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Abstract. In previous work, perturbed angular correlation spectroscopy (PAC) was used to 
determine jump rates of 111Cd, the daughter of the 111In radiotracer, in the series of phases RIn3 (R = 
rare-earth element) through nuclear quadrupole relaxation.  Greater relaxation, indicating faster Cd 
jump rates, was observed in heavy rare-earths for compositions more deficient in indium, as would 
be expected for diffusion mediated by vacancies on the In sublattice.  On the other hand, greater 
relaxation was observed for light rare-earths (R = La, Ce, and Pr) for compositions with excess 
indium, suggesting Cd diffusion is mediated there by a different mechanism.  In this work, 
computer simulations were carried out to better understand the nature of the relaxation observed for 
the light rare-earths and the origin of the change in behavior across the rare-earth series.  As a first 
step, formation enthalpies of intrinsic defects were calculated using density functional theory (DFT) 
for series end-members LaIn3 and LuIn3.  Both compounds were found to exhibit Schottky thermal 
disorder.  Additional DFT simulations show that the binding enthalpy between In- and R-vacancies 
is larger in LaIn3 than in LuIn3, suggesting that diffusion in LaIn3 might be mediated by 
divacancies.  Site enthalpies of Cd also were calculated, and it was found more favorable 
energetically for Cd to occupy the In sublattice than the R sublattice in both end-member phases. 

Introduction 

Rare earth tri-indides (RIn3 where R = rare earth element) form in the L12 crystal structure, 
shown in Fig. 1.  In this structure, indium is coordinated by 4 R sites and 8 In sites, so it is 
reasonable to expect that tracers on the indium sublattice will diffuse via an indium vacancy 
mechanism, undergoing first-neighbor jumps without an increase in configurational energy [1].  In 
such a case, the tracer jump rate w would be given by the formula w = Z[vIn]w2, where Z=8 is the 
number of first-neighbor In sites, [vIn] denotes the fractional indium vacancy concentration, and w2 
is the tracer-vacancy exchange frequency. The corresponding diffusion coefficient would be given 
by  

wfaD 2
12
1  (1) 

where f is the correlation coefficient and a is the lattice parameter.  Thus, in the case of an indium 
vacancy mechanism, the tracer jump rate and the tracer diffusivity will increase as indium vacancy 
concentration increases as would be the case, for example, for sample compositions with growing 
indium deficiency.   

Using perturbed angular correlation spectroscopy (PAC), cadmium jump rates were determined 
by measuring nuclear relaxation at opposing phase-boundary compositions in RIn3 across the rare 
earth series [2].  In heavy rare-earth compounds, cadmium tracers experienced larger relaxation 
(corresponding to faster jump rates) at indium-poorer compositions, as expected for an indium 
vacancy diffusion mechanism; however, in the light rare-earth compounds, tracers were found to 



 

have larger relaxation at indium-richer compositions. A decisive composition dependence was not 
observed for the intermediate rare-earths Nd and Sm.   

Fig. 1.  The L12 crystal structure.  Rare earth 
atoms are shown as larger spheres and indium as 
smaller spheres.  First neighbors are connected 
by bars. 

 
As pointed out when larger relaxation was first observed at the indium-richer composition in 

LaIn3 [3], it is possible to explain the “backwards” composition dependence if cadmium diffuses 
via a more complex diffusion mechanism such as via a La-vacancy-mediated 6-jump cycle or a 
divacancy mechanism.  For example, if the dominant mode of disorder in LaIn3 involves lanthanum 
vacancies and La-antisite defects, analogous to triple-defect disorder in B2 compounds, then it 
could be that the indium vacancy concentration is small enough that diffusion of indium and tracers 
on its sublattice would be mitigated by the lanthanum vacancies.  Since lanthanum vacancy 
concentration is larger at indium-richer compositions, this would explain the composition 
dependence of nuclear relaxation observed for cadmium in LaIn3.   

