〈yi, yj〉,
i.e., the Gram matrices of X and Y are equal.

Thus, from Proposition 5.9, tight frames X and Y are unitarily equivalent if and only if
one of their Gramians is a scaled version of the other. In the case where both X and Y are
equivalent Parseval frames their Gramians are equal.

We are using Han and Larson’s [69] definition of similarity and unitary equivalence. In
particular, the ordering of the frame, and not just the unordered set of frame elements, is im-
portant. This choice is in concert with the way in which we have defined frame multiplication,
i.e., with a fixed index for our frame. Also, we have made no attempt to define equivalence
for frames indexed by different sets. This can be done, and results can then proven about the
correspondence of frame multiplications between similar or equivalent frames under this new
definition. However, allowing frames with two different index sets of the same cardinality to
be considered similar only obfuscates our results.

Theorem 5.10 (Multiplications of equivalent frames). Let X = {xj}j∈J and Y = {yj}j∈J be
finite tight frames for H = Cd. If X is unitarily equivalent to Y , then mult(X) = mult(Y ).

Proof. Since X and Y are unitarily equivalent they are similar. Therefore, by Lemma 5.5, • :
J×J → J defines a frame multiplication on X if and only if it defines a frame multiplication
on Y , that is, mult(X) = mult(Y ). �

The converse of Theorem 5.10 is not valid. The multiplications of a tight frame provide a
coarser equivalence relation than unitary equivalence. In fact, as Example 5.11 demonstrates,
we may have uncountably many equivalence classes of tight frames, that have the same
multiplications.

Example 5.11 (Equivalence and an empty set of frame multiplications). Let {αi}i=1,2 and
{βi}i=1,2 be real numbers such that α1 > β1 > α2 > β2 > 0, α1 + β1 < 1, and α2 + β2 < 1.
Define Xα1,β1 and Xα2,β2 as in Example 5.7. Then multi(Xα1,β1) = multi(Xα2,β2) = ∅. It
can be easily shown, by checking the six cases of where to map (1, 0)t and (0, 1)t, that there
is no invertible operator A such that AXα1,β1 = Xα2,β2 as sets. Therefore, there are no

c > 0 and U ∈ U(R2) such that cU maps between the canonical tight frames S
−1/2
1 Xα1,β1 and

S
−1/2
2 Xα2,β2 (for any reordering of the elements) and S

−1/2
1 Xα1,β1 and S

−1/2
2 Fα2,β2 , are not

unitarily equivalent. Hence, there are uncountably many equivalence classes of tight frames,
that have the same empty set of frame multiplications.

In contrast to Example 5.11, we shall see in Section 7 that if a tight frame has a particular
frame multiplication in terms of a group operation, then it belongs to one of only finitely
many equivalence classes of tight frames, that share the same group operation as a frame
multiplication. With this goal, we close this subsection with a characterization of bases in
terms of their multiplications, once we exclude the degenerate one case where one can have
a frame consisting of a single repeated vector).

Proposition 5.12 (Bases and frame multiplications). Let X = {xj}j∈J be a finite frame
for H = Cd, and suppose d > 1. If multi(X) = {all functions • : J × J → J}, then X is a
basis for H. If, in addition, X is a tight, respectively, Parseval frame for H, then X is an
orthogonal, respectively, orthonormal basis for H.
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Proof. Suppose that
∑

i aixi = 0, j0 ∈ J , and xj1 , xj2 ∈ X are linearly independent. Let
• : J × J → J be the function sending all products to j2 except that

∀j ∈ J, j0 • j = j1.

By assumption, • ∈ multi(X). Therefore, by Proposition 5.3, we have

∀j ∈ J, 0 =
∑
i∈J

aixi•j = aj0xj1 +
∑
i 6=j0

aixj2 .

Since xj1 and xj2 are linearly independent, aj0 = 0, and since j0 was arbitrary, X is a linearly
independent set. The last statement of the proposition follows from the elementary fact that
a basis, that satisfies Parseval’s identity or a scaled version of it, is an orthogonal set. �

6. Harmonic frames and group frames

6.1. Harmonic frames. The central part of our theory in Section 7 depends on the well-
established setting of harmonic frames and group frames. We review that material here. We
shall see that harmonic frames are group frames.

These are two of several related classes of frames and codes, including Grassmannian
frames, that have been the object of recent and intense study. Bölcskei and Eldar [28]
(2003) define geometrically uniform frames as the orbit of a generating vector under an
Abelian group of unitary matrices. A signal space code was called geometrically uniform by
Forney [56] (1991) or a group code by Slepian [107] (1968) if its symmetry group (a group
of isometries) acts transitively. Harmonic frames are projections of the rows or columns
of the character table (DFT matrix) of an Abelian group. See Definition 6.1 for a precise
definition of character table and harmonic frame. Zimmermann [132] and Pfander [unpub-
lished] independently introduced and provided substantial properties of harmonic frames at
Bommerholz in 1999.

It is well known that the rows and columns of the character table of an Abelian group
are orthogonal. This fact combined with the direction of Naimark’s theorem, Theorem 2.7,
asserting that the orthogonal projection of an orthogonal basis is a tight frame, motivates
considering the class of equal-norm frames X of N vectors for a d-dimensional Hilbert space
H that arise from the character table of an Abelian group, i.e., equal norm frames given by
the columns of a submatrix obtained by taking d rows of the character table of an Abelian
group of order N .

Definition 6.1 (Harmonic frame for an Abelian group). Let (G, •) = {g1, . . . , gN} be a finite
Abelian group with dual group {γ1, . . . , γN}. The N×N matrix with (j, k) entry γk(gj) is the
character table of G. Let K ⊆ {1, . . . , N}, where |K| = d ≤ N, and with columns indexed
by k1, . . . , kd. Let U ∈ U(Cd). The harmonic frame X = XG,K,U for Cd is

X = {U(γk1(gj), . . . , γkd(gj)) : j = 1, . . . , N}.

Given G,K, and U = I. Then, X is the DFT - FUNTF on G for Cd. In this case, if
G = Z/NZ, then X is the usual DFT - FUNTF for Cd.

A fundamental characterization of harmonic frames is due to Vale and Waldron [120]
(2005); and they proved that harmonic frames and geometrically uniform tight frames are
equivalent, e.g., [125], pages 247–248, and can be characterized by their Gramian. The
intricate evaluation of the number of harmonic frames of prime order is due to Hirn [77]
(2010).
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6.2. Group frames. We begin with the first definition of a group frame from Han [66]
(1997), where the associated representation π is called a frame representation, also see [57,
67–70,122,125].

Definition 6.2 (Group frame – Han). Let (G, •) be a finite group. A finite frame X for
H = Cd is a group frame if there exists π : G → U(H), a unitary representation of G, and
x ∈ H such that

X = {π(g)x}g∈G.

If X is a group frame, then X is generated by the orbit of any one of its elements under
the action of G, and if X contains N unique vectors, then each element of X is repeated
|G|/N times. If e is the group identity, then we fix an “identity” element xe of X, and write
X = {xg}g∈G, where xg = π(g)xe. From this we see that group frames are frames for which
there exists an indexing by the group G such that

π(g)xh = π(g)π(h)xe = π(g • h)xe = xg•h.

This leads to a second, essentially equivalent, definition of a group frame for a frame already
indexed by G. This is the definition used by Vale and Waldron in [121].

