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Abstract. In previous work, perturbed angular correlation spectroscopy (PAC) was used to
determine jump rates of '''Cd, the daughter of the '''In radiotracer, in the series of phases RIn; (R =
rare-earth element) through nuclear quadrupole relaxation. Greater relaxation, indicating faster Cd
jump rates, was observed in heavy rare-earths for compositions more deficient in indium, as would
be expected for diffusion mediated by vacancies on the In sublattice. On the other hand, greater
relaxation was observed for light rare-earths (R = La, Ce, and Pr) for compositions with excess
indium, suggesting Cd diffusion is mediated there by a different mechanism. In this work,
computer simulations were carried out to better understand the nature of the relaxation observed for
the light rare-earths and the origin of the change in behavior across the rare-earth series. As a first
step, formation enthalpies of intrinsic defects were calculated using density functional theory (DFT)
for series end-members Laln; and Lulns;. Both compounds were found to exhibit Schottky thermal
disorder. Additional DFT simulations show that the binding enthalpy between In- and R-vacancies
is larger in Laln; than in Lulns, suggesting that diffusion in Laln; might be mediated by
divacancies. Site enthalpies of Cd also were calculated, and it was found more favorable
energetically for Cd to occupy the In sublattice than the R sublattice in both end-member phases.

Introduction

Rare earth tri-indides (RIn; where R = rare earth element) form in the L1, crystal structure,
shown in Fig. 1. In this structure, indium is coordinated by 4 R sites and 8 In sites, so it is
reasonable to expect that tracers on the indium sublattice will diffuse via an indium vacancy
mechanism, undergoing first-neighbor jumps without an increase in configurational energy [1]. In
such a case, the tracer jump rate w would be given by the formula w = Z[vy,]w,, where Z=8 is the
number of first-neighbor In sites, [vi,] denotes the fractional indium vacancy concentration, and w;
is the tracer-vacancy exchange frequency. The corresponding diffusion coefficient would be given
by

D=L fa*w (1)

where f'is the correlation coefficient and a is the lattice parameter. Thus, in the case of an indium
vacancy mechanism, the tracer jump rate and the tracer diffusivity will increase as indium vacancy
concentration increases as would be the case, for example, for sample compositions with growing
indium deficiency.

Using perturbed angular correlation spectroscopy (PAC), cadmium jump rates were determined
by measuring nuclear relaxation at opposing phase-boundary compositions in RInj across the rare
earth series [2]. In heavy rare-earth compounds, cadmium tracers experienced larger relaxation
(corresponding to faster jump rates) at indium-poorer compositions, as expected for an indium
vacancy diffusion mechanism; however, in the light rare-earth compounds, tracers were found to



have larger relaxation at indium-richer compositions. A decisive composition dependence was not
observed for the intermediate rare-earths Nd and Sm.

Fig. 1. The L1, crystal structure. Rare earth
atoms are shown as larger spheres and indium as
smaller spheres. First neighbors are connected
by bars.

As pointed out when larger relaxation was first observed at the indium-richer composition in
Laln; [3], it is possible to explain the “backwards” composition dependence if cadmium diffuses
via a more complex diffusion mechanism such as via a La-vacancy-mediated 6-jump cycle or a
divacancy mechanism. For example, if the dominant mode of disorder in Laln; involves lanthanum
vacancies and La-antisite defects, analogous to triple-defect disorder in B2 compounds, then it
could be that the indium vacancy concentration is small enough that diffusion of indium and tracers
on its sublattice would be mitigated by the lanthanum vacancies. Since lanthanum vacancy
concentration is larger at indium-richer compositions, this would explain the composition
dependence of nuclear relaxation observed for cadmium in Laln;.

Diffusion mediated by lanthanum vacancies may not entirely explain the anomalously high
cadmium jump rates inferred by relaxation measurements at indium-rich compositions in the light
rare earth tri-indides [4]. It has been suggested that the measured relaxation is due at least in part to
cadmium shifting off the indium sublattice [4,5], which would happen, for example, if the site
occupation energy of cadmium were lower on a rare-earth site than the indium site. The cadmium
tracers used in earlier experiments were radioactive daughters of the '''In PAC isotope, and
therefore are known to occupy the indium sublattice initially. It is possible that cadmium moves off
the indium sublattice shortly after its formation and that this leads to a larger nuclear relaxation than
would be observed if cadmium were jumping only among indium lattice sites.

