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Abstract—Backscatter communications have been considered
as one of the key technologies in the Internet of Things (IoT)
applications. In this paper, we consider a multitag ambient
backscatter system, where the multiple tags can harvest radio
frequency (RF) energy from the power station and backscat-
ter the RF signals to the reader for data transmission. In
order to guarantee the throughput requirements, we aim to
maximize the minimum user rate among all the tags by jointly
optimizing the backscatter time allocation and power reflec-
tion coefficient. Channel state information (CSI) mismatch is
taken into account in our proposed optimization problem, which
leads to a robust chance-constrained optimization problem. To
deal with the nonconvex chance constraints, we propose two
safe approximation methods: 1) Bernstein-type-inequality and
2) conditional value-at-risk (CVaR), applying to the Gaussian dis-
tribution and arbitrary distribution of channel estimation errors,
respectively. In addition, we develop an alternating optimization
algorithm to obtain the optimal value of minimum throughput.
Finally, simulation results reveal that the CVaR-based method
outperforms the Bernstein-type-inequality-based method for the
non-Gaussian channel estimation error.

Index Terms—Backscatter communication, chance con-
straint, conditional value-at-risk (CVaR), distributionally robust
optimization, Internet of Things (IoT), optimization.
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I. INTRODUCTION

AS THE Internet of Things (IoT) grows, tens of billions
of sensor nodes will be connected in the future. It is sig-

nificantly challenging to maintain such a large-scale network
since the embedded batteries in massive IoT devices need to
be replaced or recharged when they exhausted. Making the
IoT devices consuming as little power as possible while trans-
mitting and collecting data is very important. One possible
solution is to take advantage of backscatter communications,
which allows the IoT devices to transmit data by reflect-
ing an incident radio frequency (RF) signals. The power
consumed in backscatter transmitter is about 11 μW for
its operation [1], which is extraordinarily lower than that
of conventional wireless systems. Moreover, the backscatter
communication systems (BCSs) can harvest energy from a
dedicated or ambient RF source to power the integrate cir-
cuit, which can be regarded as a special wireless powered
communication network (WPCN). The difference is that the
BCS using the backscatter mode to transmit data [2].

Generally, BCSs can be divided into three types based on
the architecture [3]: 1) monostatic BCSs (MBCSs); 2) bistatic
BCSs (BBCSs); and 3) ambient BCSs (ABCSs). RF identi-
fication (RFID) system is a typical MBCS, which includes a
reader and a tag [4]. The reader in MBCSs can be acted as
an RF source as well as a backscatter receiver. Specially, the
reader sends the query signals (QSs) to the tag periodically.
The tag can be activated by the QSs within the interroga-
tion ranges. The information signals of tag are modulated
onto the QSs and reflected back to the reader. The MBCSs
usually operate in short-range RFID applications due to the
signal loss from reader to tag. In order to overcome the lim-
ited range of MBCSs, Kimionis et al. [5] proposed a BBCS,
which is formed by a separate carrier emitter and backscat-
ter receiver. The carrier emitter generating the RF signals can
be placed close to the tag to increase the power-link bud-
get gains [6], [7]. From the experimental measurement, a
carrier emitter-to-tag distance of 5.5 m, a carrier emitter-to-
reader distance of 100 m can be achieved [5]. Different from
the BBCSs, ABCSs utilize the ambient RF sources, such as
TV, Wi-Fi, and cellular transmissions rather than the dedi-
cated RF sources as in BBCS to power the tag [8], which
can avoid the maintenance of batteries and dedicated power
infrastructures.

Backscatter communication is a popular topic in recent
years, which attracts a growing number of researchers study-
ing the performance of the BCSs. Acquiring channel state
information (CSI) is of great importance in the performance
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analysis of BCSs. Channel estimation in BCSs can be dif-
ferent from that in traditional point-to-point communications.
Designing the training sequence is supposed to consider both
the forward and backscatter link as well as their correlation in
BCSs. Zhang et al. [9] presented a training-sequences-aided
linear minimum mean square error (LMMSE) channel estima-
tion method for the multiple-input multiple-output (MIMO)
RFID systems, which exploited the inherent orthogonal char-
acteristic of the optimal training scheme to reduce the estima-
tion complexity. In BBCSs, the direct path interference from
carrier emitter to reader can be easily eliminated since the
carrier emitter RF signals are usually known. For the reader,
it simply needs to acquire the CSI of the compound chan-
nel, e.g., the product of the forward and backscatter link.
The least square (LS) estimation method can be adopted to
estimate the compound channel [7]. However, it is challeng-
ing to use the channel estimation method based on training
sequences for ABCSs due to the unknown ambient RF source.
Ma et al. [10] proposed a blind estimation method for
ABCSs without any extra pilot sequences. Through design-
ing an expectation maximization (EM)-based estimator, the
channel parameters can be iteratively obtained. Mishra and
Larsson [11] proposed a novel LS estimator to estimate the
forward and backscatter links between reader and tags. They
also jointly optimize the number of orthogonal pilots and
energy allocation for the channel estimation process. In addi-
tion, the channel estimation between tag and tag can be
found in [12].