Diffusion mediated by lanthanum vacancies may not entirely explain the anomalously high 
cadmium jump rates inferred by relaxation measurements at indium-rich compositions in the light 
rare earth tri-indides [4].  It has been suggested that the measured relaxation is due at least in part to 
cadmium shifting off the indium sublattice [4,5], which would happen, for example, if the site 
occupation energy of cadmium were lower on a rare-earth site than the indium site. The cadmium 
tracers used in earlier experiments were radioactive daughters of the 111In PAC isotope, and 
therefore are known to occupy the indium sublattice initially.  It is possible that cadmium moves off 
the indium sublattice shortly after its formation and that this leads to a larger nuclear relaxation than 
would be observed if cadmium were jumping only among indium lattice sites.   

Given the incomplete picture about cadmium movement in LaIn3 and other light rare-earth tri-
indides, it is of interest to use computer simulations to help understand the difference in cadmium 
behavior in the light and heavy rare-earth compounds and to help elucidate the origin of the larger 
relaxation rates at indium richer compositions in the light rare-earth tri-indides.  The first step in 
such simulations is to determine equilibrium intrinsic defect and cadmium site-occupation 
properties in representative compounds. This paper presents findings for endmembers of the series: 
LaIn3 and LuIn3. Implications of these results for interpreting the difference in cadmium jump-rate 
trends as inferred by hyperfine relaxation measurements in these two compounds will be discussed. 

Method 

Intrinsic defect and solute site occupation concentrations can be calculated through application of 
an appropriate thermodynamic model.  In this work, the Gibbs free energy of the defective crystal is 
minimized subject to structural and compositional constraints within the framework of the 
canonical ensemble.  Changes in enthalpy in the thermodynamic model are calculated using density 
functional theory (DFT).   

Consider the general compound R1+4xIn3-4x where x denotes deviation from stoichiometric 
composition RIn3, and, again, R represents a rare-earth element: La or Lu, in this study.  The usual 
assumption is made that interactions among defects are negligible.  In PAC studies using the 111In 
isotope, tracer mole fraction is on the order of 10-12, which is much smaller than the total 
concentration of intrinsic defects.  Accordingly, in this thermodynamic model, tracer concentration 



 

will be taken to be small enough to be considered negligible in the composition constraint.  This 
gives, as the composition constraint: 

         In4
1

In4
3 v33vIn4 xRxx RR  , (2) 

where square brackets are used to denote the fractional concentration of defect on the sublattice 
specified by the subscript.   

Minimization of the Gibbs free energy leads to four equations involving intrinsic defect 
concentrations.  Alternatively, these equations can be obtained by applying the Law of Mass Action 
to pseudo-chemical disorder reactions that represent defect formation.  The reactions and 
corresponding Mass-Action equations are given in Table 1.  They represent Schottky disorder, 
antisite disorder, and two modes of disorder that are analogous to triple-defect disorder in the B2 
compounds: called 7-defect and 5-defect in this work.   

 
 
Table 1.  Equilibrium equations and corresponding intrinsic disorder reactions for RIn3. 

Equation of equilibrium Disorder reaction 
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Minimization of the Gibbs free energy also leads to equations relating concentrations of 

cadmium on each sublattice to intrinsic defect concentrations.  These equations along with 
corresponding pseudo-chemical reactions describing the transfer of cadmium from one sublattice to 
another are given in Table 2.   

 
 
Table 2. Equilibrium equations and transfer reactions for Cd site occupation in RIn3. 

Equation of equilibrium Transfer reaction 
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As shown below, only three equations in Table 1 are independent, and only one equation in 

Table 2 is needed to determine equilibrium cadmium site occupation.  Thus, if three of the free 
energies of disorder, GS, GAS, G7 and G5, and one of the free energies of transfer, Gxn, are known, 
the defect concentrations can be calculated by solving numerically the systems of equations given 



 

by three equations in Table 1, one equation in Table 2, Eq. 2, and two additional relations to 
eliminate [RR



] and [InIn]:  

     InInIn v1In  R  and      RRRR vIn1  ,  (3) 

again under the assumption that [CdR] and [CdIn] are much smaller than the dominant intrinsic 
defect concentrations. 