Given the incomplete picture about cadmium movement in Laln; and other light rare-earth tri-
indides, it is of interest to use computer simulations to help understand the difference in cadmium
behavior in the light and heavy rare-earth compounds and to help elucidate the origin of the larger
relaxation rates at indium richer compositions in the light rare-earth tri-indides. The first step in
such simulations is to determine equilibrium intrinsic defect and cadmium site-occupation
properties in representative compounds. This paper presents findings for endmembers of the series:
Laln; and Luln;. Implications of these results for interpreting the difference in cadmium jump-rate
trends as inferred by hyperfine relaxation measurements in these two compounds will be discussed.

Method

Intrinsic defect and solute site occupation concentrations can be calculated through application of
an appropriate thermodynamic model. In this work, the Gibbs free energy of the defective crystal is
minimized subject to structural and compositional constraints within the framework of the
canonical ensemble. Changes in enthalpy in the thermodynamic model are calculated using density
functional theory (DFT).

Consider the general compound Rji4,In34, where x denotes deviation from stoichiometric
composition RIns, and, again, R represents a rare-earth element: La or Lu, in this study. The usual
assumption is made that interactions among defects are negligible. In PAC studies using the '''In
isotope, tracer mole fraction is on the order of 10", which is much smaller than the total
concentration of intrinsic defects. Accordingly, in this thermodynamic model, tracer concentration



will be taken to be small enough to be considered negligible in the composition constraint. This
gives, as the composition constraint:

4+ [ing ]+ B xfve]=3Rin ]+ 3L + xJvin ], 2)

where square brackets are used to denote the fractional concentration of defect on the sublattice
specified by the subscript.

Minimization of the Gibbs free energy leads to four equations involving intrinsic defect
concentrations. Alternatively, these equations can be obtained by applying the Law of Mass Action
to pseudo-chemical disorder reactions that represent defect formation. The reactions and
corresponding Mass-Action equations are given in Table 1. They represent Schottky disorder,
antisite disorder, and two modes of disorder that are analogous to triple-defect disorder in the B2
compounds: called 7-defect and 5-defect in this work.

Table 1. Equilibrium equations and corresponding intrinsic disorder reactions for Rlns.

Equation of equilibrium Disorder reaction
Valvinf = Ks =exp(-Gs /kgT)  0—55vp +3vy, (Schottky)
Ing [|R
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Minimization of the Gibbs free energy also leads to equations relating concentrations of
cadmium on each sublattice to intrinsic defect concentrations. These equations along with
corresponding pseudo-chemical reactions describing the transfer of cadmium from one sublattice to
another are given in Table 2.

Table 2. Equilibrium equations and transfer reactions for Cd site occupation in Rln;.
Equation of equilibrium Transfer reaction

CdplRy] .

_CdIn][R;_ Ky =exp(~ Gy /kgT) Cdpy + Rg —21>Cdp + Ry,
Cdglvin] .

-CdIn ][V; - KX2 - CXp(— GX2 /kBT) CdIn + VR %CdR + Vin
Cdging,] .

-:CdIn ][In;] =Ky3 = eXp(_ Gy3 /kBT) Cd, +Ing —GLZ—>CdR +Iny,

As shown below, only three equations in Table 1 are independent, and only one equation in
Table 2 is needed to determine equilibrium cadmium site occupation. Thus, if three of the free
energies of disorder, Gs, Gas, G7 and Gs, and one of the free energies of transfer, Gy,, are known,
the defect concentrations can be calculated by solving numerically the systems of equations given



by three equations in Table 1, one equation in Table 2, Eq. 2, and two additional relations to
eliminate [Rg] and [Iny,]:

[Ingy ]=1-[Ryn ] [vin] and [Rg]=1-[Ing]-[vg], (3)

again under the assumption that [Cdg] and [Cdj,] are much smaller than the dominant intrinsic
defect concentrations.

