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Abstract
Batch Bayesian optimization has been shown to
be an efficient and successful approach for black-
box function optimization, especially when the
evaluation of cost function is highly expensive
but can be efficiently parallelized. In this paper,
we introduce a novel variational framework for
batch query optimization, based on the argument
that the query batch should be selected to have
both high diversity and good worst case perfor-
mance. This motivates us to introduce a varia-
tional objective that combines a quantile-based
risk measure (for worst case performance) and
entropy regularization (for enforcing diversity).
We derive a gradient-based particle optimization
algorithm for solving our quantile-based varia-
tional objective, which generalizes Stein varia-
tional gradient descent (SVGD) by Liu & Wang
(2016). We evaluate our method on a number
of real-world applications, and show that it con-
sistently outperforms other recent state-of-the-art
batch Bayesian optimization methods.

1. Introduction
Bayesian optimization (BO) is an efficient method for op-
timizing non-convex and black-box functions. It has been
recently well-studied in the machine learning community
and starts to be applied to many applications in science
and engineering (Fernandez et al., 2011; Turgeon et al.,
2016). From searching hyper-parameter for machine learn-
ing algorithms (Oh et al., 2018), to designing electronic
or chemical products automatically (Lyu et al., 2018; Grif-
fiths, 2017; Gómez-Bombarelli et al., 2018), Bayesian opti-
mization has already shown great success and potential for
problems where automation is needed to replace tedious
human labor.

The idea of Bayesian optimization is to treat the unknown,

1Department of Computer Science, UT Austin 2University of
Illinois at Urbana Champaign, IL. Correspondence to: Chengyue
Gong <cygong@cs.utexas.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

or expensive objective function as a random variable and
leverage Bayesian inference, typically with a Gaussian pro-
cess prior, to estimate the posterior distribution of the func-
tion value on new points in the design space, given the ex-
isting function evaluations collected. An acquisition func-
tion, such as the expected improvement (Jones et al., 1998)
or the upper confidence bound (Srinivas et al., 2009), is
then constructed based on the posterior estimation to deter-
mine a new point as query to evaluate the objective func-
tion. The choice of the new query points should balance the
trade-off between exploration and exploitation, so that one
can optimize the objective function using as few function
evaluations as possible.

In this work, we focus on the setting of batch (or paral-
lel) Bayesian optimization (Frazier et al., 2009; Frazier &
Clark, 2012; Kathuria et al., 2016). In this setting, multiple
query points are obtained simultaneously at each iteration,
so that they can be evaluated in parallel. Because it is often
easy to run multiple experiments or evaluation programs in
parallel in practice, batch Bayesian optimization is an es-
sential and practical way to accelerate Bayesian optimiza-
tion for highly expensive experiments.

Unfortunately, searching multiple points jointly is much
more challenging than searching for single query point,
given that we search in a higher dimensional space with
the same amount of information, and may yield a signifi-
cant waste of computational resource if the joint selection
is not performed carefully. We argue that the set of new
query points should satisfy the following two desiderata,
both arise due to the highly expensive evaluation cost.

I) High Diversity. The query points in the batch should
be sufficiently different from each other, so that the evalu-
ation is not redundant. This corresponds to exploration in
optimization.

II) Risk Aversion. Every single query point, not just the
average or mean of the whole batch, should have a suffi-
ciently high expected function value or value of informa-
tion, so that each evaluation deserves its cost.

Although there has been a significant number of recent
work on batch Bayesian optimization (e.g. González et al.,
2016; Desautels et al., 2014; Contal et al., 2013; Kathuria
et al., 2016; Lyu et al., 2018), they are not designed to
explicitly address these two desiderata jointly. The goal
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of our work is to design a novel batch BO framework, to
allow us to explicitly optimize both the diversity and risk
aversion, and hence significantly improve the performance
over existing approaches.

Our approach is based on a novel variational inference
framework for query optimization, in which we transform
the optimization of multiple query points to a variational
inference of finding an optimal query distribution. We de-
sign the variational objective to explicitly account the two
desiderata, by using a quantile-based risk measure for max-
imizing the worst acquisition function in the batch, and an
entropy regularization for encouraging diversity.