Thus, determination of defect concentrations and Cd site occupation depends only on values of 
free energies of disorder and of solute transfer.  They can be expressed in terms of what have been 

called defect formation energies, denoted in the present work by  fX
Yg  for defect X on sublattice 

Y, and by the formation energy per formula unit of the perfect lattice, .  In this notation, 
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three disorder reactions are needed to specify intrinsic disorder completely.  Only one transfer 
reaction is needed, because reaction energies of various transfer reactions differ only by intrinsic 
disorder energies: 5Sx2AS GGGx1x3 GG G  . 

The defect formation energy corresponds to the change in energy required to move the non-
defect atom out of site Y in the crystal to a reference state, which often is taken to be a pure metal of 
substance Y, and to move a defect of species X from a reference state into the vacant lattice site in 

the crystal.  That is,    where N indicates the number of atoms in 

the crystal,  is the energy per atom of the perfect crystal so that  is the energy of the 

perfect crystal with N atoms,  is the energy of an equivalent size crystal with defect XY, and 
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It is noteworthy that reference-state energies  cancel when calculating disorder-reaction and 
transfer energies, so that reaction and transfer energies may be determined without calculating 

energies of pure metals or other reference conditions.  In that case, , 
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the raw defect energy [6], denotes the difference in energy of the crystal with and without the 
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Above, free energies, G and g, can be expressed in terms of corresponding enthalpies and 
vibrational entropies: G = H – TSvib and g = h – Tsvib.  Often, vibrational contributions to the free 
energy are not considered when using computer simulations to perform an initial characterization of 
a material’s defect properties, and that is true for the present analysis.   

In this work, defect enthalpies X
Yh  and the enthalpy per atom of RIn3, , were calculated 

within the framework of density functional theory (DFT) using the LAPW/dAPW basis set [

0
In3Rh

7] as 
implemented in the WIEN2k code [8].  That is, full-potential linearized augmented plane-waves 



 

with additional local-orbital basis functions (LAPW+LO) [9] were used for valence and semi-core 
electrons in s- and p-states while augmented plane waves with local orbitals (APW+lo) [7,10] were 
used for d- and f-states.  The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) 
[11] was used as the exchange-correlation functional, and calculations were carried out without 
spin polarization.  Atom-specific parameters (muffin-tin sphere radii and local orbitals) were as 
follows: RMT = 2.50 a.u. with a 4d lo for In; RMT = 2.50 a.u. with a 4p LO for Cd; RMT = 2.50 a.u. 
with 6s and 5p LOs for La; and RMT = 2.50 a.u. with 6s and 5p LOs for Lu.  Basis set sizes were 
determined using RMTKmax = 9.5, spherical harmonics inside atomic spheres were expanded up to 
maximum angular momentum lmax = 10, and the charge density was expanded up to Gmax = 1 -12 a.u. .   

Calculations were carried out on supercells containing N = 32 atoms constructed from 2×2×2 
unit cells under constant pressure; i.e., the lattice parameter was adjusted to minimize enthalpy at 
zero pressure. Defect calculations were full relaxed; that is, atomic coordinates of all 32 atoms (or 
31 for vacancy calculations) were adjusted to minimize enthalpy independent of symmetry 
constraints. The tetrahedron method [12] was used to perform integrations in reciprocal space by 
sampling 63 k points in the reduced first Brillouin zone of the supercell.  Calculations were run to 
self-consistency with an energy convergence criterion of 0.01 mRy, and atomic-coordinate 
relaxation calculations were run until forces on atoms were less than 0.2 mRy/bohr.   