Thus, determination of defect concentrations and Cd site occupation depends only on values of
free energies of disorder and of solute transfer. They can be expressed in terms of what have been

called defect formation energies, denoted in the present work by (g{,{ )/ for defect X on sublattice

Y, and by the formation energy per formula unit of the perfect lattice, gf In this notation,

Rln,
I R R
Gg = (gzve)/ + 3(glvn)f + g£1n3 . Gas= (an)/ + (gm)/ , Gp= 4(gzve)f + 3(g1n)f + g£1n3 , Gs=
I cd RY (.caVy (Cd)/ ( )/ (Cd)/
4(g1vn)/ +(an)/ +g,§ln3, Gy = (gR )/+(g1n) —(gm ) . Go=gg") +lem) —\em

- (g}é)/, and Gy3 = (g%d)f - (gﬁd)f - (g}gn)[. Note that 4Gg+3Gag =Gy +3Gs5, so that only
three disorder reactions are needed to specify intrinsic disorder completely. Only one transfer
reaction is needed, because reaction energies of various transfer reactions differ only by intrinsic
disorder energies: Gy3 = Gy] — Gag =Gy + Gg —Gs.

The defect formation energy corresponds to the change in energy required to move the non-
defect atom out of site Y in the crystal to a reference state, which often is taken to be a pure metal of
substance Y, and to move a defect of species X from a reference state into the vacant lattice site in

the crystal. That is, (g))z( )/ = gl)/( (N)- NggIn + g?z - g% where N indicates the number of atoms in
3
the crystal, ggln is the energy per atom of the perfect crystal so that Ng?eIn is the energy of the
3 3

perfect crystal with NV atoms, gﬁ( (N) is the energy of an equivalent size crystal with defect Xy, and
gg)( and g9 are the energy per atom of X and Y in their reference states. For X = vacancy, g())( is
zero. The formation energy of RIns is given by the difference in energy of RIn; and the energies of

R and In in their reference states; that is, g-;;m =4 g??ln - g% -3 g?n.
3 3

It is noteworthy that reference-state energies gg)( cancel when calculating disorder-reaction and
transfer energies, so that reaction and transfer energies may be determined without calculating

energies of pure metals or other reference conditions. In that case, Gg=gp +4g2In ,
3

I R R 0 I 0 Cd R Cd
Gas = &R +&in> G7 =48k +32in +48py, » Gs =48I+ &R +48py, » Ox1=8R +&h—&hn »

G =g +gl—gtd— gk, and Gy =g%% —gtd gl Here gif, which is sometimes called
the raw defect energy [6], denotes the difference in energy of the crystal with and without the
defect: gif =gif (N)- Ng?{ln for an N-atom crystal.

3

Above, free energies, G and g, can be expressed in terms of corresponding enthalpies and
vibrational entropies: G = H — TSyi, and g = h — Tsyip. Often, vibrational contributions to the free
energy are not considered when using computer simulations to perform an initial characterization of
a material’s defect properties, and that is true for the present analysis.

In this work, defect enthalpies h?f and the enthalpy per atom of RlIns, h}%ln , were calculated
3

within the framework of density functional theory (DFT) using the LAPW/dAPW basis set [7] as
implemented in the WIEN2k code [8]. That is, full-potential linearized augmented plane-waves



with additional local-orbital basis functions (LAPW+LO) [9] were used for valence and semi-core
electrons in s- and p-states while augmented plane waves with local orbitals (APW+lo) [7,10] were
used for d- and f-states. The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA)
[11] was used as the exchange-correlation functional, and calculations were carried out without
spin polarization. Atom-specific parameters (muffin-tin sphere radii and local orbitals) were as
follows: Ryt = 2.50 a.u. with a 4d lo for In; Ryt = 2.50 a.u. with a 4p LO for Cd; Ry = 2.50 a.u.
with 6s and 5p LOs for La; and Ryr = 2.50 a.u. with 6s and 5p LOs for Lu. Basis set sizes were
determined using RyrKmax = 9.5, spherical harmonics inside atomic spheres were expanded up to
maximum angular momentum /., = 10, and the charge density was expanded up to G = 12 au .