Definition 6.3 (Group frame – Vale and Waldron). Let (G, •) be a finite group, and let
H = Cd. A finite tight frame X = {xg}g∈G for H is a group frame if there exists

π : G −→ U(H),

a unitary representation of G, such that

∀g, h ∈ G, π(g) xh = xg•h.

Example 6.4 (Comparison of definitions of group frames). The difference between Defini-
tions 6.2 and 6.3 is that in Definition 6.3 we begin with a frame as a sequence indexed by
G, and then ask whether a particular type of representation exists. In the first definition
we began with only a multi-set of vectors and asked whether an indexing exists such that
the second definition holds. For example, let G = Z/4Z = ({0, 1, 2, 3},+) and consider the
frame X = {x0 = 1, x1 = −1, x2 = i, x3 = −i} for C. X would be a group frame under Defi-
nition 6.2, because there are two one-dimensional representations of G that generate X. This
is clear from the Fourier matrix of Z/4Z. However, it would not qualify as a group frame
under Definition 6.3, because the representation π would have to satisfy π(1)x0 = x1, i.e.,
π(1)1 = −1. There is one one-dimensional representation of Z/4Z which satisfies this, but it
does not generate X. Indeed, it is defined by π(0) = 1, π(1) = −1, π(2) = 1, π(3) = −1.

In keeping with our view that a frame is a sequence with a fixed index set, we shall use
the second definition.

Remark 6.5. From Definitions 6.1 and 6.3, we see that harmonic frames are group frames.

Vale and Waldron noted in [121] that if X = {xg}g∈G is a group frame, then its Gramian
matrix (Gg,h) = (〈xh, xg〉) has a special form:

(36) 〈xh, xg〉 = 〈π(h)xg, π(g)xg〉 = 〈xg, π(h−1 • g)xg〉,

i.e., the g-h-entry is a function of h−1 • g.
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Definition 6.6 (G-matrix). Let G be a finite group. A matrix A = (ag,h)g,h∈G is called a
G-matrix if there exists a function ν : G→ C such that

∀g, h ∈ G, ag,h = ν(h−1 • g).

Vale and Waldron [121] were then able to prove essentially the following theorem using
an argument that hints at a connection to frame multiplication. We include a version of
their proof and highlight the connections to our theory.

Theorem 6.7 (Group frames and G-matrices). Let G be a finite group. A frame X =
{xg}g∈G for H = Cd is a group frame if and only if its Gramian is a G-matrix.

Proof. If X is a group frame, then Equation (36) implies its Gramian is the G-matrix defined
by ν(g) = 〈xe, π(g)xe〉.

For the converse, suppose the Gramian of X is a G-matrix. Let S be the frame operator,
and let x̃g = S−1xg be the canonical dual frame elements. Each x ∈ H has the frame
decomposition

(37) x =
∑
h∈G

〈x, x̃h〉xh.

For each g ∈ G, define a linear operator Ug : H → H by

∀x ∈ H, Ug(x) =
∑
h∈G

〈x, x̃h〉xg•h.

Since the Gramian of X is a G-matrix, we have

(38) ∀g, h, k ∈ G, 〈xg•h, xg•k〉 = ν((g • h)−1g • k) = ν(h−1 • k) = 〈xh, xk〉.
The following calculation shows that Ug is unitary, and the calculation itself follows from
(37) and (38):

〈Ug(x), Ug(y)〉 = 〈
∑
h∈G

〈x, x̃h〉xg•h,
∑
k∈G

〈y, x̃k〉xg•k〉

=
∑
h∈G

∑
k∈G

〈x, x̃h〉〈y, x̃k〉〈xg•h, xg•k〉 =
∑
h∈G

∑
k∈G

〈x, x̃h〉〈y, x̃k〉〈xh, xk〉

= 〈
∑
h∈G

〈x, x̃h〉xh,
∑
k∈G

〈y, x̃k〉xk〉 = 〈x, y〉.

Also, for every h, k ∈ G, we compute

〈Ug(xh)− xg•h, xg•k〉 = 〈Ug(xh), xg•k〉 − 〈xg•h, xg•k〉

= 〈
∑
m∈G

〈xh, x̃m〉xg•m, xg•k〉 − 〈xg•h, xg•k〉

=
∑
m∈G

〈xh, x̃m〉〈xg•m, xg•k〉 − 〈xg•h, xg•k〉 =
∑
m∈G

〈xh, x̃m〉〈xm, xk〉 − 〈xh, xk〉

= 〈
∑
m∈G

〈xh, x̃m〉xm, xk〉 − 〈xh, xk〉 = 〈xh, xk〉 − 〈xh, xk〉 = 0.

Letting k vary over all of G, it follows that Ug(xh) = xg•h. This implies that π : g 7→ Ug is a
unitary representation, since

∀g1, g2, h ∈ G, Ug1•g2xh = xg1•g2•h = Ug1xg2•h = Ug1Ug2xh
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and since {xh}h∈G spans H. Hence, π is a unitary representation of G for which π(g)xh =
xg•h, i.e., X is a group frame for H. �

Remark 6.8. The operators Ug, g ∈ G, defined in the proof of Theorem 6.7 are essentially
frame multiplication on the left by xg, but there may not exist a bilinear product on all of
Cd which agrees with or properly joins the sequence {Ug}g∈G. We shall prove in Proposition
7.1 that when these operators do arise from a frame multiplication defined by G, then they
are unitary when the Gramian is a G-matrix. In fact, we shall see in Section 7 that, if G is
an Abelian group and if the Gramian of X = {xg}g∈G is a G-matrix, or by Theorem 6.7 if
X is a group frame for Cd, then G defines a frame multiplication for X.

Example 6.9 (Cyclic G-matrices are circulant). If G a cyclic group, a G-matrix is a circulant
matrix. To illustrate this, we consider G = Z/4Z = ({0, 1, 2, 3},+) with the natural ordering.
Then all G-matrices, corresponding to this choice of G, are of the form

ν(0) ν(3) ν(2) ν(1)
ν(1) ν(0) ν(3) ν(2)
ν(2) ν(1) ν(0) ν(3)
ν(3) ν(2) ν(1) ν(0)


for some ν : G→ C, and this is a 4× 4 circulant matrix.

Example 6.10 (The dihedral group). For a non-circulant example of a G-matrix, let G =
D3, the dihedral group of order 6. If we use the presentation,

D3 =< r, s : r3 = e, s2 = e, rs = sr2 >,

and order the elements e, r, r2, s, sr, sr2, then every G-matrix has the form



e r r2 s sr sr2

e ν(e) ν(r2) ν(r) ν(s) ν(sr) ν(sr2)
r ν(r) ν(e) ν(r2) ν(sr) ν(sr2) ν(s)
r2 ν(r2) ν(r) ν(e) ν(sr2) ν(s) ν(sr)
s ν(s) ν(sr) ν(sr2) ν(e) ν(r2) ν(r)
sr ν(sr) ν(sr2) ν(s) ν(r) ν(e) ν(r2)
sr2 ν(sr2) ν(s) ν(sr) ν(r2) ν(r) ν(e)


for some ν : D3 → C.