Developing practical algorithm for optimizing our new
variational objective is highly non-trivial mathematically.
We develop a functional gradient descent approach by
leveraging the basic idea from Stein variational gradient
descent (Liu & Wang, 2016), which allows us to derive
a simple yet highly efficient particle-based algorithm for
our variational optimization. Our framework results in a
substantial generalization of SVGD for quantile-based risk
measures, which may find broader applications to other
risk-sensitive settings as well. Empirically, we evaluate our
new approach on a series of benchmark functions and sev-
eral real-world applications, including automatic genomic
selection and chemical design. The experiments demon-
strate that our method achieves better or comparable per-
formances when compared to other recent state-of-the-art
batch Bayesian optimization methods.

2. Related Work
Batch Bayesian optimization has been an active research
topic during the past years. Many algorithms have been de-
veloped to select the query points sequentially in a greedy
fashion (e.g., Contal et al., 2013; González et al., 2016;
Desautels et al., 2014; Wang et al., 2016; González et al.,
2016), which may yield myopic selection due to the greedy
selection strategy. Other methods, such as Nyikosa et al.
(2015); Wu et al. (2017); Shah & Ghahramani (2015); Con-
tal et al. (2013), are based on simultaneously optimizing
the query points using a joint acquisition function. Diver-
sity has also been considered in several very recent works
in batch Bayesian optimization (e.g., Kathuria et al., 2016).
However, our work is different in that we jointly consider
both diversity and risk aversion as our design principle, and
propose a novel variational query optimization framework
that integrates quantile-based risk measures with SVGD.

Beyond batch query optimization, there has been a sig-
nificant amount of literature on addressing various other
issues in large-scale Bayesian optimization, which we do
not have space to enumerate; examples include optimizing
high-dimensional black-box functions (e.g., Wang et al.,

2017; Oh et al., 2018; Rolland et al., 2018), and speed-
ing up Gaussian process inference in big data settings (e.g.,
Wang et al., 2018; Klein et al., 2017; Balog et al., 2016).

3. Background
In this section, we introduce the background of batch
Bayesian optimization and risk measures.

3.1. Bayesian Optimization (BO)

Our goal is to solve the optimization problem of

x∗ = argmaxx f(x), (1)

where f is a black-box function, whose analytic form is un-
known and can be only evaluated point-wisely with a high
computation or monetary cost.

In Bayesian optimization, the black box function f is
treated as a random variable and Bayesian inference is used
to infer its posterior distribution given existing evaluation
results. Let p(f) be a prior on the space of f , which is typ-
ically a Gaussian process (GP) (Rasmussen, 2004). Given
a set of existing evaluation points D := {xi, f(xi)}, we
calculate posterior distribution p(f | D) ∝ p(f)p(D | f),
which allows us to both estimate f and evaluate its uncer-
tainty. In the case of GP, the posterior is also a GP and can
be calculated in closed form.

Given the posterior information, an acquisition function (or
value of information) is constructed to determines which
point should be selected next:

xnew ← argmax
x

α(x | D).

A canonical example of acquisition function is the up-
per confidence bound (UCB) (Auer, 2002; Srinivas et al.,
2009):

α(x | D) := Ef [f(x) | D] + η
√

varf [f(x) | D], (2)

where the expectation and variance are w.r.t. the posterior
distribution of f , and η is a positive number that controls
the magnitude of uncertainty to take into account for bal-
ancing exploitation and exploration. After getting xnew,
its function value f(xnew) is evaluated and added to the
dataset: D ← D ∪ {xnew, f(xnew)}. This procedure re-
peats until a stopping criterion is reached.

Besides UCB, many other common acquisition functions
exist, including the probability of improvement (PI) (Duval
& Silvia, 2002), expected improvement (EI) (Jones et al.,
1998), entropy search (ES) (Shah & Ghahramani, 2015),
knowledge gradient (KG) (Wu & Frazier, 2016; Wu et al.,
2017; Negoescu et al., 2011), and others. See e.g., Shahri-
ari et al. (2016) for an overview.
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Batch Bayesian Optimization (BO) The standard BO
above adds a single query point at each iteration. In many
practical applications, however, it is useful to obtain a batch
of query points {xnew1 , . . . , xnewn } simultaneously, so that
they can be evaluated in parallel to speed up the overall
process. Unfortunately, searching multiple points jointly
is substantially more challenging as we elaborated in the
introduction. The goal of this work is to develop a novel
batch BO framework that explicitly maximizes and bal-
ances the diversity and worst case acquisition value in the
batch.

3.2. Quantile and Risk Measure

Quantile has been an important tool for developing risk-
sensitive measures (e.g., Gilchrist, 2000; Mitra & Ji, 2010),
especially in finance and economics. We leverage it for
risk aversion in our batch BO framework. Let Z be a
one-dimensional random variable on R, whose cumulative
probability function (CDF) is F (t) = Pr(Z ≤ t). The
quantile function Q(β) of Z is defined to be the inverse
function of F :

Q(β) := inf{t : F (t) ≥ β}.