Calculations were carried out on supercells containing N = 32 atoms constructed from 2x2x2
unit cells under constant pressure; i.e., the lattice parameter was adjusted to minimize enthalpy at
zero pressure. Defect calculations were full relaxed; that is, atomic coordinates of all 32 atoms (or
31 for vacancy calculations) were adjusted to minimize enthalpy independent of symmetry
constraints. The tetrahedron method [12] was used to perform integrations in reciprocal space by
sampling 63 k points in the reduced first Brillouin zone of the supercell. Calculations were run to
self-consistency with an energy convergence criterion of 0.01 mRy, and atomic-coordinate
relaxation calculations were run until forces on atoms were less than 0.2 mRy/bohr.

Results

Calculated enthalpy per atom of RIn; and defect enthalpies are given in Table 3. Corresponding
disorder formation enthalpies, transfer enthalpy for the second transfer reaction, and vacancy-
vacancy association enthalpy (introduced below) are given in Table 4.

Table 3. Defect enthalpies and enthalpy per atom of RIn;. All quantities in eV.

Quantity R =1a (Lalns) R =Lu (Lulnz)
h21n3 -177,878.444 -219,263.302
hy 231,236.062 396,774.819
Y 160,094.135 160,093.587
h 71,145.549 236,685.692
Is -71,137.524 -236,677.105
Y 78,960.508 244,499.714
htd 7,817.5794 7,817.325
AV 391,329.996 556,868.436

Table 4. Disorder enthalpies, transfer reaction 2 enthalpy, and vacancy association enthalpy.

Quantity R =La (Lalns) R = Lu (Lulnjz)
Hs [eV/defect] 1.173 0.594
Hags [eV/defect] 4.012 4.293
H; [eV/defect] 2.557 2.107
Hs [eV/defect] 1.663 1.367

Hy, [eV] 1.002 1.157

Ha [eV] -0.201 0.030




As can be seen in Table 4, the Schottky disorder enthalpy-per-defect has the smallest value of all
modes of disorder in each compound, indicating that vacancies will have much larger
concentrations than antisite defects. This can be verified readily by calculating defect
concentrations at, for example 600 K, taking vibrational entropies to be zero for simplicity, and
graphing as a function of composition, as in Fig. 2. These results differ significantly from earlier
calculations [13], which determined the lowest-enthalpy mode of disorder in Lalns to be the 5-
defect defect and the antisite and 7-defect modes to be nearly equivalent in Luln;. In the earlier
calculations, disorder formation enthalpies were calculated under the condition of constant volume.
The present results are favored, as constant pressure better represents experimental conditions.

R =La (Laln,) R =Lu (Luln,)
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Fig. 2. Log plots of intrsinic defect conncentraions as a function of deviation from stoichiometry x
at 600 K for disorder enthlapies reported in Table 4 and assuming disorder entropies are zero for (a)
La1+4xln3_4x and for (b) Lu1+4xIn3_4x.

Given that vacancies have the largest concentrations in these compounds, transfer reaction x2
provides the most direct equation for determining cadmium site occupation. Values obtained are
given in Table 4. They indicate that it is energetically unfavorable for cadmium to switch from an
indium site to a rare-earth site in both Laln; and Lulns.

Since vacancies are predicted to be the dominant intrinsic defects in these compounds, it is of
interest to consider whether or not rare-earth and indium vacancies experience an attractive
interaction. A vacancy-vacancy interaction can be considered using the pseudo-chemical reaction
for vacancy association:

(4)

VRt VIn L>{VR : VIn}’

where a negative association energy Gy indicates an attractive interaction. It can be expressed in
terms of defect energies as G = glig — &k — &1n Where gri'z denotes the difference in energy in
the crystal with vg and vy, defects in first neighbor positions and in the crystal with no defects; that
is, gii'r = IR (N )— Ng?elnS . Again, N is the number of atoms in the crystal, or, in the case of a
defect calculation, the number of atoms in the simulation supercell. The corresponding enthalpies,

i » calculated using DFT are given Table 3. The association energies H are reported in Table

4. As can be seen, an attractive interaction between indium and lanthanum vacancies is predicted
whereas indium and lutetium vacancies are predicted to be very weakly repulsive.