Results 

Calculated enthalpy per atom of RIn3 and defect enthalpies are given in Table 3.  Corresponding 
disorder formation enthalpies, transfer enthalpy for the second transfer reaction, and vacancy-
vacancy association enthalpy (introduced below) are given in Table 4.   

 
 
Table 3.  Defect enthalpies and enthalpy per atom of RIn3.  All quantities in eV. 

Quantity R = La (LaIn3) R = Lu (LuIn3) 
0

In3Rh   -177,878.444 -219,263.302 

v
Rh  231,236.062 396,774.819 
v
Inh  160,094.135 160,093.587 
In
Rh  71,145.549 236,685.692 
RhIn  -71,137.524 -236,677.105 
Cd
Rh  78,960.508 244,499.714 
Cd
Inh  7,817.5794 7,817.325 

v:v
In:Rh  391,329.996 556,868.436 

 
 
Table 4.  Disorder enthalpies, transfer reaction 2 enthalpy, and vacancy association enthalpy. 

Quantity R = La (LaIn3) R = Lu (LuIn3) 
HS [eV/defect] 1.173 0.594 
HAS [eV/defect] 4.012 4.293 
H7 [eV/defect] 2.557 2.107 
H5 [eV/defect] 1.663 1.367 
Hx2 [eV] 1.002 1.157 
HA [eV] -0.201 0.030 

 



 

As can be seen in Table 4, the Schottky disorder enthalpy-per-defect has the smallest value of all 
modes of disorder in each compound, indicating that vacancies will have much larger 
concentrations than antisite defects. This can be verified readily by calculating defect 
concentrations at, for example 600 K, taking vibrational entropies to be zero for simplicity, and 
graphing as a function of composition, as in Fig. 2.  These results differ significantly from earlier 
calculations [13], which determined the lowest-enthalpy mode of disorder in LaIn3 to be the 5-
defect defect and the antisite and 7-defect modes to be nearly equivalent in LuIn3.  In the earlier 
calculations, disorder formation enthalpies were calculated under the condition of constant volume.  
The present results are favored, as constant pressure better represents experimental conditions. 
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Fig. 2.  Log plots of intrsinic defect conncentraions as a function of deviation from stoichiometry x 
at 600 K for disorder enthlapies reported in Table 4 and assuming disorder entropies are zero for (a) 
La1+4xIn3-4x and for (b) Lu1+4xIn3-4x. 
 
 

Given that vacancies have the largest concentrations in these compounds, transfer reaction x2 
provides the most direct equation for determining cadmium site occupation.  Values obtained are 
given in Table 4.  They indicate that it is energetically unfavorable for cadmium to switch from an 
indium site to a rare-earth site in both LaIn3 and LuIn3.  

Since vacancies are predicted to be the dominant intrinsic defects in these compounds, it is of 
interest to consider whether or not rare-earth and indium vacancies experience an attractive 
interaction.  A vacancy-vacancy interaction can be considered using the pseudo-chemical reaction 
for vacancy association: 

 InIn v:vvv A
R

G
R  , (4) 

where a negative association energy GA indicates an attractive interaction.  It can be expressed in 

terms of defect energies as  where  denotes the difference in energy in 

the crystal with vR and vIn defects in first neighbor positions and in the crystal with no defects; that 

is, . Again, N is the number of atoms in the crystal, or, in the case of a 

defect calculation, the number of atoms in the simulation supercell.  The corresponding enthalpies, 

, calculated using DFT are given Table 3.  The association energies HA are reported in Table 

4.  As can be seen, an attractive interaction between indium and lanthanum vacancies is predicted 
whereas indium and lutetium vacancies are predicted to be very weakly repulsive.  
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Discussion 

Schottky disorder is found more commonly in insulating and semiconducting compounds than in 
intermetallic compounds.  It is, therefore, interesting that Schottky disorder is the lowest mode of 
disorder in LaIn3 and LuIn3.  Although one may reasonably expect that LaIn3 and LuIn3, as 
endmembers of the series, would be representative of the whole series, calculation of disorder 
formation enthalpies in the other rare-earth tri-indides likely would be of value to confirm that 
vacancies are indeed the dominant defects in all the rare-earth tri-indides. 