No matter what kinds of channel estimation methods are
used, the channel estimation errors always cannot be avoided.
Most related works assume the availability of perfect CSI
in the performance of BCSs [2], [13], which is not practi-
cal. The resource allocation may be mismatched under the
assumption of perfect CSI for the system design in BCSs, so
that the throughput requirements cannot be guaranteed all the
time [14]–[16]. In consideration of CSI mismatch, there are
two main research aspects. One is assuming the distribution of
errors are known, such as the Gaussian distribution [11], [17].
The other is that the errors are uncertain and can be chosen
from some (bounded) set, which can lead to a worst-case-based
optimization problem [18], [19].

Motivated by the aforementioned facts, we propose a
chance-constrained optimization problem to maximize the
minimum user rate for BCSs with consideration of the imper-
fect CSI. The contributions of this paper can be summarized
as follows.

1) We formulate the robust chance-constrained
optimization problem by jointly optimizing the
backscatter time and power reflection coefficient with
two outage-based constraints: a) the probability that the
throughput of each tag exceeds a certain threshold is
higher than a predetermined level and b) the probability
that the harvested energy at each tag is above the
consumed energy is greater than a predefined value.

2) We first consider the channel estimation error as the
Gaussian distribution. To tackle the probabilistic con-
straints, we adopt the safe approximation method:
Bernstein-type-inequality, which is based on the large

deviation inequalities for complex Gaussian quadratic
forms [20], [21].

3) Then we consider a more practical scenario, in which
the reader has no prior knowledge of the distribution
of errors except for the first and second-order statistics.
We use another safe approximation method: conditional
value-at-risk (CVaR), which is regarded as the tightest
convex approximation for chance constraints [22], [23].
Particularly, motivated by the recent progress on the dis-
tributionally robust optimization in [24]–[26], we adopt
the worst-case distribution of the CVaR to approximate
the chance constraints, which leads to a more tractable
reformulation. Simulation results show that CVaR-based
method outperforms the Bernstein-type-inequality-based
method for the non-Gaussian channel estimation errors.

The rest of this paper is organized as follows. In Section II,
we describe the multitag ambient backscatter system model.
Section III gives the formulation of the robust chance con-
strained optimization problem. In Section IV, a Bernstein-type-
inequality safe approximation method is introduced to solve
the chance constraint with Gaussian CSI mismatch. In addi-
tion, we use the worst-case CVaR approximation method to
transform the formulated problem with uncertain CSI mis-
match to a semi-definite programming (SDP) problem. In
Section V, we design an alternating optimization algorithm for
the transformed tractable nonconvex problem. The simulation
results of the two proposed safe approximation methods are
shown in Section VI. Finally, Section VII gives the conclusion
of this paper.

Notations: x, x, and X represent a scalar x, a vector x, and
a matrix X, respectively.

∑
and E(·) denote the sum and

expectation operation, respectively. log2(·) and ln(·) denote the
binary and natural logarithmic function, respectively. We use
Re(·) to denote the real part of a complex number. | · | and ‖·‖
denote the absolute value and Euclidean norm, respectively.
We use CN (a, b) to denote the complex Gaussian distribution
with the mean of a and variance of b. We have Tr(·), (·)T, and
(·)H to denote the trace, transpose, and conjugate transpose
of a matrix, respectively. Pr(·) stands for the probability of a
certain event. vec(A) represents the vector obtained by stack-
ing the column vectors of A. IN denotes the N × N identity
matrix. S

n denotes the sets of n × n real symmetric matrices.
We write A � 0 to mean that A is positive semidefinite.

II. SYSTEM MODEL

In this paper, we consider a multitag ambient backscatter
system consisting of a power station (PS), a reader, and K
passive tags. The PS equipped with an omnidirectional antenna
can send the RF signals to the reader and all the K tags, as
shown in Fig. 1. Each reader and each tag are equipped with
a single antenna. The RF signals can carry information and
energy simultaneously, which is called simultaneous wireless
information and power transfer (SWIPT) [27]–[29]. In Fig. 2,
we can see that tag can either harvest energy from the incident
RF signals to power the circuit or backscatter the RF signals
for data transmission. The backscatter operation is through
adjusting the load impedance of the antenna. By switching
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Fig. 1. Ambient backscatter system consisting of a PS, a single-antenna
reader and K single-antenna tags.

Fig. 2. Block diagram of a passive tag.

Fig. 3. Backscatter time allocation for different tags.

between two different loads Z1 and Z2, the tag can be shifted
between absorbing and reflecting state. In the absorbing state,
i.e., impedance matching, the tag reflects nothing to reader,
which means the transmission of bit “0.” In the reflecting state,
i.e., impedance mismatching, it represents to transmit bit “1.”
This is known as the OOK modulation.