Example 6.11 (Group and Grassmannian frames – perspective). a. (ETFs) In its most
down to earth form, a finite tight frame X is a group frame for Cd if it is the orbit of an
element x ∈ Cd under the linear action of some finite group G of linear transformations. As
noted in Remark 6.5, harmonic frames are an example,

With regard to our goals of Subsection 1.2, we say that a FUNTF X = {xj}Nj=1 for Cd is

an equiangular tight frame (ETF) for Cd if

∃α ≥ 0 such that ∀j 6= k, |〈xj, xk〉| = α,

see Remark 2.6, where it was noted that equiangular Parseval frames (tight and frame
constant A = 1) are not unit norm. It is well known and elementary to show that for any
d ≥ 1 the simplex consisting of N = d+1 elements is an ETF and that such ETFs are group
frames.
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On the other hand, if N > d2, then there is no ETF for Cd consisting of N elements; and
these values of N can be viewed as a natural regime for the Grassmannian frames defined
in part c. Further, if N < d2, then there are known cases for which there are no ETFs, e.g.,
d = 3, N = 8 [115]. Determining compatible values of d, N for which there are ETFs is a
subtle, unresolved, and highly motivated problem, see, e.g., [51–53,125].

b. (ETFs and the Welch bound) The coherence or maximum correlation µ(X) of a set
X = {xj}Nj=1 ⊆ Cd of unit norm elements is defined as

(39) µ(X) = maxj 6=k |〈xj, xk〉|.

Welch (1974) [126] proved the fundamental inequality,

(40) µ(X) ≥

√
N − d
d(N − 1)

,

that itself is important in understanding the behavior of the narrow band ambiguity function
defined in Subsection 1.2, see [10, 74]. In the case that X is a FUNTF for Cd, then equality

holds in (40) if and only if X is an ETF with constant α =
√

N−d
d(N−1) , see [112], Theorem 2.3,

as well as [22], Theorem IV.2 (Theorem 3) for a modest but useful generalization. Because

of the importance of Gabor frames in this topic, we note that if N = d2, then α =
√

1
d+1

.

c. (Grassmnnian frames) If an ETF does not exist for a given N ≥ d+2, then a reasonable
substitute is to consider (N, d)-Grassmannian frames. Grassmannian frames were mentioned
in Subsection 2.2 and at the beginning of Subsection 6.1. Let X = {xj}Nj=1 ⊆ Cd be a set of

unit norm elements. X is an (N, d)-Grassmannian frame for Cd if it is a FUNTF and if

µ(X) = inf µ(Y ),

where the infimum is taken over all FUNTFs Y for Cd consisting of N elements. A com-
pactness argument shows that (N, d)-Grassmannian frames exist, see [22], Appendix. Also,
ETFs are a subclass of Grassmannian frames, see [27, 124]. Further, as noted in [112],
Grassmannian frames have significant applicability, including spherical codes and designs,
packet based communication systems such as the internet, and geometrically uniform codes
in information theory, and these last are essentially group frames [56] (1991), cf. [28].

One of the major mathematical challenges is to construct Grassmannian frames. see
[22,125].

d. (Zauner’s conjecture) Zauner’s conjecture is that for any dimension d ≥ 1 there is a
FUNTF X = {xj : j = 1, . . . , d2} for Cd such that

∀ j 6= k, |〈xj, xk〉| =
√

1

d+ 1
.

The problem can be restated by asking if for each d ≥ 1 there are (d2, d)-Grassmannian frames
that achieve equality with the Welch bound. This is an open problem in quantum information
theory, and the conjecture by Zauner [131] was motivated by issues dealing with quantum
measurement, cf. [102]. There are solutions for some values of d, and solutions are referred
to as symmetric, informationally complete, positive operator valued measures (SIC-POVMs).
POVMs not only arise in quantum measurement and detection, e.g., [21], Definition A.1,
but also draw on issues dealing with coherent states [2]. Further, they have a mathematical
foundation in the area of vector-valued measures since they typically are functions defined
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on a Borel algebra with range L(H), noting that L(H) is a non-commutative ∗−Banach
algebra with unit, see Subsection 9.1. In this regard and by comparison, in Example 3.12
we could let V be the commutative Banach algebra of bounded Radon measures on a locally
compact Abelian group. A major recent contribution to Zauner’s conjecture is [4].

Zauner’s conjecture is also related to frame potential energy in the following way. In [17]
FUNTFs were characterized as the minimizers of the `2- frame potential energy functional
motivated by Coulomb’s law. The `p-version, merely defined in [22], was developed deeply by
Ehler and Okoudjou, see [45,46]. The main theorem in [17] proves the existence of so-called
Welch bound equality (WBE) sequences used for code-division multiple-access (CDMA)
systems in communications, see [91, 124]. In fact, the essential inequality asserted in the
WBE setting of Massey and Mittelholzer [91] is an `2-version of the `∞ inequality (40); and
the relevant equations in [91] are (3.4) – (3.6). With this backdrop, there is a compelling case
relating solutions of Zauner’s conjecture, as well as Grassmannians, in terms of minimizers
of all `p-frame potentials, see [94].

e. (CAZAC sequences) Given a function u : Z/dZ −→ C. For any such u we can
define a Gabor FUNTF U = {uj : j = 1, . . . , d2}, where each uj consists of translates and
modulations of u. e.g., see [97].

The discrete periodic ambiguity function of u was defined by (2) in Subsection 1.2. In
the notation of this example, that formula becomes:

∀ (m,n) ∈ Z/dZ× Z/dZ, A(u)(m,n) =
1

d

d−1∑
k=0

u(m+ k) u(k) e−2πikn/d.

The function u is a constant amplitude 0-autocorrelation (CAZAC) sequence if

∀m ∈ Z/dZ, |u(m)| = 1, (CA)

and

∀m ∈ Z/dZ \ {0}, 1

d

d−1∑
k=0

u(m+ k) u(k) = 0. (ZAC).

A recent survey on the theory and applicability of CAZAC sequences is [11]. The construction
of all CAZAC sequences remains a tantalizing and applicable venture.

A fundamental fact is the following theorem [10], Theorem 3.8. Let d = p be prime.
There are explicit CAZAC sequences u : Z/pZ −→ C (due to Björck) with the property that
if (m,n) ∈ (Z/pZ× Z/pZ)\{(0, 0)}, then

|A(u)(m,n)| ≤ 2
√
p

+

{
4
p

if p ≡ 1 (mod 4)
4

p3/2
if p ≡ 3 (mod 4).

In particular, |A(u)(m,n)| ≤ 3/
√
p.

This implies that the coherence µ(U) of U satisfies the inequalities,

(41)
1√
p+ 1

≤ µ(U) ≤ 3
√
p
,

even though |A(u)(m,n)| can have significantly smaller values than 3/
√
p for various (m,n).

This latter property hints at the deeper applicability of CAZAC sequences such as the Björck
sequence.

Because of the 0-autocorrelation property, CAZAC sequences are the opposite of what
candidates for Zauner’s conjecture should be. On the other hand, the inequality (41) gives
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perspective with regard to Zauner’s conjecture. Further, these CAZAC sequences are an
essential component of the background and goals dealing with phase-coded waveforms that
were the driving force leading to the role of group frames in our vector-valued theory, see
Subsections 1.1 and 1.2.

7. Frame multiplication for group frames

7.1. Frame multiplication defined by groups. We now deal with the special case of
frame multiplications defined by binary operations • : J × J → J that are group operations,
i.e., when J = G is a group and • is the group operation. Recall that if X = {xg}g∈G is a
frame for H = Cd and the group operation of G is a frame multiplication for X, then we say
that G defines a frame multiplication for X.

We state and prove Proposition 7.1 in some generality to illustrate the basic idea and its
breadth. We use it to prove Theorem 7.3.