The lower Schottky disorder enthalpy in LuIn3 indicates that concentrations of vacancies will be 
higher in LuIn3 than LaIn3.  If the Schottky disorder enthalpy decreases monotonically across the 
rare earth series, then one would expect to find larger vacancy concentrations as one shifts toward 
heavier rare earth elements.  This, in turn, would result in increasing tracer jump rates (and 
increasing nuclear relaxation) toward the heavier rare earths, as was observed in the heavy rare-
earth tri-indides using PAC [2].  It does not, on the other hand, explain the reverse trend observed in 
the light-rare earths: that nuclear relaxation increases when moving toward the lighter rare-earth 
element.  This suggests that a different physical process is responsible for the nuclear relaxation.  

Given that vIn is one of the dominant defects in LaIn3, as predicted by these calculations, it is 
difficult to understand how a vLa-mediated 6-jump cycle mechanism or anti-structure-bridge 
mechanism would lead to a larger diffusion rate for Cd on the In sublattice.  Therefore, on the basis 
of the present calculations of equilibrium defect concentrations, diffusion mechanisms driven by vLa 
defects appear to be unlikely explanations for the large nuclear relaxation observed at the indium-
rich composition in LaIn3.  The difference in vacancy association behavior in LaIn3 and LuIn3 is 
intriguing, suggesting that a divacancy mechanism could explain elevated Cd jump rates at indium-
richer compositions in LaIn3. 

Following the reasoning of Kurita and Koiwa [14], one can define 12 associated vIn-vR-pair-
midpoints per unit cell.  Identifying these midpoints as pair “lattice sites,” then the vacancy-pair 

concentration can be defined as    where  denotes the number of 

vacancy pairs and  denotes the total number of pair lattice sites in the crystal.  Noting that the 

proportion of these pair-sites to In sites to rare-earth sites is 12:3:1 and approximating   and 

 as zero in accord with the negligible antisite concentrations predicted by the disorder 
enthalpies in Table 4, Eqs. 3 can be written 
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Application of the Law of Mass Action for the association reaction in Eq. 4 gives 
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And, inclusion of  Inv:vR  in Eq. 2 while neglecting the antisite concentrations gives a new 
equation of constraint: 

        In4
1

In4
3 v3v:v416v4 xxxx RR  . (7) 

Numerical solution of the Schottky equilibrium equation and Eqs. 5-7 gives concentrations of 
vacancies and the vacancy-pair.  Fig. 3 shows these concentrations as a function of composition at 
600 K for the Schottky disorder enthalpy calculated for LaIn3 for four different association 
enthalpies.  As can be seen, for sufficiently negative association enthalpy, the vacancy-pair 
concentration will exceed the indium vacancy concentration for certain ranges of indium-rich 
compositions (x<0).  This is best illustrated for the -0.8 eV association enthalpy.  If migration 



 

barriers are comparable for the simple vIn diffusion mechanism and for the divancancy mechanism, 
then one would expect diffusion of tracers to be governed by the vIn mechanism near x=0 where 
[vIn] exceeds [vR:vIn] and by the divacancy mechanism for x<0 where [vR:vIn] exceeds [vIn].  
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Fig. 3. Log plots of vacancy and vacancy-pair concentrations in La1+4xIn3-4x as a function of x at 600 
K for the disorder enthalpies reported in Table 4 and for selected values of vacancy-vacancy 
association enthalpy: (a) 0 eV, (b) -0.2 eV, (c) -0.4 eV, and (d) -0.8 eV.  In all graphs, entropies 
were taken to be zero. 