In this work, we will assume F is continuous and invertible,
for which we have Q(β) = F−1(β), or F (Q(β)) = β.

Like density and CDF, the quantile function fully charac-
terizes a distribution. For example, the expectation can be
represented as the expected value of the β-quantile when β
is drawn from the uniform distribution, that is,

E[Z] =
∫ 1

0

F−1(β)dβ.

Motivated by this, we consider the following quantile-
distorted expectation, which is also known as spectral, or
distortion risk measure (Acerbi, 2002; Balbás et al., 2009;
Wirch & Hardy, 2001) in finance,

Eω[Z] =
∫ 1

0

F−1(β)ω(β)dβ, (3)

in which each β-quantile F−1(β) is assigned with an im-
portance weight, or distortion function ω(β), and hence
contributes differently to the overall expectation. Clearly,
Eω[z] reduces to the typical expectation when ω(β) ≡ 1.

Different choice of ω can be viewed as representing differ-
ent preference on risk. Assume Z is a monetary return of
an financial investment, then Eω[Z] is a risk-averse mea-
sure when ω(β) is large for small β, which emphasizes the
worst case return, and a risk-seeking measure when ω(β) is
large for large β, emphasizing the best case returns. As an
example, assume Z has a finite support [z−, z+], then we
have Eω[Z] = z+ if ω(β) = δ[β = 1]and Eω[Z] = z− if
ω(β) = δ[β = 0]. Here δ denotes the Dirac Delta function.

4. Quantile Stein Bayesian Optimization
We present our main framework in this section. We start
by introducing a novel variational formulation of Batch
Bayesian optimization, in which we design a novel vari-
ational acquisition function that leverages the quantile-
distorted expectation to ensure the quality of the worst
query points is maximized, and an entropy regularization to
encourage diversity. We then optimize and solve our vari-
ational optimization by developing a quantile Stein varia-
tional gradient descent (Quantile SVGD) algorithm, based
on developing a kernelized functional gradient descent pro-
cedure that extends the basic idea of SVGD by Liu & Wang
(2016).

4.1. An Variational Framework for Batch BO

Let [x1, x2, ..., xn] be the batch of query points we are op-
timizing. Assume xi ∈ Rd. Because the query points are
un-ordered, we can equivalently formulate them using their
empirical distribution

ρ(x) =

n∑
i=1

δ(x− xi)/n.

The optimization can be then formulated as finding the
optimal distribution ρ in the space of all distributions.
This variational view allows us to naturally incorporate
population-level characteristics into optimization, includ-
ing both diversity and worst-case qualification.

Let α(x) be a standard acquisition function, such as the
UCB in (2) and expected impovement (EI). We propose
to find the optimal query distribution ρ by maximizing the
following objective:

max
ρ

{
L[ρ] := Eωx∼ρ[α(x)] + τH[ρ]

}
, (4)

where Eω[·] denotes the quantile-distorted expectation in
(3), and H[ρ] := −

∫
ρ(x) log ρ(x)dx denotes the entropy

functional of ρ; τ is a positive regularization coefficient.

The two terms in L[ρ] explicitly encourages diversity and
risk aversion, respectively. The entropy regularization is
incorporated to promote the distribution of ρ to spread out,
so that the selected query points are different from each
other. The quantile-distorted expectation is leveraged to
control the minimum α(x) in the query set. We achieve
this by defining the weighting function to be

ω(β) = β−λ with λ > 0,

so that the query points with lower α(x) contributes more
to the overall objective. The parameters τ and λ controls
diversity and risk aversion, respectively. We discuss the
empirical choice of τ and λ in empirical studies (Section 5).
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Algorithm 1 Quantile Stein Variational Gradient Descent
Goal: Find a particle distribution ρ̂(x) =

∑n
i=1 δ(x−xi)/n to approximately maximize the quantile variational objective

function (4), with target function α(x), quantile-distortion function ω(β) and entropy regularization parameter τ .
Initialize a set of points (“particles”) {xi}ni=1; decide a scheme for step size ε.
while not converge do

xi ← xi +
ε

n

n∑
j=1

[
ζ̂j∇xj

α(xj)k(xi, xj) + τ∇xj
k(xi, xj)