For the multitag ambient backscatter system, we consider
a frame-based protocol. The frame duration period T is nor-
malized to 1, i.e., T = 1, which is divided into K time slots,
denoted by {t1, t2, . . . , tK}. Each time slot is assigned for one
particular tag, as shown in Fig. 3. We denote hf

k and hb
k as the

channel gain from the PS to the kth tag and the kth tag to the
reader in Fig. 1, respectively. The channel gain from PS to
the reader is represented as g. We consider the block fading
channel hf

k, hb
k , and g, which means the channel gains remain

constant during one frame but may change in other frames.
The signal received by the kth tag can be expressed as

yT,k(n) = hf
ks(n) + nT(n) (1)

where s(n) is the signal transmitted by the PS with power Ps

and nT(n) is the noise at the tag.
The backscatter time allocation vector t is denoted as

t = [t1, t2, . . . , tk]. During the kth time slot of tk, the kth tag
scatters a proportion αk (0 < αk < 1, power reflection coeffi-
cient) of the received RF signals to the reader. The remaining
1−αk power is harvested by the tag to power the circuit [30],

as shown in Fig. 2. In addition, a tag can harvest energy not
only during its own backscatter time slot but also from the
silent time slot (other tag backscatter time slot). If the har-
vested energy during one frame is redundant, it can be stored
to supplement the energy shortage in other frames. The total
energy harvested by the kth tag during the whole frame is
given by

EH,k = η(1 − αk)PT,ktk + ηPT,i

K∑
i=1,i�=k

ti (2)

where η is energy harvesting (EH) efficiency, and PT,i is the
power received at the kth tag during the ith time slot. Due
to the unchanged channel gain hf

k during one frame, we have
PT,i = PT,k = |hf

k|2Ps. In (2), the harvested energy of the kth
tag consists of two parts. The first part of energy is harvested
in its own backscatter time slot and the second one is harvested
during the other tags’ backscatter time slots. By summing
these two parts together, (2) can be further simplified as

EH,k = η(1 − αktk)
∣∣∣hf

k

∣∣∣2Ps. (3)

To guarantee the tag normal operation, the harvested energy
should be larger than the consumed one. Therefore, we have
the EH constraint, as follows:

EH,k ≥ EC,k (4)

where EC,k = E0 +κφ(Rk) is the consumed energy by the kth
tag during one frame, defined as [19] and [31], and E0 and
κ are two constant terms and Rk is the transmission rate of
the kth tag; φ(Rk) is the rate-dependent power consumption,
which is adopted as φ(Rk) = Rk [31].

During the information transmitting phase, in the kth slot,
only the kth tag operates data transmission. The signal received
at the reader from the kth tag is given by

yR,k(n) = √
αkhks(n)bk(n) + gs(n) + nR(n) (5)

where hk = hf
khb

k , and bk(n) is the information bit at the kth
tag, bk(n) ∈ {0, 1} and nR(n) denotes the noise at reader, which
follows the circularly symmetric complex Gaussian (CSCG)
distribution, i.e., nR(n) ∼ CN (0, σ 2

R). Here, we have neglected
the nT(n) term in (5) since nT is much smaller compared with
nR. Generally, in BCSs, the noise at passive tag is negligible
for the lower power consumption [32], [33].

The overall channel link hk = hf
khb

k can be estimated
by a training-based method, i.e., LMMSE method [9]. The
channel estimation is operated at the beginning of each
frame. Based on (5), the signal-to-interference-plus-noise-ratio
(SINR) associated with the kth tag is given by

γT,k = αk|hk|2Ps

|g|2Ps + σ 2
R

. (6)

Hence, the achievable throughput of the kth tag can be
expressed as [14]

Rk = tk log2

(
1 + αk|hk|2Ps

|g|2Ps + σ 2
R

)
. (7)
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III. CHANCE-CONSTRAINED PROBLEM FORMULATION

In practice, channel estimation is a power-consuming oper-
ation for BCSs, which makes it challenging for the passive
tag to send pilots or feeding back channel conditions. The
accuracy of CSI cannot be guaranteed at all the time. In our
proposed model, we take the imperfect CSI into consideration
to make a robust design. In the imperfect case, the actual CSI
of hk and g can be expressed as [34]

hk = ĥk + �hk (8)

g = ĝ + �g (9)

where ĥk and ĝ are the estimated channels of hk and g, respec-
tively; �hk and �g are the channel estimation errors of hk

and g, respectively. The pilot-based or blind estimation method
can be used to obtain the estimated channel [10]–[12], [35].
The distribution of CSI error will be discussed in the following
two scenarios.

1) Scenario 1-Gaussian Distribution: In most robust
optimization literatures, the CSI errors are usually assumed as
the CSCG distribution for system design [19], [20]. It is known
that the CSI errors will tend to follow Gaussian distribution
when the minimum mean square error (MMSE) channel esti-
mation method is used for estimation [34]. As a special case,
we will discuss the CSI errors of hk and g with the zero-mean
CSCG distribution in the first scenario, given by

�hk ∼ CN
(
0, σ 2

hk

)
, �g ∼ CN

(
0, σ 2

g

)
. (10)

2) Scenario 2-Arbitrary Distribution: In practice, we have
no knowledge of the exact distribution of the CSI errors.
However, it is much easier to obtain the first and second order
statistics of the CSI errors compared with the exact distri-
bution [19], [23]. Motivated by this, we define a set P of
all distributions of �hk and �g with the same means and
(co)variances, as follows:

P =
{
P : EP

(
�p
) = μp, EP

[(
�p − μp

)(
�q − μq

)T] = σ 2
p,q

k = 1, 2, . . . , K, p, q ∈ {hk, g}
}

(11)

where μp and σ 2
p,q are the means and (co)variances of �p

under distribution P, p, q ∈ {hk, g}, and P can be arbitrary
distribution as long as its distribution meets the means and
(co)variances requirements in (11).