Proposition 7.1 (Frame multiplications and canonical unitary operators). Let (G, •) be a
countable group, and let H be a complex separable Hilbert space. Assume X = {xg}g∈G is a
tight frame for H. If G defines a frame multiplication for X with continuous extension ∗ to
all of H, then the functions Lg : H → H, defined by

Lg(x) = xg ∗ x,

and Rg : H → H, defined by

Rg(x) = x ∗ xg,
are unitary linear operators for every g ∈ G.

Proof. Let x ∈ H, g ∈ G, and A be the frame constant for X. Linearity and continuity of Lg
follow from the bilinearity and continuity of ∗. To show that Lg is unitary, we first compute

A
∥∥L∗g(x)

∥∥2 =
∑
h∈G

∣∣〈L∗g(x), xh〉
∣∣2 =

∑
h∈G

|〈x, Lg(xh)〉|2

=
∑
h∈G

|〈x, xg ∗ xh〉|2 =
∑
h∈G

|〈x, xgh〉|2 =
∑
h∈G

|〈x, xh〉|2 = A ‖x‖2 .

Therefore, L∗g is an isometry. If H = Cd, then this is equivalent to L∗g and Lg being unitary.
For the infinite dimensional case, we also need that Lg is an isometry, this being one of

the equivalent characterizations of unitary operators.
To prove that Lg is an isometry, we first show it is invertible and that L−1g = Lg−1 . To

this end, we begin by defining

D =

{∑
h

ahxh : |{ah : ah 6= 0}| <∞

}
,

i.e., D is the set of all finite linear combinations of frame elements from X. It follows from
the frame reconstruction formula that D is dense in H. Now, for any g ∈ G, Lg maps D
onto D, and for every x =

∑
h∈G ahxh ∈ D, we compute

Lg−1Lg(x) = Lg−1Lg

(∑
h∈G

ahxh

)
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= Lg−1

(∑
h∈G

ahxg•h

)
=
∑
h∈G

ahxh = x.

In short, Lg−1Lg is linear, bounded, and is the identity on a dense subspace of H. Therefore,
Lg−1Lg is the identity on all of H.

We can now verify that Lg is an isometry. From general operator theory, we have the
equalities ∥∥L−1g ∥∥op = ‖Lg−1‖

op
=
∥∥L∗g−1

∥∥
op

= 1,

and
‖Lg‖op =

∥∥L∗g∥∥op = 1.

Invoking these and the definition of the operator norm, we obtain

‖Lg(x)‖ ≤ ‖x‖ and ‖x‖ =
∥∥L−1g Lg(x)

∥∥ ≤ ∥∥L−1g ∥∥op ‖Lg(x)‖ = ‖Lg(x)‖ .

Therefore, ‖Lg(x)‖ = ‖x‖ , the desired isometry.
The same calculations prove that Rg is unitary. �

In contrast to the generality of Proposition 7.1, we next give a specific example providing
direction that led to our main results in Subsection 7.2.

Example 7.2 (Frame multiplication and the DFT). Let X = {xk}N−1k=0 ⊆ Cd be a linearly
dependent frame for Cd, and so N > d. Suppose ∗ : Cd ×Cd → Cd is a bilinear product such
that xm ∗xn = xm+n, i.e., Z/NZ defines a frame multiplication for X. By linear dependence,
there exists a sequence {ak}N−1k=0 ⊆ C of coefficients, not all zero, such that

N−1∑
k=0

akxk = 0.

Multiplying on the left by xm and utilizing the aforementioned properties of ∗ yield

(42) ∀m ∈ Z/NZ, 0 = xm ∗

(
N−1∑
k=0

akxk

)
=

N−1∑
k=0

ak (xm ∗ xk) =
N−1∑
k=0

akxm+k.

It is convenient to rewrite (42) with the index on the coefficients varying with m :

(43) ∀m ∈ Z/NZ,
N−1∑
k=0

ak−mxk = 0.

Let a = (ak)
N−1
k=0 , let A be the N × N circulant matrix generated by the vector a and with

eigenvalues λj, j = 0, . . . , N − 1, and let X be the N × d matrix with vectors xk as its rows.
In symbols,

A =


a0 a1 a2 . . . aN−1
aN−1 a0 a1 . . . aN−2

...
...

...
. . .

...
a1 a2 a3 . . . a0

 and X =


x0
x1
...

xN−1

 .

In matrix form, Equation (43) is
AX = 0.

Thus, the columns of X are in the nullspace of the circulant matrix A. A consequence of this
and of the fact that the DFT diagonalizes circulant matrices is that the columns of X are
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linear combinations of some subset of at least d (the rank of X is d) columns of the DFT
matrix. Further, if ωj = e2πij/N , then

a0 + aN−1ωj + aN−2ω
2
j + . . .+ a1ω

N−1
j = λj,

is zero for at least d choices of j ∈ {0, 1, . . . , N − 1}. Hence, assuming that Z/NZ defines a
frame multiplication for a frame X for Cd, we obtain a condition involving the DFT.

7.2. Abelian frame multiplications.

Theorem 7.3 (Abelian frame multiplications for group frames). Let (G, •) be a finite Abelian
group, and assume that X = {xg}g∈G is a tight frame for H = Cd. G defines a frame
multiplication for X if and only if X is a group frame.

Proof. i. Suppose G defines a frame multiplication for X and the bilinear product given on
H is ∗. For each g ∈ G define an operator Ug : H → H by the formula

Ug(x) = xg ∗ x.
By Proposition 7.1, {Ug}g∈G is a family of unitary operators on H. Define the mapping
π : g 7→ Ug. π is a unitary representation of G because

UgUhxk = Ug(xh ∗ xk) = Ug(xh•k) = xg ∗ xh•k = xg•h•k = Ug•hxk,

and since {xk}k∈G spans H. Further, we have π(g)xh = xg•h, thereby proving X is a group
frame.

ii. Conversely, suppose X = {xg}g∈G is a group frame. Then, there exists a unitary
representation π of G such that π(g)xh = xg•h. It follows from the facts, π(g) is unitary and
G is Abelian, that

(44) ∀g, h1, h2 ∈ G, 〈xh1 , xh2〉 = 〈π(g)xh1 , π(g)xh2〉 = 〈xg•h1 , xg•h2〉 = 〈xh1•g, xh2•g〉.
iii. If

∑
g∈G agxg = 0, then for any j, k ∈ G we have

0 = 〈
∑
g∈G

agxg, xj〉 =
∑
g∈G

ag〈xg, xj〉

=
∑
g∈G

ag〈xg•k, xj•k〉 = 〈
∑
g∈G

agxg•k, xj•k〉.

Allowing j to vary over all of G shows that
∑

g∈G agxg•k = 0. Similarly, we can use the fact

that 〈xg, xj〉 = 〈xk•g, xk•j〉 to show
∑

g∈G agxk•g = 0. Hence, by Proposition 5.3, • is a frame
multiplication for X. �

Theorem 7.3 can be refined in the following way. In this regard, it should be pointed out
that the theory of group frames is far more extensive than that of harmonic frames, see [125].