]
, ∀i = 1, . . . , n,

where ζ̂j = ω(rank(xj)) and rank(xj) =
∑n
`=1 I[α(x`) ≤ α(xj)]/n.

end while

Algorithm 2 Quantile Stein Bayesian Optimization (QSBO)
Goal: Maximizing a black-box function f(x).
Collect a set of initial data D = {xi, f(xi)}. Decide an entropy regularization coefficient τ and a risk-aversion index λ.
for iteration t do

Construct a standard acquisition function αt(x) based on D (e.g., using the UCB in (2)).
Find a query points {xnewi }ni=1 using quantile SVGD (Algorithm 1) applied on αt, with distortion function ω(β) =
β−λ. Evaluate f(xnewi ) for i = 1, . . . , n in parallel, and add them to datasetD, that is,D = D∪{xnewi , f(xnewi )}ni=1.

end for

4.2. Quantile Stein Variational Gradient Descent

We develop a simple particle-based algorithm for optimiz-
ing the quantile variational optimization in (4). Our algo-
rithm is a generalization of Stein variational gradient de-
scent, which corresponds to the special case of (4) when
ω(β) ≡ 1, and Eωx∼ρ[·] reduces to the typical notion of ex-
pectation.

Assume the query points xi are in Rd. Similar to the deriva-
tion of SVGD, we start with a set of initial query points (or
particles), and iteratively update the particles by gradient-
like update steps:

T (xi) = xi + εφ(xi), ∀i = 1, . . . , n,

where φ : Rd → Rd defines the update direction of the
particles and ε is the step size that controls the perturbation
magnitude. Denote by ρT the distribution of the updated
particles x′ = T (x) as x ∼ ρ. In SVGD, the φ is chose so
that the difference between L[ρT ] and L[ρ] is maximized.
This is explicitly formulated as an optimization problem:

φ∗ = argmax
φ∈F

G[ρ; φ], (5)

and G[ρ; φ] =
d

dε

(
L[ρT ]− L[ρ]

)∣∣∣∣
ε=0

,

where F is a set of candidate functions of φ, and G[ρ; φ]
denotes the increasing rate of L[ρ] as we transform ρ with
map T , when using an infinitesimal step size ε.

The key ingredient of SVGD of Liu & Wang (2016) is a
simple closed form solution of the optimal φ∗ above, but
restricts to the special case of typical expectation (ω(β) ≡

1). Our key result below shows that we can obtain a surpris-
ingly simple extension of the SVGD solution for the more
general quantile-distorted expectation.

Theorem 1. I) Let Fρ be the CDF of z = α(x) as x ∼
ρ. Assume Fρ is continuous and invertible, and α(x) and
φ(x) are continuous differentiable. We have

G[ρ;φ] = Ex∼ρ[ζ(x)∇xα(x)>φ(x) + τ ∇>x φ(x)]

where ζ(x) = ω(Fρ(α(x))). Intuitively, Fρ(α(x)) repre-
sents the rank of α(x) in the population following distri-
bution ρ, and hence ζ(x) denotes the weight assigned on
particle x according to its rank of α(x).

II) Let H0 be a reproducing kernel Hilbert space (RKHS)
of scalar-valued functions with a positive definite kernel
k(x, x′), andH = H0×· · ·×H0 be the set of vector-valued
functions of form φ = [φ1, . . . , φd] with φi ∈ H0 for ∀i =
1, . . . , d. Assume ∇x,x′k(x, x′) exists and is continuous.
Define the optimization domain F in (5) to be the unit ball
ofH:

F = {f ∈ H : ||f ||H ≤ 1},
Then the solution φ∗ of (5) satisfies

φ∗(·) ∝ Ex∼ρ[ζ(x)∇xα(x)k(x, ·) + τ∇xk(x, ·)]. (6)

Theorem 1 is a generalization of the key result of Liu
& Wang (2016) (see their Theorem 3.1 and Lemma 3.2),
which corresponds to the case when the quantile-distortion
function equals one (ω(β) ≡ 1), and hence ζ(x) ≡ 1.
Therefore, the effect of the quantile distortion simply as-
signs a weight on each particle x, which can be empirically



Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization

estimated easily as we show below. Our extension is math-
ematically non-trival, for it requires an understanding of
how quantile functional changes under variable transforms.
See Appendix for the proof.