In the above imperfect CSI model, it is hard to design the
system for each tag always meeting the throughput require-
ments, due to the uncertainty of CSI. In practice, it is
reasonable to make a robust design within the tolerance of
uncertainty. Our objective is to maximize the minimum user
rate among all the tags by jointly optimizing the backscatter
time allocation vector t and the power reflection coefficient
vector α subject to the throughput and EH chance constraints.
Mathematically, the optimization is formulated as follows:

max
t,α,Rmin

Rmin (12)

s.t. Pr

[
tk log2

(
1 + αkPs|ĥk + �hk |2|fk|2

σ 2
R + |ĝ + �g|2Ps

)
≥ Rmin

]

≥ 1 − ε1,∀k (13)

Pr
[
ηPs|ĥk + �hk |2(1 − αktk) ≥ EC,k

]
≥ 1 − ε2,∀k

(14)
K∑

k=1

tk ≤ 1 (15)

tk ≥ 0, ∀k (16)

0 ≤ αk ≤ 1, ∀k (17)

where Rmin is the minimum individual through-
put. Equation (13) is the throughput chance constraint,
which means the throughput of each tag should meet the
minimum throughput requirement with the probability at least
1− ε1 in the presence of channel uncertainties. Equation (14)
is the EH chance constraint, which reveals the probability
that the harvested energy under CSI errors is above the
consumed energy EC,k is at least 1 − ε2 for each tag.
The chance constraints are motivated by the facts that the
system can accept the outage with a tolerable probability.
The backscatter time constraints are given in (15) and (16),
respectively. Equation (17) gives the constraint for each tag’s
power reflection coefficient.

IV. PROPOSED SAFE APPROXIMATION METHODS

The robust chance-constrained optimization problem
in (12)–(17) is nonconvex, which makes the problem compu-
tationally intractable. Safe approximation is commonly used
in solving the chance constrained problem, which can be
served as an upper bound for the original problem. In this
section, we will introduce two safe approximation methods:
1) the Bernstein-type-inequality-based method and 2) CVaR
method. The former is aiming at the Gaussian distribution of
CSI errors, as shown in Section IV-A and the latter is for the
arbitrary distribution of CSI errors, as shown in Section IV-B.

A. Bernstein-Type-Inequality-Based Method

The Bernstein-type inequality is based on a large devia-
tion inequality for complex Gaussian quadratic forms, which
bounds the probability that a sum of random variables devi-
ates from its mean [20]. The Bernstein-type-inequality-based
method can convert the complicated chance constraints into
a tractable optimization problem. In order to deal with the
chance constraints in (13) and (14) for Scenario 1, we use
the Bernstein-type-inequality approach given in the following
lemma.

Lemma 1: Let f (x) = xHYx + 2Re{xHu}, where Y is a
complex Hermitian matrix, Y ∈ H

N×N , x ∼ CN (0, IN) is
a standard CSCG random vector, and u ∈ C

N×1. Then for any
δ > 0, we have the following statement [20]:

Pr

{
f (x) ≥ Tr(Y) − √

2δ
√

‖Y‖2F + 2‖u‖2 − δc+(Y)

}
≥ 1 − e−δ (18)

where c+(Y) = max{λmax(−Y), 0} with λmax(−Y) denotes
the maximum eigenvalue of matrix −Y and ‖ · ‖F denotes the
Frobenius norm.

Considering the CSI errors in Scenario 1, we define a CSI
error vector, as vk = [�hk ,�g]T with vk ∼ CN (0, Ck), where
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Ck denotes the covariance matrix of vk, given by

Ck =
[
σ 2

hk
0

0 σ 2
g

]
. (19)

The derivation of Ck is presented in Appendix A. Let vk =
C(1/2)

k ek, where ek ∼ CN (0, I2). The chance constraint in (13)
can be reformulated as

Pr{f (ek) ≥ χ} ≥ 1 − ε1 (20)

where

f (ek) = eHk C
1
2
k XkC

1
2
k ek + 2Re

{
eHk C

1
2
k u
}

(21)

Xk =
[

tkαkPs|fk|2 0
0 −RminPs

]
, u =

[
tkαkPs|fk|2ĥk

−RminPsĝ

]
(22)

χ = RminPs|ĝ|2 + Rminσ
2
R − tkαkPs|ĥk|2. (23)

The detailed derivation is provided in Appendix B. According
to Lemma 1, let δ = − ln ε1 in (18), then (20) holds true if
the equality