Theorem 7.4 (Abelian frame multiplications for harmonic frames). Let (G, •) be a finite
Abelian group. Assume that X = {xg}g∈G is a tight frame for H = Cd. If G defines a frame
multiplication for X, then X is unitarily equivalent to a harmonic frame, and there exists
U ∈ U(Cd) and c > 0 such that

(45) cU (xg ∗ xh) = cU (xg) cU (xh) ,

where the product on the right is vector pointwise multiplication and ∗ is the frame multipli-
cation defined by (G, •), i.e., xg ∗ xh = xg•h.
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Proof. i. For each g ∈ G define an operator Ug : Cd → Cd by the formula

Ug(x) = xg ∗ x.
By Theorem 7.3, {Ug}g∈G is an Abelian group of unitary operators, that generates

X = {Ug(xe) : g ∈ G},
where e is the unit of G. Furthermore, since the Ug are unitary, we have

∀g ∈ G, ‖xe‖2 = ‖Ug(xe)‖2 = ‖xg‖2 ,
which shows that X is equal-norm.

ii. For the next step we use a technique found in the proof of Theorem 5.4 of [120]. A
commuting family of diagonalizable operators, such as {Ug}g∈G, is simultaneously diagonal-
izable, i.e., there is a unitary operator V for which

∀g ∈ G, Dg = V UgV
∗

is a diagonal matrix, see [79] Theorem 6.5.8, cf. [80] Theorem 2.5.5.
This is a also consequence of Schur’s lemma and Maschke’s theorem, see Appendix 9.

Since {Ug}g∈G is an Abelian group of operators, all the invariant subspaces are one dimen-
sional, and so, orthogonally decomposing Cd into the invariant subspaces of {Ug}g∈G, simul-
taneously diagonalizes the operators Ug. The operators Dg are unitary, and consequently,
they have diagonal entries of modulus 1.

iii. Define a new frame, Y, generated by the diagonal operators Dg, as

Y = {Dgy : g ∈ G}, where y = V (xe).

Since V ∗DgV = Ug, we have

X = {Ug(xe) : g ∈ G} = V ∗Y,

or
V X = Y.

Let (Dgy)j be the j-th component of the vector Dgy. Form the d× |G| matrix with columns
the elements of Y , i.e., if we write G = {g1, . . . , gN}, then we form

(46)


(Dg1y)0 . . . (DgNy)0
(Dg1y)1 . . . (DgNy)1

...
. . .

...
(Dg1y)d−1 . . . (DgNy)d−1

 .

Since Y is the image of X under V , it is an equal-norm tight frame, and the synthesis
operator matrix (46) has orthogonal rows of equal length. We compute the norm of row j
to be (∑

g

|(Dg)(y)j|2
)1/2

=
√
|G||(y)j|.

Therefore, the components of y have equal modulus, and, so, If we let W ∗ be the diagonal
matrix with the entries of y on its diagonal, then there exists c > 0 such that cW ∗ is a
unitary matrix.

iv. Now, we have

X =
1

c
U∗{Dg1 : g ∈ G}, where 1 = (1, 1, . . . , 1)t and U∗ = cV ∗W ∗ is unitary.
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It is important to note that we have more than just the equality of sets of vectors as stated
above. In fact, the g’s on both sides coincide under the transformation, i.e.,

1

c
U∗(Dg1) = V ∗W ∗Dg(1) = V ∗Dg(y)

= UgV
∗(y) = Ug(xe) = xg.

Thus, we have found a unitary operator U and c > 0 such that cUxg = Dg1.
v. It remains to show that {Dg1 : g ∈ G} is a harmonic frame and that the product

∗ behaves as claimed. Proving {Dg1 : g ∈ G} is harmonic amounts to showing, for j =
0, 1, . . . , d− 1, that the mapping,

γj : G→ C,
defined by

γj(g) = (Dg1)j = (Dg)jj
is a character of the group G. This follows since

∀j = 0, . . . , d− 1, γj(gh) = (Dgh)jj = (Dg)jj(Dh)jj = γj(g)γj(h).

and |(Dg)jj| = 1.
Finally, because cU(xg) = Dg1, we can compute

cU(xg ∗ xh) = cU(xgh)

= Dgh1 = (Dg1)(Dh1) = cU(xg)cU(xh). �

Remark 7.5. Strictly speaking, we could have canceled c from both sides of Equation (45).
We left them in place because, as we saw in the proof, cU maps the tight frame X to a
harmonic frame. Therefore, it is made clearer what (45) means when each c is in place, i.e.,
performing the frame multiplication defined by G and then mapping to the harmonic frame
is the same as first mapping to the harmonic frame and then multiplying pointwise.

In much of our discussion motivating this material, we assumed there was a bilinear
product on Cd and a frame X such that xm∗xn = xm+n, i.e., our underlying group was Z/NZ.
By strengthening our assumptions on X to be a tight frame, we can apply Theorem 7.3 to
show that X is a group frame for the Abelian group Z/NZ, and furthermore, by Theorem
7.4, X is unitarily equivalent to a DFT frame, i.e., a harmonic frame with G = Z/NZ.
Therefore, we have the following corollary.

Corollary 7.6 (Frame multiplication and DFT frames). Let X = {xn}n∈Z/NZ ⊆ Cd be
a tight frame for Cd. If Z/NZ defines a frame multiplication for X, then X is unitarily
equivalent to a DFT frame.

Example 7.7 (G = Z/4Z, frame multiplication, and a harmonic frame). Consider the group
G = Z/4Z, and let

X =

{
x0 =

(
1 + i
1− i

)
, x1 =

(
0
2

)
, x2 =

(
1− i
1 + i

)
, x3 =

(
2
0

)}
.

X = {xg}g∈Z/4Z is a tight frame for C2, and the Gramian of X is

G =


4 2 + 2i 0 2− 2i

2− 2i 4 2 + 2i 0
0 2− 2i 4 2 + 2i

2 + 2i 0 2− 2i 4

 .
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It is straightforward to check that G is a G-matrix for Z/4Z, and therefore, by Theorems
6.7 and 7.3, Z/4Z defines a frame multiplication for X. Hence, by Theorem 7.4, there exists
a unitary matrix U and positive constant c such that cUX is a harmonic frame. Indeed, if
we let

c =
1√
2
, U =

1√
2

(
1 1
−i i

)
,

then

Y = cUX =

{
y0 =

(
1
1

)
, y1 =

(
1
i

)
, y2 =

(
1
−1

)
, y3 =

(
1
−i

)}
is a harmonic frame, and

∀g, h ∈ Z/4Z, cU(xgh) = cU(xg)cU(xh).

8. Uncertainty Principles

8.1. Background. Uncertainty principle inequalities abound in harmonic analysis, e.g.,
see [8, 14, 29, 36, 38, 41–43, 47–49, 55, 63, 72, 103, 104, 109]. The classical Heisenberg uncer-
tainty principle is deeply rooted in quantum mechanics, see [58, 73, 123, 127]. The classical
mathematical uncertainty principle inequality was first stated and proved in the setting of
L2(R) in 1924 by Norbert Wiener at a Gottingen seminar [5], also see [83]. This is Theorem
8.1.

Theorem 8.1 (Heisenberg uncertainty principle inequality). If f ∈ L2(R) and x0, γ0 ∈ R,
then

(47) ‖f‖22 ≤ 4π

(∫
(x− x0)2|f(x)|2 dx

)1/2(∫
(γ − γ0)2|f̂(γ)|2 dγ

)1/2

,

and there is equality if and only if

f(x) = Ce2πixγ0e−s(x−x0)
2

,

for some C ∈ C and s > 0.

The proof of the basic inequality, (47), in Theorem 8.1 is a consequence of the following
calculation for (x0, γ0) = (0, 0) and for f ∈ S(R), the Schwartz class of infinitely differentiable
rapidly decreasing functions defined on R.