Quantile Stein Variational Gradient Descent Given the
optimal φ∗ in Theorem 1, we can develop a simple and
efficient particle algorithm for optimizing (4). The idea is
to start with an initial set of particles {xi}, and iteratively
update them via xi ← xi + εφ̂

∗
(xi), for all i = 1, . . . , n,

and φ̂
∗
(x) is an empirical version of φ∗ in (6),

φ̂
∗
(·) = 1

n

n∑
j=1

[ζ̂(xj)∇xj
α(xj)k(xj , ·) + τ∇xj

k(xj , ·)],

where Eρ[·] is replaced by averaging over the particles and
ζ̂(x) is an empirical approximation of ζ(x),

ζ̂(x) = ω(F̂ (x)), F̂ (x) :=
1

n

n∑
i=1

I [α(xi) ≤ α(x)] .

F̂ (x) is an approximation of CDF Fρ(x), which reflects the
rank of x in the population according its value α(x). We
take ω(β) = β−λ with λ > 0 to encourage risk aversion.

See also Algorithm 1 for our main procedure. Like SVGD,
quantile SVGD also leverages the gradient ∇α(x) to push
the particles to maximize α(x), and uses the kernel gradi-
ent ∇k(x, x′), weighted by coefficient τ , to encourage the
diversity of the particles. Our algorithm differs from the
standard SVGD only on introducing the rank-based weight
ζ̂(x), which allows us to introduce risk aversion and better
maximize the worst performance among the particles.

Quantile Stein Bayesian Optimization (QSBO) Apply-
ing quantile SVGD to batch Bayesian optimization yields
our main algorithm, which we summarize in Algorithm 2.
We start by collecting a set of initial data D = {xi, f(xi)}.
At each iteration t, we construct a standard acquisition
function αt(x), based on data D (e.g., using the UCB
in (2)), and run quantile SVGD to obtain a set of new
queries {xnewi }ni=1. We then evaluate f(xnewi ) for all the
query points in parallel, and add them to dataset D, that is,
D = D∪{xnewi , f(xnewi )}ni=1, and repeat the process until
a stop criterion is reached. When combined with gradient
free SVGD (Han & Liu, 2018), QSBO can also handle non-
differentiable acquisition functions.

5. Experiments
We start with a toy example to demonstrate the effect of the
risk aversion and entropy regularization in quantile SVGD,
and then test our quantile Stein Bayesian optimization on
a set of standard benchmark problems and two real-world

problems, including an automatic genomic selection task
and an automatic chemical design task.

Baselines We compare our method with five state-of-
the-art batch Bayesian optimization methods, including
MACE (Lyu et al., 2018), BUCB (Desautels et al., 2014),
GP-UCB-PE (Contal et al., 2013), the local penalization
method with UCB (LP-UCB) (González et al., 2016), and
GP-UCB-DPP-SAMPLE (DPP) (Kathuria et al., 2016).
GP-UCB-PE, BUCB and LP-UCB are three widely used
batch BO algorithms based on UCB, while DPP and MACE
aims to draw diverse particles, which partially align with
our motivation. We use the open-source implementations
of MACE1, BUCB and LP-UCB2, and implement GP-
UCB-PE and DPP by ourselves.

For our QSBO, GP-UCB-PE and DPP, RBF kernel is used,
and the Gaussian process hyperparameters are fitted by
maximum likelihood. For the other algorithms, we use
the default kernel in their implementions (e.g., Lyu et al.,
2018; González et al., 2016). For all the experiments, the
batch size of the new queries selected at each iteration is
set to be 5 unless otherwise specified.

Settings of QSBO We use UCB in (2) as the the acquisi-
tion function α(x) in our method. The hyperparameter η
is chosen by following the setting in Srinivas et al. (2009),
with η =

√
log td/2+2π2/3/δ, where t is the iteration step

and δ is set as 0.05. We set the number of quantile SVGD
steps at each iteration to be 600, with a constant learning
rate of 0.1. The kernel in quantile SVGD is the standard
RBF kernel and the optimizer is AdaDelta as suggested in
the open-source code by Liu & Wang (2016)3. Empirically,
we find it is useful to turn off the entropy regularization
(setting τ = 0) at the last 10% iterations of quantile SVGD
(when the different particles have already been pushed into
different modes), so that we can find the exact local optima
without the impact from the entropy regularization term.

We investigated the choice of the entropy regularization co-
efficient τ and risk aversion coefficient λ, and found that
the results are not sensitive to these parameters once they
are the right region. We set τ = 5 × 10−2 and λ = 1 in
all the experiments unless specified otherwise, and recom-
mend it as a general default setting when using UCB-based
acquisition. More discussion is shown below.