Tr

(
C

1
2
k XkC

1
2
k

)
−√−2 ln ε1

√∥∥∥∥C
1
2
k XkC

1
2
k

∥∥∥∥
2

F
+ 2

∥∥∥∥C
1
2
k u

∥∥∥∥
2

+ ln ε1c+
(

C
1
2
k XkC

1
2
k

)
≥ χ (24)

is satisfied. Hence, the chance constraint form (20) is conser-
vatively transformed as the deterministic form (24). However,
(24) is still not the tractable constraint. We will make the fur-
ther transformation by introducing two auxiliary variables θ1,
θ2. According to the equality technique, (24) is equivalently
to the following constraints:

Tr

(
C

1
2
k XkC

1
2
k

)
−√−2 ln ε1θ1 + ln ε1θ2 ≥ χ (25)√∥∥∥∥C

1
2
k XkC

1
2
k

∥∥∥∥
2

F
+ 2

∥∥∥∥C
1
2
k u

∥∥∥∥
2

≤ θ1 (26)

θ2I2 + C
1
2
k XkC

1
2
k � 0 (27)

θ2 � 0. (28)

Moreover, (26) can be written as a second-order cone (SOC)
constraint, given by∥∥∥∥∥∥∥

⎡
⎢⎣vec

(
C

1
2
k XkC

1
2
k

)
√
2C

1
2
k u

⎤
⎥⎦
∥∥∥∥∥∥∥ ≤ θ1. (29)

Similarly, let �hk = σhk ehk , where ehk ∼ CN (0, 1). Then
the EH constraint in (14) can be transformed as

Pr
{
f
(
ehk

) ≥ ζ2
} ≥ 1 − ε2 (30)

where

f
(
ehk

) = ζ1|ehk |2 + 2Re
{

eHhk
ν
}

(31)

ζ1 = ηPs(1 − αktk)σ
2
hk

, ν = ηPs(1 − αktk)ĥkσhk (32)

ζ2 = EC,k − ηPs(1 − αktk)|ĥk|2. (33)

Using the Bernstein-type inequality in Lemma 1, the chance
constraint in (30) can be conservatively transformed into the
following deterministic form, given by:

ζ1 −√
2δ2

√
|ζ1|2 + 2|ν|2 − δ2c+(ζ1) ≥ ζ2 (34)

where δ2 = − ln ε2. According to Lemma 1, (30) can always
hold true as long as (34) is true. Nevertheless, (34) is still not
a linear constraint. We introduce two auxiliary variables ϑ1
and ϑ2 to transform (34) into a series of tractable constraints,
given by

ζ1 −√
2δ2ϑ1 − δ2ϑ2 ≥ ζ2 (35)∥∥∥∥

[
ζ1√
2ν

]∥∥∥∥ ≤ ϑ1 (36)

ϑ2 + ζ1 ≥ 0 (37)

ϑ2 ≥ 0. (38)

Hence, after using the Bernstein-type-inequality-based method
in Lemma 1, the original chance-constrained problem under
Scenario 1 is reformulated as a tractable optimization problem,
given by

P1 : max
t,α,Rmin

θ1,θ2,ϑ1,ϑ2

Rmin (39)

s.t. (15), (16), (17) (40)

(25), (27), (28), (29) (41)

(35), (36), (37), (38) (42)

where (25) and (27)–(29) is the transformation of the through-
put chance constraint in (13), and (35)–(38) is the equivalent
transformation of EH chance constraint in (14).

B. CVaR-Based Method

In Scenario 2, the distribution of CSI errors is not exactly
known. An effective way to deal with this case is to trans-
form (12) and (14) into a distributionally robust chance
constraint, given by

inf
P∈P

PrP

[
tk log2

(
1 + αkPs|ĥk + �hk |2|fk|2

σ 2
R + |ĝ + �g|2Ps

)
≥ Rmin

]

≥ 1 − ε1,∀k (43)

inf
P∈P

PrP
[
ηPs|ĥk + �hk |2(1 − αktk) ≥ EC,k

]
≥ 1 − ε2,∀k

(44)

where infP∈P PrP[·] denotes the lower bound of the probability
under the probability distribution P and P is called ambiguity
set, which includes all the possible CSI mismatch distributions.
Rmin represents the throughput threshold for each tag, and
ε1, ε2 ∈ (0, 1) is a desired safety factor specified by the prac-
tical application or standards. The chance constraints in (43)
and (44) satisfy the demand of finding the worst-case distribu-
tion among all the possible distributions from the ambiguity
set P .

The uncertainty channel estimation errors: �hk and
�g in (43) and (44) make the chanceconstraint problem
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intractable. To overcome this challenge, we introduce a CVaR-
based method, which is known as a good convex approx-
imation of the worst-case chance constraint. Particularly,
if the constraint function is concave or quadratic in the
random variable, the distributionally robust version of the
chance constraints are equivalently to the worst-case CVaR
constraint [25], [36], which is described by the following
lemma [36].