(48) ||f ||42 =

(∫
R
x|f(x)2|′dx

)2

≤
(∫

R
|x||f(x)2|′dx

)2

≤ 4

(∫
R
|xf(x)f ′(x)|dx

)2

≤ 4||xf(x)||22||f ′(x)||22 = 16π2||xf(x)||22||γf̂(γ)||22.
Integration by parts gives the first equality and the Plancherel theorem gives the second
equality; the third inequality of (48) is a consequence of Hölder’s inequality, cf. the proof
of (47) in Subsection 8.2. For more complete proofs, see, for example, [7, 55, 63, 127]. In-
tegration by parts and Plancherel’s theorem can be generalized significantly by means of
Hardy inequalities and weighted Fourier transform norm inequalities, respectively, to yield
extensive weighted generalizations of Theorem 8.1, see [14] for a technical outline of this
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program by one of the authors in his long collaboration with Hans Heinig and Raymond
Johnson, e.g., [19, 20].

8.2. The classical uncertainty principle and self-adjoint operators. Let A and B be
linear operators on a Hilbert space H. The commutator [A,B] of A and B is defined as

[A,B] = AB − BA.
Let D(A) denote the domain of A. The expectation or expected value of a self-adjoint operator
A in a state x ∈ H is defined by the expression

Ex(A) = 〈A〉 = 〈Ax, x〉;
and, since A is self-adjoint, we have

〈A2〉 = 〈Ax,Ax〉 = ‖Ax‖2 .
The variance of a self-adjoint operator A at x ∈ D(A2) is defined by the expression

∆2
x(A) = Ex(A

2)− {Ex(A)}2.
〈A〉 and 〈A2〉 depend on a state x ∈ H, but traditionally x is often not explicitly mentioned.

We begin with the following Hilbert space uncertainty principle inequality.

Theorem 8.2 (A Hilbert space uncertainty principle inequality, [8], Theorem 7.2). Let A,
B be self-adjoint operators on a complex Hilbert space H (A and B need not be continuous).
If

x ∈ D(A2) ∩D(B2) ∩D(i[A,B])

and ‖x‖ ≤ 1, then

(49) {Ex(i[A,B])}2 ≤ 4∆2
x(A)∆2

x(B).

In the same vein, and with the same dense domain of definition constraints as in Theorem
8.2, we have –

Theorem 8.3 (A variant on a Hilbert space uncertainty principle inqeuality). Let A and B
be self-adjoint operators on a Hilbert space H. Define the self-adjoint operators T = AB+BA
(the anti-commutator) and S = −i [A,B]. Then, for a given state x ∈ H, we have

(50)
(
〈x, Tx〉2 + 〈x, Sx〉2

)
≤ 4〈A2〉〈B2〉.

Equality holds in (50) if and only if there exists z0 ∈ C such that Ax = z0Bx.

Proof. Applying the Cauchy-Schwarz inequality and self-adjointness of A we obtain

(51) 〈A2〉〈B2〉 = ‖Ax‖2 ‖Bx‖2 ≥ |〈Ax,Bx〉|2 = |〈x,ABx〉|2 .
By definition of T and S, we have AB = 1

2
T + i

2
S. Therefore,

(52) |〈x,ABx〉|2 =
1

4
|〈x, (T + iS)x〉|2

=
1

4
|〈x, Tx〉 − i〈x, Sx〉|2 =

1

4

(
〈x, Tx〉2 + 〈x, Sx〉2

)
.

The final equality holds because 〈x, Tx〉 and 〈x, Sx〉 are real, and (50) follows from (51) and
(52).

Last, equality holds if and only if we have equality in the application of Cauchy-Schwarz,
and this occurs when Ax and Bx are linearly dependent. �
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Example 8.4 (Comparison of Theorems 8.2 and 8.3). The uncertainty principle inequalities
(49) and (50) can be compared quantitatively by substituting the definitions of expected
value and variance into the inequalities themselves. As such, (49) becomes

(Im〈BA〉)2 ≤
(
〈A2〉 − 〈A〉2

) (
〈B2〉 − 〈B〉2

)
,

and (50) becomes

(Re〈BA〉)2 − (Im〈BA〉)2 ≤ 〈A2〉 〈B2〉.

Theorem 8.3 implies the more frequently used inequality for self-adjoint operators A and
B, viz.,

(53) |〈[A,B]x, x〉| ≤ 2 ‖Ax‖ ‖Bx‖ .

Indeed, dropping the anti-commutator term from the right side of (50) leaves

〈x, Sx〉2 = |〈[A,B]x, x〉|2 .

We have equality in (53) when Ax and Bx are linearly dependent (as above) and 〈x, Tx〉 = 0,
i.e., when 〈Ax,Bx〉 is completely imaginary. This weaker form of (50) is enough to prove
Theorem 8.1, and thus the full content of Theorem 8.3 is usually neglected; however, we
shall make use of it in Subsection 8.3.

Define the position and momentum operators respectively by

Qf(x) = xf(x), Pf(x) =
1

2πi
f ′(x).

Q and P are densely defined linear operators on L2(R). When employing Hilbert space
operator inequalities, such as (50) and (53), they are valid only for x ∈ H in the domains of
all the operators in question, i.e., A, B, AB, and BA. We are now ready to prove Theorem
8.1 using the self-adjoint operator approach of this subsection, see [14] for other examples.

Proof of Theorem 8.1. Let Q and P be as defined above. Then, for f, g ∈ D(Q), we have

〈Qf, g〉 =

∫
xf(x)g(x) dx =

∫
f(x)xg(x) dx = 〈f,Qg〉,

and for f, g ∈ D(P ),

〈Pf, g〉 =
1

2πi

∫
f ′(x)g(x) dx = − 1

2πi

∫
f(x)g′(x) dx = 〈f, Pg〉.

Therefore Q and P are self-adjoint. The operators Q − x0 and P − γ0 are also self-adjoint
and [Q − x0, P − γ0] = [Q,P ]. Thus, (53) implies that for every f in the domain of Q, P ,
QP , and PQ, e.g., f a Schwartz function,

(54)
1

2
|〈[Q,P ]f, f〉| ≤ ‖(Q− x0)f‖ ‖(P − γ0)f‖ .

For the commutator term we obtain

(55) [Q,P ]f(x) =
1

2πi
(xf ′(x)− (f ′(x) + xf ′(x))) = − 1

2πi
f(x).

Combining (54) and (55) yields

1

4π
‖f‖22 ≤ ‖(Q− x0)f‖ ‖(P − γ0)f‖ .
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It is an elementary fact from Fourier analysis that ( d
dx
f )̂(γ) = 2πiγf̂(γ); applying this and

Plancherel’s theorem to the second term yields

‖(P − γ0)f‖ =

(∫
(γ − γ0)2|f̂(γ)|2 dγ

)1/2

,

and Heisenberg’s inequality (47) follows. �

8.3. An uncertainty principle for the vector-valued DFT. The uncertainty principle
we prove for the vector-valued DFT is an extension of an uncertainty principle inequality
proved by Grünbaum for the DFT in [65]. We begin by defining two operators meant to
represent the position and momentum operators defined on R in Subsection 8.2.

Define

P : `2(Z/NZ× Z/dZ)→ `2(Z/NZ× Z/dZ)

by the formula,

(56) ∀m ∈ Z/NZ, P (u)(m) = i(u(m+ 1)− u(m− 1));

and, given a fixed real valued q ∈ `2(Z/NZ× Z/dZ), define

Q : `2(Z/NZ× Z/dZ)→ `2(Z/NZ× Z/dZ)

by the formula

(57) ∀m ∈ Z/NZ, Q(u)(m) = q(m)u(m).

Proposition 8.5 (Position and momentum operators are self-adjoint). The operators P and
Q defined by (56) and (57) are linear and self-adjoint.