5.1. Illustration on a Toy Example

We run quantile SVGD with α(x) defined by a toy Gaus-
sian mixture example shown in Figure 1 and use it to
demonstrate the effect of quantile distortion and entropy

1code is at https://github.com/Alaya-in-Matrix/pyMACE
2code is at https://github.com/SheffieldML/GPyOpt
3code is at https://github.com/DartML/Stein-Variational-

Gradient-Descent
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Figure 1. (a) The target function α(x) on which we run quantile SVGD;
it is the density of a mixture Gaussian distribution. (b)-(c) The diversity,
minimum value mini α(xi) and average value

∑
i α(xi)/n of the points

returned by quantile SVGD as we vary λ and τ , respectively. The y-axis in
(b) and (c) is the value of the un-normalized probability density function.
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Figure 2. The final reward of QSBO (visualized by
color map) for optimizing the function in Figure 1a,
as a function of the diversity of the query points and
the worst acquisition value in the query batches (both
averaged across the iterations of BO).

regularization in quantile SVGD.

Quantitatively, we evaluate the diversity of the particles to
be the average of the Euclidean distance of each particle
to its nearest neighbor, which can be viewed as a non-
parametric estimation of entropy (e.g., Singh et al., 2003).
We evaluate the risk aversion by the worst value of the par-
ticles, which equals mini α(xi). For reference, we also cal-
culate the average value of the particles,

∑
i α(xi)/n.

Figure 1b shows the result when we vary risk aversion λ,
with fixed entropy regularization (τ = 0.1). We can see
that increasing λ increases the worst case reward, but seems
to have minor impact on the diversity; the average reward
increases with λ when λ is small, but decreases as λ be-
comes too large and the worst case reward dominates. Fig-
ure 1c shows the result when we vary entropy regulariza-
tion τ , with fixed λ = 1. We can see that diversity increases
with τ as expected. We also find that the worst case reward
decreases with diversity in this particular case; this is be-
cause the optimal region of the target function in Figure 1
is contained in a small region, and hence if the diversity
force is too aggressive, the particles would be pushed away
from the optimal region.

The Role of Diversity and Risk Aversion Our work is
motivated by the observation that a good Batch BO algo-
rithm should yield query points with high diversity and
good worst performance. Here we verify this hypothesis,
by running our QSBO with function in Figure 1a as the tar-
get black-box function, using different combinations of λ
and τ . For each trial of QSBO, we calculate the diversity
of the query points and the worst acquisition value in the
query batches (both averaged across the iterations of BO).
The heat map in Figure 2 shows that the final reward of
QSBO (visualized by color) is positively correlated with
both the average diversity and the worst acquisition values
of the query points. This justifies our motivation and ex-
plains why QSBO may work well.

5.2. Benchmark Problems

We test our method and the baselines in ten benchmark
problems from Bingham (2019), which have dimensions
ranging from 2 to 15 (see Table 1 in Appendix for more
information). We set the batch size to be 5 of all the Batch
BO algorithms. The number of initial random sampling tri-
als is set to be 50 for functions with dimensions high than
10, and 20 for lower dimensional problems. For all func-
tions except the 10D and 15D functions, we set the number
of total evaluated points to be 150. For the other functions,
the total number of evaluation is set to be 300. The number
of iteration of quantile SVGD in our QSBO is set to be 30
for the 2-dimension and 5-dimension functions, and 60 for
all the other functions. The experiments were averaged on
20 random seeds.

The Results of the final negative rewards are listed in Ta-
ble 1. It shows that our QSBO achieves the best result and
outperforms the others by a large margin in most cases.

Hyper-parameters We study the choice of hyper-
parameters in our method. We tested various other choices
of λ and τ and show the results in Table 2-3 in appendix.
We find that setting λ = 1 and 10−4 ≤ τ ≤ 10−1 is suit-
able for most black-box functions. We also tested the case
when λ < 0 (corresponding to risk seeking), and find it is
worse than the case when λ > 0, confirming the impor-
tance of risk aversion. We experimented with other batch
sizes (e.g., 10), and found the results are similar (see Ta-
ble 6 in Appendix). We also tested QSBO when combining
with other acquisition functions, e.g. EI, PI and did not
find any single acquisition function dominates (see Table 5
in Appendix).