Discussion

Schottky disorder is found more commonly in insulating and semiconducting compounds than in
intermetallic compounds. It is, therefore, interesting that Schottky disorder is the lowest mode of
disorder in Laln; and Lulns;. Although one may reasonably expect that Laln; and Luln;, as
endmembers of the series, would be representative of the whole series, calculation of disorder
formation enthalpies in the other rare-earth tri-indides likely would be of value to confirm that
vacancies are indeed the dominant defects in all the rare-earth tri-indides.

The lower Schottky disorder enthalpy in Luln; indicates that concentrations of vacancies will be
higher in Lulns than Laln;. If the Schottky disorder enthalpy decreases monotonically across the
rare earth series, then one would expect to find larger vacancy concentrations as one shifts toward
heavier rare earth elements. This, in turn, would result in increasing tracer jump rates (and
increasing nuclear relaxation) toward the heavier rare earths, as was observed in the heavy rare-
earth tri-indides using PAC [2]. It does not, on the other hand, explain the reverse trend observed in
the light-rare earths: that nuclear relaxation increases when moving toward the lighter rare-earth
element. This suggests that a different physical process is responsible for the nuclear relaxation.

Given that vy, is one of the dominant defects in Lalns, as predicted by these calculations, it is
difficult to understand how a vi,-mediated 6-jump cycle mechanism or anti-structure-bridge
mechanism would lead to a larger diffusion rate for Cd on the In sublattice. Therefore, on the basis
of the present calculations of equilibrium defect concentrations, diffusion mechanisms driven by vy,
defects appear to be unlikely explanations for the large nuclear relaxation observed at the indium-
rich composition in Laln;. The difference in vacancy association behavior in Laln; and Lulns is
intriguing, suggesting that a divacancy mechanism could explain elevated Cd jump rates at indium-
richer compositions in Lalns.

Following the reasoning of Kurita and Koiwa [14], one can define 12 associated vi,-vg-pair-
midpoints per unit cell. Identifying these midpoints as pair “lattice sites,” then the vacancy-pair

concentration can be defined as [V R ZVIn]E N/ N p Where Npiz denotes the number of
vacancy pairs and N, denotes the total number of pair lattice sites in the crystal. Noting that the
proportion of these pair-sites to In sites to rare-earth sites is 12:3:1 and approximating [In R] and

[Rm] as zero in accord with the negligible antisite concentrations predicted by the disorder
enthalpies in Table 4, Egs. 3 can be written

[Ingy ]=1-[vin]-4[vg : vin] and [Rp]=1-[vg]-12[vg : vi,]. (5)

Application of the Law of Mass Action for the association reaction in Eq. 4 gives

byl _ g — (-G, ragr). ©

Va]vin

And, inclusion of [V R IVIn] in Eq. 2 while neglecting the antisite concentrations gives a new
equation of constraint:

4x+(%—xIVR]+ 6(1—4x)vp IVIn]=3(%+xIVIn]. (7)

Numerical solution of the Schottky equilibrium equation and Eqgs. 5-7 gives concentrations of
vacancies and the vacancy-pair. Fig. 3 shows these concentrations as a function of composition at
600 K for the Schottky disorder enthalpy calculated for Laln; for four different association
enthalpies. As can be seen, for sufficiently negative association enthalpy, the vacancy-pair
concentration will exceed the indium vacancy concentration for certain ranges of indium-rich
compositions (x<0). This is best illustrated for the -0.8 eV association enthalpy. If migration



barriers are comparable for the simple vy, diffusion mechanism and for the divancancy mechanism,
then one would expect diffusion of tracers to be governed by the vy, mechanism near x=0 where
[vin] exceeds [Vg:vi] and by the divacancy mechanism for x<0 where [vg:viy]| exceeds [Via].
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Fig. 3. Log plots of vacancy and vacancy-pair concentrations in La;4.Ins 4, as a function of x at 600
K for the disorder enthalpies reported in Table 4 and for selected values of vacancy-vacancy
association enthalpy: (a) 0 eV, (b) -0.2 eV, (c) -0.4 eV, and (d) -0.8 eV. In all graphs, entropies

were taken to be zero.