Lemma 2: For a continuous loss function L : R
k → R

that is concave or quadratic in ξ . The distributionally robust
chance constraint is equivalent to the worst-case constraint,
given by [36]

inf
P∈P

PrP{L(ξ) ≤ 0} ≥ 1 − ε ⇐⇒ sup
P∈P

P−CVaRε{L(ξ)} ≤ 0

(45)

where P−CVaRε{L(ξ)} is denoted as the CVaR of L(ξ) at
threshold ε with respect to P, defined as

P−CVaRε{L(ξ)} = inf
β∈R

{
β + 1

ε
EP

[
(L(ξ) − β)+

]}
. (46)

Moreover, R is the set of real numbers and (z)+ = max{0, z},
and β ∈ R is an auxiliary variable introduced by CVaR.
It can be seen from (45) that the distributionally robust version
of the chance constraint on the left hand side is equivalent to
the worst-case CVaR on the right hand side when the loss func-
tion is concave or quadratic in random variable. The worst-case
CVaR can be converted into a group of SDP, which will be
shown in the following lemma.

Lemma 3: Let L(ξ) = ξTQξ + qTξ + q0 being a quadratic
function of ξ , ∀ξ ∈ R

n. The worst-case CVaR can be computed
as [36]

sup
P∈P

P−CVaRε{L(ξ)} = min
β,M

β + 1

ε
Tr(�M) (47)

s.t. M ∈ S
n+1, β ∈ R (48)

M � 0, M −
[

Q 1
2q

1
2q q0 − β

]
� 0 (49)

where M and β are the auxiliary variables and M � 0 indi-
cates that M is a positive-semidefinite matrix, S

n denotes the
space of n-dimensional symmetric matrix, and � is a matrix
defined as

� =
[
� + μμT μ

μT 1

]
(50)

where μ ∈ R
n and � ∈ S

n are the mean vector and covariance
matrix of random vector ξ , respectively.

In our case, we define a random vector ξ1, as ξ1 =
[|ĥk+�hk |, |ĝ+�g|]T. After the first-order Taylor series expan-
sion of the logarithm function, the loss function L can be
expressed as

L(hk, g) = RminPs|ĝ + �g|2 − tkαkPs|fk|2|ĥk + �hk |2
+ Rminσ

2
R (51)

which can be written as a quadratic function in ξ1, as follows:

L
(
ξ1
) = ξT

1Qξ1 + Rminσ
2
R (52)

where

Q =
[−αkPs|fk|2tk 0

0 RminPs

]
. (53)

According to Lemmas 2 and 3, the worst-case chance con-
straint in (43) can be transformed as the following CVaR
constraint:⎧⎪⎪⎨

⎪⎪⎩
β1 + 1

ε1
Tr(�kM1) ≤ 0

M1 ∈ S
3, β1 ∈ R

M1 � 0, M1 −
[

Q 0
0 Rminσ

2
R − β1

]
� 0

(54)

where M1 and β1 are two auxiliary variables, and

�k =
[
�k + μkμ

T
k μk

μT
k 1

]
(55)

�k =
[
σ 2

hk,hk
0

0 σ 2
g,g

]
, μk =

[
ĥk + μhk , ĝ + μg

]
. (56)

Similarly, (44) can be also transformed to the CVaR con-
straint. Let ξ2 = |ĥk + �hk |, the loss function of (44) can be
expressed as

L(ξ2) = ξT
2 qξ2 + EC,k (57)

where

q = −ηPs(1 − αktk). (58)

Using the results in Lemmas 2 and 3, we can derive the CVaR
constraint (44), given by⎧⎪⎪⎨

⎪⎪⎩
β2 + 1

ε2
Tr
(
�′

kM2
) ≤ 0

M2 ∈ S
2, β2 ∈ R

M2 � 0, M2 −
[

q 0
0 EC,k − β2

]
� 0

(59)

where M2 and β2 are two auxiliary variables for the EH
constraint, and

�′
k =

[
σ 2

hk,hk
+ μ′

kμ
′T
k μ′

k

μ
′T
k 1

]
(60)

μ′
k = ĥk + μhk . (61)

Therefore, the original distributionally chance-constrained
problem under Scenario 2 can be reformulated as

P2 : max
t,α,Rmin,

M1,M2,β1,β2

Rmin (62)

s.t. (15), (16), (17) (63)

(54), (59). (64)

Now the chance constraints have been reformulated in a
tractable form based on the above two safe approximation
methods. However, the throughput and EH constraints are
still nonconvex due to the term αktk. Next, we will design
an alternating algorithm to make the problem solvable.
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Algorithm 1 Alternating Optimization Algorithm
Input: Set initial values for t and the terminated threshold �.

1: Fix t and solve the subproblem of α to obtain the optimal
α∗ and optimal throughput opt_val.

2: Let α ← α∗, p1 ← opt_val.
3: Fix α and solve the subproblem of t to obtain the optimal

t∗ and optimal throughput opt_val.
4: Let t ← t∗, p2 ← opt_val.
5: while |p1 − p2| > �, do
6: Steps 1, 2, 3 and 4.

Output: t, α and opt_val.