5.3. Automatic Genomic Selection

Genomic prediction is the task of searching for superior
genotypes in a large number of accessions in germplasm
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GP-BUCB GP-UCB-PE LP-UCB DPP MACE QSBO-UCB
Branin 2.96e-4±0.00 0.24±0.02 3.28e-4±0.00 9.63e-4±0.00 2.85e-5±0.00 5.14e-5±0.00
Eggholder 1.26e2±1.14e2 80.58±60.13 51.34±39.32 82.81±54.98 74.14±62.27 46.86±44.92
Dropwave 0.18±0.12 0.14±0.10 0.14±0.18 0.13±0.16 0.11±0.08 0.07±0.06
CrossInTray 9.05e-3±0.01 2.62e-2±0.00 6.83e-3±0.01 7.64e-3±0.01 3.78e-4±0.00 1.35e-4±0.00
gSobol5 2.91±0.59 17.91±5.32 1.85±2.08 2.34±0.52 1.14±0.37 0.32±0.28
gSobol10 8.79e2±7.93e2 4.58e3±3.82e3 1.04e2±3.13e2 1.07e3±7.82e2 48.92±31.97 31.19±21.18
gSobol15 7.84e4±5.27e4 1.89e4±1.09e4 2.34e3±3.91e3 5.28e3±4.25e3 6.39e2±4.22e2 3.61e2±4.38e2
Ackley5 3.86±1.27 18.02±0.63 3.71±1.93 3.74±0.97 2.36±0.37 2.23±0.59
Ackley10 4.12±0.42 18.98±0.27 3.87±3.05 4.23±3.92 3.01±0.63 2.41±0.44
Alpine2 83.45±23.09 1.34e2±17.33 75.92±23.83 73.39±24.17 63.29±17.28 73.01±19.49

Table 1. The negative rewards of different methods on the benchmark functions. Results are averaged over 20 runs.

GP-BUCB GP-UCB-PE LP-UCB DPP MACE QSBO-UCB
Brown Rice Surface Area 0.85±0.13 0.78±0.14 0.89±0.09 0.91±0.11 0.95±0.04 0.94±0.04
Brown Rice Seed Width 0.69±0.15 0.80±0.18 0.83±0.11 0.82±0.11 0.86±0.05 0.89±0.03
Brown Rice Seed Length 0.95±0.03 0.95±0.07 0.96±0.07 0.95±0.05 0.98±0.03 0.98±0.02
Plant Height 0.89±0.06 0.92±0.07 0.93±0.08 0.95±0.02 0.94±0.04 0.90±0.08
Flag Leaf Length 0.95±0.05 0.97±0.02 0.94±0.06 0.92±0.06 0.93±0.04 0.97±0.02
Protein Content 0.92±0.03 0.87±0.10 0.89±0.04 0.91±0.09 0.92±0.07 0.94±0.08
Flowering Time at Arkansas 0.84±0.09 0.81±0.17 0.84±0.09 0.82±0.07 0.85±0.05 0.87±0.07

Table 2. Rewards of different methods on the Best Found Y genomic selection tasks. For all the methods, we use a batch size of 10 and
run 10 iterations, hence yielding a 100 evaluation in total. Results are averaged on 20 random seeds.

collections preserved in gene banks (Desta & Ortiz, 2014).
We focus on pre-breeding genomic prediction using rice
dataset, which analyzes the association between the 43K
SNP markers and the phenotypic values of 34 traits of
Oryza sativa (a species of Asian rice) (Zhao et al., 2011) 4.
BO has been applied to this problem (e.g., Tanaka & Iwata,
2018), but batch BO has not been considered. How-
ever, evaluation in this case is extremely costly in practice
(which requires to actually plant the rice), parallel evalua-
tion is highly favorable and allows us to speed up rice geno-
type selection by the order of years.

In rice dataset, we aim to find optimal rice genotype to opti-
mize seven different traits (showed in different rows of Ta-
ble 2). The search space is G32 where G = {T,C,G,A},
which embed into a continuous space of R32, where
{T,C,G,A} is mapped to {1, 2, 3, 4}. Although this looks
a simple heuristic, we find it works well for this particular
task. The dataset contains 43k genotypes whose traits have
been pre-evaluated by researchers. For our simulation, we
find the nearest neighbors of the query points as the true
evaluate points at each iteration of BO; this is equivalent
to running standard BO on a piece-wise constant function
constructed by a nearest neighbor regression on the dataset.

4dataset at http://www.ricediversity.org/data/index.cfm

Results The results of various batch BO are shown in Ta-
ble 2, all of which are the baselines reported in Tanaka &
Iwata (2018). We find that our QSBO achieves the best re-
sult on five out of seven traits. As shown in Fig. 3, we find
that our method converges faster than the other existing
approaches, suggesting the practical value of our method
for this problem. Furthermore, we also explore the per-
formance of the experiments with different batch sizes and
find that our proposed method outperforms others in most
settings.