 
 
According to the calculations of the present work, the association enthalpy in LaIn3 is only -0.20 

eV.  As can be seen in Fig. 3b, [vR:vIn] only marginally exceeds [vIn] at large deviation from 
stoichiometry at 600 K, and this result alone cannot explain the large difference in nuclear 
relaxation observed for cadmium at the phase boundaries of LaIn3.  Additional calculations are 
needed to draw a definitive conclusion regarding the possibility that diffusion of Cd is mediated by 
the divacancy defect for indium richer compositions in LaIn3.  (1) The 2×2×2 supercell may be 
small enough that defect images influence calculated enthalpies, so this should be investigated by 
repeating defect enthalpy calculations using a 3×3×3 supercell.  This may yield an association 
enthalpy that is more negative.  (2) Nonzero entropies could enhance (or diminish) [vR:vIn], so 
phonon frequencies should be calculated to determine vibrational contributions to the free energy 
significantly impacts [vR:vIn].  (3) Even without a significant change in [vR:vIn] due to inclusion of 
vibrational effects, it could be that the divacancy mechanism provides a lower effective migration 
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barrier for Cd tracers; therefore, migration barriers for the indium-vacancy and the divacancy 
mechanisms should be calculated to see if the divacancy barrier is lower.  (4) For completeness, 
migration barriers for other competing diffusion mechanisms should be calculated to verify that 
they are not lower than those of the vacancy and the divacancy mechanisms.  DFT-based 
calculations of migration barriers for competing diffusion mechanisms have been performed to 
investigate other L12 compounds [15,16,17].   

With regards to the hypothesis that the increased nuclear relaxation observed for cadmium at 
indium richer compositions in LaIn3 is due to a shift of cadmium off the indium sublattice [4], the 
large transfer enthalpy calculated for reaction 2 strongly indicates it is unlikely that the cadmium 
shifts to the lanthanum sublattice.  It does not, however, rule out the possibility that cadmium on a 
lanthanum site is stabilized when bound with an intrinsic defect or that cadmium shifts to an 
interstitial position.  Additional calculations with these other defect configurations need to be 
performed in order to evaluate further the cadmium site-switching possibility.  

Summary 

As the first step in a study of cadmium movement in the series of rare-earth tri-indies using 
computer simulation, density functional theory was used to calculate defect formation and cadmium 
site-occupation enthalpies in LaIn3 and LuIn3, which allowed prediction of equilibrium defect 
concentrations using a thermodynamic model.  Key findings were as follows. 

1) Schottky disorder is the lowest enthalpy mode in LaIn3 and LuIn3, indicating that 
indium vacancies and rare-earth vacancies have much larger concentrations than 
antisite defects. 

2) There is a modestly attractive interaction between indium vacancies and lanthanum 
vacancies, but there is a weakly repulsive interaction between indium and lutetium 
vacancies  

3) It is energetically unfavorable for Cd to occupy the rare-earth sublattice in both LaIn3 
and LuIn3. 

The vacancy-interaction result suggests that diffusion at the indium-rich boundary of LaIn3 might 
be mediated by divacancies, which could explain why cadmium was found to experience a larger 
nuclear relaxation, corresponding to a higher jump rate, at the indium-rich boundary. These 
calculations do not fully explain why the jump rates inferred by nuclear relaxation measurements at 
the indium-rich boundary in LaIn3 are anomalously high, but they do indicate it is unlikely that the 
large relaxation is caused by a shift of cadmium from the indium to the lanthanum sublattice.  The 
calculations do not rule out the possibility that cadmium moves to an interstitial lattice location [4].  
Additional calculations are needed to determine effects of simulation size and lattice vibrations, 
migration barriers of candidate diffusion mechanisms, and enthalpies of cadmium in interstitial sites 
in order to develop a fuller understanding of cadmium movement in the rare earth tri-indides. 
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