V. ALTERNATING OPTIMIZATION ALGORITHM

In this section, we give an alternating optimization method
to address the joint optimization problem of α and t, as shown
in Algorithm 1. The nonconvexity in problem P1 and P2
are caused by the multiplication of αk and tk in the con-
straints. Therefore, the alternating algorithm is designed by
fixing the variable tk first to solve the problem in P1 and P2.
Then we can obtain the optimal power reflection coefficient
α∗ = [α∗

1 , α
∗
2 , . . . , α

∗
k ] and optimal throughput threshold p1

by using the off-the-shelf convex optimization solvers, such as
CVX. Next, let α = α∗, as the fixed variable and we can obtain
the optimal backscatter time allocation t∗ = [t∗1, t∗2, . . . , t∗k ] as
well as the optimal throughput threshold p2. Repeating in this
way, the derived results t∗ or α∗ at the current step can be
used as the fixed value in the next step. The iteration process
can be terminated when |p1 −p2| is below a certain threshold.

VI. NUMERICAL RESULTS

In this section, we present the simulation results of the
proposed chance-constrained optimization problem. The EH
efficiency η is 0.5 and the safety factor ε1 and ε2 are set as
0.05. The two parameters E0 and κ are 7 μJ and 1, respec-
tively. The transmit power Ps and noise σ 2

R are set to 30 dBm
and 10−6 W, respectively. The channel coefficient hk and g
are modeled as 10−3d−αhk and 10−3d−αg, where α = 3 is
the path loss exponent and d is the distance from PS to the
reader or tag. The means of the estimated channel of hk and
g are 1. Finally, the simulation results are based on the CVX
package [37]. The iteration termination threshold � is set as
10−3. The Monte Carlo runs 10 000 for average.

For comparison, we consider a nonrobust scheme, which
treats the estimated CSI of hk and g as the perfect CSI. Then
we can solve the following nonrobust problem:

max
t,α,Rmin

Rmin (65)

s.t.
αktkPs|ĥk|2|fk|2

σ 2
R + |ĝ|2Ps

≥ Rmin (66)

ηPs|ĥk|2(1 − αktk) ≥ EC,k (67)

(15), (16), (17) (68)

by using the alternating optimization algorithm in Algorithm 1.
Each iteration is convex and can be solved by CVX.

Fig. 4. Max–min throughput versus σhk for different optimization methods
with non-Gaussian CSI mismatch, Ps = 1 dBm, σg = 0.1, or σg = 0.05,
K = 3.

The distribution of CSI mismatch is non-Gaussian model.
We consider the Gaussian mixture model, which is gener-
ally used in the non-Gaussian noise approximation [38]. The
probability density function of �hk or �g is given as

f
(
�p
) =

L∑
l=1

λp,l

πσ 2
p,l

exp

{
−|�p|2

σ 2
p,l

}
, p ∈ {hk, g} (69)

where
∑L

l=1 λl = 1. We set λ1 = 0.1 and λ2 = 0.9 in the
simulation.

Fig. 4 shows the max–min throughput versus the channel
estimation error variance σhk for different optimization meth-
ods. As can be observed, the minimum throughput among tags
degrades for both the Bernstein-type-inequality and CVaR-
based methods as the quality of CSI decreases. In addition, the
max–min throughput for nonrobust scheme remains unchanged
as the channel estimation error variance σhk and σg increase.
This is because the nonrobust scheme takes no account of the
uncertainty of channels [39], [40]. Moreover, the max–min
throughputs of the two proposed methods are larger than that
of nonrobust scheme, which indicates the robust schemes can
guarantee the resource allocation for the tag with relatively
poor channel conditions. It can be also seen from the figure
that the CVaR-based method for non-Gaussian CSI errors sce-
nario performs better than the Bernstein-type-inequality-based
method.

Fig. 5 depicts the max–min throughput versus the trans-
mit power Ps for the three different optimization scenarios
with the channel estimation error variances σhk = 0.1 and
σg = 0.05. As we can observe, the max–min throughput is
increasing for all the considered schemes with respect to the
transmit power Ps. The reason for this phenomenon is that the
tag can harvest more energy from the PS with a larger Ps to
achieve a higher throughput. However, the max–min through-
put increases slowly when Ps exceeds a certain value. This is
due to the fact energy consumption for each tag is positively
correlated with the individual throughput. In order to meet the
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Fig. 5. Max–min throughput versus Ps for different optimization methods
with non-Gaussian CSI mismatch, K = 3, σhk = 0.1 and σg = 0.05.

Fig. 6. Max–min throughput versus iteration number for different
optimization methods with non-Gaussian CSI mismatch, σhk = 0.1 and
σg = 0.05.

EH constraint in (14), the throughput cannot monotonically
increase with the respect to the transmit power.

Fig. 6 demonstrates the convergence behavior of the
proposed alternating optimization algorithm in Algorithm 1 for
the proposed robust methods with Ps = 0 dBm, σhk = 0.1, and
σg = 0.05. It can be observed that all the proposed method can
converge within only 16 iterations, which indicates the practi-
cal applicability of the algorithm. Moreover, the convergence
speed of the Bernstein-type-inequality method is faster than
that of the CVaR-based method. This is due to the fact that
the CVaR method considering the worst-case scenario among
all the distributions, which is more complex compared to the
Bernstein-type-inequality method under the Scenario 1. The
iteration number increases as the transmit power increases.