5.4. Automatic Chemical Design

The goal of automatic chemical design is to predict novel
molecules that have certain desirable properties. We fo-
cus on a drug discovery problem following the setting in
Gómez-Bombarelli et al. (2018); Griffiths (2017), which
uses a per-trained variational autoencoder (VAE) developed
in Gómez-Bombarelli et al. (2018) to map molecule struc-
tures to a 36 dimensional continuous latent space. BO is
performed on the latent space, and molecule can be re-
constructed by using the decoder of the VAE. The VAE is
trained on the ZINC dataset5.

Our goal is to find the best molecules that optimize three

5http://zinc15.docking.org/



Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization

R
ew

ar
d

1 2 3 4 5 6 7 8 9 10
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

BUCB

GP-UCB-PE

LP-UCB

DPP

MACE

QSBO

R
ew

ar
d

2 5 10 20 50
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

BUCB

GP-UCB-PE

LP-UCB

DPP

MACE

QSBO

R
ew

ar
d

2 5 10 20 50
0.75

0.80

0.85

0.90

0.95

1.00

BUCB

GP-UCB-PE

LP-UCB

DPP

MACE

QSBO

Iteration Batch Size Batch Size
(a) Learning Curve (b) Fixed # Iteration (b) Fixed total # of Evaluation

Figure 3. Further analysis on the Flag Leaf Length task from Table 2. (a) The learning curve of the optimizing procedure (iteration vs.
reward), with batch size 10; see Appendix for the learning curves of the other tasks. (b) The reward of different methods as we vary the
batch size, while keeping the total number of iteration fixed to be 10. (c) The reward of different methods as we vary the batch size,
while keep the total number of evaluation points fixed to be 100 (so the iteration step equals 100/batch-size).

GP-BUCB GP-UCB-PE LP-UCB DPP MACE QSBO-UCB
QED 0.89±0.08 0.87±0.12 0.91±0.05 0.91±0.06 0.92±0.03 0.93±0.03
SAS 2.27±0.09 2.53±0.17 2.18± 0.06 2.29±0.08 2.16±0.04 2.08±0.05
LogP 0.51±0.07 0.76±0.23 0.50±0.11 0.47±0.07 0.41±0.06 0.33±0.08

Table 3. Rewards of different methods on the automatic chemical design tasks. For all methods, we use a batch size of 5 and run 20
iterations (and hence 100 evaluation points in total). Results are averaged on 20 runs.
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Figure 4. Illustration of the search process of our QSBO-UCB on the QED task.

different properties widely used for benchmarking pur-
poses: water-octanal partition coefficient (LogP), synthetic
accessibility score (SAS) and Qualitative Estimate of Drug-
likeness (QED). The goal is to maximize QED, while
minimizing SAS and LogP. The dataset used by Gómez-
Bombarelli et al. (2018); Griffiths (2017) provides 65K
candidate molecules that have been pre-evaluated. To con-
duct BO simulation, we evaluate the nearest neighbors of
the query points returned by various methods. This is again
effectively optimizing a piece-wise constant function con-
structed by performing a nearest neighbor regression on the
dataset.

Results The results are reported in Table. 3, from which we
can see that QSBO outperforms baselines for all the three
objectives. The improvement is especially high for LogP.
To visualize our optimization process, we plot in Figure 4
the molecule structures of the best evaluated molecules in
the first four and last two iterations from our QSBO algo-
rithm, along with their corresponding QED scores. We can
observe that large modifications and improvements occur

during the earlier stages, and then smooth and local modi-
fications occur in the last two iterations.

6. Conclusion and Future Work
We propose a design principle of batch Bayesian opti-
mization, which seek to jointly optimize and balance the
diversity and risk aversion in batch query optimization.
This allows us to derive quantile Stein Bayesian optimiza-
tion, based on a novel quantile-based varitional framework
which we solve using a simple and efficient quantile SVGD
algorithm. Our results show that our new method consis-
tently outperforms other recent strong baseline methods.

Our work opens a range of potential future works, includ-
ing further improving our algorithm in high dimensional
settings, and extending it to handle discrete search spaces in
more principled ways. The quantile SVGD we developed
is also of its own interest, and can be applied to various
other challenging problems in risk sensitive areas.
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