Proof. The linearity of P and Q and self-adjointness of Q are clear. To show that P is
self-adjoint, let u, v ∈ `2(Z/NZ× Z/dZ). We compute

〈Pu, v〉 =
N−1∑
m=0

〈P (u)(m), v(m)〉 =
N−1∑
m=0

〈i(u(m+ 1)− u(m− 1)), v(m)〉

=
N−1∑
m=0

i〈u(m+ 1), v(m)〉 − i〈u(m− 1), v(m)〉 =
N−1∑
m=0

i〈u(m), v(m− 1)〉 − i〈u(m), v(m+ 1)〉

=
N−1∑
m=0

〈u(m), i(v(m+ 1)− v(m− 1))〉 = 〈u, Pv〉. �

Define the anti-commutator T = QP +PQ and S = −i[Q,P ]. Because the Hilbert space
H = `2(Z/NZ×Z/dZ) is finite dimensional, T and S are linear self-adjoint operators defined
on all of H. Applying Theorem 8.3 gives an uncertainty principle inequality for the operators
Q and P :

(58) ∀u ∈ `2(Z/NZ× Z/dZ),
(
〈u, Tu〉2 + 〈u, Su〉2

)
≤ 4〈Q2〉〈P 2〉.

In this form, (58) does not appear to be related to the vector-valued DFT. We shall make the
connection by finding appropriate expressions for each of the terms in (58), thereby yielding
a form of the Heisenberg inequality for the vector-valued DFT.
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The expected values of Q and P are

〈Q2〉 = 〈Qu,Qu〉 =
N−1∑
m=0

〈Q(u)(m), Q(u)(m)〉

=
N−1∑
m=0

〈q(m)u(m), q(m)u(m)〉 =
N−1∑
m=0

‖q(m)u(m)‖2`2(Z/dZ) = ‖qu‖2

and
〈P 2〉 = 〈Pu, Pu〉 = ‖Pu‖2 = ‖i(τ−1u− τ1u)‖2

= ‖F(τ−1u− τ1u)‖2 =
∥∥e1û− e−1û∥∥2 =

∥∥(e1 − e−1)û
∥∥2 .

In the computation of 〈P 2〉 we use the unitarity of the vector-valued DFT mapping F and
the fact that e1 and e−1 are the modulation functions ej(m) = xjm, for a given DFT frame
{xk}N−1k=0 for Cd, see Definition 3.4.

We restate these expected values:

(59) 〈Q2〉 = ‖qu‖2 and 〈P 2〉 =
∥∥(e1 − e−1)û

∥∥2 .
We now seek expressions for the terms 〈u, Tu〉2 and 〈u, Su〉2. Computing the commutator

and anti-commutator of Q and P gives

i Su(m) = [Q,P ]u(m) = i(q(m)− q(m+ 1))u(m+ 1)− i(q(m)− q(m− 1))u(m− 1)

and

Tu(m) = (QP + PQ)u(m) = i(q(m) + q(m+ 1))u(m+ 1)− i(q(m) + q(m− 1))u(m− 1).

Therefore,

(60) 〈u, Tu〉 =
N−1∑
m=0

〈u(m), T (u)(m)〉

=
N−1∑
m=0

〈u(m), i(q(m) + q(m+ 1))u(m+ 1)− i(q(m) + q(m− 1))u(m− 1)〉

= i
N−1∑
m=0

〈u(m), (q(m) + q(m− 1))u(m− 1)〉 − 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

= i
N−1∑
m=0

〈(q(m) + q(m− 1))u(m), u(m− 1)〉 − 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

= i

N−1∑
m=0

〈(q(m+ 1) + q(m))u(m+ 1), u(m)〉 − 〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

= 2
N−1∑
m=0

Im〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉,

and

(61) 〈u, Su〉 =
N−1∑
m=0

〈u(m), S(u)(m)〉
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=
N−1∑
m=0

〈u(m), (q(m)− q(m+ 1))u(m+ 1)− (q(m)− q(m− 1))u(m− 1)〉

=
N−1∑
m=0

〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉 − 〈u(m), (q(m)− q(m− 1))u(m− 1)〉

=
N−1∑
m=0

〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉 − 〈(q(m+ 1)− q(m))u(m+ 1), u(m)〉

= 2
N−1∑
m=0

Re〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉.

Combining (59), (60), and (61) with inequality (58) gives the following general uncer-
tainty principle for the vector-valued DFT.

Theorem 8.6 (General uncertainty principle for the vector-valued DFT).

(62)

(
N−1∑
m=0

Im〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

)2

+

(
N−1∑
m=0

Re〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉

)2

≤ ‖qu‖2
∥∥(e1 − e−1)û

∥∥2 .
Theorem 8.6 holds for any real valued q, but, to complete the analogy with that of the

classical uncertainty principle, we desire that the operators Q and P be unitarily equivalent
through the Fourier transform, in this case, the vector-valued DFT. Indeed, setting q = i(e1−
e−1), we have q(m)(n) = −2 sin(2πms(n)/N) (q is real-valued) and FP = QF as desired.
With this choice of Q we have proven the following version of the classical uncertainty
principle for the vector-valued DFT.

Theorem 8.7 (Classical uncertainty principle for the vector-valued DFT). Let q = i(e1 −
e−1). For every u in `2(Z/NZ× Z/dZ) we have

(63)

(
N−1∑
m=0

Im〈u(m), (q(m) + q(m+ 1))u(m+ 1)〉

)2

+

(
N−1∑
m=0

Re〈u(m), (q(m)− q(m+ 1))u(m+ 1)〉

)2

≤
∥∥(e1 − e−1)u

∥∥2 ∥∥(e1 − e−1)û
∥∥2 .

Remark 8.8. It is natural to extend the technique of Theorem 8.6 to vector-valued versions
of recent uncertainty principle inequalities for finite frames [86], graphs [24], and cyclic groups
and beyond [93,116].
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9. Appendix: Unitary representations of locally compact groups

9.1. Unitary representations. Besides the references cited in Subsection 3.3, fundamental
and deep background for this Appendix can also be found in [89,113,114].

Let H be a separable Hilbert space over C, and let L(H) be the space of bounded linear
operators on H. L(H) is a ∗−Banach algebra with unit. In fact, one takes composition
of operators as multiplication, the identity map I is the unit, the operator norm gives the
topology, and the involution ∗ is defined by the adjoint operator.
U(H) ⊆ L(H) denotes the subalgebra of unitary operators T on H, i.e., T T ∗ = T ∗ T = I.

Definition 9.1 (Unitary representation). Let G be a locally compact group. A unitary
representation of G is a Hilbert space H over C and a homomorphism π : G→ U(H) from G
into the group U(H) of unitary operators on H, that is continuous with respect to the strong
operator topology on U(H). (The strong operator topology is explicitly defined below. It is
weaker than the norm topology, and coincides with the weak operator topology on U(H).)
We spell-out these properties here for convenience:

(1) ∀g, h ∈ G, π(gh) = π(g)π(h);
(2) ∀g ∈ G, π(g−1) = π(g)−1 = π(g)∗, where π(g)∗ is the adjoint of π(g);
(3) ∀x ∈ H, the mapping G→ H, g 7→ π(g)(x), is continuous.

The dimension of H is called the dimension of π. When G is a finite group, then G is given
the discrete topology and the continuity of π is immediate. We denote a representation by
(H, π) or, when H is understood by π.