According to the calculations of the present work, the association enthalpy in Lalns is only -0.20
eV. As can be seen in Fig. 3b, [vg:iviy] only marginally exceeds [vi,] at large deviation from
stoichiometry at 600 K, and this result alone cannot explain the large difference in nuclear
relaxation observed for cadmium at the phase boundaries of Laln;. Additional calculations are
needed to draw a definitive conclusion regarding the possibility that diffusion of Cd is mediated by
the divacancy defect for indium richer compositions in Lalns. (1) The 2x2x2 supercell may be
small enough that defect images influence calculated enthalpies, so this should be investigated by
repeating defect enthalpy calculations using a 3x3x3 supercell. This may yield an association
enthalpy that is more negative. (2) Nonzero entropies could enhance (or diminish) [vz:vi,], SO
phonon frequencies should be calculated to determine vibrational contributions to the free energy
significantly impacts [vz:vin]. (3) Even without a significant change in [vg:vy,] due to inclusion of
vibrational effects, it could be that the divacancy mechanism provides a lower effective migration



barrier for Cd tracers; therefore, migration barriers for the indium-vacancy and the divacancy
mechanisms should be calculated to see if the divacancy barrier is lower. (4) For completeness,
migration barriers for other competing diffusion mechanisms should be calculated to verify that
they are not lower than those of the vacancy and the divacancy mechanisms. DFT-based
calculations of migration barriers for competing diffusion mechanisms have been performed to
investigate other L1, compounds [15,16,17].

With regards to the hypothesis that the increased nuclear relaxation observed for cadmium at
indium richer compositions in Lalns is due to a shift of cadmium off the indium sublattice [4], the
large transfer enthalpy calculated for reaction 2 strongly indicates it is unlikely that the cadmium
shifts to the lanthanum sublattice. It does not, however, rule out the possibility that cadmium on a
lanthanum site is stabilized when bound with an intrinsic defect or that cadmium shifts to an
interstitial position. Additional calculations with these other defect configurations need to be
performed in order to evaluate further the cadmium site-switching possibility.

Summary

As the first step in a study of cadmium movement in the series of rare-earth tri-indies using
computer simulation, density functional theory was used to calculate defect formation and cadmium
site-occupation enthalpies in Laln; and Lulns;, which allowed prediction of equilibrium defect
concentrations using a thermodynamic model. Key findings were as follows.

1) Schottky disorder is the lowest enthalpy mode in Laln; and Lulns, indicating that
indium vacancies and rare-earth vacancies have much larger concentrations than
antisite defects.

2) There is a modestly attractive interaction between indium vacancies and lanthanum
vacancies, but there is a weakly repulsive interaction between indium and lutetium
vacancies

3) It is energetically unfavorable for Cd to occupy the rare-earth sublattice in both Laln;
and Luln;.

The vacancy-interaction result suggests that diffusion at the indium-rich boundary of Laln; might
be mediated by divacancies, which could explain why cadmium was found to experience a larger
nuclear relaxation, corresponding to a higher jump rate, at the indium-rich boundary. These
calculations do not fully explain why the jump rates inferred by nuclear relaxation measurements at
the indium-rich boundary in Laln; are anomalously high, but they do indicate it is unlikely that the
large relaxation is caused by a shift of cadmium from the indium to the lanthanum sublattice. The
calculations do not rule out the possibility that cadmium moves to an interstitial lattice location [4].
Additional calculations are needed to determine effects of simulation size and lattice vibrations,
migration barriers of candidate diffusion mechanisms, and enthalpies of cadmium in interstitial sites
in order to develop a fuller understanding of cadmium movement in the rare earth tri-indides.
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