Fig. 7 depicts the max–min throughput versus the number of
tags. As the number of tags increases, the max–min throughput
among all the tags becomes smaller. The constraint in (13) is
supposed to guarantee the throughput requirement for all the

Fig. 7. Max–min throughput versus K for different optimization methods
with non-Gaussian CSI mismatch, Ps = 0 dBm, σhk = 0.1, and σg = 0.05.

Fig. 8. Individual throughput versus different tags for the non-Gaussian CSI
mismatch with Ps = 0 dBm, K = 3, λ1 = 0.1, λ2 = 0.9, σhk = 0.01, and
σg = 0.05.

tags despite their potentially poor channel conditions. So, the
max–min throughput is limited by the tag with the worst chan-
nel condition. As the number of tags increases in the system,
the probability of a tag with poor channel condition increases,
which leads to the decrease of the max–min throughput.

In Fig. 8, we can find the throughput of each tag
under the CVaR method is larger than that under the
Bernstein-type-inequality. This is because we assume the CSI
error is Gaussian when we use the Bernstein-type-inequality
method. The performance of the Bernstein-type-inequality-
based method would degrade when the distribution of CSI
error becomes non-Gaussian. Moreover, we can see the indi-
vidual throughput of each tag cannot meet the minimum
throughput requirements. The robustness of the Bernstein-
type-inequality method is not good as the CVaR method.

In Fig. 9, we present the sum throughput versus the transmit
power Ps when the distribution of channel estimation errors
are the non-Gaussian mixture model. We can find that the
sum throughput is monotonically increasing with respect to
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Fig. 9. Sum throughput versus Ps for the non-Gaussian CSI mismatch with
Ps = 0 dBm, K = 3, λ1 = 0.1, λ2 = 0.9.

the transmit power for all considered methods. This is because
each of the tags can harvest more energy when the trans-
mit power is increased. Moreover, the CVaR-based method
can achieve better performance than that of Bernstein-type-
inequality-based method. The sum throughput degrades as
the channel error estimation error variance σg increases. In
addition, the sum throughput gap between CVaR method and
Bernstein-type-inequality becomes smaller for a larger value
of σg, which indicates that CVaR method is sensitive to the
channel estimation error with a large variance.

VII. CONCLUSION

In this paper, we have proposed a chance-constrained
optimization problem to deal with the imperfection of CSI for
the design of multitag ABSs. We propose a joint backscatter
time allocation and power reflection coefficient optimization
algorithm for maximizing the minimum individual throughput
among all the tags. We adopt the Bernstein-type-inequality-
based method to solve the chance constraint problem for the
Gaussian distribution of CSI errors. Furthermore, we utilize
the CVaR-based method to reformulate the distributionally
robust version of the chance constraint into a tractable alter-
native. An effective alternating algorithm is developed for
solving the transformed problem. Simulation results show
that the robust design can cause a decrease of the max–min
throughput and reveal the existence of tradeoff between the
max–min throughput and the robustness. Moreover, CVaR-
based method can effectively solve the worst-case chance con-
strained problem and outperform the Bernstein-type-inequality
method for the non-Gaussian channel estimation errors.

APPENDIX A
PROOF OF EQUATION (19)

The covariance matrix of vk is defined as

Ck =
[

E
[(

�hk − μhk

)(
�hk − μhk

)]
E
[(

�hk − μhk

)(
�g − μg

)]
E
[(

�g − μg
)(

�hk − μhk

)]
E
[(

�g − μg
)(

�g − μg
)]
]

(70)

where

E
[
(�i − μi)

(
�j − μj

)] = E
[
�i�j

]− μiμj, i, j ∈ {hk, g}.
(71)

According to (10), we have μhk = μg = 0. The elements of
the main diagonal in Ck are the variance of �hk and �g, i.e.,
σ 2

hk
and σ 2

g , respectively. Moreover, �hk and �g are indepen-
dent with each other. It is easy to derive the elements of back
diagonal as 0.

APPENDIX B
PROOF OF EQUATION (20)

We use the first-order Taylor series expansion of the loga-
rithm function, then (13) can be written as

Pr

[
αktkPs|ĥk + �hk |2|fk|2

σ 2
R + |ĝ + �g|2Ps

≥ Rmin

]
≥ 1 − ε1,∀k (72)

where ∣∣∣ĥk + �hk

∣∣∣2 = |�hk |2 + 2Re
{
�H

hk
ĥk

}
+ |ĥk|2 (73)

|ĝ + �g|2 = |�g|2 + 2Re
{
�H

g ĝ
}

+ |ĝ|2. (74)

For a given vector x = [x1, x2], if

F(x1, x2) = ax21 + bx22 + cx1x2 (75)

then the quadratic form of x can be written as

F(x) = xT�x (76)

where

� =
[

a c
2

c
2 b

]
. (77)

Based on this fact, we can derive the result in (20).
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