Definition 9.2 (Equivalence of representations). Let (H1, π1) and (H2, π2) be representa-
tions of G. A bounded linear map T : H1 → H2 is an intertwining operator for π1 and π2
if

∀g ∈ G, Tπ1(g) = π2(g)T.

π1 and π2 are said to be unitarily equivalent if there is a unitary intertwining operator U for
π1 and π2.

More generally, we could consider non-unitary representations, where π is a homomor-
phism into the space of invertible operators on a Hilbert space. We do not do that here
for two reasons. First, we are mainly interested in the regular representations (see Example
9.3) and these are unitary, and, second, every finite dimensional representation of a finite
group is unitarizable. That is, if (H, π) is a finite dimensional representation (not necessarily
unitary) of G and |G| <∞, then there exists an inner product on H such that π is unitary.
See Theorem 1.5 of [84] for a proof of this fact.

Example 9.3 (Regular representation). Let G be a finite group, and let `2 = `2(G). The
action of G on `2 by left translation is a unitary representation of G. More concretely, let
{xh}h∈G be the standard orthonormal basis for `2, and define λ : G→ U(`2) by the formula,

∀g, h ∈ G, λ(g)xh = xgh.

λ is called the left regular representation of G. The right regular representation, which we
denote by ρ, is defined as translation on the right, i.e.,

∀g, h ∈ G, ρ(g)xh = xhg−1 .

The construction is similar for general locally compact groups and takes place on L2(G).
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9.2. Irreducible Representations.

Definition 9.4 (Invariant subspace). An invariant subspace of a unitary representation
(H, π) is a closed subspace S ⊆ H such that π(g)S ⊆ S for all g ∈ G. The restriction of π to
S is a unitary representation of G called a subrepresentation. If π has a nontrivial subrep-
resentation, i.e., nonzero and not equal to π, or equivalently, if it has a nontrivial invariant
subspace, then π is reducible. If π has no nontrivial subrepresentations or, equivalently, has
no nontrivial invariant subspaces, then π is irreducible.

Definition 9.5 (Direct sum of representations). Let (H1, π1) and (H2, π2) be representations
of G. Then,

(H1 ⊕H2, π1 ⊕ π2),
where (π1 ⊕ π2)(g)(x1, x2) = (π1(g)(x1), π2(g)(x2)), for g ∈ G, x1 ∈ H1, x2 ∈ H2, is a repre-
sentation of G called the direct sum of the representations (H1, π1) and (H2, π2).

More generally, for a positive integer m, we recursively define the direct sum of m repre-
sentations π1⊕. . .⊕πm. If (H, π) is a representation of G, we denote by mπ the representation
that is the product of m copies of π, i.e.,

(H ⊕ . . .⊕H, π ⊕ . . .⊕ π),

where each sum has m terms. Clearly, a direct sum of nontrivial representations cannot be
irreducible, e.g., (H1 ⊕H2, π1 ⊕ π2) will have invariant subspaces H1 ⊕ {0} and {0} ⊕H2.

Definition 9.6 (Complete reducibility). A representation (H, π) is called completely re-
ducible if it is the direct sum of irreducible representations.

Two classical problems of harmonic analysis on a locally compact group G are to describe
all the unitary representations of G and to describe how unitary representations can be built
as direct sums of smaller representations. For finite groups, Maschke’s theorem, Theorem
9.8, tells us that the irreducible representations are the building blocks of representation
theory that enable these descriptions.

Lemma 9.7 (Invariance under unitary representations). Let (H, π) be a unitary represen-
tation of G. If S ⊆ H is invariant under π, then S⊥ = {y ∈ H : ∀x ∈ S, 〈x, y〉 = 0} is also
invariant under π.

Proof. Let y ∈ S⊥. Then, for any x ∈ S and g ∈ G, we have 〈x, π(g)y〉 = 〈π(g−1)x, y〉 = 0;
and, therefore, π(g)y ∈ S⊥. �

Theorem 9.8 (Maschke’s theorem). Every finite dimensional unitary representation of a
finite group G is completely reducible.

Proof. Let (H, π) be a representation of a finite group G with dimension n < ∞. If π
is irreducible, then we are done. Otherwise, let S1 be a nontrivial invariant subspace of
π. By Lemma 9.7, S2 = S⊥1 is also an invariant subspace of π. Letting π1 and π2 be
the restrictions of π to S1 and S2 respectively, we have π = π1 ⊕ π2, dimS1 < n, and
dimS2 < n. Proceeding inductively, we obtain a sequence of representations of strictly
decreasing dimension, which must terminate and yield a decomposition of π into a direct
sum of irreducible representations. �
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If (H, π) is a unitary representation, we let Cπ ⊆ L(H) denote the algebra of operators
on H such that

∀g ∈ G and ∀T ∈ Cπ, T π(x) = π(x)T.

Cπ is closed under taking weak limits and under taking adjoints, and, hence, it is a von
Neumann algebra. Cπ is the commutant of π, and it is generated by {π(g)}g∈G. If G is a
finite group, then

Cπ =

{∑
g

agπ(g) : {ag}g∈G ⊆ C

}
.

Schur’s lemma describes the commutants of irreducible unitary representations.

Lemma 9.9 (Schur’s lemma, e.g., Lemma 3.5 of [54]). Let G be a locally compact group.

(1) Let (H, π) be a unitary representation of G. (H, π) is irreducible if and only if Cπ
contains only scalar multiples of the identity.

(2) Assume T is an intertwining operator for irreducible unitary representations (H1, π1)
and (H2, π2) of G. If π1 and π2 are inequivalent, then T = 0.

(3) If G is Abelian, then every irreducible unitary representation of G is one-dimensional.
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New York, 2019. invited chapter.

[12] J. J. Benedetto and S. Datta. Construction of infinite unimodular sequences with zero autocorrelation.
Advances in Computational Mathematics, 32:191–207, 2010.

[13] J. J. Benedetto and S. Datta. Constructions and a generalization of perfect autocorrelation sequences
on Z. Invited Chapter 8 in volume dedicated to Gil Walter. Editors X. Shen and A. Zayed, pages
183–207, 2012.

[14] J. J. Benedetto and M. Dellatorre. Uncertainty principles and weighted norm inequalities. Amer. Math.
Soc. Contemporary Mathematics, M. Cwikel and M. Milman, editors, 693:55–78, 2017.



46 TRAVIS D. ANDREWS, JOHN J. BENEDETTO, AND JEFFREY J. DONATELLI

[15] J. J. Benedetto and J. J. Donatelli. Ambiguity function and frame theoretic properties of periodic zero
autocorrelation waveforms. IEEE J. Special Topics Signal Processing, 1:6–20, 2007.

[16] J. J. Benedetto and J. J. Donatelli. Frames and a vector-valued ambiguity function. In Asilomar
Conference on Signals, Systems, and Computers, invited, October 2008.

[17] J. J. Benedetto and M. Fickus. Finite normalized tight frames. Adv. Comp. Math., 18(2-4):357–385,
2003.

[18] J. J. Benedetto and M. Frazier, editors. Wavelets: Mathematics and Applications. Studies in Advanced
Mathematics. CRC Press, Boca Ratan, FL, 1994.

[19] J. J. Benedetto and H. P. Heinig. Weighted Fourier inequalities: new proofs and generalizations. J. of
Fourier Anal. Appl., 9(1):1–37, 2003.

[20] J. J. Benedetto, H. P. Heinig, and R. L. Johnson. Fourier inequalities with Ap -weights. General
Inequalities 5, International Conference on General Inequalities, 1986, Oberwolfach, Walter, W., Ed.,
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